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Framework

Best arm identification task

Parameters available to the forecaster: the number of rounds n
and the number of arms K.

Parameters unknown to the forecaster: the reward distributions
(over [0,1]) v1,..., vk of the arms. We assume that there is a
unique arm /* with maximal mean.

For each round t =1,2,...,n;

@ The forecaster chooses an arm /; € {1,... K}.
@ The environment draws the reward Y; from v, (and
independently from the past given /;).
At the end of the n rounds the forecaster outputs a
recommendation J, € {1,..., K}.

Goal: Find the best arm, i.e, the arm with maximal mean. Regret:
en =P(J, #i7).
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Framework

Motivating examples

@ Clinical trials for cosmetic products. During the test phase,
several several formulae for a cream are sequentially tested,
and after a finite time one is chosen for commercialization.

@ Channel allocation for mobile phone communications.
Cellphones can explore the set of channels to find the best
one to operate. Each evaluation of a channel is noisy and
there is a limited number of evaluations before the
communication starts on the chosen channel.
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Framework

Summary of the talk

@ Let i; be the mean of v;, and A; = uj+ — p; the
suboptimality of arm /.

@ Main theoretical result: it requires of order of
H=3 4 1/A? rounds to find the best arm. Note that this
result is well known for K = 2.

@ We present two new forecasters, Successive Rejects (SR)
and Adaptive UCB-E (Upper Confidence Bound
Exploration).

@ SR is parameter free, and has optimal guarantees (up to a
logarithmic factor).

o Adaptive UCB-E has no theoretical guarantees but it
experimentally outperforms SR.
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Lower Bound

Lower Bound

Theorem

Let v1,...,vKk be Bernoulli distributions with parameters in
[1/3,2/3]. There exists a numerical constant ¢ > 0 such that for
any forecaster, up to a permutation of the arms,

en > exp (—c(l + O(l))mo/g_l(K)) .

Informally, any algorithm requires at least (of order of) H/log(K)
rounds to find the best arm.
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Lower Bound

Lower Bound

Theorem

Let v1,...,vKk be Bernoulli distributions with parameters in
[1/3,2/3]. There exists a numerical constant ¢ > 0 such that for
any forecaster, up to a permutation of the arms,

. (_C<1 . Kk:%K)) nlolg_I(K)> |

Informally, any algorithm requires at least (of order of) H/log(K)
rounds to find the best arm.
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Algorithms

Uniform strategy

For each i € {1,..., K}, select arm i during [n/K | rounds. Let
Jn € argmaxcgy k) Xi | n/k |-

Theorem
nmin; A?

The uniform strategy satisfies: e, < 2K exp | ———5p ) .
For any (01, ...,0k) with min; 6; < 1/2, there exist distributions
such that Ay = 01,...,Ax = 0k and

- 1 8nmin,-A,2
e —e -
n=5 XP K

|
/N

Informally, the uniform strategy finds the best arm with (of order
of) K/ min; A? rounds. For large K, this can be significantly larger
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Algorithms

Draw each arm once

Foreachround t =K +1,2,... n:

S n/H
Draw /; € argmax | Xi 7.(¢—1) ) =7 |
LK) < Tite=1) \ 2Ti(t — 1))

where T;(t — 1) = nb of times we pulled arm / up to time t — 1.

Let J, € argmaxjcqy . ky Xi Ti(n)-

UCB-E satisfies €, < nexp (_50LH)'

UCB-E finds the best arm with (of order of) H rounds, but it
requires the knowledge of H =", .. 1/A7.
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Algorithms

Successive Rejects (SR)

Let log(K) = 3 + 21 2/,A1:{1....,K}, no = 0 and
n—K

nk:[logt Pl o] for ke {1,....K—1}.

For each phase k =1,2,... . K — 1:

(1) For each i € Ay, select arm i durlng N — N1 rounds.

(2) Let Agy1 = Ax\ argminjea, X, n., Where X, s represents the
empirical mean of arm / after s pulls.

Let J, be the unique element of Ak.

Motivation for choosing ny

Consider U1 > [ = = UM > UM+l = 00 = UK
@ target: draw n/M times the M best arms

@ SR: the M best arms are drawn more than nx_ 11 ~ g (k) ﬁ
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Algorithms

Successive Rejects (SR)

Let log(K) = 2—}—2, L AL={1,...,K}, np =0 and
nk = [Iog(K)KH p| for ke {l,...,K—1}.

For each phase kK =1,2,... . K — 1:

(1) For each i € Ay, select arm 7 during nx — ni_1 rounds.

(2) Let Axr1 = Ax \ argminjea, Xin,, where X ¢ represents the
empirical mean of arm / after s pulls.

Let J, be the unique element of Ak.

SR satisfies:
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Algorithms

Parameter: exploration constant ¢ > 0.
Draw each arm once

For each round t =1,2,...,n:

Draw [; € argmax )A<,'.T,.(t,1) +
ie{l,...K} '

)

where T;(t — 1) = nb of times we pulled arm / up to time t — 1.

Let J, € argmaxic(y, . K} X,'77-,.(,,).
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Algorithms

Adaptive UCB-E

Parameter: exploration constant ¢ > 0.

For each round t =1,2, ... n:

(1) Compute an (under)estimate H; of H

(2) Draw I; € argmax;c(y, . K} <)?i,Tf(t—1) + 7C-I_(nt/_H1t)>,

Let J, € argmaxjc(1 .k} )?i,Tf(n)'
@ Overestimating H = low exploration of the arms = potential
missing of the optimal arm =- all A; badly estimated

@ Underestimating H = higher exploration = not focusing
enough on the arms = bad estimation of H = Z,.#,-* 1/A?
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Experiments

Experiments with Bernoulli distributions

@ Experiment 5: Arithmetic progression, K = 15,
pi =0.5—0.025/, i € {1,...,15}.

@ Experiment 7: Three groups of bad arms, K = 30, u; = 0.5,
H2:6 = 045, HU7:20 = 043, M21:30 = 0.38.

Experiment 5, n=4000 Experiment 7, n=6000

10-14 : Ad UCB-E

Probability of error
Probability of error

1 2 3 4 5 6 7 8 9 10 11 12 13 14 12 3 4 5 6 7 8 9 10 11 12 13 14
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Conclusion

Conclusion

@ It requires at least H/ log(K) rounds to find the best arm,
with H = Z,.#,.* 1/A2.

o UCB-E requires only H log n rounds but also the knowledge of
H to tune its parameter.

@ SR is a parameter free algorithm that requires less than
Hlog? K rounds to find the best arm.

o Adaptive UCB-E does not have theoretical guarantees but it
experimentally outperforms SR.
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