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Abstract

We study online learning when individual instances are corrupted by adversarially chosen
random noise. We assume the noise distribution is unknown, and may change over time
with no restriction other than having zero mean and bounded variance. Our technique relies
on a family of unbiased estimators for non-linear functions, which may be of independent
interest. We show that a variant of online gradient descent can learn functions in any dot-
product (e.g., polynomial) or Gaussian kernel space with any analytic convex loss function.
Our variant uses randomized estimates that need to query a random number of noisy copies
of each instance, where with high probability this number is upper bounded by a constant.
Allowing such multiple queries cannot be avoided: Indeed, we show that online learning is
in general impossible when only one noisy copy of each instance can be accessed.

1 Introduction

In many machine learning applications training data are typically collected by measuring certain
physical quantities. Examples include bioinformatics, medical tests, robotics, and remote sensing.
These measurements have errors that may be due to several reasons: sensor costs, communication
constraints, or intrinsic physical limitations. In all such cases, the learner trains on a distorted
version of the actual “target” data, which is where the learner’s predictive ability is eventually
evaluated. In this work we investigate the extent to which a learning algorithm can achieve a good
predictive performance when training data are corrupted by noise with unknown distribution.

We prove upper and lower bounds on the learner’s cumulative loss in the framework of online
learning, where examples are generated by an arbitrary and possibily adversarial source. We model
the measurement error via a random perturbation which affects each instance observed by the learner.
We do not assume any specific property of the noise distribution other than zero-mean and bounded
variance. Moreover, we allow the noise distribution to change at every step in an adversarial way
and fully hidden from the learner. Our positive results are quite general: by using a randomized
unbiased estimate for the loss gradient and a randomized feature mapping to estimate kernel values,
we show that a variant of online gradient descent can learn functions in any dot-product (e.g.,
polynomial) or Gaussian RKHS under any given analytic convex loss function. Our techniques are
readily extendable to other kernel types as well.

In order to obtain unbiased estimates of loss gradients and kernel values, we allow the learner
to query a random number of independently perturbed copies of the current unseen instance. We
show how low-variance estimates can be computed using a number of queries that is constant with
high probability. This is in sharp contrast with standard averaging techniques which attempts to
directly estimate the noisy instance, as these require a sample whose size depends on the scale of
the problem. Finally, we formally show that learning is impossible, even without kernels, when only
one perturbed copy of each instance can be accessed. This is true for essentially any reasonable loss
function.

Our paper is organized as follows. In the next subsection we discuss related work. In Sec. 2 we
introduce our setting and justify some of our choices. In Sec. 4 we present our main results but
before that, in Sec. 3, we discuss the techniques used to obtain them. In the same section, we also
explain why existing techniques are insufficient to deal with our problem. The detailed proofs and
subroutine implementations appear in Sec. 5, with some of the more technical lemmas and proofs
relegated to [7]. We wrap up with a discussion on possible avenues for future work in Sec. 6.



1.1 Related Work
In the machine learning literature, the problem of learning from noisy examples, and, in particular,
from noisy training instances, has traditionally received a lot of attention —see, for example, the
recent survey [12]. On the other hand, there are comparably few theoretically-principled studies
on this topic. Two of them focus on models quite different from the one studied here: random
attribute noise in PAC boolean learning [3, 9], and malicious noise [10, 5]. In the first case, learning
is restricted to classes of boolean functions and the noise must be independent across each boolean
coordinate. In the second case, an adversary is allowed to perturb a small fraction of the training
examples in an arbitrary way, making learning impossible in a strong informational sense unless this
perturbed fraction is very small (of the order of the desired accuracy for the predictor).

The previous work perhaps closest to the one presented here is [11], where binary classification
mistake bounds are proven for the online Winnow algorithm in the presence of attribute errors.
Similarly to our setting, the sequence of instances observed by the learner is chosen by an adversary.
However, in [11] the noise is generated by an adversary, who may change the value of each attribute
in an arbitrary way. The final mistake bound, which only applies when the noiseless data sequence
is linearly separable without kernels, depends on the sum of all adversarial perturbations.

2 Setting

We consider a setting where the goal is to predict values y ∈ R based on instances x ∈ Rd. In
this paper we focus on kernel-based linear predictors of the form x 7→ 〈w,Ψ(x)〉, where Ψ is a
feature mapping into some reproducing kernel Hilbert space (RKHS). We assume there exists a
kernel function that efficiently implements dot products in that space, i.e., k(x,x′) = 〈Ψ(x),Ψ(x′)〉.
Note that a special case of this setting is linear kernels, where Ψ(·) is the identity mapping and
k(x,x′) = 〈x,x′〉.

