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Online Learning with Partial Information

@ Standard online learning: After choosing a predictor, Learner
sees example chosen by adversary

@ Harder setting: Learner only receives partial information on
each example

Example (Bandit Learning)

Learner gets to see loss value

This talk
Learner has noisy view of each example
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Online Learning with Partial Information

Main Results

@ Online learning of linear predictors based on noisy views
O(V'T) regret

o Noise distribution unknown. Can be chosen adversarially and
change for each example

o Including kernels

o General technique for unbiased estimators of nonlinear
functions
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Online Learning with Partial Information

Online Learning of Linear Predictors

On each round t:
@ Learner picks predictor w; € W
o Nature picks (x¢, yt)
o Learner suffers loss £({(w¢, X¢) , yt)
@ Learner gets y; and noisy view of x;

Learner's goal: minimize regret

T

T
ZE((wt,xt — min Zé W, Xt), Vi)
t=

t=1
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Suppose learner gets X; = x; + n¢, Ny random zero-mean noise
vector
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Suppose learner gets X; = x; + n¢, Ny random zero-mean noise
vector

Unfortunately, too hard!

If an adversary can choose the noise distribution, and ¢(-,1) is

Q Bounded from below
Q Differentiable at 0 with E’(O, 1) < 0 (a.k.a. classification calibrated)

then sublinear regret is impossible

Holds even in a stochastic setting
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Suppose data looks like this:
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Ty=-2 Y=+3
0.08
Suppose data looks like this:
0.04
0.02
-6 -4 2 ) 2 4 6
Option A: Data comes from Option B: Data comes from
0.12
01 Y=o Y= +3 05
008 04 Y=-2 Y =+3
oos + no noise o2 + noise
0.04 0.2
-6 -4 -2 0 2 a4 6 -6 -4 -2 0 2 4 6

Information-theoretically impossible to distinguish!
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@ Must provide more information to the learner

@ Suppose that can get more than one independent copies of
Xt = X+ Nt

o Trivial (and unrealistic) setting if unlimited number of copies

@ Goal: small number of views, independent of problem scale
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Important Technique

Stochastic Online Gradient Descent

o Initialize w; =0
e Fort=1,..., T

® Wiyl = Wi — ntﬁt )
o Project wyyq on ball {w: ||w]” < W}

o When V; = V/((w¢,x;), y¢), this is standard online gradient
descent (Zinkevich 2003)
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Important Technique

Stochastic Online Gradient Descent

o Initialize w; =0
e Fort=1,..., T

® Wiyl = Wi — ntﬁt )
o Project wyyq on ball {w: ||w]” < W}

o When V; = V/((w¢,x;), y¢), this is standard online gradient
descent (Zinkevich 2003)

If E[V:] = VE((we, Xe), yt), E[”@tHz] < B, expected regret at
most

o (VBWT)
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Unknown Noise

Example (Linear predictors, squared loss)
o Gradient is 2((W¢, X¢) — yi)X¢

@ Unbiased estimate with 2 noisy copies of x;:
2((we, %e) — ye)%y

= Can learn in the face of unknown noise
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Unknown Noise

Example (Linear predictors, squared loss)

o Gradient is 2((W¢, X¢) — yi)X¢

@ Unbiased estimate with 2 noisy copies of x;:

2({we, Xe) — ye)X;

= Can learn in the face of unknown noise

o What if we want other loss functions? Non-linear predictors?

Technique depended on loss gradient being quadratic in x. Won't
work otherwise!

Next: how we can learn with unknown noise using:
o General ‘smooth’ loss functions
@ Non-linear predictors using kernels
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Kernels

o Allows to learn highly non-linear predictors

o Idea: instances x mapped to W(x) in a high dimensional
Hilbert space, and a linear predictor learned in that space
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Kernels

o Allows to learn highly non-linear predictors

o Idea: instances x mapped to W(x) in a high dimensional
Hilbert space, and a linear predictor learned in that space

@ Problematic for our setting: W may be complex and
non-linear. In particular, E[W(X)] # W(x)
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Idea: Unbiased Estimate of Non-Linear Functions

