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Our contribution

“Follow the flattened leader” strategy:

A slight modification of “follow the leader”.
© achieves performance of Bayes

© retains simplicity of ML

Applications: prediction, coding, model selection.
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m Family of distributions (model) M = {P,|u € ©}.
m Sequence of outcomes x1, x3,... € X°°, revealed one by one.
m In each iteration, after observing ™ = z1, 2o, ..., T,, predict
Zny1 by assigning a distribution P(-|z"™).
m After x,,41 is revealed, incur log-loss —log P(zy,41|z™).
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Sequential Prediction

Family of distributions (model) M = {P,|n € ©}.

Sequence of outcomes x1, X2, ... € X°°, revealed one by one.

In each iteration, after observing ™ = x1,x2, ..., x,, predict
Zny1 by assigning a distribution P(-|z"™).

After z,,41 is revealed, incur log-loss —log P(zy,41|2™).

Regret w.r.t. the best “expert” from M:
n n

R(P,z") = Z —log P(z;|z" ') — inf Z —log P, (zi|z" ).
i=1 neo i

Process generating the outcomes:

m adversarial: only boundedness assumptions on z™,
m stochastic: Xy, Xs,...i.i.d. ~ P*, possibly P* ¢ M,
R(P,X™) is a random variable.
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m 2" =1010110110.
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m “Follow the leader” prediction strategy:

u P(|a:z) = Pﬂ () — ﬂo undefined, P<$2|l‘1) =0...

7

4/14



Sequential Prediction: Example

# M ={P,|p€[0,1]}, P, Bernoulli.
m 2" =1010110110.

m Best expert in M: P, i, = % (= %)

m “Follow the leader” prediction strategy:

u P(|J}Z) = Pﬂl() — ﬂo undefined, P<$2|.%‘1) =0...
m P(|z%) = Puo (), o5 = 7‘?;1:21 (Laplace’s rule of succesion).
fo. 1 2 1 3 1 45 5 3 17 7T
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Sequential Prediction: Example

M = {P,|p € [0,1]}, P, Bernoulli.
z" = 1010110110.

|
|

' P o= #L (=3
m Best expert in M: Py, fi, = 7= (= £).
|

“Follow the leader” prediction strategy:
u P(|J}Z) = Pfh() — ﬂo undefined, P(x2|x1) =0...

m P(|z') = Pue(:), fig = 7‘?;14:;1 (Laplace’s rule of succesion).
f0.1 2 1 3 1 45 5 3 7 T

it 203" 2" 5" 21 78 9 5 11" 127
m If 2°° such that for large n, fi,, bounded away from {0, 1}:

1
R(P,z") = 5 logn + O(1).
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Problem Statement

# M ={P,|n € ©} is k-parameter exponential family
m Bernoulli, Gaussian, Poisson, gamma, beta, geometric, x?, ...
m Mean-value parametrization, u = E[X].

m Bayes strategy:
Poaves(Tny1]z™) = / Pu(wpq1) dm(p|z™)
S]

B Puaves(Tni1|2™) ¢ M (strategy outside model).
B R(Puwes. 2") = Elogn + O(1) (asympt. optimal).
m Plug-in strategy:
PPLUG—IN(37n+1 ‘ $n) = Pﬂ(xn)($n+1), n: X*® -0
B Uppuean (Tnt1 | ™) € M (in-model strategy).
m ML plug-in strategy (“follow the leader”) if p(z™) = 2:

noZo + Zn—l T .
fy = ————="=— (smoothed ML estimator)
ng+n

B R(Povei,.2") > cElogn + O(1), worst case: ¢>> 1.
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Contribution

Bayes strategy: Plug-in strategy (incl. ML):
(strategy outside the model) (strategy in the model)
© asympt. optimal regret: @ suboptimal:
Elogn +O(1) cElogn +O(1)
@ usually hard to calculate © simple to compute/update

“Follow the Flattened Leader”

A slight modification ( “flattening”) of the ML plug-in strategy,
“almost” in the model, achieving optimal regret.

