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Halfspaces

Hypothesis Class

{x = ¢o-1({w,x))} do_1((w,x))

1 -

Sample Complexity: O(d/e?) J
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Kernel-Based Halfspaces

Hypothesis Class

{x = do-1({w, o(x)))} Bo-1((w, $(x)))
1 d
: = (W, ¢(x))
-1 1
Sample Complexity: oo )
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Fuzzy Kernel-Based Halfspaces

Hypothesis Class

{x = dsig((w, o(x)))} duig((w, £()))
1
! = (W, (x))
i 1
Sample Complexity: O(L?/¢2) J
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Fuzzy Kernel-Based Halfspaces

Hypothesis Class

{x = dsig({w, (x)))} duig (W, £(x)))
1
! = (w, ¢(x))
-1 1
Sample Complexity: O(L?/€?)
Time Complexity: ?77?
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Formal Results

Time complexity of learning Fuzzy Halfspaces

o Positive Result: can be done in poly(1/¢) for any fixed L
(worst case)

o Do convex optimization, just use a different kernel...

o Negative Result: can't be done in poly(L,1/¢) time
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Related Work: Surrogates to 0 — 1 loss

@ Popular fix: replace 0 — 1 loss with convex loss (e.g., hinge
loss)

o No finite-sample approximation guarantees!
o Asymptotic guarantees exist (Zhang 2004; Bartlett, Jordan,
McAuliffe 2006)
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Related Work: Surrogates to 0 — 1 loss

@ Popular fix: replace 0 — 1 loss with convex loss (e.g., hinge
loss)

o No finite-sample approximation guarantees!
o Asymptotic guarantees exist (Zhang 2004; Bartlett, Jordan,
McAuliffe 2006)

@ Ben-David & Simon 2000: By a covering technique, can learn
fuzzy halfspaces in exp(O(L?/€?)) time

o Worst case = best case
o Exponentially worse than our bound (however, requires
exponentially less examples)
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Related Work: Directly for 0 — 1 loss

o Agnostically learning halfspaces in poly(d1/54) time (Kalai,
Klivans, Mansour, Servedio 2005; Blais, O'Donell, Wimmer
2008)

o But only under distributional assumptions.
o Dimension-dependent (problematic for kernels)
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Technique Idea

e Original class: H = {x — ¢({w,x)) : [|w]|| = 1}
o Loss function: E}A,N¢(<w7x>)1}7:y
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Technique Idea

e Original class: H = {x — ¢({w,x)) : [|w]|| = 1}
o Loss function: By g(w,x))ly=y = [¢((w,x)) — y|
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Technique Idea

e Original class: H = {x — ¢({w,x)) : [|w]|| = 1}
o Loss function: By g(w,x))ly=y = [¢((w,x)) — y|
@ Problem: Loss is non-convex w.r.t. w

@ The main idea: Work with a larger hypothesis class for which
the loss becomes convex
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Technique Idea

@ Assume ||x|| < 1, and suppose that ¢(a) is a polynomial
Zf.io IS/t
@ Then

o((w,x)) = Y B((w.x)y
Jj=0
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Technique Idea

@ Assume ||x|| < 1, and suppose that ¢(a) is a polynomial
Zf.io IS/t
@ Then

S((w,x) = > Bi({w,x)y
j=0

J=0 Kki,....k;
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Technique Idea

@ Assume ||x|| < 1, and suppose that ¢(a) is a polynomial
Zf.io IS/t
@ Then

S((w,x) = > Bi({w,x)y
j=0

o0

J=0 Kki,....k;
= (vw, ¥(x))
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Technique Idea

@ Assume ||x|| < 1, and suppose that ¢(a) is a polynomial

Zf.io IS/t

S((w,x) = > Bi({w,x)y
j=0

o0

J=0 Kki,....k;
= (vw, ¥(x))

@ V is the feature mapping of the RKHS corresponding to the
infinite-dimensional polynomial kernel
1

I —_—
k(x,x") = T Ty % )
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Technique Idea

Therefore, given sample (x1,y1), .-, (Xm, Ym),

B
wiwl=1 m ; [$iw, xi)) = i

equivalent to

min Z
s m 2| o Vi) =il
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Technique Idea

Therefore, given sample (x1,y1), .-, (Xm, Ym),

B
wiwl=1 m ; [$iw, xi)) = i

equivalent to

i 2o )
Algorithm
1 m
in — v, V(x;)) — yil,
L[ ;:1 | (v, W(x;)) — yil

using the infinite-dimensional polynomial kernel
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Technique Idea

