Robustness and Generalization

Huan Xu

The University of Texas at Austin Department of Electrical and Computer Engineering

COLT, June 29, 2010

Joint work with Shie Mannor

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• Robustness is the property that tested on a training sample and on a similar testing sample, the performance is close.

- Robust decision making/optimization:
 - Consider a general decision problem: find v such that $\ell(v,\xi)$ is small.
 - If for ξ' ≈ ξ, ℓ(v, ξ') is also small, then v is robust to the perturbation of parameter.

• Robust optimization: $\min_{v} \max_{\xi' \approx \xi} \ell(v, \xi')$

- Robust decision making/optimization:
 - Consider a general decision problem: find *ν* such that ℓ(*ν*, ξ) is small.
 - If for ξ' ≈ ξ, ℓ(ν, ξ') is also small, then ν is robust to the perturbation of parameter.
 - Robust optimization: $\min_{v} \max_{\xi' \approx \xi} \ell(v, \xi')$
- Robustness in machine learning
 - Robust optimization was introduced to machine learning to handle observation noise (e.g., [Lanckriet *et al* 2003]; [Lebret and El Ghaoui 1997]; [Shivaswamy *et al* 2006]).
 - It is then discovered that SVM and Lasso can both be rewritten as robust optimization (of empirical loss), and the RO formulation implies consistency [HX, Caramanis and SM 2009; 2010].

- Robust decision making/optimization:
 - Consider a general decision problem: find *ν* such that ℓ(*ν*, ξ) is small.
 - If for ξ' ≈ ξ, ℓ(ν, ξ') is also small, then ν is robust to the perturbation of parameter.
 - Robust optimization: $\min_{v} \max_{\xi' \approx \xi} \ell(v, \xi')$
- Robustness in machine learning
 - Robust optimization was introduced to machine learning to handle observation noise (e.g., [Lanckriet *et al* 2003]; [Lebret and El Ghaoui 1997]; [Shivaswamy *et al* 2006]).
 - It is then discovered that SVM and Lasso can both be rewritten as robust optimization (of empirical loss), and the RO formulation implies consistency [HX, Caramanis and SM 2009; 2010].
- This paper formalizes this observation to general learning algorithms.

Non-stable algorithm:

Stable algorithm:

Non-robust algorithm:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Robust algorithm:

Outline

- 1. Algorithmic Robustness and Generalization Bound
- 2. Robust Algorithms
- 3. (Weak) Robustness is Necessary and Sufficient to (Asymptotic) Generalizability

(ロ) (同) (三) (三) (三) (三) (○) (○)

Outline

1. Algorithmic Robustness and Generalization Bound

(ロ) (同) (三) (三) (三) (三) (○) (○)

- 2. Robust Algorithms
- 3. (Weak) Robustness is Necessary and Sufficient to (Asymptotic) Generalizability

Notations

- Training sample set **s** of *n* training samples (s_1, \dots, s_n) .
- \mathcal{Z} and \mathcal{H} are the set from which each sample is drawn, and the hypothesis set.
- \mathcal{A}_s is the hypothesis learned given training set **s**.
- For each hypothesis h ∈ H and a point z ∈ Z, there is an associated loss ℓ(h, z) ∈ [0, M].

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Notations

- Training sample set **s** of *n* training samples (s_1, \dots, s_n) .
- \mathcal{Z} and \mathcal{H} are the set from which each sample is drawn, and the hypothesis set.
- A_s is the hypothesis learned given training set s.
- For each hypothesis h ∈ H and a point z ∈ Z, there is an associated loss ℓ(h, z) ∈ [0, M].
- In supervised learning, we decompose Z = Y × X, and use _{|x} and _{|y} to denote the x-component and y-component of a point.

