Following the Flattened Leader

Wojciech Kotłowski¹ Peter Grünwald¹ Steven de Rooij²

¹National Research Institute for Mathematics and Computer Science (CWI) The Netherlands

²University of Cambridge

COLT 2010

1 Sequential prediction with log-loss.

• Set of experts = exponential family.

1 Sequential prediction with log-loss.

- Set of experts = exponential family.
- 2 Prediction strategies:

Bayes strategy:

achieves optimal regret
 usually hard to calculate

"Follow the leader" strategy:

- simple to compute/update
- 😕 suboptimal

- **1** Sequential prediction with log-loss.
 - Set of experts = exponential family.

"Follow the leader" strategy:

😕 suboptimal

simple to compute/update

2 Prediction strategies:

Bayes strategy:

achieves optimal regret
 usually hard to calculate

3 Our contribution

"Follow the flattened leader" strategy: A slight modification of "follow the leader". achieves performance of Bayes retains simplicity of ML

- **1** Sequential prediction with log-loss.
 - Set of experts = exponential family.

"Follow the leader" strategy:

😕 suboptimal

simple to compute/update

2 Prediction strategies:

Bayes strategy:

achieves optimal regret
 usually hard to calculate

3 Our contribution

"Follow the flattened leader" strategy: A slight modification of "follow the leader". achieves performance of Bayes retains simplicity of ML

4 Applications: prediction, coding, model selection.

- Family of distributions (model) $\mathcal{M} = \{P_{\mu} | \mu \in \Theta\}.$
- Sequence of outcomes $x_1, x_2, \ldots \in \mathcal{X}^{\infty}$, revealed one by one.

- Family of distributions (model) $\mathcal{M} = \{P_{\mu} | \mu \in \Theta\}.$
- Sequence of outcomes $x_1, x_2, \ldots \in \mathcal{X}^\infty$, revealed one by one.
- In each iteration, after observing $x^n = x_1, x_2, \ldots, x_n$, predict x_{n+1} by assigning a distribution $P(\cdot|x^n)$.

- Sequence of outcomes $x_1, x_2, \ldots \in \mathcal{X}^{\infty}$, revealed one by one.
- In each iteration, after observing $x^n = x_1, x_2, \ldots, x_n$, predict x_{n+1} by assigning a distribution $P(\cdot|x^n)$.
- After x_{n+1} is revealed, incur log-loss $-\log P(x_{n+1}|x^n)$.

- Sequence of outcomes $x_1, x_2, \ldots \in \mathcal{X}^{\infty}$, revealed one by one.
- In each iteration, after observing $x^n = x_1, x_2, \ldots, x_n$, predict x_{n+1} by assigning a distribution $P(\cdot|x^n)$.
- After x_{n+1} is revealed, incur log-loss $-\log P(x_{n+1}|x^n)$.
- **Regret** w.r.t. the best "expert" from \mathcal{M} :

$$\mathcal{R}(P, x^{n}) = \sum_{i=1}^{n} -\log P(x_{i}|x^{i-1}) - \inf_{\mu \in \Theta} \sum_{i=1}^{n} -\log P_{\mu}(x_{i}|x^{i-1}).$$

- Sequence of outcomes $x_1, x_2, \ldots \in \mathcal{X}^\infty$, revealed one by one.
- In each iteration, after observing $x^n = x_1, x_2, \ldots, x_n$, predict x_{n+1} by assigning a distribution $P(\cdot|x^n)$.
- After x_{n+1} is revealed, incur log-loss $-\log P(x_{n+1}|x^n)$.
- Regret w.r.t. the best "expert" from \mathcal{M} : $\mathcal{R}(P, x^n) = \sum_{i=1}^n -\log P(x_i|x^{i-1}) - \inf_{\mu \in \Theta} \sum_{i=1}^n -\log P_{\mu}(x_i|x^{i-1}).$
- Process generating the outcomes:
 - **adversarial**: only boundedness assumptions on x^n ,
 - stochastic: X_1, X_2, \ldots i.i.d. $\sim P^*$, possibly $P^* \notin \mathcal{M}$, $\mathcal{R}(P, X^n)$ is a random variable.

