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Online Convex Optimization (Full-Info)

Adversary

e Minimize regret: Rt = ZtT:l Ce(x¢) — mingex Zthl l4(x).
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Bandit Gradient Descent [FKM'05]

e Updates x;11 = n(l_g)]c(xt — Nt8t)-

Adversary

o Minimize regret: Rt = S/, £:(yt) — mineeic 2711 4(x).



A survey of known regret bounds

Linear Convex Strongly Convex

Upper Lower Upper Lower Upper Lower

Full-info | O(VT) | OWT) | O(VT) | OVT) | O(log T) | O(log T)

@ Deterministic results against completely adaptive adversaries
in Full-Info.



A survey of known regret bounds

Linear Convex Strongly Convex

Upper Lower Upper Lower Upper Lower
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@ Deterministic results against completely adaptive adversaries
in Full-Info.

@ High probability results against adaptive adversaries for
Bandit.



The Multi-Point (MP) feedback setup

@ Want to interpolate between bandit and full information.
@ Player allowed several queries per round.
@ Adversary reveals value of ¢; at all points picked.

@ Average regret on points played:

T

k
1 .
RT = E ; E Et()/t,i) — )r;réllr%ft(x).
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A survey of known regret bounds

Linear Convex Strongly Convex

Upper Lower Upper Lower Upper Lower
Ful-info | O(VT) | O(VT) | OKT) | OVT) | Olog T) | O(log T)
Bandit | O(VT) | O(VT) | O(T¥* [ O(T) | 0(T?3) | O(T)?
MP Bandit | O(VT) | OWT) | O(VT) | OVT) | O(log T) | O(log T)

@ Deterministic results against completely adaptive adversaries
in Full-Info.

@ High probability results against adaptive adversaries for
Bandit.



Properties of gradient estimator g; [FKM'05]

d
8t = gﬁt(Xt + 5ut)ut.

@ Unbiased for linear functions.

@ Nearly unbiased for general convex functions.
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Properties of gradient estimator g; [FKM'05]

d
8t = gét(Xt + 5ut)ut.

@ Unbiased for linear functions.

@ Nearly unbiased for general convex functions.
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@ Regret bounds scale with [/g¢]|.

o ||g¢|| grows as 1/4.
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Gradient Descent Algorithm with two queries per round

(GD2P)

o Estimates gradient g = & ({(xe + dup) — Le(xe — Oug))ue.
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Gradient Descent Algorithm with two queries per round

(GD2P)

@ Estimates gradient g; = %(gt(xt +0ut) — Le(xe — dut)) .
o Updates x;11 = M_gyc(xe — n&t)-
Player Adversary
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Properties of the gradient estimator g;

S| Q

. d
8t — *gt(Xt =+ (5ut)ut, 8t — %(et(Xt + (5Ut) — Et(Xt — 5ut))ut.

o Identical to g; in expectation, Eg; = Eg;.
e Bounded norm ||g:|| < dG.
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Properties of the gradient estimator g;

S| Q

. d
8t — *gt(Xt =+ (5ut)ut, 8t — %(et(Xt + (5Ut) — Et(Xt — 5ut))ut.

o Identical to g; in expectation, Eg; = Eg;.
e Bounded norm ||g:|| < dG.

- d
|8ell= == (Ce(xe + dup) — Le(xe — dur))uy|
20
d
= 55lle(xe + due) = Le(xe — Ouy)]
dGg
< — Gd.
= 5 ||25Ut|| Gd



Regret analysis for gradient descent with two queries

@ Bounded non-empty set: rBC K C DB.
@ Lipschitz loss functions:

[le(x) = be(y)] < Gllx—yll, Vx,yeK, V¢
@ 0-strong convexity:

€ly) > £e(x) + (VL) y = x) + Sx =y

Under above assumpt/ons let o1 > 0. lf the GD2P algorithm is

run with ne = 2—, 6 = M and £ = ¢, then for any x € IC,
T q
E — K <
;2(£t()/tl)+€t Yt2 th <
?G2 - 1 D
— [ T — .
2 Zgl:t+Gog( )<3+r)

t=1



Regret bound for convex, Lipschitz functions

Corollary
Suppose the set K is bounded and non-empty, and /¢, is convex, G
Lipschitz for all t. If the GD2P algorithm is run with n; = \%T

log T 9
6= =6~ and { = 2, then

T T

£ 2 (lyen) +lelye2) ~ minE " e(x) <
t=1

t=1

(d*>G% + D*)V'T + Glog(T) <3 i ?) .