(日) (日) (日) (日) (日) (日) (日)

Notations

- Training sample set **s** of *n* training samples (s_1, \dots, s_n) .
- \mathcal{Z} and \mathcal{H} are the set from which each sample is drawn, and the hypothesis set.
- A_s is the hypothesis learned given training set s.
- For each hypothesis h ∈ H and a point z ∈ Z, there is an associated loss ℓ(h, z) ∈ [0, M].
- In supervised learning, we decompose Z = Y × X, and use _{|x} and _{|y} to denote the x-component and y-component of a point.

(日) (日) (日) (日) (日) (日) (日)

• The covering number of a metric space $T: \mathcal{N}(\epsilon, T, \rho)$

An algorithm A_s has a margin γ if for $j = 1, \dots, n$

$$\mathcal{A}_{\mathbf{s}}(x) = \mathcal{A}_{\mathbf{s}}(s_{j|x}); \quad \forall x : \|x - s_{j|x}\|_2 < \gamma.$$

Example

Fix $\gamma > 0$ and put $K = 2\mathcal{N}(\gamma/2, \mathcal{X}, \|\cdot\|_2)$. If \mathcal{A}_s has a margin γ , then \mathcal{Z} can be partitioned into K disjoint sets, denoted by $\{C_i\}_{i=1}^K$, such that if s_j and $z \in \mathcal{Z}$ belong to a same C_i , then $|\ell(\mathcal{A}_s, s_j) - \ell(\mathcal{A}_s, z)| = 0$.

(日) (日) (日) (日) (日) (日) (日)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

ヨー わへで

Motivating example 2: Linear Regression

The norm-constrained linear regression algorithm is

$$\mathcal{A}_{\mathbf{s}} = \min_{\boldsymbol{w} \in \mathbb{R}^{m}: \|\boldsymbol{w}\|_{2} \leq c} \sum_{i=1}^{n} |\boldsymbol{s}_{i|y} - \boldsymbol{w}^{\top} \boldsymbol{s}_{i|x}|, \qquad (0.1)$$

(日) (日) (日) (日) (日) (日) (日)

Example

Fix $\epsilon > 0$ and let $\mathcal{K} = \mathcal{N}(\epsilon/2, \mathcal{X}, \|\cdot\|_2) \times \mathcal{N}(\epsilon/2, \mathcal{Y}, |\cdot|).$

Consider the norm-constrained linear regression algorithm as in (0.1). The set \mathcal{Z} can be partitioned into *K* disjoint sets, such that if s_i and $z \in \mathcal{Z}$ belong to a same C_i , then

$$|\ell(\mathcal{A}_{\mathbf{s}}, s_j) - \ell(\mathcal{A}_{\mathbf{s}}, z)| \leq (c+1)\epsilon.$$

Algorithmic Robustness

Definition (Algorithmic Robustness)

Algorithm \mathcal{A} is $(\mathcal{K}, \epsilon(\mathbf{s}))$ robust if

- Z can be partitioned into K disjoint sets, denoted by {C_i}^K_{i=1};
- such that ∀*s* ∈ s,

$$s, z \in C_i, \implies |\ell(\mathcal{A}_s, s) - \ell(\mathcal{A}_s, z)| \le \epsilon(s).$$
 (0.2)

(ロ) (同) (三) (三) (三) (三) (○) (○)

Algorithmic Robustness

Definition (Algorithmic Robustness)

Algorithm \mathcal{A} is $(\mathcal{K}, \epsilon(\mathbf{s}))$ robust if

- Z can be partitioned into K disjoint sets, denoted by {C_i}^K_{i=1};
- such that ∀*s* ∈ s,

$$s, z \in C_i, \implies |\ell(\mathcal{A}_s, s) - \ell(\mathcal{A}_s, z)| \le \epsilon(s).$$
 (0.2)

Remark:

- The definition requires that the difference between a testing sample "similar to" a training sample is small.
- The property jointly depends on the solution to the algorithm and the training set.