The standard online learning protocol for linear prediction with kernels is defined as follows: at
each round t, the learner picks a linear hypothesis wt from the RKHS. The adversary then picks an
example (xt, yt) and reveals it to the learner. The loss suffered by the learner is `(〈wt,Ψ(xt)〉, yt),
where ` is a known and fixed loss function. The goal of the learner is to minimize regret with respect
to a fixed convex set of hypotheses W, namely

T∑
t=1

`(〈wt,Ψ(xt)〉, yt)− min
w∈W

T∑
t=1

`(〈w,Ψ(xt)〉, yt).

Typically, we wish to find a strategy for the learner, such that no matter what is the adversary’s
strategy of choosing the sequence of examples, the expression above is sub-linear in T .

We now make the following twist, which limits the information available to the learner: instead
of receiving (xt, yt), the learner observes yt and is given access to an oracle At. On each call, At
returns an independent copy of xt + Zt, where Zt is a zero-mean random vector with some known
finite bound on its variance (in the sense that E

[
‖Zt‖2

]
≤ a for some uniform constant a). In

general, the distribution of Zt is unknown to the learner. It might be chosen by the adversary, and
change from round to round or even between consecutive calls to At. Note that here we assume that
yt remains unperturbed, but we emphasize that this is just for simplicity - our techniques can be
readily extended to deal with noisy values as well.

The learner may call At more than once. In fact, as we discuss later on, being able to call At
more than once is necessary for the learner to have any hope to succeed. On the other hand, if the
learner calls At an unlimited number of times, it can reconstruct xt arbitrarily well by averaging,
and we are back to the standard learning setting. In this paper we focus on learning algorithms
that call At only a small, essentially constant number of times, which depends only on our choice
of loss function and kernel (rather than T , the norm of xt, or the variance of Zt, which will happen
with näıve averaging techniques). Moreover, since the number of queries is bounded with very high
probability, one can even produce an algorithm with an absolute bound on the number of queries,
which will fail or introduce some bias with an arbitrarily small probability. For simplicity, we ignore
these issues in this paper.

In this setting, we wish to minimize the regret in hindsight with respect to the unperturbed data
and averaged over the noise introduced by the oracle, namely

E

[
T∑
t=1

`(〈wt,Ψ(xt)〉, yt)− min
w∈W

T∑
t=1

`(〈w,Ψ(xt)〉, yt)

]
(1)

where the random quantities are the predictors w1,w2, . . . generated by the learner, which depend
on the observed noisy instances (in [7], we briefly discuss alternative regret measures, and why



they are unsatisfactory). This kind of regret is relevant where we actually wish to learn from data,
without the noise causing a hindrance. In particular, consider the batch setting, where the examples
{(xt, yt)}Tt=1 are actually sampled i.i.d. from some unknown distribution, and we wish to find a
predictor which minimizes the expected loss E[`(〈w,x〉, y)] with respect to new examples (x, y).
Using standard online-to-batch conversion techniques, if we can find an online algorithm with a
sublinear bound on Eq. (1), then it is possible to construct learning algorithms for the batch setting
which are robust to noise. That is, algorithms generating a predictor w with close to minimal
expected loss E[`(〈w,x〉, y)] among all w ∈ W.

While our techniques are quite general, the exact algorithmic and theoretical results depend a
lot on which loss function and kernel is used. Discussing the loss function first, we will assume that
`(〈w,Ψ(x)〉, y) is a convex function of w for each example (x, y). Somewhat abusing notation, we
assume the loss can be written either as `(〈w,Ψ(x)〉, y) = f(y〈w,Ψ(x)〉) or as `(〈w,Ψ(x)〉, y) =
f(〈w,Ψ(x)〉 − y) for some function f . We refer to the first type as classification losses, as it
encompasses most reasonable losses for classification, where y ∈ {−1,+1} and the goal is to predict
the label. We refer to the second type as regression losses, as it encompasses most reasonable
regression losses, where y takes arbitrary real values. For simplicity, we present some of our results
in terms of classification losses, but they all hold for regression losses as well with slight modifications.