•
$$\mathcal{M} = \{P_{\mu} | \mu \in [0, 1]\}, P_{\mu}$$
 Bernoulli.
• $x^n = 1010110110.$

•
$$\mathcal{M} = \{P_{\mu} | \mu \in [0,1]\}, P_{\mu}$$
 Bernoulli

Best expert in \mathcal{M} : $P_{\hat{\mu}_n}$, $\hat{\mu}_n = \frac{\#1}{n} \ (= \frac{3}{5})$.

•
$$\mathcal{M} = \{P_{\mu} | \mu \in [0,1]\}, P_{\mu}$$
 Bernoulli

Best expert in \mathcal{M} : $P_{\hat{\mu}_n}$, $\hat{\mu}_n = \frac{\#1}{n} \ (= \frac{3}{5})$.

• "Follow the leader" prediction strategy:

$$P(\cdot|x^i) = P_{\hat{\mu}_i}(\cdot)$$

•
$$\mathcal{M} = \{P_{\mu} | \mu \in [0,1]\}, P_{\mu}$$
 Bernoulli

- Best expert in \mathcal{M} : $P_{\hat{\mu}_n}$, $\hat{\mu}_n = \frac{\#1}{n} \ (= \frac{3}{5})$.
- "Follow the leader" prediction strategy:

•
$$P(\cdot|x^i) = P_{\hat{\mu}_i}(\cdot) \iff \hat{\mu}_0$$
 undefined, $P(x_2|x_1) = 0...$

•
$$\mathcal{M} = \{P_{\mu} | \mu \in [0,1]\}, P_{\mu}$$
 Bernoulli

- Best expert in \mathcal{M} : $P_{\hat{\mu}_n}$, $\hat{\mu}_n = \frac{\#1}{n} \ (= \frac{3}{5})$.
- "Follow the leader" prediction strategy:
 - $P(\cdot|x^i) = P_{\hat{\mu}_i}(\cdot) \iff \hat{\mu}_0$ undefined, $P(x_2|x_1) = 0...$
 - $P(\cdot|x^i) = P_{\hat{\mu}_i^\circ}(\cdot), \ \hat{\mu}_i^\circ = \frac{\#1+1}{n+2} \text{ (Laplace's rule of succession)}. \\ \hat{\mu}_i^\circ: \frac{1}{2}, \frac{2}{3}, \frac{1}{2}, \frac{3}{5}, \frac{1}{2}, \frac{4}{7}, \frac{5}{8}, \frac{5}{9}, \frac{3}{5}, \frac{7}{11}, \frac{7}{12}.$

•
$$\mathcal{M} = \{P_{\mu} | \mu \in [0,1]\}, P_{\mu}$$
 Bernoulli

- Best expert in \mathcal{M} : $P_{\hat{\mu}_n}$, $\hat{\mu}_n = \frac{\#1}{n} \ (= \frac{3}{5})$.
- "Follow the leader" prediction strategy:
 - $P(\cdot|x^i) = P_{\hat{\mu}_i}(\cdot) \iff \hat{\mu}_0$ undefined, $P(x_2|x_1) = 0...$
 - $P(\cdot|x^i) = P_{\hat{\mu}_i^\circ}(\cdot), \ \hat{\mu}_i^\circ = \frac{\#1+1}{n+2} \ \text{(Laplace's rule of succession)}. \\ \hat{\mu}_i^\circ : \ \frac{1}{2}, \ \frac{2}{3}, \ \frac{1}{2}, \ \frac{3}{5}, \ \frac{1}{2}, \ \frac{4}{7}, \ \frac{5}{8}, \ \frac{5}{9}, \ \frac{3}{5}, \ \frac{7}{11}, \ \frac{7}{12}. \\ \end{cases}$

If x^{∞} such that for large n, $\hat{\mu}_n$ bounded away from $\{0, 1\}$:

$$\mathcal{R}(P, x^n) = \frac{1}{2}\log n + O(1).$$

• $\mathcal{M} = \{P_{\mu} | \mu \in \Theta\}$ is k-parameter exponential family

Bernoulli, Gaussian, Poisson, gamma, beta, geometric, χ^2, \ldots

• Mean-value parametrization, $\mu = E[X]$.