Generalization property of robust algorithms – the main theorem

Theorem

Let $\hat{\ell}(\cdot)$ and $\ell_{emp}(\cdot)$ denote the expected loss and the training loss. If **s** consists of n i.i.d. samples, and \mathcal{A} is $(K, \epsilon(\mathbf{s}))$ -robust, then for any $\delta > 0$, with probability at least $1 - \delta$,

$$\left|\hat{\ell}(\mathcal{A}_{\mathbf{s}}) - \ell_{\mathrm{emp}}(\mathcal{A}_{\mathbf{s}})\right| \leq \epsilon(\mathbf{s}) + M\sqrt{\frac{2K\ln 2 + 2\ln(1/\delta)}{n}}$$

(日) (日) (日) (日) (日) (日) (日)

Generalization property of robust algorithms – the main theorem

Theorem

Let $\hat{\ell}(\cdot)$ and $\ell_{emp}(\cdot)$ denote the expected loss and the training loss. If **s** consists of n i.i.d. samples, and \mathcal{A} is $(K, \epsilon(\mathbf{s}))$ -robust, then for any $\delta > 0$, with probability at least $1 - \delta$,

$$\left|\hat{\ell}(\mathcal{A}_{\mathbf{s}}) - \ell_{\mathrm{emp}}(\mathcal{A}_{\mathbf{s}})\right| \leq \epsilon(\mathbf{s}) + M\sqrt{\frac{2K\ln 2 + 2\ln(1/\delta)}{n}}$$

Remark:

The bounds depends on the partitioning of the sample space.

(日) (日) (日) (日) (日) (日) (日)

Proof of the Main Theorem

• Let N_i be the set of index of points of **s** that fall into C_i . Then $(|N_1|, \dots, |N_K|)$ is an IID multinomial random variable with parameters n and $(\mu(C_1), \dots, \mu(C_K))$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Proof of the Main Theorem

- Let N_i be the set of index of points of **s** that fall into C_i . Then $(|N_1|, \dots, |N_K|)$ is an IID multinomial random variable with parameters n and $(\mu(C_1), \dots, \mu(C_K))$.
- Breteganolle-Huber-Carol inequality gives

$$\Pr\left\{\sum_{i=1}^{K} \left|\frac{|N_i|}{n} - \mu(C_i)\right| \ge \lambda\right\} \le 2^{K} \exp(\frac{-n\lambda^2}{2}).$$

(日) (日) (日) (日) (日) (日) (日)

Proof of the Main Theorem

- Let N_i be the set of index of points of **s** that fall into C_i . Then $(|N_1|, \dots, |N_K|)$ is an IID multinomial random variable with parameters n and $(\mu(C_1), \dots, \mu(C_K))$.
- Breteganolle-Huber-Carol inequality gives

$$\Pr\left\{\sum_{i=1}^{K}\left|\frac{|N_i|}{n}-\mu(C_i)\right|\geq\lambda\right\}\leq 2^{K}\exp(\frac{-n\lambda^2}{2}).$$

• Hence, with probability at least $1 - \delta$,

$$\sum_{i=1}^{K} \left| \frac{|N_i|}{n} - \mu(C_i) \right| \leq \sqrt{\frac{2K\ln 2 + 2\ln(1/\delta)}{n}}.$$
 (0.3)

(日) (日) (日) (日) (日) (日) (日)

Proof of the Main Theorem (Cont.)

Furthermore,

$$\begin{split} \left| \hat{\ell}(\mathcal{A}_{\mathbf{s}}) - \ell_{\text{emp}}(\mathcal{A}_{\mathbf{s}}) \right| &= \left| \sum_{i=1}^{K} \mathbb{E}(\ell(\mathcal{A}_{\mathbf{s}}, z) | z \in C_{i}) \mu(C_{i}) - \frac{1}{n} \sum_{i=1}^{n} \ell(\mathcal{A}_{\mathbf{s}}, s_{i}) \right| \\ &\leq \left| \sum_{i=1}^{K} \mathbb{E}(\ell(\mathcal{A}_{\mathbf{s}}, z) | z \in C_{i}) \frac{|N_{i}|}{n} - \frac{1}{n} \sum_{i=1}^{n} \ell(\mathcal{A}_{\mathbf{s}}, s_{i}) \right| \\ &+ \left| \sum_{i=1}^{K} \mathbb{E}(\ell(\mathcal{A}_{\mathbf{s}}, z) | z \in C_{i}) \mu(C_{i}) - \sum_{i=1}^{K} \mathbb{E}(\ell(\mathcal{A}_{\mathbf{s}}, z) | z \in C_{i}) \frac{|N_{i}|}{n} \right| \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proof of the Main Theorem (Cont.)