We present our results under the assumption that the loss function is “smooth”, in the sense
that `′(a) can be written as

∑∞
n=0 γna

n, for any a in its domain. This assumption holds for instance
for the squared loss `(a) = a2, the exponential loss `(a) = exp(a), and smoothed versions of loss
functions such as the hinge loss and the absolute loss (we discuss examples in more details in Sub-
section 4.2). This assumption can be relaxed under certain conditions, and this is further discussed
in Subsection 3.2.

Turning to the issue of kernels, we note that the general presentation of our approach is somewhat
hampered by the fact that it needs to be tailored to the kernel we use. In this paper, we focus on
two families of kernels:
Dot Product Kernels: the kernel k(x,x′) can be written as a function of 〈x,x′〉. Examples of such
kernels k(x,x′) are linear kernels 〈x,x′〉; homogeneous polynomial kernels (〈x,x′〉)n, inhomogeneous
polynomial kernels (1 + 〈x,x′〉)n; exponential kernels e〈x,x

′〉; binomial kernels (1 + 〈x,x′〉)−α, and
more (see for instance [15, 17]).

Gaussian Kernels: k(x,x′) = e−‖x−x′‖2/σ2
for some σ2 > 0.

Again, we emphasize that our techniques are extendable to other kernel types as well.

3 Techniques

Our results are based on two key ideas: the use of online gradient descent algorithms, and construc-
tion of unbiased gradient estimators in the kernel setting. The latter is based on a general method
to build unbiased estimators for non-linear functions, which may be of independent interest.

3.1 Online Gradient Descent

There exist well developed theory and algorithms for dealing with the standard online learning
setting, where the example (xt, yt) is revealed after each round, and for general convex loss functions.
One of the simplest and most well known ones is the online gradient descent algorithm due to
Zinkevich [18]. Since this algorithm forms a basis for our algorithm in the new setting, we briefly
review it below (as adapted to our setting).

The algorithm initializes the classifier w1 = 0. At round t, the algorithm predicts according to
wt, and updates the learning rule according to wt+1 = P

(
wt − ηt∇t

)
, where ηt is a suitably chosen

constant which might depend on t; ∇t = `′
(
yt〈wt,Ψ(xt)〉

)
ytΨ(xt) is the gradient of `

(
yt〈w,Ψ(xt)〉

)
with respect to wt; and P is a projection operator on the convex set W, on whose elements we wish
to achieve low regret. In particular, if we wish to compete with hypotheses of bounded squared
norm Bw, P simply involves rescaling the norm of the predictor so as to have squared norm at most
Bw. With this algorithm, one can prove regret bounds with respect to any w ∈ W.

A “folklore” result about this algorithm is that in fact, we do not need to update the predictor
by the gradient at each step. Instead, it is enough to update by some random vector of bounded
variance, which merely equals the gradient in expectation. This is a useful property in settings
where (xt, yt) is not revealed to the learner, and has been used before, such as in the online bandit
setting (see for instance [6, 8, 1]). Here, we will use this property in a new way, in order to devise
algorithms which are robust to noise. When the kernel and loss function are linear (e.g., Ψ(x) = x
and `(a) = ca+ b for some constants b, c), this property already ensures that the algorithm is robust



to noise without any further changes. This is because the noise injected to each xt merely causes the
exact gradient estimate to change to a random vector which is correct in expectation: If we assume
` is a classification loss, then

E [`′(yt〈wt,Ψ(x̃t)〉)Ψ(x̃t)] = E [cx̃t] = xt.

On the other hand, when we use nonlinear kernels and nonlinear loss functions, using standard
online gradient descent leads to systematic and unknown biases (since the noise distribution is
unknown), which prevents the method from working properly. To deal with this problem, we now
turn to describe a technique for estimating expressions such as `′

(
yt〈wt,Ψ(xt)〉

)
in an unbiased

manner. In Subsection 3.3, we discuss how Ψ(xt) can be estimated in an unbiased manner.

3.2 Unbiased Estimators for Non-Linear Functions
Suppose that we are given access to independent copies of a real random variable X, with expectation
E[X], and some real function f , and we wish to construct an unbiased estimate of f(E[X]). If
f is a linear function, then this is easy: just sample x from X, and return f(x). By linearity,
E[f(X)] = f(E[X]) and we are done. The problem becomes less trivial when f is a general, non-
linear function, since usually E[f(X)] 6= f(E[X]). In fact, when X takes finitely many values and f is
not a polynomial function, one can prove that no unbiased estimator can exist (see [14], Proposition 8
and its proof). Nevertheless, we show how in many cases one can construct an unbiased estimator of
f(E[X]), including cases covered by the impossibility result. There is no contradiction, because we
do not construct a “standard” estimator. Usually, an estimator is a function from a given sample to
the range of the parameter we wish to estimate. An implicit assumption is that the size of the sample
given to it is fixed, and this is also a crucial ingredient in the impossibility result. We circumvent
this by constructing an estimator based on a random number of samples.

