
Ranking with kernels in Fourier space

Risi Kondor (Caltech)

Marconi Barbosa (NICTA)

presented by Jonathan Huang (CMU)

Apples>Bananas>Pomegranate>Kiwi>Peach>…

Ranking:

1. Recommendations

2. Elections

3. Sports Tournaments

Applications with rankings:

Hard to represent functions on n! rankings…

Kernel-based algorithms have many advantages for

ranking:

1. Accommodate mixture of ranking types (full, partial, etc).

2. Representer theorem circumvents n! size of symmetric

group.

3. Rankings can be x (inputs) or y (outputs).

4. Variety of fast algorithms to choose from (SVM, GP, KDE,

etc)

Disadvantage:

Kernel can be very expensive to evaluate

K(σ1,σ2)

rankings

Total ranking:

Partial rankings (many types):

How do we compute the kernel between all of these?

Standard approach is to use an averaged kernel, e.g.

Naively takes to compute!!!

Main result of paper: can be done in

.Notice: this is independent of .

In practice compute times are even

better.

Sum over all full rankings

consistent with partial rankings

General theory of kernels on

First, kernels on full rankings

Right-invariance

j

Want a legitimate Mercer kernel K:

Symmetric, Positive Definite

(corresponding to inner product in some feature space)

Kernel evaluations don‟t

depend on how the items

are labeled

On real line, this is like kernels K(x,y)

which depend only on |x-y|

Diffusion kernels on full rankings

Main thing to know:

diffusion kernel can

be evaluated in

closed form

Banana > Orange > Peach > Apricot > Fig > Grape

Banana > Orange > Apricot > Peach > Fig > Grape

Bochner‟s theorem

• For real numbers: The kernel K(x,y)=k(|x-y|) is

positive definite iff its Fourier transform is a

nonnegative measure

• On the symmetric group

[Kondor ‟08, Fukumizu et. al., „08]

???

Computing the kernel fast

(using Fourier theory)

Going back to the partial ranking kernel

In group algebra language, letting

by the inverse Fourier transform

Indicator function of permutations consistent

with relative ranking of apples, oranges, …

Convolution of kernel function

against indicator functions

Fourier transforms on rankings

• Interpretation:

• 1st order: Orange is ranked best

• 2nd order: Orange > Apple

• 3rd order: Orange > Apple > Fig

Key mathematical idea is that the following are closely

related:

1. Convolution

2. Group algebra products

3. Multiplication of Fourier matrices

Indicator function for rankings consistent

with apple>banana

A>B>C>D>E

A>B>E>D>C

A>B>D>C>E

A>B>C>E>D

A>B>E>C>D

A>B>D>E>C

A>C>B>D>E

A>E>B>D>C

A>D>B>C>E

A>C>B>E>D

A>E>B>C>D

A>D>B>E>C

C>A>D>B>E

E>A>D>B>C

D>A>C>B>E

C>A>E>B>D

E>A>C>B>D

D>A>E>B>C

etc…
Permutations consistent with a partial ranking can be

factored!

[“Riffled independence” in Huang et al NIPS 09]

Fix apple>banana

Sweep over all

permutations of

remaining elements

Decomposition:

Sweep over

interleavings of

{apple, banana} into

remaining items

More formally (using group algebra terminology)

Convolution of

indicator functions

To Fourier transform A, multiply Fourier matrices

of each term in the convolution.

Prop: Fourier matrices of Sn-k are zero beyond kth

order terms.

Corollary: Only need up to kth order Fourier

coefficients to evaluate kernel

matrices
rows/columns in each

Note that precomputations can be expensive. The

method was implemented in and the paper

contains preliminary experiments.

Conclusions

1.Kernel algorithms are a flexible framework for a

variety of ranking tasks, but have not been used

much in the past.

2.In most ranking problems is large, but is not that

big.

3.To have any chance of computing the kernel in a

reasonable amount of time, one must exploit the

underlying algebra, as in this paper.

Special thanks to Dmitry Gavinsky for swapping slots

with us.