@ Suppose X is a real random variable with unknown
distribution, and unknown mean p. Can sample x1, X, . ..

e Want an unbiased estimate of f(u)
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Idea: Unbiased Estimate of Non-Linear Functions

@ Suppose X is a real random variable with unknown
distribution, and unknown mean p. Can sample x1, X, . ..

e Want an unbiased estimate of f(u)

o If fis linear: return f(xy):

E[f(x)] = f(E[al) = (1)
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Idea: Unbiased Estimate of Non-Linear Functions

@ Suppose X is a real random variable with unknown
distribution, and unknown mean p. Can sample x1, X, . ..

e Want an unbiased estimate of f(u)

o If fis linear: return f(xy):

E[f(x)] = f(E[al) = (1)

@ When f is nonlinear, E[f(x1)] # (). In many cases,
unbiased estimate of () based on x1,x2, ..., X, is provably
impossible

Cesa-Bianchi, Shalev-Shwartz and Shamir Online Learning of Noisy Data with Kernels



Idea: Unbiased Estimate of Non-Linear Functions

@ Suppose X is a real random variable with unknown
distribution, and unknown mean p. Can sample x1, X, . ..

e Want an unbiased estimate of f(u)

o If fis linear: return f(xy):

E[f(x)] = f(E[al) = (1)

@ When f is nonlinear, E[f(x1)] # (). In many cases,
unbiased estimate of () based on x1,x2, ..., X, is provably
impossible

o However: What if n is random?
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Idea: Unbiased Estimate of Non-Linear Functions

@ Suppose f is a continuous function on a bounded interval
o There exist Ag(-), A1(-), ..., where A,(x) = S°7_g anixk,
such that A,(-) == f(.)

o Let po, p1,... be a distribution over all nonnegative integers
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Idea: Unbiased Estimate of Non-Linear Functions

@ Suppose f is a continuous function on a bounded interval
o There exist Ag(-), A1(-), ..., where A,(x) = S°7_g anixk,
such that A,(-) == f(.)

o Let po, p1,... be a distribution over all nonnegative integers

@ Pick n randomly according to Pr(n) = pj,
Q Sample xg, ..., x, independently
© Return

i) 2l )

Theorem

E[0] = (1)
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Idea: Unbiased Estimate of Non-Linear Functions

n k n k
1 1
P " \k=0 i=0 g Pr \k=o i=0
=An(p) ir:gxpectation =An—1(p) ;:expectation
Therefore,
1
B0l = En | > (A) — Ar-a(1)
= Z (An(p) — An-1(p))
n=1
= f(u)—Ao(p) = f(n) )
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Idea: Unbiased Estimate of Non-Linear Functions

@ Technique used in a 1960’s paper on sequential estimation
(R. Singh, 1964)
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Idea: Unbiased Estimate of Non-Linear Functions

@ Technique used in a 1960’s paper on sequential estimation
(R. Singh, 1964)

@ Crucial observation: if p, decays rapidly, then with
overwhelming probability, will need just a small number of
samples

e When f is analytic, can take p, oc 1/q" for arbitrary g

@ We use this technique to learn with noise, using large families
of kernels and analytic loss functions
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Formal Result - Example

o Consider any dot product kernel k(x,x’) = G((x,x’))
o e.g. k(x,x') = ({x,x") +1)"

Example (Dot product kernel, squared loss)

Suppose E[||%]|?] < B. For any g > 1.1, can construct an efficient
algorithm which:

@ Queries each example 1+ Op(1/q) times

o Has regret O (WG(gB)v/qT) w.rt. {w: [lw[®> < W}

Tradeoff: Large g implies less queries per example, but larger regret |
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Smoothed Losses

5
sl “‘ = Absolute Loss
. '='=1Smoothed Absolute Loss (52:1)
4 &,‘ = = = Hinge Loss
1 Smoothed Hinge Loss (52:1)
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@ Online Learning with noise
o Noise distribution may be chosen adversarially

@ Quantity makes quality: More examples make up for bad
quality of each individual example seen

@ General technique to construct unbiased estimators of
nonlinear functions

@ Can be improved?
o Upcoming work: yes, if know more about the noise distribution
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