• $\mathcal{M} = \{P_{\mu} | \mu \in \Theta\}$ is k-parameter exponential family • Bernoulli, Gaussian, Poisson, gamma, beta, geometric, χ^2 , ... • Mean-value parametrization, $\mu = E[X]$.

Bayes strategy:

$$P_{\text{BAYES}}(x_{n+1}|x^n) = \int_{\Theta} P_{\mu}(x_{n+1}) \,\mathrm{d}\pi(\mu|x^n)$$

• $P_{\text{BAYES}}(x_{n+1}|x^n) \notin \mathcal{M}$ (strategy outside model).

M = {*P*_μ | μ ∈ Θ} is *k*-parameter exponential family
 Bernoulli, Gaussian, Poisson, gamma, beta, geometric, χ², ...
 Mean-value parametrization, μ = *E*[*X*].

Bayes strategy:

$$P_{\text{BAYES}}(x_{n+1}|x^n) = \int_{\Theta} P_{\mu}(x_{n+1}) \,\mathrm{d}\pi(\mu|x^n)$$

■ $P_{\text{BAYES}}(x_{n+1}|x^n) \notin \mathcal{M}$ (strategy outside model). ■ $\mathcal{R}(P_{\text{BAYES}}, x^n) = \frac{k}{2} \log n + O(1)$ (asympt. optimal).

• $\mathcal{M} = \{P_{\mu} | \mu \in \Theta\}$ is k-parameter exponential family • Bernoulli, Gaussian, Poisson, gamma, beta, geometric, χ^2 , ... • Mean-value parametrization, $\mu = E[X]$.

Bayes strategy:

$$P_{\text{BAYES}}(x_{n+1}|x^n) = \int_{\Theta} P_{\mu}(x_{n+1}) \,\mathrm{d}\pi(\mu|x^n)$$

■ $P_{\text{BAYES}}(x_{n+1}|x^n) \notin \mathcal{M}$ (strategy outside model). ■ $\mathcal{R}(P_{\text{BAYES}}, x^n) = \frac{k}{2} \log n + O(1)$ (asympt. optimal).

Plug-in strategy:

 $P_{\text{PLUG-IN}}(x_{n+1} \mid x^n) = P_{\bar{\mu}(x^n)}(x_{n+1}), \quad \bar{\mu} \colon \mathcal{X}^{\infty} \to \Theta$

• $U_{\text{PLUG-IN}}(x_{n+1} \mid x^n) \in \mathcal{M}$ (in-model strategy).

• $\mathcal{M} = \{P_{\mu} | \mu \in \Theta\}$ is k-parameter exponential family • Bernoulli, Gaussian, Poisson, gamma, beta, geometric, χ^2 , ... • Mean-value parametrization, $\mu = E[X]$.

Bayes strategy:

$$P_{\text{BAYES}}(x_{n+1}|x^n) = \int_{\Theta} P_{\mu}(x_{n+1}) \,\mathrm{d}\pi(\mu|x^n)$$

■ $P_{\text{BAYES}}(x_{n+1}|x^n) \notin \mathcal{M}$ (strategy outside model). ■ $\mathcal{R}(P_{\text{BAYES}}, x^n) = \frac{k}{2} \log n + O(1)$ (asympt. optimal).

