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• Robustness is the property that tested on a training sample
and on a similar testing sample, the performance is close.
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What is Robustness?

• Robust decision making/optimization:
• Consider a general decision problem: find v such that

`(v , ξ) is small.
• If for ξ′ ≈ ξ, `(v , ξ′) is also small, then v is robust to the

perturbation of parameter.
• Robust optimization: minv maxξ′≈ξ `(v , ξ′)

• Robustness in machine learning
• Robust optimization was introduced to machine learning to

handle observation noise (e.g., [Lanckriet et al 2003];
[Lebret and El Ghaoui 1997]; [Shivaswamy et al 2006]).

• It is then discovered that SVM and Lasso can both be
rewritten as robust optimization (of empirical loss), and the
RO formulation implies consistency [HX, Caramanis and
SM 2009; 2010].

• This paper formalizes this observation to general learning
algorithms.
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Notations

• Training sample set s of n training samples (s1, · · · , sn).
• Z and H are the set from which each sample is drawn, and

the hypothesis set.
• As is the hypothesis learned given training set s.
• For each hypothesis h ∈ H and a point z ∈ Z, there is an

associated loss `(h, z) ∈ [0, M].

• In supervised learning, we decompose Z = Y × X , and
use |x and |y to denote the x-component and y -component
of a point.

• The covering number of a metric space T : N (ε, T , ρ)



Notations

• Training sample set s of n training samples (s1, · · · , sn).
• Z and H are the set from which each sample is drawn, and

the hypothesis set.
• As is the hypothesis learned given training set s.
• For each hypothesis h ∈ H and a point z ∈ Z, there is an

associated loss `(h, z) ∈ [0, M].
• In supervised learning, we decompose Z = Y × X , and

use |x and |y to denote the x-component and y -component
of a point.

• The covering number of a metric space T : N (ε, T , ρ)



Notations

• Training sample set s of n training samples (s1, · · · , sn).
• Z and H are the set from which each sample is drawn, and

the hypothesis set.
• As is the hypothesis learned given training set s.
• For each hypothesis h ∈ H and a point z ∈ Z, there is an

associated loss `(h, z) ∈ [0, M].
• In supervised learning, we decompose Z = Y × X , and

use |x and |y to denote the x-component and y -component
of a point.

• The covering number of a metric space T : N (ε, T , ρ)



Motivating example 1: Large Margin Classifier

An algorithm As has a margin γ if for j = 1, · · · , n

As(x) = As(sj|x); ∀x : ‖x − sj|x‖2 < γ.

Example
Fix γ > 0 and put K = 2N (γ/2,X , ‖ · ‖2). If As has a margin γ,
then Z can be partitioned into K disjoint sets, denoted by
{Ci}K

i=1, such that if sj and z ∈ Z belong to a same Ci , then
|`(As, sj)− `(As, z)| = 0.
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Motivating example 2: Linear Regression

The norm-constrained linear regression algorithm is

As = min
w∈Rm:‖w‖2≤c

n∑
i=1

|si|y − w>si|x |, (0.1)

Example
Fix ε > 0 and let K = N (ε/2,X , ‖ · ‖2)×N (ε/2,Y, | · |).
Consider the norm-constrained linear regression algorithm as
in (0.1). The set Z can be partitioned into K disjoint sets, such
that if sj and z ∈ Z belong to a same Ci , then

|`(As, sj)− `(As, z)| ≤ (c + 1)ε.



Algorithmic Robustness

Definition (Algorithmic Robustness)
Algorithm A is (K , ε(s)) robust if
• Z can be partitioned into K disjoint sets, denoted by
{Ci}K

i=1;
• such that ∀s ∈ s,

s, z ∈ Ci , =⇒ |`(As, s)− `(As, z)| ≤ ε(s). (0.2)

Remark:

• The definition requires that the difference between a
testing sample “similar to” a training sample is small.

• The property jointly depends on the solution to the
algorithm and the training set.
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Generalization property of robust algorithms – the
main theorem

Theorem
Let ˆ̀(·) and `emp(·) denote the expected loss and the training
loss. If s consists of n i.i.d. samples, and A is (K , ε(s))-robust,
then for any δ > 0, with probability at least 1− δ,∣∣∣ˆ̀(As)− `emp(As)

∣∣∣ ≤ ε(s) + M

√
2K ln 2 + 2 ln(1/δ)

n
.

Remark:
The bounds depends on the partitioning of the sample space.
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Proof of the Main Theorem

• Let Ni be the set of index of points of s that fall into Ci .
Then (|N1|, · · · , |NK |) is an IID multinomial random variable
with parameters n and (µ(C1), · · · , µ(CK )).

• Breteganolle-Huber-Carol inequality gives

Pr

{
K∑

i=1

∣∣∣∣ |Ni |
n

− µ(Ci)

∣∣∣∣ ≥ λ

}
≤ 2K exp(

−nλ2

2
).

• Hence, with probability at least 1− δ,

K∑
i=1

∣∣∣∣ |Ni |
n

− µ(Ci)

∣∣∣∣ ≤
√

2K ln 2 + 2 ln(1/δ)

n
. (0.3)
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Proof of the Main Theorem (Cont.)

Furthermore,

∣∣∣ˆ̀(As)− `emp(As)
∣∣∣ = ∣∣∣∣∣

K∑
i=1

E
(
`(As, z)|z ∈ Ci

)
µ(Ci)−

1
n

n∑
i=1

`(As, si)

∣∣∣∣∣
≤

∣∣∣∣∣
K∑

i=1

E
(
`(As, z)|z ∈ Ci

) |Ni |
n

− 1
n

n∑
i=1

`(As, si)

∣∣∣∣∣
+

∣∣∣∣∣
K∑

i=1

E
(
`(As, z)|z ∈ Ci

)
µ(Ci)−

K∑
i=1

E
(
`(As, z)|z ∈ Ci

) |Ni |
n

∣∣∣∣∣

• The first term is bounded by∣∣∣ 1
n

∑K
i=1
∑

j∈Ni
maxz2∈Ci |`(As, sj)− `(As, z2)|

∣∣∣ ≤ ε(s).

