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Apples>Bananas>Pomegranate>Kiwi>Peach>…

Ranking:

1. Recommendations

2. Elections

3. Sports Tournaments

Applications with rankings:

Hard to represent functions on n! rankings…



Kernel-based algorithms have many advantages for 

ranking:

1. Accommodate mixture of ranking types (full, partial, etc).

2. Representer theorem circumvents n! size of symmetric 

group.

3. Rankings can be x (inputs) or y (outputs).

4. Variety of fast algorithms to choose from (SVM, GP, KDE, 

etc) 

Disadvantage:

Kernel can be very expensive to evaluate

K(σ1,σ2)

rankings



Total ranking:

Partial rankings (many types):

How do we compute the kernel between all of these?



Standard approach is to use an averaged kernel, e.g.

Naively takes                       to compute!!!

Main result of paper: can be done in                       

.Notice: this is independent of    .

In practice compute times are even 

better.

Sum over all full rankings 

consistent with partial rankings



General theory of kernels on 

First, kernels on full rankings



Right-invariance 

j

Want a legitimate Mercer kernel K:

Symmetric, Positive Definite

(corresponding to inner product in some feature space)

Kernel evaluations don‟t 

depend on how the items

are labeled

On real line, this is like kernels K(x,y) 

which depend only on |x-y|



Diffusion kernels on full rankings

Main thing to know: 

diffusion kernel can 

be evaluated in 

closed form

Banana > Orange > Peach > Apricot > Fig > Grape

Banana > Orange > Apricot > Peach > Fig > Grape



Bochner‟s theorem

• For real numbers: The kernel K(x,y)=k(|x-y|) is 

positive definite iff its Fourier transform is a 

nonnegative measure

• On the symmetric group

[Kondor ‟08, Fukumizu et. al., „08]

???



Computing the kernel fast

(using Fourier theory)



Going back to the partial ranking kernel

In group algebra language, letting

by the inverse Fourier transform

Indicator function of permutations consistent 

with relative ranking of apples, oranges, …

Convolution of kernel function 

against indicator functions



Fourier transforms on rankings

• Interpretation:

• 1st order: Orange is ranked best

• 2nd order: Orange > Apple 

• 3rd order: Orange > Apple > Fig



Key mathematical idea is that the following are closely 

related:

1.  Convolution

2.  Group algebra products

3.  Multiplication of Fourier matrices



Indicator function for rankings consistent 

with apple>banana

A>B>C>D>E

A>B>E>D>C

A>B>D>C>E

A>B>C>E>D

A>B>E>C>D

A>B>D>E>C

A>C>B>D>E

A>E>B>D>C

A>D>B>C>E

A>C>B>E>D

A>E>B>C>D

A>D>B>E>C

C>A>D>B>E

E>A>D>B>C

D>A>C>B>E

C>A>E>B>D

E>A>C>B>D

D>A>E>B>C

etc…
Permutations consistent with a partial ranking can be 

factored!



[“Riffled independence” in Huang et al NIPS 09]

Fix apple>banana

Sweep over all 

permutations of 

remaining elements

Decomposition:

Sweep over 

interleavings of 

{apple, banana} into 

remaining items



More formally (using group algebra terminology)

Convolution of 

indicator functions

To Fourier transform A, multiply Fourier matrices 

of each term in the convolution.

Prop: Fourier matrices of Sn-k are zero beyond kth

order terms.

Corollary: Only need up to kth order Fourier 

coefficients to evaluate kernel



matrices
rows/columns in each



Note that precomputations can be expensive. The 

method was implemented in           and the paper 

contains preliminary experiments.



Conclusions

1.Kernel algorithms are a flexible framework for a 

variety of ranking tasks, but have not been used 

much in the past.

2.In most ranking problems     is large, but    is not that 

big.

3.To have any chance of computing the kernel in a 

reasonable amount of time, one must exploit the 

underlying algebra, as in this paper.

Special thanks to Dmitry Gavinsky for swapping slots 

with us.


