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Input: pairs of  unit vectors in Rn: (x1, y1), (x2, y2), …, (xT, yT)

Assumption: yt = Rxt + noise, where R is an 
unknown rotation matrix

Problem: find “best-fit” rotation matrix for the data, i.e.
arg minR t kRxt – ytk2



 kRxt – ytk2 = kRxtk2 + kytk2 – 2(yt xt
>) ² R

=  2 - 2(yt xt
>) ² R.

 arg minR t kRxt – ytk2 = arg maxR t yt xt
> ² R

 Computing  arg maxR M² R: “Wahba’s problem”
 Can be solved using SVD of M

A ² B = Tr(A> B) = 
ij AijBij

Linear in R
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Choose rot matrix R1

Predict R1x1

L1(R1) =  kR1x1 – y1k2

Choose rot matrix R2

Predict R2x2

L2(R2) =  kR2x2– y2k2

Choose rot matrix RT

Predict RTxT

LT(RT) =  kRTxT – yTk2

R2x2
RTxT

Goal: Minimize regret:
Regret  =  t Lt(Rt) – minR t Lt(R)

Open problem 
from COLT 2008 
[Smith, Warmuth]



 Rot matrix ´ orthogonal matrix of determinant 1
 Set of rot matrices, SO(n):

 Non-convex: so online convex optimization techniques 
like gradient descent, exponentiated gradient, etc. 
don’t apply directly

 Lie group with Lie algebra = set of all skew-symmetric
matrices

 Lie group gives universal representation for all Lie 
groups via a conformal embedding



 [Arora, NIPS ’09] using Lie group/Lie algebra 
structure

 Based on matrix exponentiated gradient: 
matrix exp maps Lie algebra to Lie group

 Deterministic algorithm

 (T) lower bound on any such deterministic 
algorithm, so randomization is crucial



 Assume for convenience that n is even.
 Bad example: xt = e1, yt = -Rtxt.
 Lt(Rt) = kRtxt - ytk2 = k2ytk2 = 4. So total loss = 4T.

 Since n is even, both I, -I are rot matrices, and
t Lt(I) + Lt(-I) = t 2kytk2 + 2kxtk2 = 4T.

 Hence, minR t Lt(R) · 2T.
 So, Regret ¸ 2T.

Adversary can compute Rt

since alg is deterministic



 Randomized algorithm with expected regret 
O(pnL), where L = minR t Lt(R)

 Lower bound on regret of any online learning 
algorithm for choosing rot matrices of (pnT)

 Using Hannan/Kalai-Vempala’s Follow-The-
Perturbed-Leader technique based on linearity 
of loss function



Sample noise matrix N with i.i.d entries
distributed uniformly in [-1/, 1/]

In round t, use Rt = arg minR 1

t-1
Li(R)  - N ² R.

Thm [KV’05]: Regret  · O(n5/4pT).

Using  SVD  solution to 
Wahba’s problem



In round t, use Rt = arg minR 1

t-1
Li(R)  - N ² R.

Sample n numbers 1,2, …,n i.i.d. from the 
exponential distribution of density exp(-)

Sample 2 orthogonal matrices U, V from the
uniform Haar measure

Set N = UV>, where  = diag(1,2, …,n).



In round t, use Rt = arg minR 1

t-1
Li(R)  - N ² R.

Sample n numbers 1,2, …,n i.i.d. from the 
exponential distribution of density exp(-)

Sample 2 orthogonal matrices U, V from the
uniform Haar measure

Set N = UV>, where  = diag(1,2, …,n).
E.g. using QR-decomposition 
of matrix with i.i.d. standard 
Gaussian entries



In round t, use Rt = arg minR 1

t-1
Li(R)  - N ² R.

Sample n numbers 1,2, …,n i.i.d. from the 
exponential distribution of density exp(-)

Sample 2 orthogonal matrices U, V from the
uniform Haar measure

Set N = UV>, where  = diag(1,2, …,n).

Effectively, we choose N w.p. / exp(-kNk*), where 
kNk*= trace norm, i.e. sum of singular values of N



 Stability Lemma [KV’05]:
E[Regret]  · t E[Lt(Rt)] – E[Lt(Rt+1)] + 2E[kNk*] 

 Choose  = pn/L, and we get
E[Regret]  · O(pnL). 

· 2L = 2n/



 Rt = arg maxR (1

t-1
yi xi

> + N) ² R
 Rt+1 = arg maxR (1

t
yi xi

> + N’) ² R

Re-randomization doesn’t 
change expected regret



 Rt = arg maxR (1

t-1
yi xi

> + N) ² R
 Rt+1 = arg maxR (1

t
yi xi

> + N’) ² R

 First sample N, then set N’  = N – ytxt
>. 

 Then Rt = Rt+1, and so ED[Lt(Rt) ] – ED’[Lt(Rt+1)] = 0.

D = dist of N, 
D’ = dist of N’



 Rt = arg maxR (1

t-1
yi xi

> + N) ² R
 Rt+1 = arg maxR (1

t
yi xi

> + N’) ² R

 First sample N, then set N’  = N – ytxt
>. 

 Then Rt = Rt+1, and so ED[Lt(Rt) ] – ED’[Lt(Rt+1)] = 0.

 However, kD’ – Dk1· . 
 So ED’[Lt(Rt+1)] – ED[Lt(Rt+1)]  · 2.



 Rt = arg maxR (1

t-1
yi xi

> + N) ² R
 Rt+1 = arg maxR (1

t
yi xi

> + N’) ² R

 First sample N, then set N’  = N – ytxt
>. 

 Then Rt = Rt+1, and so ED[Lt(Rt) ] – ED’[Lt(Rt+1)] = 0.

 However, kD’ – Dk1· . 
 So ED’[Lt(Rt+1)] – ED[Lt(Rt+1)]  · 2.

PrD’[N]/PrD[N]  ¼ exp(§ kytxt
>k*)  ¼ 1 § .



E[kNk*]  =  E[i i]
=  i E[i]
=  n/.

Because i is drawn from the exponential 
distribution of density exp(-)



 Bad example: xt = et mod n, yt = §xt w.p. ½ each

 Opt  rot matrix R*= diag(sgn(X1),…, sgn(Xn)) 

Xi = sum of § signs over 
all t s.t. (t mod n) = i.

* ignoring det(R*) = 1 issue

*



 Bad example: xt = et mod n, yt = §xt w.p. ½ each

 Opt  rot matrix R*= diag(sgn(X1),…, sgn(Xn)) 
 Expected total loss  = 

2T – 2i E[|Xi| ] ¸ 2T - n¢ (pT/n) = 2T - (pnT) 

 But for any Rt, E[Lt(Rt)] = 2 – 2E[(ytxt
> ) ² Rt] = 2, 

and hence total expected loss of alg = 2T.

 So, E[Regret]  ¸(pnT).
* ignoring det(R*) = 1 issue

*



 Optimal algorithm for online learning of 
rotations with regret O(pnL)

 Based on FSPL

 Open questions: 
 Other applications for FSPL? Matrix Hedge? 

Faster algorithms for SDPs? More details in 
Manfred’s open problem talk.

 Any other example of natural problems where FPL
is the only known technique that works?

Thank you!


