Robust Hierarchical Clustering

Maria-Florina Balcan Georgia Institute of Technology

Joint work with Pramod Gupta

Clustering comes up everywhere

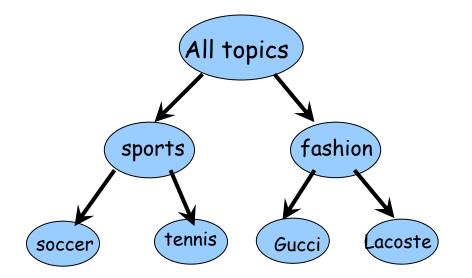
• Cluster news articles or web pages by topic

Cluster protein sequences by function

	* *** TITTT II * T *	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · ·
	-MTEGGPOPOECICSHERTMERLINLLROSRAYCTNTECLRELPOPSG	DSGISITVILMAWMVIAVLLFLLRPPHLR	-GFSEPOKPSSPHSGOVPPAPPVG 99
	-MTEOGYDPCECICSHERTWRELINGLECSRAYCTNTECLRELPGPSG	IDSGISITVILMAWMVIAVLLFLLMPPNLM	-GFSLPGKPSSPHSGOVPPAPPVG 99
P - TP	-MTEOGFOPCECICSHERTMRHLINLLROSRAYCTNTECLRELPGPSG	IDSGISITAILMVWNVIAVLLFLLHPPNLH	-GFSLPCKPSSPHECQVPPAPPVG 99
	-MTEGGFDFCECICSHERTMRRLINLLROSWAYCTNTECLRELPGFSG		
	-MTEGGPDPCECICSRERAMRALINLLROSRAFCTDTECLRELPGPSG	DSGISITVILMAWMVIAVLLFLLRPPNLR	-GPSEPGKPSSPESGQVPPAPPVG 99
	-MAEGGPDPCECICSCERAMRRLINLLROSRAYCTDTECLRELPGPSG		
	-MVEGGFDPCECICSHERAMRKFINLLROSOSYCTNTECLRELPGPSG		
	-MVEGGFDFGEGICSHERAMRKFINLLQQSQSYCTNTECLRELPGPSG	DSGISITVILMAWMVIAVLLFLLRPPNLR	- GPSLPOKP ESPHS OQVPPAPPVG 99
44	-MTEOGFOPCECIYSHERAMRRLINLLROSOSYCTNTECLRELPOPSG		
	-MAEGGFDPCECICSHEHAMRRLINLLROSOSYCTDTECLRELPGPSG		
	-MAROGFDPCECVCSHEHAMERLINLLROSOSYCTDTECLRELPGPSS		
	-MAROGROPCECVCSHEHAMRELINLLROSOSYCTDTECLOELPGPSG	SDNGISITMILMAWMVIAVILFLLRPPNLR	-GSNETGEPTEPHNCODPPAPPVD 99

Linkage Based Procedures

S set of n objects. [documents, web pages, protein seq.]



Have a similarity measure on pairs of objects. K(x,y) - similarity between x and y

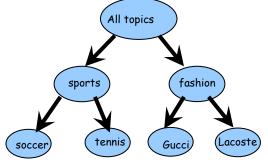
E.g., # keywords in common, edit distance, wavelets coef., etc.

Classic Approach: Linkage Procedures

Have a similarity measure on pairs of objects.

K(x,y) - similarity between x and y

- Single linkage: $K(A,B) = \max_{x \text{ in } A, y \text{ in } B} K(x,y)$
- Average linkage: $K(A,B) = avg_{x in A, y in B} K(x,y)$
- Complete linkage: K(A,B) = min_{x in A, y in B} K(x,y)



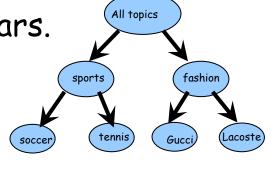
Linkage Procedures

Widely used across science for many years.

Simple, fast, easy to interpret.

Problem: not robust to noise.

