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Halfspaces

Hypothesis Class

{x 7→ φ0−1(〈w, x〉)}

0

1
〈w, x〉

φ0−1(〈w, x〉)
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1

Sample Complexity: O(d/ε2)
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Kernel-Based Halfspaces

Hypothesis Class

{x 7→ φ0−1(〈w, ϕ(x)〉)}
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Fuzzy Kernel-Based Halfspaces

Hypothesis Class

{x 7→ φsig(〈w, ϕ(x)〉)}

0
1 〈w, ϕ(x)〉

φsig(〈w, ϕ(x)〉)

-1 1

1

Sample Complexity: O(L2/ε2)

Time Complexity: ??
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Formal Results

Time complexity of learning Fuzzy Halfspaces

Positive Result: can be done in poly(1/ε) for any fixed L
(worst case)

Do convex optimization, just use a different kernel...

Negative Result: can’t be done in poly(L, 1/ε) time
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Related Work: Surrogates to 0− 1 loss

Popular fix: replace 0− 1 loss with convex loss (e.g., hinge
loss)

No finite-sample approximation guarantees!
Asymptotic guarantees exist (Zhang 2004; Bartlett, Jordan,
McAuliffe 2006)

Ben-David & Simon 2000: By a covering technique, can learn
fuzzy halfspaces in exp(O(L2/ε2)) time

Worst case = best case
Exponentially worse than our bound (however, requires
exponentially less examples)
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Related Work: Directly for 0− 1 loss

Agnostically learning halfspaces in poly(d1/ε4
) time (Kalai,

Klivans, Mansour, Servedio 2005; Blais, O’Donell, Wimmer
2008)

But only under distributional assumptions.
Dimension-dependent (problematic for kernels)
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Technique Idea

Original class: H = {x 7→ φ(〈w, x〉) : ‖w‖ = 1}
Loss function: Eŷ∼φ(〈w,x〉)1ŷ=y

= |φ(〈w, x〉)− y |
Problem: Loss is non-convex w.r.t. w

The main idea: Work with a larger hypothesis class for which
the loss becomes convex

x 7→ φ(〈w, x〉)

x 7→ 〈v
, ψ(x)〉
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Technique Idea

Assume ‖x‖ ≤ 1, and suppose that φ(a) is a polynomial∑∞
j=0 βja

j

Then

φ(〈w, x〉) =
∞∑
j=0

βj(〈w, x〉)j

=
∞∑
j=0

∑
k1,...,kj

(2j/2βjwk1 · · ·wkj
)(2−j/2xk1 · · · xkj

)

= 〈vw,Ψ(x)〉

Ψ is the feature mapping of the RKHS corresponding to the
infinite-dimensional polynomial kernel

k(x, x′) =
1

1− 1
2 〈x, x′〉
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Technique Idea

Therefore, given sample (x1, y1), . . . , (xm, ym),

min
w:‖w‖=1

1

m

m∑
i=1

|φ(〈w, xi 〉)− yi |

equivalent to

min
vw:‖w‖=1

1

m

m∑
i=1

| 〈vw,Ψ(xi )〉 − yi |

Algorithm

arg min
v:‖v‖≤B

1

m

m∑
i=1

| 〈v,Ψ(xi )〉 − yi |,

using the infinite-dimensional polynomial kernel
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Technique Idea

Theorem

Let HB consist of all predictors of the form x 7→ φ(〈w, x〉), where

φ(a) =
∑∞

j=0 βja
j∑∞

j=0 2jβ2
j ≤ B

With O(B/ε2) examples, returned predictor v̂ satisfies w.h.p.

errD(v̂) ≤ min
v∈HB

errD(v) + ε
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Technique Idea

Algorithm

arg min
v:‖v‖≤B

1

m

m∑
i=1

| 〈v,Ψ(xi )〉 − yi |,

using the infinite-dimensional polynomial kernel

Same algorithm competitive against all φ with coefficient
bound B - including optimal one for data distribution

-1 1

1

-1 1

1

In practice, parameter B chosen by cross validation.
Algorithm can work much faster depending on distribution
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Example - Error Function

φerf(〈w, x〉) =
1 + erf(

√
πL 〈w, x〉)
2

〈w,Ψ(x)〉

φerf(〈w,Ψ(x)〉)

-1 1

1

φerf can be written as an infinite-degree polynomial

x 7→ φerf(〈w, x〉)

x 7→ 〈v
, ψ(x)〉

Unfortunately, bad dependence on L. Can we get a better bound?
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Sigmoid Function

φsig(〈w, x〉) =
1

1 + exp(−4L 〈w, x〉)
〈w,Ψ(x)〉

φsig(〈w,Ψ(x)〉)

-1 1

1

φsig is not a polynomial

However, can be ε-approximated by a polynomial with
coefficient bound B ≤ O

(
exp

(
7L log

(
L
ε

)))
We use a truncated sum of Chebyshev polynomials
Closed-form coefficient bound via tools from complex analysis
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Sigmoid Function

Worst-Case Guarantee

Can learn fuzzy halfspace class {x 7→ φsig(〈w, x〉) : ‖w‖ = 1} in

time/sample complexity O(exp(7L log(L/ε)))

Picking φsig is just for the analysis - algorithm is oblivious to φ used
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Hardness Result

Better bound? Maybe with some other L-Lipschitz φ?

Proper learning is hard, but here we search for any predictor

Theorem

Can’t learn Fuzzy Halfspaces with L-Lipschitz φ in poly(L, 1/ε)
time.
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Proof Idea

Proof by reduction:

Cryptographic assumption: No poly-time solution to
Õ(n1.5)-unique-shortest-vector problem

⇒ can’t PAC-learn intersection of nρ halfspaces over
{−1,+1}n in poly-time (Klivans and Sherstov, 2006)

⇒ can’t agnostic-PAC-learn single halfspaces over {−1,+1}n
in poly-time (otherwise, can use boosting to learn
intersections)

⇒ can’t agnostic-PAC-learn fuzzy halfspaces over Rn in
poly-time, when L is polynomially small
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Summary

New technique for learning predictors x 7→ φ(〈w, x〉),
φ possibly non-convex, with the 0− 1 loss

-1 1

1

Single algorithm, simultaneously competitive against all φ,
including optimal one for the data distribution

-1 1

1

In fact, equivalent to standard SVM, but composing our kernel
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