Framework Lower Bound Algorithms Experiments Conclusion

Best Arm Identification in Multi-Armed Bandits

Jean-Yves Audibert^{1,2} & Sébastien Bubeck³ & Rémi Munos³

- ¹ Univ. Paris Est, Imagine
- ² CNRS/ENS/INRIA, Willow project
- ³ INRIA Lille, SequeL team

Best arm identification task

Parameters available to the forecaster: the number of rounds n and the number of arms K.

Parameters unknown to the forecaster: the reward distributions (over [0,1]) ν_1, \ldots, ν_K of the arms. We assume that there is a unique arm i^* with maximal mean.

For each round $t = 1, 2, \ldots, n$;

- **1** The forecaster chooses an arm $I_t \in \{1, ..., K\}$.
- ② The environment draws the reward Y_t from ν_{l_t} (and independently from the past given l_t).

At the end of the n rounds the forecaster outputs a recommendation $J_n \in \{1, \dots, K\}$.

Goal: Find the best arm, i.e, the arm with maximal mean. Regret:

$$e_n = \mathbb{P}(J_n \neq i^*).$$

Motivating examples

- Clinical trials for cosmetic products. During the test phase, several several formulæ for a cream are sequentially tested, and after a finite time one is chosen for commercialization.
- Channel allocation for mobile phone communications.
 Cellphones can explore the set of channels to find the best one to operate. Each evaluation of a channel is noisy and there is a limited number of evaluations before the communication starts on the chosen channel.

Summary of the talk

- Let μ_i be the mean of ν_i , and $\Delta_i = \mu_{i^*} \mu_i$ the suboptimality of arm i.
- Main theoretical result: it requires of order of $H = \sum_{i \neq i^*} 1/\Delta_i^2$ rounds to find the best arm. Note that this result is well known for K = 2.
- We present two new forecasters, Successive Rejects (SR) and Adaptive UCB-E (Upper Confidence Bound Exploration).
- SR is parameter free, and has optimal guarantees (up to a logarithmic factor).
- Adaptive UCB-E has no theoretical guarantees but it experimentally outperforms SR.

Lower Bound

Theorem

Let ν_1, \ldots, ν_K be Bernoulli distributions with parameters in [1/3, 2/3]. There exists a numerical constant c > 0 such that for any forecaster, up to a permutation of the arms,

$$e_n \ge \exp\left(-c(1+o(1))\frac{n\log(K)}{H}\right).$$

Informally, any algorithm requires at least (of order of) $H/\log(K)$ rounds to find the best arm.

Lower Bound

Theorem

Let ν_1, \ldots, ν_K be Bernoulli distributions with parameters in [1/3, 2/3]. There exists a numerical constant c > 0 such that for any forecaster, up to a permutation of the arms,

$$e_n \geq \exp\left(-c \left(1 + rac{K \log(K)}{\sqrt{n}}
ight) rac{n \log(K)}{H}
ight).$$

Informally, any algorithm requires at least (of order of) $H/\log(K)$ rounds to find the best arm.

Uniform strategy

For each $i \in \{1, ..., K\}$, select arm i during $\lfloor n/K \rfloor$ rounds. Let $J_n \in \operatorname{argmax}_{i \in \{1, ..., K\}} \widehat{X}_{i, \lfloor n/K \rfloor}$.

Theorem

The uniform strategy satisfies: $e_n \leq 2K \exp\left(-\frac{n\min_i \Delta_i^2}{2K}\right)$. For any $(\delta_1,\ldots,\delta_K)$ with $\min_i \delta_i \leq 1/2$, there exist distributions such that $\Delta_1 = \delta_1,\ldots,\Delta_K = \delta_K$ and

$$e_n \geq \frac{1}{2} \exp\left(-\frac{8n\min_i \Delta_i^2}{K}\right).$$

Informally, the uniform strategy finds the best arm with (of order of) $K/\min_i \Delta_i^2$ rounds. For large K, this can be significantly larger than $H = \sum_{i \neq j^*} 1/\Delta_i^2$.

UCB-E

Draw each arm once

For each round $t = K + 1, 2, \dots, n$:

Draw
$$I_t \in \operatorname*{argmax}_{i \in \{1, \dots, K\}} \left(\widehat{X}_{i, T_i(t-1)} + \sqrt{\frac{n/H}{2T_i(t-1)}} \right),$$

where $T_i(t-1) = \text{nb}$ of times we pulled arm i up to time t-1.

Let
$$J_n \in \operatorname{argmax}_{i \in \{1, \dots, K\}} \widehat{X}_{i, T_i(n)}$$
.

$\mathsf{Theorem}$

UCB-E satisfies
$$e_n \leq n \exp\left(-\frac{n}{50H}\right)$$
.