Furthermore,

$$\begin{split} \left| \hat{\ell}(\mathcal{A}_{\mathbf{s}}) - \ell_{\text{emp}}(\mathcal{A}_{\mathbf{s}}) \right| &= \left| \sum_{i=1}^{K} \mathbb{E}(\ell(\mathcal{A}_{\mathbf{s}}, z) | z \in C_{i}) \mu(C_{i}) - \frac{1}{n} \sum_{i=1}^{n} \ell(\mathcal{A}_{\mathbf{s}}, s_{i}) \right| \\ &\leq \left| \sum_{i=1}^{K} \mathbb{E}(\ell(\mathcal{A}_{\mathbf{s}}, z) | z \in C_{i}) \frac{|N_{i}|}{n} - \frac{1}{n} \sum_{i=1}^{n} \ell(\mathcal{A}_{\mathbf{s}}, s_{i}) \right| \\ &+ \left| \sum_{i=1}^{K} \mathbb{E}(\ell(\mathcal{A}_{\mathbf{s}}, z) | z \in C_{i}) \mu(C_{i}) - \sum_{i=1}^{K} \mathbb{E}(\ell(\mathcal{A}_{\mathbf{s}}, z) | z \in C_{i}) \frac{|N_{i}|}{n} \right| \end{split}$$

(日) (日) (日) (日) (日) (日) (日)

• The first term is bounded by $\left|\frac{1}{n}\sum_{i=1}^{K}\sum_{j\in N_{i}}\max_{z_{2}\in C_{i}}\left|\ell(\mathcal{A}_{\mathbf{s}}, s_{j}) - \ell(\mathcal{A}_{\mathbf{s}}, z_{2})\right|\right| \leq \epsilon(s).$

Proof of the Main Theorem (Cont.)

Furthermore,

$$\begin{split} \left| \hat{\ell}(\mathcal{A}_{\mathbf{s}}) - \ell_{\text{emp}}(\mathcal{A}_{\mathbf{s}}) \right| &= \left| \sum_{i=1}^{K} \mathbb{E}(\ell(\mathcal{A}_{\mathbf{s}}, z) | z \in C_{i}) \mu(C_{i}) - \frac{1}{n} \sum_{i=1}^{n} \ell(\mathcal{A}_{\mathbf{s}}, s_{i}) \right| \\ &\leq \left| \sum_{i=1}^{K} \mathbb{E}(\ell(\mathcal{A}_{\mathbf{s}}, z) | z \in C_{i}) \frac{|N_{i}|}{n} - \frac{1}{n} \sum_{i=1}^{n} \ell(\mathcal{A}_{\mathbf{s}}, s_{i}) \right| \\ &+ \left| \sum_{i=1}^{K} \mathbb{E}(\ell(\mathcal{A}_{\mathbf{s}}, z) | z \in C_{i}) \mu(C_{i}) - \sum_{i=1}^{K} \mathbb{E}(\ell(\mathcal{A}_{\mathbf{s}}, z) | z \in C_{i}) \frac{|N_{i}|}{n} \right| \end{split}$$

- The first term is bounded by $\left|\frac{1}{n}\sum_{i=1}^{K}\sum_{j\in N_{i}}\max_{z_{2}\in C_{i}}\left|\ell(\mathcal{A}_{\mathbf{s}}, s_{j}) - \ell(\mathcal{A}_{\mathbf{s}}, z_{2})\right|\right| \leq \epsilon(s).$
- The second term is bounded by $\left|\max_{z \in \mathcal{Z}} |\ell(\mathcal{A}_{\mathbf{s},z})| \sum_{i=1}^{K} \left| \frac{|N_i|}{n} \mu(C_i) \right| \right| \le M \sum_{i=1}^{K} \left| \frac{|N_i|}{n} \mu(C_i) \right|.$

(日) (日) (日) (日) (日) (日) (日)

Robustness – "similar performace" around each training sample.