© achieves performance of Bayes

© retains simplicity of ML
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Suboptimal Performance of ML Strategy

Griinwald & de Rooij (2005); Griinwald & Kottowski (2010)

m M is a single-parameter exponential family,

8 X1, Xa,...iid. ~ P* Ep]X]=p* € 0.
1 varp« X
EP* [R(PPLUG—INaXn)] Z 5@ logn + O(l),

Inferior performance when the variation of data greater than the
variance of P~ € M.
—> Compensate for variability of the data.
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Improving ML Strategy

Flattened ML Strategy

n+no + 5(@nt1 — fig) T I(f5) (Tng1 — fi5)
n—+ng + %

Pou(@nt1|zn) = Pag (Tnt1)
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Improving ML Strategy

compensation for variability of data
|

for exponential families, I(u) = Cov;, ' X

Flattened ML Strategy

n+no + 5(@ng1 — fig) TI(f5) (Tng1 — fi5)
n—+ng + %

{
Flattening term: 14+ O ( )

1
n

Pou(@nt1|zn) = Pag (Tnt1)

L

9/14



Main Result: Adversarial Case

Assumptions on outcomes: For all large n:
m sequence of data bounded: ||z,|| < B
m sequence of ML estimators [i,, bounded away from 0O.

Then, the flattened ML strategy Pryp achieves asymptotically
optimal regret, i.e.

k
R(Prmp, ") = 3 logn + O(1).

where the constant under O(-) does not depend on the outcomes.
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Main Result: Stochastic Case

Assumptions on outcomes:
B Xy, Xo,...0id. ~ P* Ep*[X] =pu* e 0.
m First four moments of P* exist.

Then, the flattened ML strategy Pgyp almost surely achieves
asymptotically optimal regret, i.e.

k

holds with probability one.
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Flattened ML vs. ML and Bayes

n M ={N(u1): peR}.

12/14



Flattened ML vs. ML and Bayes

n M ={N(u1): peR}.

ML vs. Bayes Flattened ML vs. Bayes
< =
[=} [=}
=== Flattened
o | o _| |=== DBayes
[=} (=}
= a G
=S | < 7
= =L
2 | s |
= T T T T T < T T T T T
—2 —1 0 1 2 —2 —1 0 1 2

12/14



Flattened ML vs. ML and Bayes

n M ={N(u1): peR}.

ML vs. Bayes Flattened ML vs. Bayes
= - g T
[=} [=}
=== Flattened
o | o _| |=== DBayes
[=} (=}
= a G
=S | < 7
= =L
2 | s |
= T T T T T < T T T T T
—2 —1 0 1 2 —2 —1 0 1 2

12/14



Flattened ML vs. ML and Bayes

n M ={N(u1): peR}.

ML vs. Bayes Flattened ML vs. Bayes
= - g T
S S |
=== Flattened |
jc o _| |=== DBayes |
[=} (=] 1
1
T | T !
X ] :
— — 1
S 7 S 7 |

< <
< T T T T T < T T T T T
—2 —1 0 1 2 —2 —1 0 1 2

12/14



Flattened ML vs. ML and Bayes

n M ={N(u1): peR}.

ML vs. Bayes Flattened ML vs. Bayes
= - g T
[=} [=}
=== Flattened
o | o _| |=== DBayes
[=} (=}
= a G
=S | < 7
= =L
2 | s |
= T T T T T < T T T T T
—2 —1 0 1 2 —2 —1 0 1 2

12/14



Flattened ML vs. ML and Bayes
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Conclusions

m We proposed a simple “flattening” of the ML distribution for
which the optimal asymptotic regret is achieved.

m Flattened ML strategy retains the simplicity of ML strategy,
while achieving the performance of Bayes and NML.

m Applications in prediction, coding, model selection.

14 /14



	Flattened Maximum Likelihood
	Application to Model Selection