UCB-E finds the best arm with (of order of) H rounds, but it requires the knowledge of $H = \sum_{i \neq i^*} 1/\Delta_i^2$.

Successive Rejects (SR)

Let
$$\overline{\log(K)} = \frac{1}{2} + \sum_{i=2}^{K} \frac{1}{i}$$
, $A_1 = \{1, \dots, K\}$, $n_0 = 0$ and $n_k = \lceil \frac{1}{\overline{\log(K)}} \frac{n-K}{K+1-k} \rceil$ for $k \in \{1, \dots, K-1\}$.

For each phase $k = 1, 2, \dots, K - 1$:

- (1) For each $i \in A_k$, select arm i during $n_k n_{k-1}$ rounds.
- (2) Let $A_{k+1} = A_k \setminus \arg\min_{i \in A_k} \widehat{X}_{i,n_k}$, where $\widehat{X}_{i,s}$ represents the empirical mean of arm i after s pulls.

Let J_n be the unique element of A_K .

Motivation for choosing n_k

Consider
$$\mu_1 > \mu_2 = \cdots = \mu_M \gg \mu_{M+1} = \cdots = \mu_K$$

- target: draw n/M times the M best arms
- SR: the M best arms are drawn more than $n_{K-M+1} \approx \frac{1}{\log(K)} \frac{n}{M}$

Successive Rejects (SR)

Let
$$\overline{\log(K)} = \frac{1}{2} + \sum_{i=2}^{K} \frac{1}{i}$$
, $A_1 = \{1, ..., K\}$, $n_0 = 0$ and $n_k = \lceil \frac{1}{\overline{\log(K)}} \frac{n-K}{K+1-k} \rceil$ for $k \in \{1, ..., K-1\}$.

For each phase $k = 1, 2, \dots, K - 1$:

- (1) For each $i \in A_k$, select arm i during $n_k n_{k-1}$ rounds.
- (2) Let $A_{k+1} = A_k \setminus \arg\min_{i \in A_k} \widehat{X}_{i,n_k}$, where $\widehat{X}_{i,s}$ represents the empirical mean of arm i after s pulls.

Let J_n be the unique element of A_K .

Theorem

SR satisfies:

$$e_n \le K \exp\left(-\frac{n}{4H \log K}\right)$$
.

UCB-E

Parameter: exploration constant c > 0.

Draw each arm once

For each round $t = 1, 2, \dots, n$:

Draw
$$I_t \in \operatorname*{argmax}_{i \in \{1, \dots, K\}} \left(\widehat{X}_{i, T_i(t-1)} + \sqrt{\frac{c \ n/H}{T_i(t-1)}} \right),$$

where $T_i(t-1)$ = nb of times we pulled arm i up to time t-1.

Let
$$J_n \in \operatorname{argmax}_{i \in \{1, \dots, K\}} \widehat{X}_{i, T_i(n)}$$
.

Adaptive UCB-E

Parameter: exploration constant c > 0.

For each round $t = 1, 2, \dots, n$:

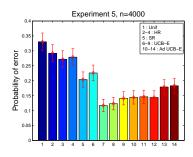
- (1) Compute an (under)estimate \hat{H}_t of H
- (2) Draw $I_t \in \operatorname{argmax}_{i \in \{1, \dots, K\}} \left(\widehat{X}_{i, T_i(t-1)} + \sqrt{\frac{c \ n/\widehat{H}_t}{T_i(t-1)}} \right)$

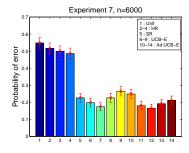
Let $J_n \in \operatorname{argmax}_{i \in \{1, \dots, K\}} \widehat{X}_{i, T_i(n)}$.

- Overestimating $H \Rightarrow$ low exploration of the arms \Rightarrow potential missing of the optimal arm \Rightarrow all Δ_i badly estimated
- Underestimating $H \Rightarrow$ higher exploration \Rightarrow not focusing enough on the arms \Rightarrow bad estimation of $H = \sum_{i \neq j^*} 1/\Delta_i^2$

Experiments with Bernoulli distributions

- Experiment 5: Arithmetic progression, K = 15, $\mu_i = 0.5 0.025i$, $i \in \{1, ..., 15\}$.
- Experiment 7: Three groups of bad arms, K = 30, $\mu_1 = 0.5$, $\mu_{2:6} = 0.45$, $\mu_{7:20} = 0.43$, $\mu_{21:30} = 0.38$.





Conclusion

- It requires at least $H/\log(K)$ rounds to find the best arm, with $H = \sum_{i \neq j^*} 1/\Delta_i^2$.
- UCB-E requires only H log n rounds but also the knowledge of H to tune its parameter.
- SR is a parameter free algorithm that requires less than H log² K rounds to find the best arm.
- Adaptive UCB-E does not have theoretical guarantees but it experimentally outperforms SR.