- Robustness "similar performace" around each training sample.
- Pseudo robustness "similar performace" around some training sample:

(日)

- Robustness "similar performace" around each training sample.
- Pseudo robustness "similar performace" around some training sample:

Definition (Pseudo robustness:)

Algorithm \mathcal{A} is $(\mathcal{K}, \epsilon(\mathbf{s}), \hat{n}(\mathbf{s}))$ pseudo robust if

- \mathcal{Z} can be partitioned into *K* disjoint sets, denoted as $\{C_i\}_{i=1}^K$,
- and there exists a subset of training samples $\hat{\mathbf{s}}$ with $|\hat{\mathbf{s}}| = \hat{n}(\mathbf{s});$
- such that ∀s ∈ ŝ,

$$s, z \in C_i, \implies |\ell(\mathcal{A}_s, s) - \ell(\mathcal{A}_s, z)| \le \epsilon(s).$$

Theorem

If **s** consists of n i.i.d. samples, and A is $(K, \epsilon(\mathbf{s}), \hat{n}(\mathbf{s}))$ pseudo robust, then for any $\delta > 0$, with probability at least $1 - \delta$,

$$\left|\hat{\ell}(\mathcal{A}_{\mathbf{s}}) - \ell_{\mathrm{emp}}(\mathcal{A}_{\mathbf{s}})\right| \leq \frac{\hat{n}(\mathbf{s})}{n} \epsilon(\mathbf{s}) + M\left(\frac{n - \hat{n}(\mathbf{s})}{n} + \sqrt{\frac{2K\ln 2 + 2\ln(1/\delta)}{n}}\right)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem

If **s** consists of n i.i.d. samples, and A is $(K, \epsilon(\mathbf{s}), \hat{n}(\mathbf{s}))$ pseudo robust, then for any $\delta > 0$, with probability at least $1 - \delta$,

$$\left|\hat{\ell}(\mathcal{A}_{\mathbf{s}}) - \ell_{\mathrm{emp}}(\mathcal{A}_{\mathbf{s}})\right| \leq \frac{\hat{n}(\mathbf{s})}{n} \epsilon(\mathbf{s}) + M\left(\frac{n - \hat{n}(\mathbf{s})}{n} + \sqrt{\frac{2K\ln 2 + 2\ln(1/\delta)}{n}}\right)$$

• An additional term due to "non-robust" traninig samples.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

1. Algorithmic Robustness and Generalization Bound

2. Robust Algorithms

3. (Weak) Robustness is Necessary and Sufficient to (Asymptotic) Generalizability

(ロ) (同) (三) (三) (三) (三) (○) (○)

Example (Majority Voting)

Let $\mathcal{Y} = \{-1, +1\}$. Partition \mathcal{X} to $\mathcal{C}_1, \dots, \mathcal{C}_K$, and use $\mathcal{C}(x)$ to denote the set to which *x* belongs. A new sample $x_a \in \mathcal{X}$ is labeled by

$$\mathcal{A}_{\mathbf{s}}(x_a) \triangleq \begin{cases} 1, & \text{if } \sum_{s_i \in \mathcal{C}(x_a)} \mathbf{1}(s_{i|y} = 1) \ge \sum_{s_i \in \mathcal{C}(x_a)} \mathbf{1}(s_{i|y} = -1); \\ -1, & \text{otherwise.} \end{cases}$$

If the loss function is $I(A_s, z) = f(z_{|y}, A_s(z_{|x}))$ for some function *f*, then MV is (2K, 0) robust.