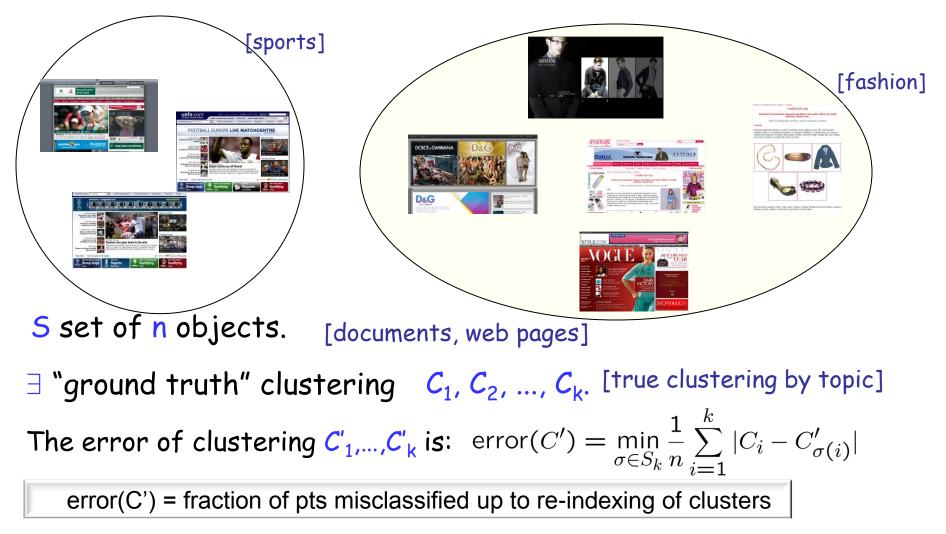
[e.g., Bilmes et. al, NIPS 2005]

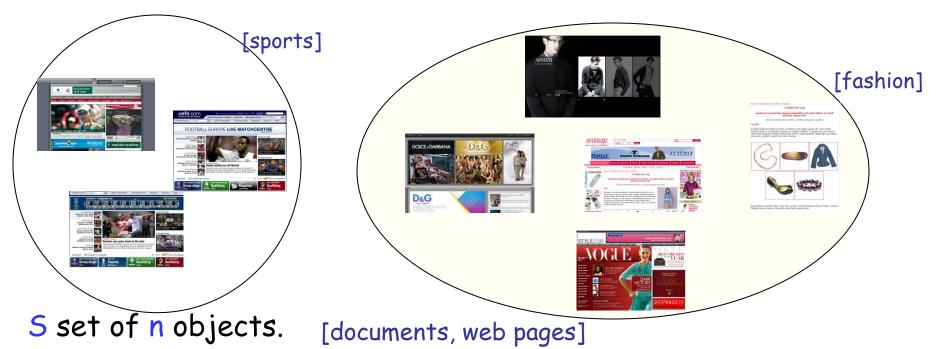


Question: Can we design robust linkage procedures that are tolerant to noisy and incomplete similarity info?

2

We provide a robust aglomerative clustering algorithm.





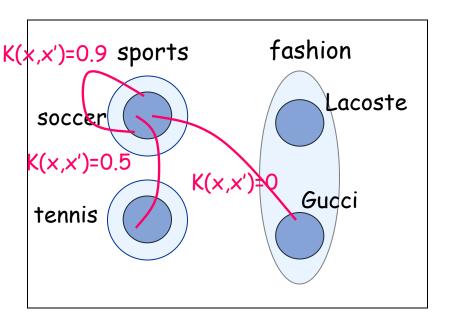
 $\exists \text{ "ground truth" clustering } C_1, C_2, \dots, C_k. \text{ [true clustering by topic]}$ The error of clustering C'_1, \dots, C'_k is: $\operatorname{error}(C') = \min_{\sigma \in S_k} \frac{1}{n} \sum_{i=1}^k |C_i - C'_{\sigma(i)}|$

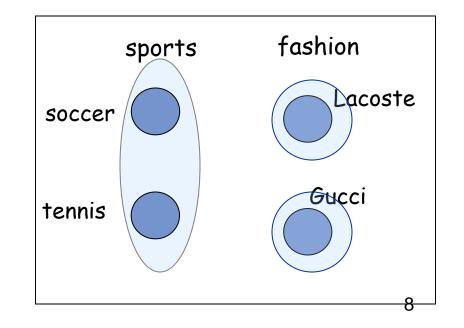
We are given a pairwise similarity function K.