Let Hg consist of all predictors of the form x — ¢({(w, x)), where

° ¢( ) Z_/ OﬂJ
<202 < B

With O(B/e?) examples, returned predictor G satisfies w.h.p.

errp(V) < vrgli_?B errp(v) + €
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Technique Idea

Algorithm

arg min
& ||v||<BmZI xi)) = sl

using the infinite-dimensional polynomial kernel
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Technique Idea

Algorithm

a mln Z
viv|<B m [{v = vil,

using the infinite-dimensional polynomial kernel

@ Same algorithm competitive against all ¢ with coefficient
bound B - including optimal one for data distribution
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Technique Idea

Algorithm

a mln Z
viv|<B m [{v = vil,

using the infinite-dimensional polynomial kernel

@ Same algorithm competitive against all ¢ with coefficient
bound B - including optimal one for data distribution

1 1

— ‘ /

-1 1 -1 1

@ In practice, parameter B chosen by cross validation.
Algorithm can work much faster depending on distribution
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Example - Error Function

¢erf( <W7 \U(X)))
1

1+ erf(y/7L (w,x))
2

¢erf( <W7 X>) =

(w, W(x))
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Example - Error Function

¢erf( <W7 \U(X)))
1

1+ erf(y/7L (w,x))

¢erf(<w7x>) = 2

1 1
derf Can be written as an infinite-degree polynomial
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Example - Error Function

d)erf( <W7 \U(X)))
1

1+ erf(y/7L (w,x))

e w,x)) = .

1 1
derf Can be written as an infinite-degree polynomial

Unfortunately, bad dependence on L. Can we get a better bound?
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Sigmoid Function

Psig((W, V(x)))
1

1
¢sig(<w7 x)) = 1+ exp(—4L (w,x))

(w, W(x))
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Sigmoid Function

Psig((W, V(x)))
1

1
¢sig(<w7 x)) = 1+ exp(—4L (w,x))

(w, W(x))

® ¢sig is not a polynomial

o However, can be e-approximated by a polynomial with
coefficient bound B < © (exp (7L log (%)))

o We use a truncated sum of Chebyshev polynomials
o Closed-form coefficient bound via tools from complex analysis
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Sigmoid Function

Worst-Case Guarantee

Can learn fuzzy halfspace class {x — ¢sig((W,x)) : [[w|| =1} in

time/sample complexity O(exp(7Llog(L/¢)))

Picking ¢sig is just for the analysis - algorithm is oblivious to ¢ used
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Hardness Result

o Better bound? Maybe with some other L-Lipschitz ¢7

@ Proper learning is hard, but here we search for any predictor
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Hardness Result

o Better bound? Maybe with some other L-Lipschitz ¢7

@ Proper learning is hard, but here we search for any predictor

Can't learn Fuzzy Halfspaces with L-Lipschitz ¢ in poly(L,1/e)
time.
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Proof Idea

Proof by reduction:

o Cryptographic assumption: No poly-time solution to
O(n'®)-unique-shortest-vector problem
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Proof ldea

Proof by reduction:

o Cryptographic assumption: No poly-time solution to
O(n'®)-unique-shortest-vector problem

o = can't PAC-learn intersection of n” halfspaces over
{=1,+1}" in poly-time (Klivans and Sherstov, 2006)
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Proof ldea

Proof by reduction:

o Cryptographic assumption: No poly-time solution to
O(n'®)-unique-shortest-vector problem

o = can't PAC-learn intersection of n” halfspaces over
{=1,+1}" in poly-time (Klivans and Sherstov, 2006)

@ = can't agnostic-PAC-learn single halfspaces over {—1,+1}"
in poly-time (otherwise, can use boosting to learn
intersections)
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Proof ldea

Proof by reduction:

o Cryptographic assumption: No poly-time solution to
O(n'®)-unique-shortest-vector problem

o = can't PAC-learn intersection of n” halfspaces over
{=1,+1}" in poly-time (Klivans and Sherstov, 2006)

@ = can't agnostic-PAC-learn single halfspaces over {—1,+1}"
in poly-time (otherwise, can use boosting to learn
intersections)

@ = can't agnostic-PAC-learn fuzzy halfspaces over R" in
poly-time, when L is polynomially small
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Summary

o New technique for learning predictors x — ¢((w, x)),
¢ possibly non-convex, with the 0 — 1 loss

1

—

-1 1

@ Single algorithm, simultaneously competitive against all ¢,
including optimal one for the data distribution

1

-1 1

o In fact, equivalent to standard SVM, but composing our kernel
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