Here is the key idea: suppose f : R → R is any function continuous on a bounded interval.
It is well known that one can construct a sequence of polynomials (Qn(·))∞n=1, where Qn(·) is a
polynomial of degree n, which converges uniformly to f on the interval. If Qn(x) =

∑n
i=0 γn,ix

i, let
Q′n(x1, . . . , xn) =

∑n
i=0 γn,i

∏i
j=1 xj . Now, consider the estimator which draws a positive integer N

according to some distribution P(N = n) = pn, samples X for N times to get x1, x2, . . . , xN , and
returns 1

pN

(
Q′N (x1, . . . , xN )−Q′N−1(x1, . . . , xN−1)

)
, where we assume Q′0 = 0. The expected value

of this estimator is equal to:

EN,x1,...,xN

[
1
pN

(
Q′N (x1, . . . , xN )−Q′N−1(x1, . . . , xN−1)

)]
=
∞∑
n=1

pn
pn

Ex1,...,xn

[
Q′n(x1, . . . , xn)−Q′n−1(x1, . . . , xn−1)

]
=
∞∑
n=1

(
Qn(E[X])−Qn−1(E[X])

)
= f(E[X]).

Thus, we have an unbiased estimator of f(E[X]).
This technique appeared in a rather obscure early 1960’s paper [16] from sequential estimation

theory, and appears to be little known, particularly outside the sequential estimation community.
However, we believe this technique is interesting, and expect it to have useful applications for other
problems as well.

While this may seem at first like a very general result, the variance of this estimator must be
bounded for it to be useful. Unfortunately, this is not true for general continuous functions. More
precisely, let N be distributed according to pn, and let θ be the value returned by the estimator. In
[2], it is shown that if X is a Bernoulli random variable, and if E[θNk] <∞ for some integer k ≥ 1,
then f must be k times continuously differentiable. Since E[θNk] ≤ (E[θ2] + E[N2k])/2, this means
that functions f which yield an estimator with finite variance, while using a number of queries with
bounded variance, must be continuously differentiable. Moreover, in case we desire the number of
queries to be essentially constant (i.e. choose a distribution for N with exponentially decaying tails),
we must have E[Nk] < ∞ for all k, which means that f should be infinitely differentiable (in fact,
in [2] it is conjectured that f must be analytic in such cases).

Thus, we focus in this paper on functions f which are analytic, i.e., they can be written as
f(x) =

∑∞
i=0 γix

i for appropriate constants γ0, γ1, . . .. In that case, Qn can simply be the truncated
Taylor expansion of f to order n, i.e., Qn =

∑n
i=0 γix

i. Moreover, we can pick pn ∝ 1/pn for
any p > 1. So the estimator becomes the following: we sample a nonnegative integer N according



to P(N = n) = (p − 1)/pn+1, sample X independently N times to get x1, x2, . . . , xN , and return
θ = γN

pN+1

p−1 x1x2 · · ·xN where we set θ = p
p−1γ0 if N = 0.1 We have the following:

Lemma 1. For the above estimator, it holds that E[θ] = f(E[X]). The expected number of samples
used by the estimator is 1/(p− 1), and the probability of it being at least z is p−z. Moreover, if we
assume that f+(x) =

∑∞
n=0 |γn|xn exists for any x in the domain of interest, then

E[θ2] ≤ p

p− 1
f2

+

(√
pE[X2]

)
.

Proof. The fact that E[θ] = f(E[X]) follows from the discussion above. The results about the
number of samples follow directly from properties of the geometric distribution. As for the second
moment, E[θ2] equals

EN,x1,...,xN

[
γ2
N

p2(N+1)

(p− 1)2
x2

1x
2
2 · · ·x2

N

]
=

∞∑
n=0

(p− 1)p2(n+1)

(p− 1)2pn+1
γ2
nEx1,...,xn

[
x2

1x
2
2 · · ·x2

n

]
=

p

p− 1

∞∑
n=0

γ2
np
n
(
E[X2]

)n
=

p

p− 1

∞∑
n=0

(
|γn|

(√
pE[X2]

)n)2

≤ p

p− 1

( ∞∑
n=0

|γn|
(√

pE[X2]
)n)2

=
p

p− 1
f2

+

(√
pE[X2]

)
.