Goal: Produce hierarchy that has pruning of small error

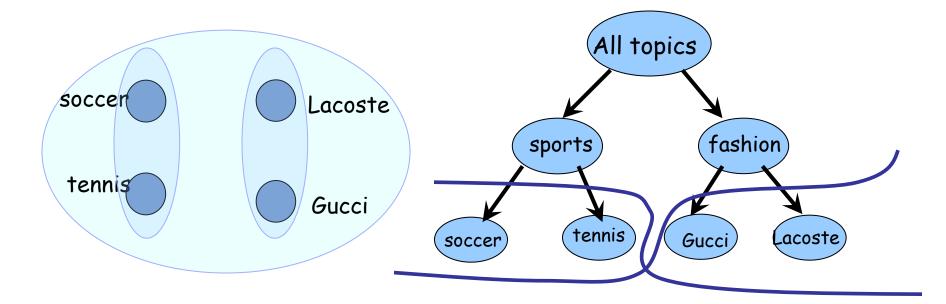
All x more similar to all y in own cluster than any z in any other cluster [strict separation property]

Note: same K can satisfy it for two very different, equally natural clusterings of the same data; so we can't hope to output a partition of the data.





Produce a hierarchical clustering s.t. correct answer is approximately some pruning of it.



The user can then navigate it to determine his desired clustering.

Strict Separation Property

All \mathbf{x} more similar to all \mathbf{y} in own cluster than any \mathbf{z} in any other cluster

Theorem Use Single-Linkage, construct a tree s.t. ground-truth clustering is a pruning of the tree.

Alternatively, for exploratory clustering:

Theorem All clusterings satisfying strict separation are prunnings of the tree.

All clusters satisfying strict separation are in the tree.

Good neighborhood property

α -good neighborhood property

For all points x, all but αn out of their $n_{C(x)}$ nearest neighbors belong to the cluster C(x).

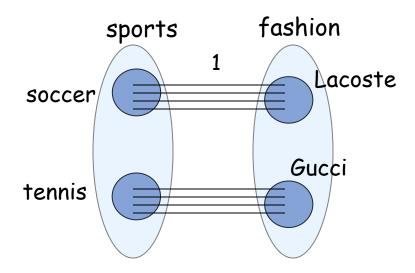
Note: strict separation is equivalent to 0-good neighborhood.

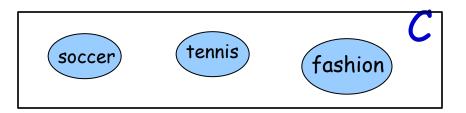
(α, ν) -good neighborhood property

For some S' \subseteq S of size $(1 - \nu)n$, K satisfies α -good neighborhood property on the instance induced by S'.

Notation: Points in S' are called good points. The rest, bad points.

Standard linkage algos fail even with α = 1/n





- (α ,0)-good neighborhood, α =1/n.
- Not even $\frac{1}{2}$ close to prunnings of tree produced by SL, AL, CL.

Can we design an alg that succeeds under the good neighborhood property? A New Robust Hierarchical Clustering Algo

Our contribution: an efficient alg. for the good neighborhood property.

Theorem (Main Result)

K symmetric fnc satisfying (α, ν) good neighborhood.

If target clusters large (of size $\Omega((\alpha + \nu)n)$, then can produce a tree s.t. the target is ν -close to one of the prunings of the tree.

A New Robust Hierarchical Clustering Algo

Phase I: Generate list L of interesting blobs.

[not too large, not too small, almost pure]

Phase II: Run a robust linkage procedure on L to generate a hierarchy T.

<u>Note</u>: Robust in two ways

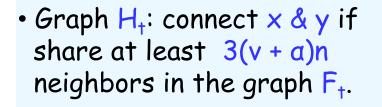
- Use global info to produce blobs.
- Use median info to link large enough blobs.

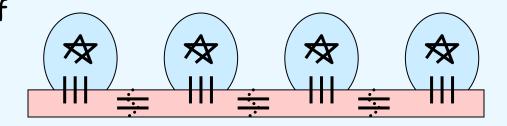
Use of blobs and median lends robustness since noisy similarities are outvoted.

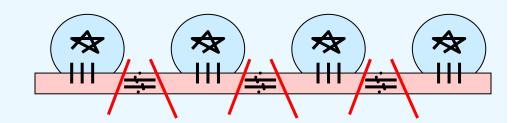
Phase I: Generate Interesting Blobs

Initial threshold t = 6(v + a)n + 1, $L = \emptyset$, $A_s = S$

 Graph F_t: connect x & y in A₅ if share ≥ t - 2(v + a)n points in common out of their t nearest neighbors w.r.t. 5.





