Online Learning of Noisy Data with Kernels

Nicolò Cesa-Bianchi^1, Shai Shalev-Shwartz^2 and $\boldsymbol{Ohad}\ \boldsymbol{Shamir}^2$

¹Università degli Studi di Milano

²The Hebrew University

COLT, June 2010

Online Learning with Partial Information

- Standard online learning: After choosing a predictor, Learner sees example chosen by adversary
- Harder setting: Learner only receives partial information on each example

Example (Bandit Learning)

Learner gets to see loss value

This talk

Learner has noisy view of each example

Online Learning with Partial Information

Main Results

- Online learning of linear predictors based on noisy views
 - $\mathcal{O}(\sqrt{T})$ regret
 - Noise distribution unknown. Can be chosen adversarially and change for each example
 - Including kernels
 - General technique for unbiased estimators of nonlinear functions

Online Learning with Partial Information

Online Learning of Linear Predictors

On each round t:

- Learner picks predictor $\mathbf{w}_t \in \mathcal{W}$
- Nature picks (x_t, y_t)
- Learner suffers loss $\ell(\langle \mathbf{w}_t, \mathbf{x}_t \rangle, y_t)$
- Learner gets y_t and noisy view of \mathbf{x}_t

Learner's goal: minimize regret

$$\sum_{t=1}^{T} \ell(\langle \mathbf{w}_{t}, \mathbf{x}_{t} \rangle, y_{t}) - \min_{\mathbf{w} \in \mathcal{W}} \sum_{t=1}^{T} \ell(\langle \mathbf{w}, \mathbf{x}_{t} \rangle, y_{t})$$

Suppose learner gets $\tilde{\mathbf{x}}_t = \mathbf{x}_t + \mathbf{n}_t$, \mathbf{n}_t random zero-mean noise vector

Suppose learner gets $\tilde{\mathbf{x}}_t = \mathbf{x}_t + \mathbf{n}_t$, \mathbf{n}_t random zero-mean noise vector

Unfortunately, too hard!

Theorem

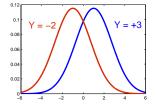
If an adversary can choose the noise distribution, and $\ell(\cdot,1)$ is

- Bounded from below
- ② Differentiable at 0 with $\ell'(0,1) < 0$ (a.k.a. classification calibrated)

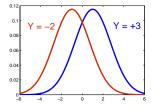
then sublinear regret is impossible

Holds even in a stochastic setting

Suppose data looks like this:

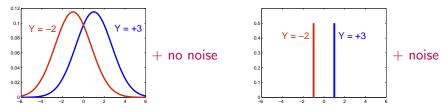


Suppose data looks like this:



Option A: Data comes from

Option B: Data comes from



Information-theoretically impossible to distinguish!

- Must provide more information to the learner
- Suppose that can get more than one independent copies of $\tilde{\mathbf{x}}_t = \mathbf{x}_t + \mathbf{n}_t$
- Trivial (and unrealistic) setting if unlimited number of copies
- Goal: small number of views, independent of problem scale

Important Technique

Stochastic Online Gradient Descent

- Initialize w₁ = 0
- For t = 1, ..., T

•
$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \tilde{\nabla}_t$$

• Project \mathbf{w}_{t+1} on ball $\{\mathbf{w} : \|\mathbf{w}\|^2 \leq W\}$

When \$\tilde{\nabla}_t = \nabla \left(\$\lambda w_t, \$\mathbf{x}_t\$\rangle, \$y_t\$\right)\$, this is standard online gradient descent (Zinkevich 2003)

Important Technique

Stochastic Online Gradient Descent

Initialize w₁ = 0

• For
$$t = 1, ..., T$$

•
$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \tilde{\nabla}_t$$

• Project \mathbf{w}_{t+1} on ball $\{\mathbf{w} : \|\mathbf{w}\|^2 \leq W\}$

When \$\tilde{\nabla}_t = \nabla \left(\$\lambda w_t, \$\mathbf{x}_t\$\rangle, \$y_t\$\right)\$, this is standard online gradient descent (Zinkevich 2003)