(日) (日) (日) (日) (日) (日) (日)

Theorem Fix $\gamma > 0$ and metric ρ of Z. Suppose A satisfies $|\ell(A_{\mathbf{s}}, z_1) - \ell(A_{\mathbf{s}}, z_2)| \le \epsilon(\mathbf{s}), \quad \forall z_1, z_2 : z_1 \in \mathbf{s}, \ \rho(z_1, z_2) \le \gamma,$

and $\mathcal{N}(\gamma/2, \mathcal{Z}, \rho) < \infty$. Then \mathcal{A} is $(\mathcal{N}(\gamma/2, \mathcal{Z}, \rho), \epsilon(\mathbf{s}))$ -robust.

Theorem Fix $\gamma > 0$ and metric ρ of \mathcal{Z} . Suppose \mathcal{A} satisfies

 $|\ell(\mathcal{A}_{\mathbf{S}}, \mathbf{Z}_1) - \ell(\mathcal{A}_{\mathbf{S}}, \mathbf{Z}_2)| \leq \epsilon(\mathbf{S}), \quad \forall \mathbf{Z}_1, \mathbf{Z}_2 : \mathbf{Z}_1 \in \mathbf{S}, \ \rho(\mathbf{Z}_1, \mathbf{Z}_2) \leq \gamma,$

and $\mathcal{N}(\gamma/2, \mathcal{Z}, \rho) < \infty$. Then \mathcal{A} is $(\mathcal{N}(\gamma/2, \mathcal{Z}, \rho), \epsilon(\mathbf{s}))$ -robust.

Example (Lipschitz continuous functions)

If \mathcal{Z} is compact w.r.t. metric ρ , $\ell(\mathcal{A}_{\mathbf{s}}, \cdot)$ is Lipschitz continuous with Lipschitz constant $c(\mathbf{s})$, i.e.,

$$|I(\mathcal{A}_{\mathbf{s}}, z_1) - I(\mathcal{A}_{\mathbf{s}}, z_2)| \leq c(\mathbf{s})\rho(z_1, z_2), \quad \forall z_1, z_2 \in \mathcal{Z},$$

then \mathcal{A} is $(\mathcal{N}(\gamma/2, \mathcal{Z}, \rho), c(\mathbf{s})\gamma)$ -robust for all $\gamma > 0$.

Theorem Fix $\gamma > 0$ and metric ρ of \mathcal{Z} . Suppose \mathcal{A} satisfies

 $|\ell(\mathcal{A}_{\mathbf{S}}, \mathbf{Z}_1) - \ell(\mathcal{A}_{\mathbf{S}}, \mathbf{Z}_2)| \leq \epsilon(\mathbf{S}), \quad \forall \mathbf{Z}_1, \mathbf{Z}_2 : \mathbf{Z}_1 \in \mathbf{S}, \ \rho(\mathbf{Z}_1, \mathbf{Z}_2) \leq \gamma,$

and $\mathcal{N}(\gamma/2, \mathcal{Z}, \rho) < \infty$. Then \mathcal{A} is $(\mathcal{N}(\gamma/2, \mathcal{Z}, \rho), \epsilon(\mathbf{s}))$ -robust.

Example (Lipschitz continuous functions)

If \mathcal{Z} is compact w.r.t. metric ρ , $\ell(\mathcal{A}_{\mathbf{s}}, \cdot)$ is Lipschitz continuous with Lipschitz constant $c(\mathbf{s})$, i.e.,

$$|I(\mathcal{A}_{\mathbf{s}}, z_1) - I(\mathcal{A}_{\mathbf{s}}, z_2)| \leq c(\mathbf{s})\rho(z_1, z_2), \quad \forall z_1, z_2 \in \mathcal{Z},$$

then \mathcal{A} is $(\mathcal{N}(\gamma/2, \mathcal{Z}, \rho), c(\mathbf{s})\gamma)$ -robust for all $\gamma > 0$.

 Similarly, SVM, Lasso, feed-forward neural network and PCA are robust.

