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1Università degli Studi di Milano

2The Hebrew University

COLT, June 2010

Cesa-Bianchi, Shalev-Shwartz and Shamir Online Learning of Noisy Data with Kernels



Online Learning with Partial Information

Standard online learning: After choosing a predictor, Learner
sees example chosen by adversary

Harder setting: Learner only receives partial information on
each example

Example (Bandit Learning)

Learner gets to see loss value

This talk

Learner has noisy view of each example

⇒
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Online Learning with Partial Information

Main Results

Online learning of linear predictors based on noisy views

O(
√

T ) regret

Noise distribution unknown. Can be chosen adversarially and
change for each example

Including kernels

General technique for unbiased estimators of nonlinear
functions
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Online Learning with Partial Information

Online Learning of Linear Predictors

On each round t:

Learner picks predictor wt ∈ W
Nature picks (xt , yt)

Learner suffers loss `(〈wt , xt〉 , yt)

Learner gets yt and noisy view of xt

Learner’s goal: minimize regret

T∑
t=1

`(〈wt , xt〉 , yt)− min
w∈W

T∑
t=1

`(〈w, xt〉 , yt)
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First Try

Suppose learner gets x̃t = xt + nt , nt random zero-mean noise
vector

Unfortunately, too hard!

Theorem

If an adversary can choose the noise distribution, and `(·, 1) is

1 Bounded from below
2 Differentiable at 0 with `′(0, 1) < 0 (a.k.a. classification calibrated)

then sublinear regret is impossible

Holds even in a stochastic setting

Cesa-Bianchi, Shalev-Shwartz and Shamir Online Learning of Noisy Data with Kernels



First Try

Suppose learner gets x̃t = xt + nt , nt random zero-mean noise
vector

Unfortunately, too hard!

Theorem

If an adversary can choose the noise distribution, and `(·, 1) is

1 Bounded from below
2 Differentiable at 0 with `′(0, 1) < 0 (a.k.a. classification calibrated)

then sublinear regret is impossible

Holds even in a stochastic setting

Cesa-Bianchi, Shalev-Shwartz and Shamir Online Learning of Noisy Data with Kernels



First Try

Suppose data looks like this:
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Option A: Data comes from
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+ noise

Information-theoretically impossible to distinguish!
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First Try

Must provide more information to the learner

Suppose that can get more than one independent copies of
x̃t = xt + nt

Trivial (and unrealistic) setting if unlimited number of copies

Goal: small number of views, independent of problem scale
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Important Technique

Stochastic Online Gradient Descent

Initialize w1 = 0

For t = 1, . . . ,T

wt+1 = wt − ηt∇̃t

Project wt+1 on ball {w : ‖w‖2 ≤W }

When ∇̃t = ∇`(〈wt , xt〉 , yt), this is standard online gradient
descent (Zinkevich 2003)

Theorem

If E[∇̃t ] = ∇`(〈wt , xt〉 , yt), E[
∥∥∇̃t

∥∥2
] ≤ B, expected regret at

most
O
(√

BWT
)
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Unknown Noise

Example (Linear predictors, squared loss)

Gradient is 2(〈wt , xt〉 − yt)xt

Unbiased estimate with 2 noisy copies of xt :

2(〈wt , x̃t〉 − yt)x̃′t

⇒ Can learn in the face of unknown noise

What if we want other loss functions? Non-linear predictors?

Note:

Technique depended on loss gradient being quadratic in x. Won’t
work otherwise!

Next: how we can learn with unknown noise using:

General ‘smooth’ loss functions

Non-linear predictors using kernels
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Kernels

Allows to learn highly non-linear predictors

Idea: instances x mapped to Ψ(x) in a high dimensional
Hilbert space, and a linear predictor learned in that space

Problematic for our setting: Ψ may be complex and
non-linear. In particular, E[Ψ(x̃)] 6= Ψ(x)
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Idea: Unbiased Estimate of Non-Linear Functions

Suppose X is a real random variable with unknown
distribution, and unknown mean µ. Can sample x1, x2, . . .

Want an unbiased estimate of f (µ)

If f is linear: return f (x1):

E[f (x1)] = f (E[x1]) = f (µ)

When f is nonlinear, E[f (x1)] 6= f (µ). In many cases,
unbiased estimate of f (µ) based on x1, x2, . . . , xn is provably
impossible

However: What if n is random?
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Idea: Unbiased Estimate of Non-Linear Functions

Suppose f is a continuous function on a bounded interval

There exist A0(·),A1(·), . . ., where An(x) =
∑n

k=0 an,k xk ,

such that An(·) n→∞−→ f (·)
Let p0, p1, . . . be a distribution over all nonnegative integers

Estimator

1 Pick n randomly according to Pr(n) = pn

2 Sample x1, . . . , xn independently

3 Return

θ =
1

pn

(
n∑

k=0

an,k

(
k∏

i=0

xi

))
− 1

pn

(
n∑

k=0

an−1,k

(
k∏

i=0

xi

))

Theorem

E[θ] = f (µ)
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Idea: Unbiased Estimate of Non-Linear Functions

Proof

θ =
1

pn

(
n∑

k=0

an,k

(
k∏

i=0

xi

))
︸ ︷︷ ︸

=An(µ) in expectation

− 1

pn

(
n∑

k=0

an−1,k

(
k∏

i=0

xi

))
︸ ︷︷ ︸

=An−1(µ) in expectation

Therefore,

E[θ] = En

[
1

pn
(An(µ)− An−1(µ))

]
=

∞∑
n=1

(An(µ)− An−1(µ))

= f (µ)− A0(µ) = f (µ)
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Idea: Unbiased Estimate of Non-Linear Functions

Technique used in a 1960’s paper on sequential estimation
(R. Singh, 1964)

Crucial observation: if pn decays rapidly, then with
overwhelming probability, will need just a small number of
samples

When f is analytic, can take pn ∝ 1/qn for arbitrary q

We use this technique to learn with noise, using large families
of kernels and analytic loss functions
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Formal Result - Example

Consider any dot product kernel k(x, x′) = G (〈x, x′〉)
e.g. k(x, x′) = (〈x, x′〉+ 1)n

Example (Dot product kernel, squared loss)

Suppose E[‖x̃‖2] ≤ B. For any q > 1.1, can construct an efficient
algorithm which:

Queries each example 1 +Op(1/q) times

Has regret O
(
WG (qB)

√
qT
)

w.r.t. {w : ‖w‖2 ≤W }

Tradeoff: Large q implies less queries per example, but larger regret
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Smoothed Losses
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Smoothed Absolute Loss (s2=1)
Hinge Loss

Smoothed Hinge Loss (s2=1)
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Summary

Online Learning with noise
Noise distribution may be chosen adversarially

Quantity makes quality: More examples make up for bad
quality of each individual example seen

General technique to construct unbiased estimators of
nonlinear functions

Can be improved?
Upcoming work: yes, if know more about the noise distribution

Cesa-Bianchi, Shalev-Shwartz and Shamir Online Learning of Noisy Data with Kernels


