Optimal Algorithms for Online Convex Optimization with Multi-Point Bandit Feedback

Alekh Agarwal Ofer Dekel Lin Xiao UC Berkeley Microsoft Research

Player

• Player updates $x_{t+1} = \prod_{\mathcal{K}} (x_t - \eta \nabla \ell_t(x_t)).$

Player

• Minimize regret: $R_T = \sum_{t=1}^T \ell_t(x_t) - \min_{x \in \mathcal{K}} \sum_{t=1}^T \ell_t(x)$.

Bandit Convex Optimization

Player

Bandit Convex Optimization

Player

Bandit Convex Optimization

Player

Player

Adversary

Full-Info

 X_1

Player

• Updates
$$x_{t+1} = \prod_{(1-\xi)\mathcal{K}} (x_t - \eta_t g_t)$$
.

Player

Adversary

• Minimize regret: $R_T = \sum_{t=1}^T \ell_t(y_t) - \min_{x \in \mathcal{K}} \sum_{t=1}^T \ell_t(x)$.

	Linear		Convex		Strongly Convex	
	Upper	Lower	Upper	Lower	Upper	Lower
Full-Info	$\mathcal{O}(\sqrt{T})$	$\mathcal{O}(\sqrt{T})$	$\mathcal{O}(\sqrt{T})$	$\mathcal{O}(\sqrt{T})$	$\mathcal{O}(\log T)$	$\mathcal{O}(\log T)$

• Deterministic results against completely adaptive adversaries in Full-Info.

- Deterministic results against completely adaptive adversaries in Full-Info.
- High probability results against adaptive adversaries for Bandit.

- Want to interpolate between bandit and full information.
- Player allowed several queries per round.
- Adversary reveals value of ℓ_t at all points picked.
- Average regret on points played:

$$R_T = \sum_{t=1}^T \frac{1}{k} \sum_{i=1}^k \ell_t(y_{t,i}) - \min_{x \in \mathcal{K}} \ell_t(x).$$

	Linear		Convex		Strongly Convex	
	Upper	Lower	Upper	Lower	Upper	Lower
Full-Info	$\mathcal{O}(\sqrt{T})$	$\mathcal{O}(\sqrt{T})$	$\mathcal{O}(\sqrt{T})$	$\mathcal{O}(\sqrt{T})$	$\mathcal{O}(\log T)$	$\mathcal{O}(\log T)$
Bandit	$\mathcal{O}(\sqrt{T})$	$\mathcal{O}(\sqrt{T})$	$\mathcal{O}(T^{3/4})$	$\mathcal{O}(\sqrt{T})$	$\mathcal{O}(T^{2/3})$	$\mathcal{O}(\sqrt{T})$?
MP Bandit	$\mathcal{O}(\sqrt{T})$	$\mathcal{O}(\sqrt{T})$	$\mathcal{O}(\sqrt{T})$	$\mathcal{O}(\sqrt{T})$	$\mathcal{O}(\log T)$	$\mathcal{O}(\log T)$

- Deterministic results against completely adaptive adversaries in Full-Info.
- High probability results against adaptive adversaries for Bandit.

Properties of gradient estimator g_t [FKM'05]

$$g_t = \frac{d}{\delta} \ell_t (x_t + \delta u_t) u_t.$$

- Unbiased for linear functions.
- Nearly unbiased for general convex functions.

Properties of gradient estimator g_t [FKM'05]

$$g_t = \frac{d}{\delta} \ell_t (x_t + \delta u_t) u_t.$$

- Unbiased for linear functions.
- Nearly unbiased for general convex functions.

- Regret bounds scale with $||g_t||$.
- $\|g_t\|$ grows as $1/\delta$.

- Estimates gradient $\tilde{g}_t = \frac{d}{2\delta} (\ell_t (x_t + \delta u_t) \ell_t (x_t \delta u_t)) u_t$.
- Updates $x_{t+1} = \prod_{(1-\xi)\mathcal{K}} (x_t \eta \tilde{g}_t)$.

Player

- Estimates gradient $\tilde{g}_t = \frac{d}{2\delta} (\ell_t (x_t + \delta u_t) \ell_t (x_t \delta u_t)) u_t$.
- Updates $x_{t+1} = \prod_{(1-\xi)\mathcal{K}} (x_t \eta \tilde{g}_t)$.

- Estimates gradient $\tilde{g}_t = \frac{d}{2\delta} (\ell_t (x_t + \delta u_t) \ell_t (x_t \delta u_t)) u_t$.
- Updates $x_{t+1} = \prod_{(1-\xi)\mathcal{K}} (x_t \eta \tilde{g}_t)$.

