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Online Convex Optimization (Full-Info)

Player updates xt+1 = ΠK(xt − η∇`t(xt)).
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Online Convex Optimization (Full-Info)
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Minimize regret: RT =
∑T

t=1 `t(xt)−minx∈K
∑T

t=1 `t(x).
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Bandit Gradient Descent [FKM’05]
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Bandit Gradient Descent [FKM’05]

Updates xt+1 = Π(1−ξ)K(xt − ηtgt).
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Minimize regret: RT =
∑T

t=1 `t(yt)−minx∈K
∑T

t=1 `t(x).



A survey of known regret bounds

Linear Convex Strongly Convex

Upper Lower Upper Lower Upper Lower

Full-Info O(
√

T ) O(
√

T ) O(
√

T ) O(
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T ) O(log T ) O(log T )

Deterministic results against completely adaptive adversaries
in Full-Info.
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The Multi-Point (MP) feedback setup

Want to interpolate between bandit and full information.

Player allowed several queries per round.

Adversary reveals value of `t at all points picked.

Average regret on points played:

RT =
T∑

t=1

1

k

k∑
i=1

`t(yt,i )−min
x∈K

`t(x).
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Bandit.



Properties of gradient estimator gt [FKM’05]

gt =
d

δ
`t(xt + δut)ut .

Unbiased for linear functions.

Nearly unbiased for general convex functions.
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Properties of gradient estimator gt [FKM’05]

gt =
d

δ
`t(xt + δut)ut .

Unbiased for linear functions.

Nearly unbiased for general convex functions.
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Regret bounds scale with ‖gt‖.
‖gt‖ grows as 1/δ.



Gradient Descent Algorithm with two queries per round
(GD2P)

Estimates gradient g̃t = d
2δ (`t(xt + δut)− `t(xt − δut))ut .

Updates xt+1 = Π(1−ξ)K(xt − ηg̃t).
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Gradient Descent Algorithm with two queries per round
(GD2P)

Estimates gradient g̃t = d
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Properties of the gradient estimator g̃t

gt =
d

δ
`t(xt + δut)ut , g̃t =

d

2δ
(`t(xt + δut)− `t(xt − δut))ut .

Identical to gt in expectation, Eg̃t = Egt .

Bounded norm ‖g̃t‖ ≤ dG .

‖g̃t‖=
d

2δ
‖(`t(xt + δut)− `t(xt − δut))ut‖

=
d

2δ
|`t(xt + δut)− `t(xt − δut)|

≤ dG

2δ
‖2δut‖ = Gd .
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Regret analysis for gradient descent with two queries

Bounded non-empty set: rB ⊆ K ⊆ DB.
Lipschitz loss functions:
|`t(x)− `t(y)| ≤ G‖x − y‖, ∀x , y ∈ K, ∀ t.
σt-strong convexity:

`t(y) ≥ `t(x) + 〈∇`t(x), y − x〉+
σt

2
‖x − y‖2.

Theorem

Under above assumptions, let σ1 > 0. If the GD2P algorithm is
run with ηt = 1

σ1:t
, δ = log T

T and ξ = δ
r , then for any x ∈ K,

E
T∑

t=1

1

2
(`t(yt,1) + `t(yt,2))− E

T∑
t=1

`t(x) ≤

d2G 2

2

T∑
t=1

1

σ1:t
+ G log(T )

(
3 +

D

r

)
.



Regret bound for convex, Lipschitz functions

Corollary

Suppose the set K is bounded and non-empty, and `t is convex, G
Lipschitz for all t. If the GD2P algorithm is run with ηt = 1√

T
,

δ = log T
T and ξ = δ

r , then

E
T∑

t=1

1

2
(`t(yt,1) + `t(yt,2))−min

x∈K
E

T∑
t=1

`t(x) ≤

(d2G 2 + D2)
√

T + G log(T )

(
3 +

D

r

)
.

Optimal due to matching lower bound in full-information
setup.

Bound also holds with high probability for adaptive
adversaries.



Regret bound for strongly convex, Lipschitz functions

Corollary

Suppose the set K is bounded and non-empty, and `t is σ-strongly
convex, G Lipschitz for all t. If the GD2P algorithm is run with
ηt = 1

σt , δ = log T
T and ξ = δ

r , then

E
T∑

t=1

1

2
(`t(yt,1) + `t(yt,2))−min

x∈K
E

T∑
t=1

`t(x) ≤

G log(T )

(
d2G

σ
+ 3 +

D

r

)
.

Optimal due to matching lower bound in full-information
setup.



Extension to other gradient estimators

Bounded exploration (BE): ‖xt − yi ,t‖ ≤ δ.

Bounded gradient estimator (BG): ‖g̃t‖ ≤ G1.

Approximately unbiased (AU): ‖Et g̃t −∇`t(xt)‖ ≤ cδ.

Theorem

Let K be bounded, non-empty and `t be σt-strongly convex with
for σ1 > 0. For any gradient estimator satisfying above conditions,
the regret of GD2P algorithm is bounded as:

E
T∑

t=1

1

2
(`t(yt,1) + `t(yt,2))− E

T∑
t=1

`t(x) ≤

G 2
1

2

T∑
t=1

1

σ1:t
+ G log(T )

(
1 + 2c +

D

r

)
.



Analysis of other estimators for smooth functions

Need to establish conditions (BE), (BG) and (AU).

Smoothness assumption:

`t(y) ≤ `t(x) + 〈∇`t(x), y − x〉+
L

2
‖x − y‖2.

Examples:
Squared `p norm ‖x − θ‖2p for p ≥ 2.

Quadratic loss (y − wT x)2 for bounded x .
Logistic loss log(1 + exp(−wT x)).

`(x)



A Randomized Co-ordinate Descent algorithm

Pick a co-ordinate it ∈ {i , . . . , d} u.a.r.

Play yt,1 = xt + δeit , yt,2 = xt − δeit .

Set g̃t = d
2δ (`t(yt,1)− `t(yt,2))eit .

(AU) holds: ‖Et g̃t −∇`t(xt)‖ ≤
√

dLδ
4 .

Same regret bound as before, with 1-dimensional gradient
updates.
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Extension to completely adaptive adversaries

Previously needed `t independent of xt .

Randomization futile if `t depends on xt .

Can satisfy (AU) deterministically with d + 1 queries.

Deterministic first and second-order algorithms for smooth
loss functions.

Play the points xt , xt + δei for i = 1, . . . , d .

Set g̃t = 1
δ

∑d
i=1(`t(xt + δei )− `t(xt))ei .

Satisfies (BE), (BG) and (AU):

‖g̃t‖ ≤ dG , ‖g̃t∇`t(xt)‖ ≤
√

dLδ
2 .



Regret bounds for d + 1 queries

O(
√

T ) regret for smooth, convex functions.

O(log T ) regret for smooth, strongly convex functions.

O(log T ) regret for smooth, exp-concave functions using
quasi-Newton variant.

Matches lower bounds from full-information setup.

Regret bounds hold for completely adaptive adversaries.



Conclusion

Introduce the multi-point feedback model for partial
information.

Optimal regret with high probability against adaptive
adveraries using just 2 queries per round.

Completely adaptive adversaries using d + 1 queries.

Open questions:

One-point bandit feedback.√
T lower bound for bandit strongly convex.

Distribution over number of queries.
High probability log(T ) for strongly convex.
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