Plug-in strategy:

$$P_{\text{PLUG-IN}}(x_{n+1} \mid x^n) = P_{\bar{\mu}(x^n)}(x_{n+1}), \quad \bar{\mu} \colon \mathcal{X}^{\infty} \to \Theta$$

 $\quad \blacksquare \ U_{\rm PLUG-IN}(x_{n+1} \mid x^n) \in \mathcal{M} \text{ (in-model strategy)}.$

• ML plug-in strategy ("follow the leader") if $\bar{\mu}(x^n) = \hat{\mu}_n^\circ$:

$$\hat{\mu}_n^{\circ} = \frac{n_0 x_0 + \sum_{i=1}^n x_i}{n_0 + n}$$

(smoothed ML estimator)

• $\mathcal{M} = \{P_{\mu} | \mu \in \Theta\}$ is k-parameter exponential family • Bernoulli, Gaussian, Poisson, gamma, beta, geometric, χ^2 , ... • Mean-value parametrization, $\mu = E[X]$.

Bayes strategy:

$$P_{\text{BAYES}}(x_{n+1}|x^n) = \int_{\Theta} P_{\mu}(x_{n+1}) \,\mathrm{d}\pi(\mu|x^n)$$

■ $P_{\text{BAYES}}(x_{n+1}|x^n) \notin \mathcal{M}$ (strategy outside model). ■ $\mathcal{R}(P_{\text{BAYES}}, x^n) = \frac{k}{2} \log n + O(1)$ (asympt. optimal).

Plug-in strategy:

$$P_{\text{PLUG-IN}}(x_{n+1} \mid x^n) = P_{\bar{\mu}(x^n)}(x_{n+1}), \quad \bar{\mu} \colon \mathcal{X}^{\infty} \to \Theta$$

- $\quad \blacksquare \ U_{\rm PLUG-IN}(x_{n+1} \mid x^n) \in \mathcal{M} \text{ (in-model strategy)}.$
- ML plug-in strategy ("follow the leader") if $\bar{\mu}(x^n) = \hat{\mu}_n^\circ$:

$$\hat{\mu}_n^{\circ} = \frac{n_0 x_0 + \sum_{i=1}^n x_i}{n_0 + n}$$
 (smoothed ML estimator)

Bayes strategy:

(strategy outside the model) sympt. optimal regret: $\frac{k}{2}\log n + O(1)$ susually hard to calculate Plug-in strategy (incl. ML): (strategy in the model) \approx suboptimal: $c\frac{k}{2}\log n + O(1)$ \bigcirc simple to compute/update

"Follow the Flattened Leader"

A slight modification ("flattening") of the ML plug-in strategy, "almost" in the model, achieving optimal regret.

- o achieves performance of Bayes
- retains simplicity of ML

$$\mathcal{M} = \{ \mathcal{N}(\mu, 1) \colon \mu \in \mathbb{R} \}.$$

$$\mathcal{M} = \{ \mathcal{N}(\mu, 1) \colon \mu \in \mathbb{R} \}.$$

ML strategy prediction: $\mathcal{N}(\hat{\mu}_n^\circ,1)$

Bayes strategy prediction: $\mathcal{N}\left(\hat{\mu}_n^\circ, 1+\frac{1}{n+1}\right)$

$$\mathcal{M} = \{\mathcal{N}(\mu, 1) \colon \mu \in \mathbb{R}\}.$$

ML strategy prediction: $\mathcal{N}(\hat{\mu}_n^\circ,1)$

Bayes strategy prediction:
$$\mathcal{N}\left(\hat{\mu}_n^\circ, 1+\frac{1}{n+1}\right)$$

$$\mathcal{M} = \{\mathcal{N}(\mu, 1) \colon \mu \in \mathbb{R}\}.$$

ML strategy prediction: $\mathcal{N}(\hat{\mu}_n^\circ,1)$

Bayes strategy prediction:
$$\mathcal{N}\left(\hat{\mu}_n^\circ, 1+\frac{1}{n+1}\right)$$