- Estimates gradient $\tilde{g}_t = \frac{d}{2\delta} (\ell_t (x_t + \delta u_t) \ell_t (x_t \delta u_t)) u_t$.
- Updates $x_{t+1} = \prod_{(1-\xi)\mathcal{K}} (x_t \eta \tilde{g}_t)$.

$$g_t = \frac{d}{\delta} \ell_t (x_t + \delta u_t) u_t, \quad \tilde{g}_t = \frac{d}{2\delta} (\ell_t (x_t + \delta u_t) - \ell_t (x_t - \delta u_t)) u_t.$$

- Identical to g_t in expectation, $\mathbb{E}\tilde{g}_t = \mathbb{E}g_t$.
- Bounded norm $\|\tilde{g}_t\| \leq dG$.

$$\|\tilde{g}_t\| = \frac{d}{2\delta} \|(\ell_t(x_t + \delta u_t) - \ell_t(x_t - \delta u_t))u_t\|$$

$$g_t = \frac{d}{\delta} \ell_t (x_t + \delta u_t) u_t, \quad \tilde{g}_t = \frac{d}{2\delta} (\ell_t (x_t + \delta u_t) - \ell_t (x_t - \delta u_t)) u_t.$$

- Identical to g_t in expectation, $\mathbb{E}\tilde{g}_t = \mathbb{E}g_t$.
- Bounded norm $\|\tilde{g}_t\| \leq dG$.

$$\begin{split} \|\tilde{g}_t\| &= \frac{d}{2\delta} \|(\ell_t(x_t + \delta u_t) - \ell_t(x_t - \delta u_t))u_t\| \\ &= \frac{d}{2\delta} |\ell_t(x_t + \delta u_t) - \ell_t(x_t - \delta u_t)| \end{split}$$

$$g_t = \frac{d}{\delta} \ell_t (x_t + \delta u_t) u_t, \quad \tilde{g}_t = \frac{d}{2\delta} (\ell_t (x_t + \delta u_t) - \ell_t (x_t - \delta u_t)) u_t.$$

- Identical to g_t in expectation, $\mathbb{E}\tilde{g}_t = \mathbb{E}g_t$.
- Bounded norm $\|\tilde{g}_t\| \leq dG$.

$$\begin{split} \|\tilde{g}_t\| &= \frac{d}{2\delta} \| (\ell_t (x_t + \delta u_t) - \ell_t (x_t - \delta u_t)) u_t \| \\ &= \frac{d}{2\delta} |\ell_t (x_t + \delta u_t) - \ell_t (x_t - \delta u_t)| \\ &\leq \frac{dG}{2\delta} \| 2\delta u_t \| = \mathbf{Gd}. \end{split}$$

Regret analysis for gradient descent with two queries

- Bounded non-empty set: $r\mathcal{B} \subseteq \mathcal{K} \subseteq D\mathcal{B}$.
- Lipschitz loss functions:

$$|\ell_t(x) - \ell_t(y)| \leq \mathbf{G} ||x - y||, \quad \forall x, y \in \mathcal{K}, \ \forall \ t.$$

σ_t-strong convexity:

$$\ell_t(y) \geq \ell_t(x) + \langle \nabla \ell_t(x), y - x \rangle + \frac{\sigma_t}{2} \|x - y\|^2.$$

Theorem

Under above assumptions, let $\sigma_1 > 0$. If the GD2P algorithm is run with $\eta_t = \frac{1}{\sigma_{1:t}}$, $\delta = \frac{\log T}{T}$ and $\xi = \frac{\delta}{r}$, then for any $x \in \mathcal{K}$,

$$\mathbb{E}\sum_{t=1}^{T} \frac{1}{2} (\ell_t(y_{t,1}) + \ell_t(y_{t,2})) - \mathbb{E}\sum_{t=1}^{T} \ell_t(x) \leq \frac{d^2 G^2}{2} \sum_{t=1}^{T} \frac{1}{\sigma_{1:t}} + G \log(T) \left(3 + \frac{D}{r}\right).$$

Regret bound for convex, Lipschitz functions

Corollary

Suppose the set \mathcal{K} is bounded and non-empty, and ℓ_t is convex, GLipschitz for all t. If the GD2P algorithm is run with $\eta_t = \frac{1}{\sqrt{T}}$, $\delta = \frac{\log T}{T}$ and $\xi = \frac{\delta}{r}$, then $\mathbb{E} \sum_{t=1}^{T} \frac{1}{2} (\ell_t(y_{t,1}) + \ell_t(y_{t,2})) - \min_{x \in \mathcal{K}} \mathbb{E} \sum_{t=1}^{T} \ell_t(x) \leq$

- $(d^2G^2+D^2)\sqrt{T}+G\log(T)\left(3+\frac{D}{r}\right).$
- Optimal due to matching lower bound in full-information setup.
- Bound also holds with high probability for adaptive adversaries.