Theorem

If
$$\mathbb{E}[\tilde{\nabla}_t] = \nabla \ell(\langle \mathbf{w}_t, \mathbf{x}_t \rangle, y_t), \quad \mathbb{E}[\|\tilde{\nabla}_t\|^2] \leq B$$
, expected regret at most $\mathcal{O}\left(\sqrt{BWT}\right)$

Unknown Noise

Example (Linear predictors, squared loss)

- Gradient is $2(\langle \mathbf{w}_t, \mathbf{x}_t \rangle y_t)\mathbf{x}_t$
- Unbiased estimate with 2 noisy copies of \mathbf{x}_t :

$$2(\langle \mathbf{w}_t, \tilde{\mathbf{x}}_t \rangle - y_t)\tilde{\mathbf{x}}_t'$$

 \Rightarrow Can learn in the face of unknown noise

Unknown Noise

Example (Linear predictors, squared loss)

- Gradient is $2(\langle \mathbf{w}_t, \mathbf{x}_t \rangle y_t)\mathbf{x}_t$
- Unbiased estimate with 2 noisy copies of **x**_t:

$$2(\langle \mathbf{w}_t, \tilde{\mathbf{x}}_t \rangle - y_t)\tilde{\mathbf{x}}_t'$$

 \Rightarrow Can learn in the face of unknown noise

• What if we want other loss functions? Non-linear predictors?

Note:

Technique depended on loss gradient being quadratic in \mathbf{x} . Won't work otherwise!

Next: how we can learn with unknown noise using:

- General 'smooth' loss functions
- Non-linear predictors using kernels

- Allows to learn highly non-linear predictors
- Idea: instances x mapped to Ψ(x) in a high dimensional Hilbert space, and a linear predictor learned in that space

- Allows to learn highly non-linear predictors
- Idea: instances x mapped to Ψ(x) in a high dimensional Hilbert space, and a linear predictor learned in that space
- Problematic for our setting: Ψ may be complex and non-linear. In particular, $\mathbb{E}[\Psi(\tilde{\mathbf{x}})] \neq \Psi(\mathbf{x})$

- Suppose X is a real random variable with unknown distribution, and unknown mean μ. Can sample x₁, x₂,...
- Want an unbiased estimate of $f(\mu)$

- Suppose X is a real random variable with unknown distribution, and unknown mean μ. Can sample x₁, x₂,...
- Want an unbiased estimate of $f(\mu)$
- If f is linear: return $f(x_1)$:

$$\mathbb{E}[f(x_1)] = f(\mathbb{E}[x_1]) = f(\mu)$$

- Suppose X is a real random variable with unknown distribution, and unknown mean μ. Can sample x₁, x₂,...
- Want an unbiased estimate of $f(\mu)$
- If f is linear: return $f(x_1)$:

$$\mathbb{E}[f(x_1)] = f(\mathbb{E}[x_1]) = f(\mu)$$

 When f is nonlinear, E[f(x₁)] ≠ f(μ). In many cases, unbiased estimate of f(μ) based on x₁, x₂,..., x_n is provably impossible

- Suppose X is a real random variable with unknown distribution, and unknown mean μ. Can sample x₁, x₂,...
- Want an unbiased estimate of $f(\mu)$
- If f is linear: return $f(x_1)$:

$$\mathbb{E}[f(x_1)] = f(\mathbb{E}[x_1]) = f(\mu)$$

- When f is nonlinear, 𝔼[f(x₁)] ≠ f(μ). In many cases, unbiased estimate of f(μ) based on x₁, x₂,..., x_n is provably impossible
- However: What if n is random?