A large margin classifier is a classification rule such that most of the training samples are "far away" from the classification boundary. We denote the *distance* of a point *x* to a classification rule Δ by $\mathcal{D}(x, \Delta)$.

Example (Large-margin classifier)

If there exist γ and \hat{n} such that

$$\sum_{i=1}^{n} \mathbf{1} \big(\mathcal{D}(\boldsymbol{s}_{i|\boldsymbol{x}}, \mathcal{A}_{\boldsymbol{s}}) > \gamma \big) \geq \hat{\boldsymbol{n}},$$

then algorithm \mathcal{A} is $(2\mathcal{N}(\gamma/2, \mathcal{X}, \rho), 0, \hat{n})$ pseudo robust, provided that $\mathcal{N}(\gamma/2, \mathcal{X}, \rho) < \infty$.

Outline

- 1. Algorithmic Robustness and Generalization Bound
- 2. Robust Algorithms
- 3. (Weak) Robustness is Necessary and Sufficient to (Asymptotic) Generalizability

(ロ) (同) (三) (三) (三) (三) (○) (○)

(Asymptotic) generalizability

Finite sample bound

(Asymptotic) generalizability

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Finite sample bound asymptotic property

(Asymptotic) generalizability

Finite sample bound asymptotic property

Definition

1. A learning algorithm *A* generalizes w.r.t. s if

$$\limsup_{n} \left\{ \mathbb{E}_t \Big(\ell(\mathcal{A}_{\mathbf{s}(n)}, t) \Big) - \frac{1}{n} \sum_{i=1}^n \ell(\mathcal{A}_{\mathbf{s}(n)}, s_i) \right\} \leq 0.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

2. A learning algorithm *A* generalize w.p. 1 if it generalize w.r.t. almost every **s**.

Weak robustness

Robustness

Weak robustness

Robustness weak robustness

Weak robustness

Robustness weak robustness

- Robustness requires that the sample space can be partitioned into disjoint subsets such that if a testing sample belongs to the same partitioning set of a training sample, then they have similar loss.
- Weak robustness generalizes such notion by considering the average loss of testing samples and training samples: if for a large (in the probabilistic sense) subset of Z^n , the testing error is close to the training error, then the algorithm is weakly robust.

Weak robustness (cont.)

Definition

1. A learning algorithm \mathcal{A} is *weakly robust w.r.t* **s** if there exists a sequence of $\{\mathcal{D}_n \subseteq \mathcal{Z}^n\}$ such that $\Pr(\mathbf{t}(n) \in \mathcal{D}_n) \to 1$, here $\mathbf{t}(n)$ are *n* i.i.d. testing samples, and

$$\limsup_{n} \left\{ \max_{\hat{\mathbf{s}}(n) \in \mathcal{D}_{n}} \left[\frac{1}{n} \sum_{i=1}^{n} \ell(\mathcal{A}_{\mathbf{s}(n)}, \hat{s}_{i}) - \frac{1}{n} \sum_{i=1}^{n} \ell(\mathcal{A}_{\mathbf{s}(n)}, s_{i}) \right] \right\} \leq 0.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

2. A learning algorithm *A* is *a.s. weakly robust* if it is robust w.r.t. almost every **s**.

All Learning is Robust !

Theorem

1. An algorithm *A* generalizes w.r.t. **s** if and only if it is weakly robust w.r.t. **s**.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

2. An algorithm *A* generalizes w.p. 1 if and only if it is a.s. weakly robust.

Conclusion

Summary:

- Propose Algorithmic Robustness.
- Present finite sample bound based on algorithmic robustness.

(ロ) (同) (三) (三) (三) (○) (○)

• Show that weak robustness is necessary and sufficient for generalizability.

Conclusion

Summary:

- Propose Algorithmic Robustness.
- Present finite sample bound based on algorithmic robustness.

(ロ) (同) (三) (三) (三) (○) (○)

• Show that weak robustness is necessary and sufficient for generalizability.

Future Direction:

- Adaptive partition?
- Other robust algorithms?
- Better rate?