Corollary

Suppose the set \mathcal{K} is bounded and non-empty, and ℓ_t is σ -strongly convex, G Lipschitz for all t. If the GD2P algorithm is run with $\eta_t = \frac{1}{\sigma t}$, $\delta = \frac{\log T}{T}$ and $\xi = \frac{\delta}{r}$, then

$$\mathbb{E}\sum_{t=1}^{T}\frac{1}{2}(\ell_t(y_{t,1}) + \ell_t(y_{t,2})) - \min_{x \in \mathcal{K}} \mathbb{E}\sum_{t=1}^{T}\ell_t(x) \leq G\log(T)\left(\frac{d^2G}{\sigma} + 3 + \frac{D}{r}\right)$$

• Optimal due to matching lower bound in full-information setup.

Extension to other gradient estimators

- Bounded exploration (BE): $||x_t y_{i,t}|| \le \delta$.
- Bounded gradient estimator (BG): $\|\tilde{g}_t\| \leq G_1$.
- Approximately unbiased (AU): $\|\mathbb{E}_t \tilde{g}_t \nabla \ell_t(x_t)\| \leq c\delta$.

Theorem

Let \mathcal{K} be bounded, non-empty and ℓ_t be σ_t -strongly convex with for $\sigma_1 > 0$. For any gradient estimator satisfying above conditions, the regret of GD2P algorithm is bounded as:

$$\mathbb{E}\sum_{t=1}^{T} \frac{1}{2} (\ell_t(y_{t,1}) + \ell_t(y_{t,2})) - \mathbb{E}\sum_{t=1}^{T} \ell_t(x) \leq \frac{G_1^2}{2} \sum_{t=1}^{T} \frac{1}{\sigma_{1:t}} + G\log(T) \left(1 + 2c + \frac{D}{r}\right).$$

Analysis of other estimators for smooth functions

- Need to establish conditions (BE), (BG) and (AU).
- Smoothness assumption:

$$\ell_t(y) \leq \ell_t(x) + \langle \nabla \ell_t(x), y - x \rangle + \frac{L}{2} ||x - y||^2.$$

- Examples:
 - Squared ℓ_p norm $||x \theta||_p^2$ for $p \ge 2$.
 - Quadratic loss $(y w^T x)^2$ for bounded x.
 - Logistic loss $\log(1 + \exp(-w^T x))$.

A Randomized Co-ordinate Descent algorithm

- Pick a co-ordinate $i_t \in \{i, \ldots, d\}$ u.a.r.
- Play $y_{t,1} = x_t + \delta e_{i_t}$, $y_{t,2} = x_t \delta e_{i_t}$.
- Set $\tilde{g}_t = \frac{d}{2\delta} (\ell_t(y_{t,1}) \ell_t(y_{t,2})) e_{i_t}$.

- Pick a co-ordinate $i_t \in \{i, \ldots, d\}$ u.a.r.
- Play $y_{t,1} = x_t + \delta e_{i_t}$, $y_{t,2} = x_t \delta e_{i_t}$.
- Set $\tilde{g}_t = \frac{d}{2\delta} (\ell_t(y_{t,1}) \ell_t(y_{t,2})) e_{i_t}$.
- (AU) holds: $\|\mathbb{E}_t \tilde{g}_t \nabla \ell_t(x_t)\| \leq \frac{\sqrt{d}L\delta}{4}$.
- Same regret bound as before, with 1-dimensional gradient updates.

- Previously needed ℓ_t independent of x_t .
- Randomization futile if ℓ_t depends on x_t .
- Can satisfy (AU) deterministically with d + 1 queries.
- Deterministic first and second-order algorithms for smooth loss functions.
- Play the points $x_t, x_t + \delta e_i$ for $i = 1, \dots, d$.
- Set $\tilde{g}_t = \frac{1}{\delta} \sum_{i=1}^d (\ell_t(x_t + \delta e_i) \ell_t(x_t))e_i$.
- Satisfies (BE), (BG) and (AU): $\|\tilde{g}_t\| \leq dG, \|\tilde{g}_t \nabla \ell_t(x_t)\| \leq \frac{\sqrt{dL\delta}}{2}.$

- $\mathcal{O}(\sqrt{T})$ regret for smooth, convex functions.
- $\mathcal{O}(\log T)$ regret for smooth, strongly convex functions.
- O(log T) regret for smooth, exp-concave functions using quasi-Newton variant.
- Matches lower bounds from full-information setup.
- Regret bounds hold for completely adaptive adversaries.

- Introduce the multi-point feedback model for partial information.
- Optimal regret with high probability against adaptive adveraries using just 2 queries per round.
- Completely adaptive adversaries using d + 1 queries.
- Open questions:
 - One-point bandit feedback.
 - \sqrt{T} lower bound for bandit strongly convex.
 - Distribution over number of queries.
 - High probability $\log(T)$ for strongly convex.

Thank You