@ Optimal due to matching lower bound in full-information
setup.

@ Bound also holds with high probability for adaptive
adversaries.



Regret bound for strongly convex, Lipschitz functions

Corollary

Suppose the set K is bounded and non-empty, and ¢; is o-strongly
convex, G Lipschitz for all t. If the GD2P algorithm is run with
N = % 0= IogTT and £ = g, then

T T
1 .
E ; E(gt(}/t,l) =+ Et(}/t,2)) - Q’IGIEE;&(X) <
2 D
G log(T) <dG +3+4 > :
o r

@ Optimal due to matching lower bound in full-information
setup.



Extension to other gradient estimators

e Bounded exploration (BE): |[x; — yi | < 0.
e Bounded gradient estimator (BG): ||g:|| < Gi.
@ Approximately unbiased (AU): [|[E:g: — Vli(xt)|] < cd.

Theorem

Let IC be bounded, non-empty and ¢; be o:-strongly convex with
for o1 > 0. For any gradient estimator satisfying above conditions,
the regret of GD2P algorithm is bounded as:

EZ (Le(yen) + Le(ye2)) Eth x) <

1 D
Z—+Glog( )<1+2c+>.
01t r



Analysis of other estimators for smooth functions

@ Need to establish conditions (BE), (BG) and (AU).
@ Smoothness assumption:

ly) < 03 + (V). y =)+ 5l = P

@ Examples:
e Squared £, norm |x — 6|2 for p > 2.
o Quadratic loss (y — w'x)? for bounded x.
o Logistic loss log(1 + exp(—w ' x)).

((x)



A Randomized Co-ordinate Descent algorithm

e Pick a co-ordinate it € {/,...,d} u.a.r.
@ Play y:1 = xt +dej,, Yo = Xt — dej,.
o Set & = 55 (Le(yen) — Le(ye2))ei-



A Randomized Co-ordinate Descent algorithm

e Pick a co-ordinate it € {/,...,d} u.a.r.
@ Play y:1 = xt +dej,, Yo = Xt — dej,.

@ Set g; = %(ft(}/t,l) — le(ye2))ei,

o (AU) holds: |[E¢&: — Vii(x:)|| < Y410

@ Same regret bound as before, with 1-dimensional gradient
updates.



Extension to completely adaptive adversaries

Previously needed ¢; independent of x;.
Randomization futile if /; depends on x;.
Can satisfy (AU) deterministically with d + 1 queries.

Deterministic first and second-order algorithms for smooth
loss functions.

Play the points x;, x; + dej for i =1,...,d.
o Set & = 1 0 (Le(xe + der) — Le(xe))er.

e Satisfies (BE), (BG) and (AU):

18e]l < dG, [|&:VLle(x)]| < @-



Regret bounds for d + 1 queries

O(V/T) regret for smooth, convex functions.

O(log T) regret for smooth, strongly convex functions.

O(log T) regret for smooth, exp-concave functions using
quasi-Newton variant.

Matches lower bounds from full-information setup.

Regret bounds hold for completely adaptive adversaries.



Conclusion

@ Introduce the multi-point feedback model for partial
information.

Optimal regret with high probability against adaptive
adveraries using just 2 queries per round.

Completely adaptive adversaries using d + 1 queries.

Open questions:

One-point bandit feedback.

VT lower bound for bandit strongly convex.
Distribution over number of queries.

High probability log( T) for strongly convex.
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