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Outline

1 Sequential prediction with log-loss.

Set of experts = exponential family.

2 Prediction strategies:

Bayes strategy:
achieves optimal regret
usually hard to calculate

“Follow the leader” strategy:
simple to compute/update
suboptimal

3 Our contribution

“Follow the flattened leader” strategy:
A slight modification of “follow the leader”.

achieves performance of Bayes
retains simplicity of ML

4 Applications: prediction, coding, model selection.
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Sequential Prediction

Family of distributions (model) M = {Pµ|µ ∈ Θ}.

Sequence of outcomes x1, x2, . . . ∈ X∞, revealed one by one.

In each iteration, after observing xn = x1, x2, . . . , xn, predict
xn+1 by assigning a distribution P (·|xn).

After xn+1 is revealed, incur log-loss − logP (xn+1|xn).

Regret w.r.t. the best “expert” from M:

R(P, xn) =
n∑
i=1

− logP (xi|xi−1)− inf
µ∈Θ

n∑
i=1

− logPµ(xi|xi−1).

Process generating the outcomes:

adversarial: only boundedness assumptions on xn,
stochastic: X1, X2, . . . i.i.d. ∼ P ∗, possibly P ∗ /∈M,
R(P,Xn) is a random variable.
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Sequential Prediction: Example

M = {Pµ|µ ∈ [0, 1]}, Pµ Bernoulli.

xn = 1010110110.

Best expert in M: Pµ̂n , µ̂n = #1
n (= 3

5).

“Follow the leader” prediction strategy:

P (·|xi) = Pµ̂i
(·) ⇐= µ̂0 undefined, P (x2|x1) = 0. . .

P (·|xi) = Pµ̂◦
i
(·), µ̂◦

i = #1+1
n+2 (Laplace’s rule of succesion).

µ̂◦
i : 1

2 , 2
3 , 1

2 , 3
5 , 1

2 , 4
7 , 5

8 , 5
9 , 3

5 , 7
11 , 7

12 .

If x∞ such that for large n, µ̂n bounded away from {0, 1}:

R(P, xn) =
1

2
log n+O(1).
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Problem Statement

M = {Pµ|µ ∈ Θ} is k-parameter exponential family
Bernoulli, Gaussian, Poisson, gamma, beta, geometric, χ2, . . .
Mean-value parametrization, µ = E[X].

Bayes strategy:

Pbayes(xn+1|xn) =

∫
Θ
Pµ(xn+1) dπ(µ|xn)

Pbayes(xn+1|xn) /∈M (strategy outside model).
R(Pbayes, x

n) = k
2 log n+O(1) (asympt. optimal).

Plug-in strategy:
Pplug-in(xn+1 | xn) = Pµ̄(xn)(xn+1), µ̄ : X∞ → Θ

Uplug-in(xn+1 | xn) ∈M (in-model strategy).
ML plug-in strategy (“follow the leader”) if µ̄(xn) = µ̂◦

n:

µ̂◦
n =

n0x0 +
∑n
i=1 xi

n0 + n
(smoothed ML estimator)

R(Pplug-in, , x
n) ≥ ck2 log n+O(1), worst case: c� 1.
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Contribution

Bayes strategy:
(strategy outside the model)

asympt. optimal regret:
k
2 log n+O(1)

usually hard to calculate

Plug-in strategy (incl. ML):
(strategy in the model)

suboptimal:
ck2 log n+O(1)

simple to compute/update

“Follow the Flattened Leader”

A slight modification (“flattening”) of the ML plug-in strategy,
“almost” in the model, achieving optimal regret.

achieves performance of Bayes
retains simplicity of ML
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Motivating Example: Why Bayes is better than ML?

M = {N (µ, 1) : µ ∈ R}.

ML strategy prediction:

N (µ̂◦n, 1)

Bayes strategy prediction:

N
(
µ̂◦n, 1 +

1

n+ 1

)
Sequence of outcomes xn: 2,−2, 2,−2, . . ..

−2 −1 0 1 2

0
.0

0
.1

0
.2

0
.3

0
.4

x

p
((x

))

ML

Bayes

0 2 4 6 8 10 12 14

0
2

4
6

8
10

n

re
gr

et
 [

n
at

s]

ML
Bayes
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Suboptimal Performance of ML Strategy

Grünwald & de Rooij (2005); Grünwald & Kot lowski (2010)

M is a single-parameter exponential family,

X1, X2, . . . i.i.d. ∼ P ∗, EP ∗ [X] = µ∗ ∈ Θ.

EP ∗ [R(Pplug-in, X
n)] ≥ 1

2

varP ∗X

varPµ∗X
log n+O(1),

Inferior performance when the variation of data greater than the
variance of Pµ∗ ∈M.
=⇒ Compensate for variability of the data.
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Improving ML Strategy

Flattened ML Strategy

Pfml(xn+1|xn) := Pµ̂◦
n
(xn+1)

n+ n0 + 1
2 (xn+1 − µ̂◦

n)T I(µ̂◦
n)(xn+1 − µ̂◦

n)

n+ n0 + k
2

Flattening term: 1 +O
(
1
n

)

compensation for variability of data

? ?

for exponential families, I(µ) = Cov−1
µ X

?

9 / 14



Improving ML Strategy

Flattened ML Strategy

Pfml(xn+1|xn) := Pµ̂◦
n
(xn+1)

n+ n0 + 1
2 (xn+1 − µ̂◦

n)T I(µ̂◦
n)(xn+1 − µ̂◦

n)

n+ n0 + k
2

Flattening term: 1 +O
(
1
n

)

compensation for variability of data

? ?

for exponential families, I(µ) = Cov−1
µ X

?

9 / 14



Main Result: Adversarial Case

Assumptions on outcomes: For all large n:

sequence of data bounded: ‖xn‖ ≤ B
sequence of ML estimators µ̂n bounded away from ∂Θ.

Then, the flattened ML strategy Pfml achieves asymptotically
optimal regret, i.e.

R(Pfml, x
n) =

k

2
log n+O(1).

where the constant under O( · ) does not depend on the outcomes.
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Main Result: Stochastic Case

Assumptions on outcomes:

X1, X2, . . . i.i.d. ∼ P ∗, EP ∗ [X] = µ∗ ∈ Θ.

First four moments of P ∗ exist.

Then, the flattened ML strategy Pfml almost surely achieves
asymptotically optimal regret, i.e.

R(Pfml, X
n) =

k

2
log n+O(1)

holds with probability one.

11 / 14



Flattened ML vs. ML and Bayes

M = {N (µ, 1) : µ ∈ R}.

ML vs. Bayes Flattened ML vs. Bayes
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Flattened ML vs. ML and Bayes
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Conclusions

We proposed a simple “flattening” of the ML distribution for
which the optimal asymptotic regret is achieved.

Flattened ML strategy retains the simplicity of ML strategy,
while achieving the performance of Bayes and NML.

Applications in prediction, coding, model selection.
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