
Satyen Kale (Yahoo! Research)

Joint work with
Elad Hazan (IBM Almaden) and Manfred Warmuth (UCSC)

x1

y1
x2

y2 xT

yT

Input: pairs of unit vectors in Rn: (x1, y1), (x2, y2), …, (xT, yT)

Assumption: yt = Rxt + noise, where R is an
unknown rotation matrix

Problem: find “best-fit” rotation matrix for the data, i.e.
arg minR t kRxt – ytk2

 kRxt – ytk2 = kRxtk2 + kytk2 – 2(yt xt
>) ² R

= 2 - 2(yt xt
>) ² R.

 arg minR t kRxt – ytk2 = arg maxR t yt xt
> ² R

 Computing arg maxR M² R: “Wahba’s problem”
 Can be solved using SVD of M

A ² B = Tr(A> B) =
ij AijBij

Linear in R

x1

y1
x2

y2 xT

yT

R1 x1

Choose rot matrix R1

Predict R1x1

L1(R1) = kR1x1 – y1k2

Choose rot matrix R2

Predict R2x2

L2(R2) = kR2x2– y2k2

Choose rot matrix RT

Predict RTxT

LT(RT) = kRTxT – yTk2

R2x2
RTxT

Goal: Minimize regret:
Regret = t Lt(Rt) – minR t Lt(R)

Open problem
from COLT 2008
[Smith, Warmuth]

 Rot matrix ´ orthogonal matrix of determinant 1
 Set of rot matrices, SO(n):

 Non-convex: so online convex optimization techniques
like gradient descent, exponentiated gradient, etc.
don’t apply directly

 Lie group with Lie algebra = set of all skew-symmetric
matrices

 Lie group gives universal representation for all Lie
groups via a conformal embedding

 [Arora, NIPS ’09] using Lie group/Lie algebra
structure

 Based on matrix exponentiated gradient:
matrix exp maps Lie algebra to Lie group

 Deterministic algorithm

 (T) lower bound on any such deterministic
algorithm, so randomization is crucial

 Assume for convenience that n is even.
 Bad example: xt = e1, yt = -Rtxt.
 Lt(Rt) = kRtxt - ytk2 = k2ytk2 = 4. So total loss = 4T.

 Since n is even, both I, -I are rot matrices, and
t Lt(I) + Lt(-I) = t 2kytk2 + 2kxtk2 = 4T.

 Hence, minR t Lt(R) · 2T.
 So, Regret ¸ 2T.

Adversary can compute Rt

since alg is deterministic

 Randomized algorithm with expected regret
O(pnL), where L = minR t Lt(R)

 Lower bound on regret of any online learning
algorithm for choosing rot matrices of (pnT)

 Using Hannan/Kalai-Vempala’s Follow-The-
Perturbed-Leader technique based on linearity
of loss function

Sample noise matrix N with i.i.d entries
distributed uniformly in [-1/, 1/]

In round t, use Rt = arg minR 1

t-1
Li(R) - N ² R.

Thm [KV’05]: Regret · O(n5/4pT).

Using SVD solution to
Wahba’s problem

In round t, use Rt = arg minR 1

t-1
Li(R) - N ² R.

Sample n numbers 1,2, …,n i.i.d. from the
exponential distribution of density exp(-)

Sample 2 orthogonal matrices U, V from the
uniform Haar measure

Set N = UV>, where = diag(1,2, …,n).

In round t, use Rt = arg minR 1

t-1
Li(R) - N ² R.

Sample n numbers 1,2, …,n i.i.d. from the
exponential distribution of density exp(-)

Sample 2 orthogonal matrices U, V from the
uniform Haar measure

Set N = UV>, where = diag(1,2, …,n).
E.g. using QR-decomposition
of matrix with i.i.d. standard
Gaussian entries

In round t, use Rt = arg minR 1

t-1
Li(R) - N ² R.

Sample n numbers 1,2, …,n i.i.d. from the
exponential distribution of density exp(-)

Sample 2 orthogonal matrices U, V from the
uniform Haar measure

Set N = UV>, where = diag(1,2, …,n).

Effectively, we choose N w.p. / exp(-kNk*), where
kNk*= trace norm, i.e. sum of singular values of N

 Stability Lemma [KV’05]:
E[Regret] · t E[Lt(Rt)] – E[Lt(Rt+1)] + 2E[kNk*]

 Choose = pn/L, and we get
E[Regret] · O(pnL).

· 2L = 2n/

 Rt = arg maxR (1

t-1
yi xi

> + N) ² R
 Rt+1 = arg maxR (1

t
yi xi

> + N’) ² R

Re-randomization doesn’t
change expected regret

 Rt = arg maxR (1

t-1
yi xi

> + N) ² R
 Rt+1 = arg maxR (1

t
yi xi

> + N’) ² R

 First sample N, then set N’ = N – ytxt
>.

 Then Rt = Rt+1, and so ED[Lt(Rt)] – ED’[Lt(Rt+1)] = 0.

D = dist of N,
D’ = dist of N’

 Rt = arg maxR (1

t-1
yi xi

> + N) ² R
 Rt+1 = arg maxR (1

t
yi xi

> + N’) ² R

 First sample N, then set N’ = N – ytxt
>.

 Then Rt = Rt+1, and so ED[Lt(Rt)] – ED’[Lt(Rt+1)] = 0.

 However, kD’ – Dk1· .
 So ED’[Lt(Rt+1)] – ED[Lt(Rt+1)] · 2.

 Rt = arg maxR (1

t-1
yi xi

> + N) ² R
 Rt+1 = arg maxR (1

t
yi xi

> + N’) ² R

 First sample N, then set N’ = N – ytxt
>.

 Then Rt = Rt+1, and so ED[Lt(Rt)] – ED’[Lt(Rt+1)] = 0.

 However, kD’ – Dk1· .
 So ED’[Lt(Rt+1)] – ED[Lt(Rt+1)] · 2.

PrD’[N]/PrD[N] ¼ exp(§ kytxt
>k*) ¼ 1 § .

E[kNk*] = E[i i]
= i E[i]
= n/.

Because i is drawn from the exponential
distribution of density exp(-)

 Bad example: xt = et mod n, yt = §xt w.p. ½ each

 Opt rot matrix R*= diag(sgn(X1),…, sgn(Xn))

Xi = sum of § signs over
all t s.t. (t mod n) = i.

* ignoring det(R*) = 1 issue

*

 Bad example: xt = et mod n, yt = §xt w.p. ½ each

 Opt rot matrix R*= diag(sgn(X1),…, sgn(Xn))
 Expected total loss =

2T – 2i E[|Xi|] ¸ 2T - n¢ (pT/n) = 2T - (pnT)

 But for any Rt, E[Lt(Rt)] = 2 – 2E[(ytxt
>) ² Rt] = 2,

and hence total expected loss of alg = 2T.

 So, E[Regret] ¸(pnT).
* ignoring det(R*) = 1 issue

*

 Optimal algorithm for online learning of
rotations with regret O(pnL)

 Based on FSPL

 Open questions:
 Other applications for FSPL? Matrix Hedge?

Faster algorithms for SDPs? More details in
Manfred’s open problem talk.

 Any other example of natural problems where FPL
is the only known technique that works?

Thank you!