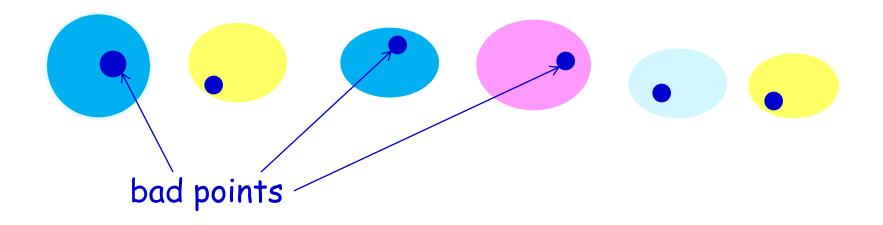


• Add to L all comp. C of H_t with $|C| \ge 3(v + a)n$ and remove C from A_s .

• For each point $x \in A_s$, if (v + a)n out of its 5(v + a)n nearest neighbors are in L, then assign x to a blob of highest median in L. Remove x from A_s .

• While $|A_s| \ge 3(v + a)n$ and t < n, t = t + 1 and repeat.

Claim: The blobs in L form a partition of S, each blob is large enough, and it has good points from only one target cluster.



Claim: The blobs in L form a partition of S, each blob is large enough, and it has good points from only one target cluster.

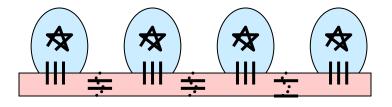
Proof Idea: Assume all clusters have the same size, n_c

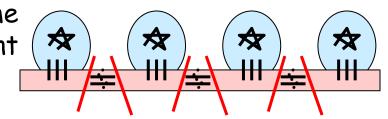
• At $t \leq n_c$, no two good points in two different clusters connected in F_t , a bad point only connected to a good set.

• At $t=n_c$, all good points in the same clusters forms cliques in F_t , a bad point only connected to a good set.

All components of H_{t} represent good blobs.

• We do not know n_c , but safe to start low and keep increasing it, and output large enough components.





Claim: Each blob in L is large enough and it has good points from only one target cluster.

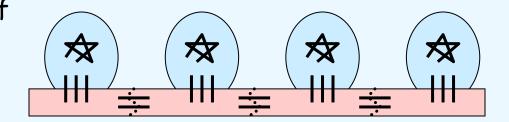
Proof Idea:

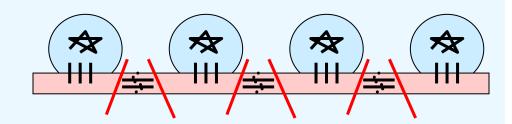
In general, different sizes

- \bullet assume $n_{\mathcal{C}_1} \leq n_{\mathcal{C}_2} \leq ... \leq n_{\mathcal{C}_k}$
- we make sure by the time we pass n_{C_1} we have pulled out all good points in n_{C_1} ; in general, by the time we passed n_{C_i} we have pulled all good points in clusters 1,2, ..., i.

Initial threshold t = 6(v + a)n + 1, $L = \emptyset$, $A_s = S$

- Graph F_t: connect x & y in A_s if share ≥ t - 2(v + a)n points in common out of their t nearest neighbors w.r.t. 5.
- Graph H_t: connect x & y if share at least 3(v + a)n neighbors in the graph F_t.





• Add to L all comp. C of H_t with $|C| \ge 3(v + a)n$ and remove C from A_s .

• For each $x \in A_5$, if (v + a)n out of its 5(v + a)n nearest neighbors are in L, then assign x to a blob of highest median in L. Remove x from A_5 .

• While $|A_s| \ge 3(v + a)n$ and t < n, t = t + 1 and repeat.

Robust Linkage Procedure

So, after the first phase:

- Find C, C' in the current list L which maximize score(C,C').
- Remove C and C' from L, merge them into C"; add C" to L.
- Repeat till only one cluster remains in L.

Key point: define score s.t.:

$$score(A_{i}, A_{j}) > score(A_{i}, A_{k})$$
$$score(A_{i}, A_{j}) > score(A_{i}, A_{k})$$

Conclusions and Open Questions

A new robust algorithm for hierarchical clustering.

- provably works under the good neighborhood property.
- good neighborhood property is a "noisy" relaxation of the strict separation property.
- classic linkage algorithms (SL or AL) succeed under strict separation but fail badly under good neighborhood.

Open Questions

- Analyze other properties under which this alg succeeds.
- Design alg for a robust version of max stability, known to be a necessary and sufficient condition for single linkage.

