Learning rotations with little regret

Satyen Kale (Yahoo! Research)

Joint work with Elad Hazan (IBM Almaden) and Manfred Warmuth (UCSC)

Batch Learning of Rotations

Input: pairs of unit vectors in \mathbb{R}^n : $(x_1, y_1), (x_2, y_2), \dots, (x_T, y_T)$

Assumption: $y_t = Rx_t + noise$, where R is an unknown rotation matrix

Problem: find "best-fit" rotation matrix for the data, i.e. arg min_R $\sum_{t} ||Rx_t - y_t||^2$

How to Solve the Batch Problem

$$\|Rx_{t} - y_{t}\|^{2} = \|Rx_{t}\|^{2} + \|y_{t}\|^{2} - 2(y_{t} x_{t}^{\top}) \bullet R$$

$$= 2 - 2(y_{t} x_{t}^{\top}) \bullet R.$$

$$A \bullet B = Tr(A^{\top} B) = \sum_{ij} A_{ij} B_{ij}$$

$$= \arg \min_{R} \sum_{t} \|Rx_{t} - y_{t}\|^{2} = \arg \max_{R} \sum_{t} y_{t} x_{t}^{\top} \bullet R$$

Computing arg max_R M• R: "Wahba's problem"
 Can be solved using SVD of M

Learning Rotations Online

Choose rot matrix R₁ Predict R₁x₁ Choose rot matrix R₂ Predict R₂x₂

 $L_1(R_1) = ||R_1X_1 - Y_1||^2 - L_2(R_2) = ||R_2X_2 - Y_2||^2$

Goal: Minimize regret: Regret = $\sum_{t} L_{t}(R_{t}) - \min_{R} \sum_{t} L_{t}(R)$ Choose rot matrix R_T Predict $R_T x_T$

 $L_{T}(R_{T}) = ||R_{T}X_{T} - \mathbf{y}_{T}||^{2}$

Open problem from COLT 2008 [Smith, Warmuth]

Rotation Matrices

- Rot matrix = orthogonal matrix of determinant 1
 Set of rot matrices, SO(n):
 - Non-convex: so online convex optimization techniques like gradient descent, exponentiated gradient, etc. don't apply directly
 - Lie group with Lie algebra = set of all skew-symmetric matrices
 - Lie group gives universal representation for all Lie groups via a conformal embedding

Previous Work

- [Arora, NIPS '09] using Lie group/Lie algebra structure
- Based on matrix exponentiated gradient: matrix exp maps Lie algebra to Lie group
- Deterministic algorithm
- Ω(T) lower bound on any such deterministic algorithm, so randomization is crucial

Lower Bound for Deterministic Algs Adversary can compute R_t

since alg is deterministic

- Assume for convenience it n is even.
 Bad example: x_t = e₁, y_t = -R_tx_t.
 L_t(R_t) = ||R_tx_t y_t||² = ||2y_t||² = 4. So total loss = 4T.
- Since n is even, both I, -I are rot matrices, and $\sum_{t} L_{t}(I) + L_{t}(-I) = \sum_{t} 2||y_{t}||^{2} + 2||x_{t}||^{2} = 4T.$
- Hence, $\min_{R} \sum_{t} L_{t}(R) \leq 2T$.
 So, Regret $\geq 2T$.

Our Results

- Randomized algorithm with expected regret $O(\sqrt{nL})$, where L = min_R $\sum_t L_t(R)$
- Lower bound on regret of *any* online learning algorithm for choosing rot matrices of $\Omega(\sqrt{nT})$
- Using Hannan/Kalai-Vempala's Follow-The-Perturbed-Leader technique based on linearity of loss function

Simple (but Suboptimal) FPL Algorithm

Sample noise matrix N with i.i.d entries distributed uniformly in $[-1/\eta, 1/\eta]$ In round t, use $R_t = \arg \min_R \sum_{1}^{t-1} L_i(R) - N \bullet R$. Using SVD solution to Wahba's problem Thm [KV'05]: Regret $\leq O(n^{5/4}\sqrt{T})$.

Optimal Algorithm: Follow-The-Spectrally-Perturbed-Leader (FSPL)

Sample n numbers $\sigma_1, \sigma_2, ..., \sigma_n$ i.i.d. from the exponential distribution of density $\eta exp(-\eta\sigma)$

Sample 2 orthogonal matrices U, V from the uniform Haar measure

Set N = U Σ V^T, where Σ = diag($\sigma_1, \sigma_2, ..., \sigma_n$).

In round t, use $R_t = \arg \min_R \sum_{1}^{t-1} L_i(R) - N \bullet R$.

