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Outline of Talk

Computational model for evolution 

Drift and monotone evolution 

Evolving hyperplanes and conjunctions

Drift-resistant and quasi-monotone evolvability



  

Evolution: Mutation & Natural Selection



  

Computational Model

Evolve to ideal function for best behavior

Mutations at every generation

The fit members survive to the next generation



  

Computational Model

r
0

Mutations 

m
p

m
3

m
2

m
1

.  
.   

.   
.

r
1

m
p

m
3

m
2

m
1

.  
.   

.   
.

Selection

r
2

m
p

m
3

m
2

m
1

.  
.   

.   
.

r
g

Df

Mutations Mutations 

Selection Selection

Ideal:

(Valiant 2007)

r
g 
 is close to ideal



  

Modeling Mutation

Mutator: Poly-time probabilistic Turing Machine 
Takes current representation r

    r → { (m
1
, q

1
), … , (m

p
, q

p
) }

Generates (polynomially many) mutations and 
probabilities of occurrence.

Performance: Ideal function f; target distribution D.         
                    Perf

D
(r, f ) = E

D
[ r(x) f(x)]       

Performance: Target function f; target distribution D. 
Perf

D
(r, f ) = E

D
[ r(x) f(x)]



  

Beneficial & Neutral Mutations

Evolutionary algorithm gets only empirical 
estimates of true performances 
(S - poly-size sample of examples from D) 

Mutation r → m is  beneficial if 
Perf

S
(m, f) ≥ Perf

S
(r, f) + τ 

 Mutation r → m is  neutral if 
|Perf

S
(m, f) - Perf

S
(r, f)| ≤  τ 



  

Selection Rules

If there exists a beneficial mutation one is selected 
at random according to probability of occurrence  

Otherwise, a neutral mutation is selected according 
to probability of occurrence

Concept class C is evolvable under D if for every target 
function f є C, and every ε > 0 an evolutionary algorithm in 
g(ε) generations reaches a representation r that has 
performance (E

D
[r(x)f(x)]) at least 1 – ε, w.p. ≥ 1 – ε. 



  

Previous Work

Evolvable concepts subclass of SQ learnable concepts 
(Valiant 2007)

 

Evolvability of monotone conjunctions under uniform 
distribution (Valiant 2007) 

Evolvability equivalent to CSQ learning (queries only ask 
for correlation with target) (Feldman 2008)

Robustness of Model: Several alternative definitions lead to 
the same model (Feldman 2009)



  

Drifting Targets

Organisms adapt to gradual changes in environment

Evolvability model should be robust to drift in ideal 
function

Evolutionary algorithm adapts to change in 
perpetuity 



  

Modeling Drifting Targets

Distribution D

Target functions f
1
 , f

2 
, f

3 
, ...

Small drift rate E
D
[|f

i
(x) – f

i+1
(x)|] ≤ Δ 

 
Evolvable with Drift Δ 
Start at r

0
  

There exists time g (polynomial) s.t. for every i ≥ g, with    
  probability at least 1 – ε, Perf

D
(r

i
 , f

i
 ) ≥ 1 – ε 



  

Main Result

All evolvable concept classes are also evolvable 
with drifting target ideal functions



  

Monotonic Evolution

Monotonic Evolution
Monotonic if for all i, with probability at least 1 – ε     
                            Perf

D
(r

i
,f) ≥ Perf

D
(r

i-1
,f)

Strictly Monotonic Evolution (μ) 
Strictly monotonic if for all i, with probability at least 1 – ε  
                     Perf

D
(r

i
 , f

 
) ≥ Perf

D
(r

i-1
, f ) + μ 

Representations r
1
 , r

2
 , … of an evolutionary algorithm



  

Beneficial Neighborhood

Neighbourhood: Set of mutations of r

Beneficial Neighborhood (μ): Neighbourhood containing 
at least one representation r' satisfying 

Perf
D
(r', f) ≥ Perf

D
(r, f) + μ 

Theorem: For a given concept class C, if there exists a set 
of representations such that there always exists a beneficial 
neighborhood (μ), then C is evolvable for drifting targets as 
long as drift Δ ≤ μ - 1/poly



  

Evolving Halfspaces and Conjunctions



  

Evolving Halfspaces

Algorithm for evolving halfspaces passing through 
the origin

For arbitrary distributions this is impossible (Feldman 
2008)

  

Algorithm under symmetric distributions

Extend to product normal distributions



  

Evolving Hyperplanes

Mutations: 
r → cos (θ) r + sin(θ) e

e is a unit vector of an 
orthogonal basis of 
which r is a part.

Tolerates drift of O(ε/n)

Target



  

Evolving Hyperplanes

Mutations: 
r → cos (θ) r + sin(θ) e

e is a unit vector of an 
orthogonal basis of 
which r is a part.

Tolerates drift of O(ε/n)

Target



  

A Different Algorithm

Generalize to product normal distributions

σ
1

σ
2

(x
1
, x

2
) → (x

1
/ σ

1 
, x

2
/ σ

2 
) 

Problem: We do not know σ
1
 and σ

2
.  Evolutionary algorithm 

never sees actual examples, only sees the performance

(b
1
, b

2
) (σ

1
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2
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Evolving Halfspaces

A different algorithm – adds a small component to 
each direction

Somewhat similar to rotation



  

Evolving Conjunctions

Monotonic conjunctions under uniform distribution 
over {0, 1}n  (Valiant 2007)

Example: x
1 
 ^  x

7
 ^ x

13
 

Mutations: Add a literal; drop a literal; swap a literal

Beneficial Neighborhood: μ = O( ε2 ) 

Can generalize to all conjunctions (Jacobson 07)



  

Drift Resistance for Evolvability



  

Evolution with Drifting Targets

Can all evolutionary algorithms be made resistant to 
some drift?

Yes!

How much drift?

Small, but inverse polynomial

Can all evolutionary algorithms be made monotonic?

No, but can make quasi-monotonic



  

CSQ
>
 Learning

( φ ,  θ , τ)

Target function: f     Distribution: D

0 if E
D
[f(x) φ(x)] ≥ θ + τ 

1 if E
D
[ f(x) φ(x)] ≤ θ – τ 

Any of 0 or 1 otherwise 

Learner Oracle

This is equivalent to correlational SQ (CSQ) learning 
(binary search)

(Feldman 2008)



  

Overview of Simulation

Feldman's simulation of CSQ
>
 algorithm that makes q queries 

of tolerance τ

 

Hypothesis h output by CSQ
>
 algorithm has high performance

Make drift small enough so that for q rounds of evolution 
answers don't change (up to tolerance)

But need evolutionary algorithm to run in perpetuity

(Feldman 2008)



  

Sketch of Reduction

Feldman's 
Simulation

Some hypothesis

q generations

Learned 
new 

hypothesis High 
Performance

q generations

(1 – ε) h + ε r

New Hypothesis

Feldman's
Simulation

Technical Problem: Need representation independent of ε –  
 this requires a special construction

High 
Performance



  

Evolution with Drifting Targets

All evolvable concept classes are also evolvable with 
drifting targets

All evolvable concept classes can be evolved quasi-
monotonically

Give some drift rates for halfspaces through origin and 
conjunctions
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