Regret Minimization for Online Buffering Problems Using the Weighted Majority Algorithm

Sascha Geulen, Berthold Vöcking, Melanie Winkler

Department of Computer Science, RWTH Aachen University

June 27, 2010

Online Buffering

Toy example:

- buffer of bounded size B
- in every time step $t = 1, \ldots, T$:
 - demand $d^t \leq B$
 - $p^t \in [0, 1]$, price per unit of the resource OR
 - f^t(x), price function to buy x units

How much should be purchased in time step t?

Applications

Main Application

• Battery Management of Hybrid cars

- two energy resources (combustion / electrical)
- given requested torque of the car, battery level
- determine torque of combustion engine

Online Learning

Motivation:

- online buffering problems have been studied in Worst-Case Analysis
- algorithm is "threat-based", i.e. buys enough to ensure the competitive factor in the next step for all possible extensions of the price sequence

Online Learning Applied to Online Buffering

Algorithm 1 (Randomized Weighted Majority (RWM))

1:
$$w_i^1 = 1, q_i^1 = \frac{1}{N}$$
, for all $i \in \{1, ..., N\}$

2: for
$$t = 1, ..., T$$
 do

choose expert e^t at random according to $Q^t = (q_1^t, \ldots, q_N^t)$ 3:

4:
$$w_i^{t+1} = w_i^t (1-\eta)^{c_i^t}$$
, for all *i*

5:
$$q_i^{t+1} = \frac{w_i}{\sum_{j=1}^N w_j^{t+1}}$$
, for all i

6: end for

Problem:

$$\begin{bmatrix} p^t \\ d^t \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \left(\begin{bmatrix} 0 \\ 1/4 \end{bmatrix} \begin{bmatrix} 1 \\ 1/4 \end{bmatrix} \begin{bmatrix} 0 \\ 1/4 \end{bmatrix} \begin{bmatrix} 1 \\ 1/4 \end{bmatrix} \right)^{T'}$$

- The first expert purchases 1/2 unit in the initial step and afterwards one unit in the third step of every round.
- The second expert purchases one unit in the first step of every round.

Online Learning for Online Buffering

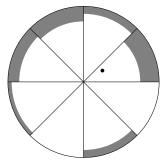
Algorithm 2 (Shrinking Dartboard (SD))

1: $w_i^1 = 1, q_i^1 = \frac{1}{N}$, for all i2: choose expert e^1 at random according to $Q^1 = (q_1^1, \dots, q_N^1)$ 3: for $t = 2, \dots, T$ do 4: $w_i^t = w_i^{t-1}(1-\eta)^{c_i^{t-1}}$, for all i5: $q_i^t = \frac{w_i^t}{\sum_{j=1}^N w_j^t}$, for all i6: with probability $\frac{w_{e^t}^t}{w_{e^t}^{t-1}}$ do not change expert, i.e., set $e^t = e^{t-1}$ 7: else choose e^t at random according to $Q^t = (q_1^t, \dots, q_N^t)$ 8: end for

Shrinking Dartboard Algorithm

Idea: dartboard of size N, area of size 1 for expert i

- set active area of expert i to 1
- Ihrow dart into active area to choose an expert
- \bigcirc if weight of expert *i* decreases
 - decrease active area of that expert
- dart outside of active area \Rightarrow throw new dart
- $\Rightarrow\,$ distribution to choose an expert is the same as for RWM in every step, but depends on e^{t-1}



Theorem

For $\eta = \min\{\sqrt{\ln N/(BT)}, 1/2\}$, the expected cost of SD satisfies

$$C_{\text{SD}}^T \le C_{\text{best}}^T + O(\sqrt{BT \log N}).$$

Regret of Shrinking Dartboard

Proof idea:

Observation: $E[c_{SD}] \leq \sum_t c_{chosen expert} + B \cdot E[number of expert changes]$

- expected cost of chosen expert \Leftrightarrow cost of RWM: $(1 + \eta)C_{\text{best}}^T + \frac{\ln N}{\eta}$
- ${f 0}$ additional cost for every expert change are at most B
 - due to difference in number of units in the storage
- estimate number of expert changes
 - W^t , remaining size of dartboard in step t, $(W^t = \sum_{i=1}^N w_i^t)$
 - ▶ size of dartboard larger than weight of best expert, $(W^{T+1} \ge (1 + \eta)^{C_{\text{best}}^T})$
 - ▶ W^{T+1} equals product of fraction of dartboard which remains from t to t+1 multiplied by N, $(N \prod_{t=1}^{T} (1 \frac{W^t W^{t+1}}{W^t}))$

• combining those equations leads to $C_{SD}^T \leq C_{best}^T + O(\sqrt{BT \log N})$.

/···· \

Weighted Fractional Algorithm

Algorithm 3 (Weighted Fractional (WF))
1:
$$w_i^1 = 1, q_i^1 = \frac{1}{N}$$
, for all i
2: for $t = 2, ..., T$ do
3: purchase $x^t = \sum_{i=1}^{N} q_i x_i$ units, x_i amount purchased by i
4: $w_i^t = w_i^{t-1} (1-\eta)^{c_i^{t-1}}$, for all i
5: $q_i^t = \frac{w_i^t}{\sum_{j=1}^{N} w_j^t}$, for all i
6: end for

Idea: purchased amount is a weighted sum of the recommendations of the experts

Theorem

Suppose the price functions $f^t(x)$ are convex, for $1\leq t\leq T.$ Then for $\eta=\min\{\sqrt{\ln N/(BT)},1/2\}$ the cost of WF satisfies

$$C_{\rm WF}^T \le C_{\rm best}^T + O(\sqrt{BT\log N}).$$

Lower Bound

Lower Bound

Theorem

For every T, there exists a sequence of length T together with N experts s.t. every learning algorithm with a buffer of size B suffers a regret of $\Omega(\sqrt{BT \log N})$.

Proof idea:

$$\begin{bmatrix} p^t \\ d^t \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} 2 \\ 0 \end{pmatrix}^B \begin{pmatrix} \{0,4\} \\ 0 \end{pmatrix}^B \begin{pmatrix} 4 \\ 1 \end{pmatrix}^B \end{bmatrix}^{T'}$$

a) The expert purchases B units in the first phase.

b) The expert purchases B units in the second phase.

every expert chooses one of the strategies uniformly at random in every round

- cost of experts: N independent random walks of length T' with step length B
- expected minimum of those random walks $2/3T \Omega(\sqrt{BT \log N})$, expected $\cos t 2/3T$

Summary

- Shrinking Dartboard, which achieves low regret for online buffering
 - Similar regret bound also possible for Follow the Perturbed Leader [Kalai, Vempala, 2005]
- Weighted Fractional achieves low regret also against adaptive adversary
- The regret bounds of the algorithms are tight

Thank you for your attention! Any questions?