Optimal Algorithm: Follow-The-Spectrally-Perturbed-Leader (FSPL)

Sample n numbers $\sigma_1, \sigma_2, ..., \sigma_n$ i.i.d. from the exponential distribution of density $\eta exp(-\eta\sigma)$

Sample 2 orthogonal matrices U, V from the uniform Haar measure

Set N = U Σ V^T, where E.g. using QR-decomposition of matrix with i.i.d. standard Gaussian entries

In round t, use $R_t = \arg \min_R \sum_{1}^{t-1} L_i(R) - N \bullet R$.

Optimal Algorithm: Follow-The-Spectrally-Perturbed-Leader (FSPL)

$$\begin{split} & \bullet \text{ Stability Lemma [KV'o5]:} \\ & \mathsf{E}[\mathsf{Regret}] \leq \sum_t \mathsf{E}[\mathsf{L}_t(\mathsf{R}_t)] - \mathsf{E}[\mathsf{L}_t(\mathsf{R}_{t+1})] + 2\mathsf{E}[\|\mathsf{N}\|_*] \\ & \checkmark \\ & \leq 2\eta\mathsf{L} \\ & = 2n/\eta \end{split}$$

• Choose $\eta = \sqrt{n/L}$, and we get E[Regret] $\leq O(\sqrt{nL})$.

$R_t = \arg \max_R \left(\sum_{i=1}^{t-1} y_i x_i^\top + N \right) \bullet R$ $R_{t+1} = \arg \max_R \left(\sum_{i=1}^{t} y_i x_i^\top + N' \right) \bullet R$

Re-randomization doesn't change expected regret

- First sample N, then set N' = N $y_t x_t^{\top}$.
 Then $R_t = R_{t+1}$, and so $E_D[L_t(R_t)] E_{D'}[L_t(R_{t+1})] = 0$.

D = dist of N, D' = dist of N'

- R_t = arg max_R ($\sum_{i=1}^{t-1} y_i x_i^{\top} + N$) R
 R_{t+1} = arg max_R ($\sum_{i=1}^{t} y_i x_i^{\top} + N'$) R
- First sample N, then set N' = N y_tx_t^T.
 Then R_t = R_{t+1}, and so E_D[L_t(R_t)] E_{D'}[L_t(R_{t+1})] = 0.
- However, $\|D' D\|_1 \le \eta$.
 So $E_{D'}[L_t(R_{t+1})] E_D[L_t(R_{t+1})] \le 2\eta$.

- R_t = arg max_R ($\sum_{i=1}^{t-1} y_i x_i^{\top} + N$) R
 R_{t+1} = arg max_R ($\sum_{i=1}^{t} y_i x_i^{\top} + N'$) R
- First sample N, then set N' = N y_tx_t^T.
 Then R_t = R_{t+1}, and so E_D[L_t(R_t)] E_{D'}[L_t(R_{t+1})] = 0.
- However, $\|D' D\|_{1} \leq \eta$.
 So $E_{D'}[L_{t}(R, \mathcal{U})] \leq 2\eta$. $\Pr_{D'}[N]/\Pr_{D}[N] \approx \exp(\pm \eta \|y_{t}x_{t}^{\top}\|_{*}) \approx 1 \pm \eta$.

$E[||N||_{*}] = n/\eta$

$E[||N||_*] = E[\sum_i \sigma_i]$ $= \sum_i E[\sigma_i]$ $= n/\eta.$

Because σ_i is drawn from the exponential distribution of density $\eta exp(-\eta\sigma)$

Lower Bound on Any Algorithm

Bad example: $x_t = e_{t \mod n}$, $y_t = \pm x_t$ w.p. $\frac{1}{2}$ each

Opt rot matrix R*= diag(sgn(X₁),..., sgn(X_n))

 X_i = sum of \pm signs over all t s.t. (t mod n) = i.

* ignoring det(R*) = 1 issue

Lower Bound on Any Algorithm

Bad example: $x_t = e_{t \mod n} y_t = \pm x_t \text{ w.p. } \frac{1}{2} \text{ each}$

 Opt^{*} rot matrix R^{*} = diag(sgn(X₁),..., sgn(X_n))
 Expected total loss = 2T - 2∑_i E[|X_i|] ≥ 2T - n· Ω (√T/n) = 2T - Ω(√nT)

• But for any R_t , $E[L_t(R_t)] = 2 - 2E[(y_t x_t^{\top}) \bullet R_t] = 2$, and hence total expected loss of alg = 2T.

• So, E[Regret] $\geq \Omega(\sqrt{nT})$.

* ignoring det(R*) = 1 issue

Conclusions and Future Work

- Optimal algorithm for online learning of rotations with regret O(√nL)
 Based on FSPL
- Open questions:
 - Other applications for FSPL? Matrix Hedge? Faster algorithms for SDPs? More details in Manfred's open problem talk.
 - Any other example of natural problems where FPL is the only known technique that works?

Thank you!