$$\mathcal{M} = \{\mathcal{N}(\mu, 1) \colon \mu \in \mathbb{R}\}.$$

ML strategy prediction: $\mathcal{N}(\hat{\mu}_n^\circ,1)$

Bayes strategy prediction:
$$\mathcal{N}\left(\hat{\mu}_n^\circ, 1+\frac{1}{n+1}\right)$$

$$\mathcal{M} = \{\mathcal{N}(\mu, 1) \colon \mu \in \mathbb{R}\}.$$

ML strategy prediction: $\mathcal{N}(\hat{\mu}_n^\circ,1)$

Bayes strategy prediction:
$$\mathcal{N}\left(\hat{\mu}_n^\circ, 1+\frac{1}{n+1}\right)$$

$$\mathcal{M} = \{\mathcal{N}(\mu, 1) \colon \mu \in \mathbb{R}\}.$$

ML strategy prediction: $\mathcal{N}(\hat{\mu}_n^\circ,1)$

Bayes strategy prediction:
$$\mathcal{N}\left(\hat{\mu}_n^\circ, 1+\frac{1}{n+1}\right)$$

$$\mathcal{M} = \{\mathcal{N}(\mu, 1) \colon \mu \in \mathbb{R}\}.$$

ML strategy prediction: $\mathcal{N}(\hat{\mu}_n^\circ,1)$

Bayes strategy prediction:
$$\mathcal{N}\left(\hat{\mu}_n^\circ, 1+\frac{1}{n+1}\right)$$

Grünwald & de Rooij (2005); Grünwald & Kotłowski (2010)

• \mathcal{M} is a single-parameter exponential family,

•
$$X_1, X_2, \dots$$
 i.i.d. $\sim P^*, E_{P^*}[X] = \mu^* \in \Theta.$

$$E_{P^*}[\mathcal{R}(P_{\text{PLUG-IN}}, X^n)] \ge \frac{1}{2} \frac{\operatorname{var}_{P^*} X}{\operatorname{var}_{P_{\mu^*}} X} \log n + O(1),$$

Inferior performance when the variation of data greater than the variance of $P_{\mu^*} \in \mathcal{M}$.

 \implies Compensate for variability of the data.

Flattened ML Strategy

$$P_{\text{FML}}(x_{n+1}|x_n) := P_{\hat{\mu}_n^{\circ}}(x_{n+1}) \frac{n + n_0 + \frac{1}{2}(x_{n+1} - \hat{\mu}_n^{\circ})^T I(\hat{\mu}_n^{\circ})(x_{n+1} - \hat{\mu}_n^{\circ})}{n + n_0 + \frac{k}{2}}$$

Assumptions on outcomes: For all large *n*:

- sequence of data bounded: $||x_n|| \leq B$
- sequence of ML estimators $\hat{\mu}_n$ bounded away from $\partial \Theta$.

Then, the flattened ML strategy $P_{\rm FML}$ achieves asymptotically optimal regret, i.e.

$$\mathcal{R}(P_{\text{FML}}, x^n) = \frac{k}{2}\log n + O(1).$$

where the constant under $O(\cdot)$ does not depend on the outcomes.

Assumptions on outcomes:

- X_1, X_2, \dots i.i.d. $\sim P^*$, $E_{P^*}[X] = \mu^* \in \Theta$.
- First four moments of P^* exist.

Then, the flattened ML strategy $P_{\rm FML}$ almost surely achieves asymptotically optimal regret, i.e.

$$\mathcal{R}(P_{\text{FML}}, X^n) = \frac{k}{2}\log n + O(1)$$

holds with probability one.

- We proposed a simple "flattening" of the ML distribution for which the optimal asymptotic regret is achieved.
- Flattened ML strategy retains the simplicity of ML strategy, while achieving the performance of Bayes and NML.
- Applications in prediction, coding, model selection.