- Suppose f is a continuous function on a bounded interval
- There exist $A_0(\cdot), A_1(\cdot), \ldots$, where $A_n(x) = \sum_{k=0}^n a_{n,k} x^k$, such that $A_n(\cdot) \xrightarrow{n \to \infty} f(\cdot)$
- Let p_0, p_1, \ldots be a distribution over all nonnegative integers

- Suppose f is a continuous function on a bounded interval
- There exist $A_0(\cdot), A_1(\cdot), \ldots$, where $A_n(x) = \sum_{k=0}^n a_{n,k} x^k$, such that $A_n(\cdot) \xrightarrow{n \to \infty} f(\cdot)$
- Let p_0, p_1, \ldots be a distribution over all nonnegative integers

Estimator

- Pick *n* randomly according to $Pr(n) = p_n$
- **2** Sample x_1, \ldots, x_n independently

8 Return

$$\theta = \frac{1}{p_n} \left(\sum_{k=0}^n a_{n,k} \left(\prod_{i=0}^k x_i \right) \right) - \frac{1}{p_n} \left(\sum_{k=0}^n a_{n-1,k} \left(\prod_{i=0}^k x_i \right) \right)$$

Theorem

$$\mathbb{E}[\theta] = f(\mu)$$

$$\theta = \frac{1}{p_n} \underbrace{\left(\sum_{k=0}^n a_{n,k}\left(\prod_{i=0}^k x_i\right)\right)}_{=A_n(\mu) \text{ in expectation}} - \frac{1}{p_n} \underbrace{\left(\sum_{k=0}^n a_{n-1,k}\left(\prod_{i=0}^k x_i\right)\right)}_{=A_{n-1}(\mu) \text{ in expectation}} - \frac{1}{p_n} \underbrace{\left(\sum_{i=0}^n a_{n-1,k}\left(\prod_{i=0}^k x_i\right)\right)}_{=A_{n-1}(\mu) \text{ in expectation}} - \frac{1}{p_n} \underbrace{\left(\sum_{i=0}^n a_{n-1,k}\left(\prod_{i=0}^n x_i\right)\right)}_{=A_{n-1}(\mu) \text{ in expectation}} - \frac{1}{p_n} \underbrace{\left(\sum_{i=0}^n x_i\right)}_{=A_{n-1}(\mu) \text{ i$$

Therefore,

$$\mathbb{E}[\theta] = \mathbb{E}_n \left[\frac{1}{p_n} \left(A_n(\mu) - A_{n-1}(\mu) \right) \right]$$
$$= \sum_{n=1}^{\infty} \left(A_n(\mu) - A_{n-1}(\mu) \right)$$
$$= f(\mu) - A_0(\mu) = f(\mu)$$

• Technique used in a 1960's paper on sequential estimation (R. Singh, 1964)

- Technique used in a 1960's paper on sequential estimation (R. Singh, 1964)
- Crucial observation: if *p_n* decays rapidly, then with overwhelming probability, will need just a small number of samples
- When f is analytic, can take $p_n \propto 1/q^n$ for arbitrary q
- We use this technique to learn with noise, using large families of kernels and analytic loss functions

Formal Result - Example

Consider any dot product kernel k(x, x') = G(⟨x, x'⟩)
e.g. k(x, x') = (⟨x, x'⟩ + 1)ⁿ

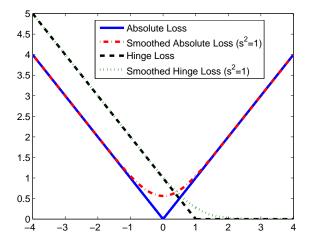
Example (Dot product kernel, squared loss)

Suppose $\mathbb{E}[\|\tilde{\mathbf{x}}\|^2] \leq B$. For any q > 1.1, can construct an efficient algorithm which:

- Queries each example $1 + \mathcal{O}_p(1/q)$ times
- Has regret $\mathcal{O}\left(WG(qB)\sqrt{qT}\right)$ w.r.t. $\{\mathbf{w}: \|\mathbf{w}\|^2 \leq W\}$

Tradeoff: Large *q* implies less queries per example, but larger regret

Smoothed Losses



Summary

- Online Learning with noise
 - Noise distribution may be chosen adversarially
- Quantity makes quality: More examples make up for bad quality of each individual example seen
- General technique to construct unbiased estimators of nonlinear functions
- Can be improved?
 - Upcoming work: yes, if know more about the noise distribution

