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1 Univ. Paris Est, Imagine
2 CNRS/ENS/INRIA, Willow project
3 INRIA Lille, SequeL team
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Best arm identification task

Parameters available to the forecaster: the number of rounds n
and the number of arms K .
Parameters unknown to the forecaster: the reward distributions
(over [0, 1]) ν1, . . . , νK of the arms. We assume that there is a
unique arm i∗ with maximal mean.

For each round t = 1, 2, . . . , n;
1 The forecaster chooses an arm It ∈ {1, . . . ,K}.
2 The environment draws the reward Yt from νIt (and

independently from the past given It).

At the end of the n rounds the forecaster outputs a
recommendation Jn ∈ {1, . . . ,K}.
Goal: Find the best arm, i.e, the arm with maximal mean. Regret:

en = P(Jn 6= i∗).
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Motivating examples

Clinical trials for cosmetic products. During the test phase,
several several formulæ for a cream are sequentially tested,
and after a finite time one is chosen for commercialization.

Channel allocation for mobile phone communications.
Cellphones can explore the set of channels to find the best
one to operate. Each evaluation of a channel is noisy and
there is a limited number of evaluations before the
communication starts on the chosen channel.
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Summary of the talk

Let µi be the mean of νi , and ∆i = µi∗ − µi the
suboptimality of arm i .

Main theoretical result: it requires of order of
H =

∑
i 6=i∗ 1/∆2

i rounds to find the best arm. Note that this
result is well known for K = 2.

We present two new forecasters, Successive Rejects (SR)
and Adaptive UCB-E (Upper Confidence Bound
Exploration).

SR is parameter free, and has optimal guarantees (up to a
logarithmic factor).

Adaptive UCB-E has no theoretical guarantees but it
experimentally outperforms SR.
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Lower Bound

Theorem

Let ν1, . . . , νK be Bernoulli distributions with parameters in
[1/3, 2/3]. There exists a numerical constant c > 0 such that for
any forecaster, up to a permutation of the arms,

en ≥ exp

(
−c(1 + o(1))

n log(K )

H

)
.

Informally, any algorithm requires at least (of order of) H/ log(K )
rounds to find the best arm.
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Lower Bound

Theorem

Let ν1, . . . , νK be Bernoulli distributions with parameters in
[1/3, 2/3]. There exists a numerical constant c > 0 such that for
any forecaster, up to a permutation of the arms,

en ≥ exp

(
−c

(
1 +

K log(K )√
n

)
n log(K )

H

)
.

Informally, any algorithm requires at least (of order of) H/ log(K )
rounds to find the best arm.
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Uniform strategy

For each i ∈ {1, . . . ,K}, select arm i during bn/Kc rounds. Let
Jn ∈ argmaxi∈{1,...,K} X̂i ,bn/Kc.

Theorem

The uniform strategy satisfies: en ≤ 2K exp
(
−n mini ∆2

i
2K

)
.

For any (δ1, . . . , δK ) with mini δi ≤ 1/2, there exist distributions
such that ∆1 = δ1, . . . ,∆K = δK and

en ≥
1

2
exp

(
−

8n mini ∆2
i

K

)
.

Informally, the uniform strategy finds the best arm with (of order
of) K/mini ∆2

i rounds. For large K , this can be significantly larger
than H =

∑
i 6=i∗ 1/∆2

i .
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UCB-E

Draw each arm once

For each round t = K + 1, 2, . . . , n:

Draw It ∈ argmax
i∈{1,...,K}

(
X̂i ,Ti (t−1) +

√
n/H

2Ti (t − 1)

)
,

where Ti (t − 1) = nb of times we pulled arm i up to time t − 1.

Let Jn ∈ argmaxi∈{1,...,K} X̂i ,Ti (n).

Theorem

UCB-E satisfies en ≤ n exp
(
− n

50H

)
.

UCB-E finds the best arm with (of order of) H rounds, but it
requires the knowledge of H =

∑
i 6=i∗ 1/∆2

i .
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Successive Rejects (SR)

Let log(K ) = 1
2 +

∑K
i=2

1
i , A1 = {1, . . . ,K}, n0 = 0 and

nk = d 1
log(K)

n−K
K+1−k e for k ∈ {1, . . . ,K − 1}.

For each phase k = 1, 2, . . . ,K − 1:

(1) For each i ∈ Ak , select arm i during nk − nk−1 rounds.

(2) Let Ak+1 = Ak \ arg mini∈Ak
X̂i ,nk

, where X̂i ,s represents the
empirical mean of arm i after s pulls.

Let Jn be the unique element of AK .

Motivation for choosing nk

Consider µ1 > µ2 = · · · = µM � µM+1 = · · · = µK

target: draw n/M times the M best arms

SR: the M best arms are drawn more than nK−M+1 ≈ 1
log(K)

n
M
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Successive Rejects (SR)

Let log(K ) = 1
2 +

∑K
i=2

1
i , A1 = {1, . . . ,K}, n0 = 0 and

nk = d 1
log(K)

n−K
K+1−k e for k ∈ {1, . . . ,K − 1}.

For each phase k = 1, 2, . . . ,K − 1:

(1) For each i ∈ Ak , select arm i during nk − nk−1 rounds.

(2) Let Ak+1 = Ak \ arg mini∈Ak
X̂i ,nk

, where X̂i ,s represents the
empirical mean of arm i after s pulls.

Let Jn be the unique element of AK .

Theorem

SR satisfies:

en ≤ K exp

(
− n

4H log K

)
.
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UCB-E

Parameter: exploration constant c > 0.

Draw each arm once

For each round t = 1, 2, . . . , n:

Draw It ∈ argmax
i∈{1,...,K}

(
X̂i ,Ti (t−1) +

√
c n/H

Ti (t − 1)

)
,

where Ti (t − 1) = nb of times we pulled arm i up to time t − 1.

Let Jn ∈ argmaxi∈{1,...,K} X̂i ,Ti (n).
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Adaptive UCB-E

Parameter: exploration constant c > 0.

For each round t = 1, 2, . . . , n:

(1) Compute an (under)estimate Ĥt of H

(2) Draw It ∈ argmaxi∈{1,...,K}

(
X̂i ,Ti (t−1) +

√
c n/Ĥt

Ti (t−1)

)
,

Let Jn ∈ argmaxi∈{1,...,K} X̂i ,Ti (n).

Overestimating H ⇒ low exploration of the arms ⇒ potential
missing of the optimal arm ⇒ all ∆i badly estimated

Underestimating H ⇒ higher exploration ⇒ not focusing
enough on the arms ⇒ bad estimation of H =

∑
i 6=i∗ 1/∆2

i
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Experiments with Bernoulli distributions

Experiment 5: Arithmetic progression, K = 15,
µi = 0.5− 0.025i , i ∈ {1, . . . , 15}.
Experiment 7: Three groups of bad arms, K = 30, µ1 = 0.5,
µ2:6 = 0.45, µ7:20 = 0.43, µ21:30 = 0.38.
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Conclusion

It requires at least H/ log(K ) rounds to find the best arm,
with H =

∑
i 6=i∗ 1/∆2

i .

UCB-E requires only H log n rounds but also the knowledge of
H to tune its parameter.

SR is a parameter free algorithm that requires less than
H log2 K rounds to find the best arm.

Adaptive UCB-E does not have theoretical guarantees but it
experimentally outperforms SR.
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