• The second term is bounded by∣∣∣maxz∈Z |`(As,z)|
∑K

i=1

∣∣∣ |Ni |
n − µ(Ci)

∣∣∣∣∣∣ ≤ M
∑K

i=1

∣∣∣ |Ni |
n − µ(Ci)

∣∣∣.
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Additional Results: Pseudo Robustness

• Robustness – “similar performace” around each training
sample.

• Pseudo robustness – “similar performace” around some
training sample:

Definition (Pseudo robustness:)
Algorithm A is (K , ε(s), n̂(s)) pseudo robust if
• Z can be partitioned into K disjoint sets, denoted as
{Ci}K

i=1,
• and there exists a subset of training samples ŝ with
|ŝ| = n̂(s);

• such that ∀s ∈ ŝ,

s, z ∈ Ci , =⇒ |`(As, s)− `(As, z)| ≤ ε(s).
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Additional Results: Pseudo Robustness

Theorem
If s consists of n i.i.d. samples, and A is (K , ε(s), n̂(s)) pseudo
robust, then for any δ > 0, with probability at least 1− δ,

∣∣∣ˆ̀(As)− `emp(As)
∣∣∣ ≤ n̂(s)

n
ε(s)+M

(
n − n̂(s)

n
+

√
2K ln 2 + 2 ln(1/δ)

n

)
.

• An additional term due to “non-robust” traninig samples.
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Which algorithms are robust?

Example (Majority Voting)
Let Y = {−1,+1}. Partition X to C1, · · · , CK , and use C(x) to
denote the set to which x belongs. A new sample xa ∈ X is
labeled by

As(xa) ,

{
1, if

∑
si∈C(xa)

1(si|y = 1) ≥
∑

si∈C(xa)
1(si|y = −1);

−1, otherwise.

If the loss function is l(As, z) = f (z|y ,As(z|x)) for some function
f , then MV is (2K , 0) robust.



Which algorithms are robust?

Theorem
Fix γ > 0 and metric ρ of Z. Suppose A satisfies

|`(As, z1)− `(As, z2)| ≤ ε(s), ∀z1, z2 : z1 ∈ s, ρ(z1, z2) ≤ γ,

and N (γ/2,Z, ρ) < ∞. Then A is
(
N (γ/2,Z, ρ), ε(s)

)
-robust.

Example (Lipschitz continuous functions)
If Z is compact w.r.t. metric ρ, `(As, ·) is Lipschitz continuous
with Lipschitz constant c(s), i.e.,

|l(As, z1)− l(As, z2)| ≤ c(s)ρ(z1, z2), ∀z1, z2 ∈ Z,

then A is
(
N (γ/2,Z, ρ), c(s)γ

)
-robust for all γ > 0.

• Similarly, SVM, Lasso, feed-forward neural network and
PCA are robust.
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Which algorithms are robust?

A large margin classifier is a classification rule such that most
of the training samples are “far away” from the classification
boundary. We denote the distance of a point x to a
classification rule ∆ by D(x ,∆).

Example (Large-margin classifier)
If there exist γ and n̂ such that

n∑
i=1

1
(
D(si|x ,As) > γ

)
≥ n̂,

then algorithm A is (2N (γ/2,X , ρ), 0, n̂) pseudo robust,
provided that N (γ/2,X , ρ) < ∞.
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(Asymptotic) generalizability

Finite sample bound

Definition

1. A learning algorithm A generalizes w.r.t. s if

lim sup
n

{
Et

(
`(As(n), t)

)
− 1

n

n∑
i=1

`(As(n), si)
}
≤ 0.

2. A learning algorithm A generalize w.p. 1 if it generalize
w.r.t. almost every s.
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Weak robustness

Robustness

• Robustness requires that the sample space can be
partitioned into disjoint subsets such that if a testing
sample belongs to the same partitioning set of a training
sample, then they have similar loss.

• Weak robustness generalizes such notion by considering
the average loss of testing samples and training samples:
if for a large (in the probabilistic sense) subset of Zn, the
testing error is close to the training error, then the
algorithm is weakly robust.
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Robustness weak robustness
• Robustness requires that the sample space can be

partitioned into disjoint subsets such that if a testing
sample belongs to the same partitioning set of a training
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• Weak robustness generalizes such notion by considering
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Weak robustness (cont.)

Definition

1. A learning algorithm A is weakly robust w.r.t s if there
exists a sequence of {Dn ⊆ Zn} such that
Pr(t(n) ∈ Dn) → 1, here t(n) are n i.i.d. testing samples,
and

lim sup
n

{
max

ŝ(n)∈Dn

[1
n

n∑
i=1

`(As(n), ŝi)−
1
n

n∑
i=1

`(As(n), si)
]}

≤ 0.

2. A learning algorithm A is a.s. weakly robust if it is robust
w.r.t. almost every s.



All Learning is Robust !

Theorem

1. An algorithm A generalizes w.r.t. s if and only if it is weakly
robust w.r.t. s.

2. An algorithm A generalizes w.p. 1 if and only if it is a.s.
weakly robust.



Conclusion

Summary:
• Propose Algorithmic Robustness.
• Present finite sample bound based on algorithmic

robustness.
• Show that weak robustness is necessary and

sufficient for generalizability.

Future Direction:
• Adaptive partition?
• Other robust algorithms?
• Better rate?
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