The parameter p provides a tradeoff between the variance of the estimator and the number of
samples needed: the larger is p, the less samples do we need, but the estimator has more variance.
In any case, the sample size distribution decays exponentially fast, so the sample size is essentially
bounded.

It should be emphasized that the estimator associated with Lemma 1 is tailored for generality, and
is suboptimal in some cases. For example, if f is a polynomial function, then γn = 0 for sufficiently
large n, and there is no reason to sample N from a distribution supported on all nonnegative integers
- it just increases the variance. Nevertheless, in order to keep the presentation unified and general,
we will always use this type of estimator. If needed, the estimator can always be optimized for
specific cases.

We also note that this technique can be improved in various directions, if more is known about
the distribution of X. For instance, if we have some estimate of the expectation and variance of X,
then we can perform a Taylor expansion around the estimated E[X] rather than 0, and tune the
probability distribution of N to be different than the one we used above. These modifications can
allow us to make the variance of the estimator arbitrarily small, if the variance of X is small enough.
Moreover, one can take polynomial approximations to f which are perhaps better than truncated
Taylor expansions. In this paper, for simplicity, we will ignore these potential improvements.

Finally, we note that a related result in [2] implies that it is impossible to estimate f(E[X]) in an
unbiased manner when f is discontinuous, even if we allow a number of queries and estimator values
which are infinite in expectation. Therefore, since the derivative of the hinge loss is not continuous,
estimating in an unbiased manner the gradient of the hinge loss with arbitrary noise appears to be
impossible. Thus, if online learning with noise and hinge loss is at all feasible, a rather different
approach than ours will need to be taken.

3.3 Unbiasing Noise in the RKHS
The third component of our approach involves the unbiased estimation of Ψ(xt), when we only
have unbiased noisy copies of xt. Here again, we have a non-trivial problem, because the feature
mapping Ψ is usually highly non-linear, so E[Ψ(x̃t)] 6= Ψ(E[x̃t]) in general. Moreover, Ψ is not a
scalar function, so the technique of Subsection 3.2 will not work as-is.

To tackle this problem, we construct an explicit feature mapping, which needs to be tailored to
the kernel we want to use. To give a very simple example, suppose we use the homogeneous 2nd-
degree polynomial kernel, k(r, s) = (〈r, s〉)2. It is not hard to verify that the function Ψ : Rd 7→ Rd2

,

1Admittedly, the event N = 0 should receive zero probability, as it amounts to “skipping” the sampling
altogether. However, setting P(N = 0) = 0 appears to improve the bound in this paper only in the smaller
order terms, while making the analysis in the paper more complicated.



defined via Ψ(x) = (x1x1, x1x2, . . . , xdxd), is an explicit feature mapping for this kernel. Now, if we
query two independent noisy copies x̃, x̃′ of x, we have that the expectation of the random vector
(x̃1x̃

′
1, x̃1x̃

′
2, . . . , x̃dx̃

′
d) is nothing more than Ψ(x). Thus, we can construct unbiased estimates of

Ψ(x) in the RKHS. Of course, this example pertains to a very simple RKHS with a finite dimensional
representation. By a randomization trick somewhat similar to the one in Subsection 3.2, we can
adapt this approach to infinite dimensional RKHS as well. In a nutshell, we represent Ψ(x) as an
infinite-dimensional vector, and its noisy unbiased estimate is a vector which is non-zero on only
finitely many entries, using finitely many noisy queries. Moreover, inner products between these
estimates can be done efficiently, allowing us to implement the learning algorithms, and use the
resulting predictor on test instances.

4 Main Results

4.1 Algorithm

We present our algorithmic approach in a modular form. We start by introducing the main algorithm,
which contains several subroutines. Then we prove our two main results, which bound the regret of
the algorithm, the number of queries to the oracle, and the running time for two types of kernels:
dot product and Gaussian (our results can be extended to other kernel types as well). In itself, the
algorithm is nothing more than a standard online gradient descent algorithm with a standard O(

√
T )

regret bound. Thus, most of the proofs are devoted to a detailed discussion of how the subroutines
are implemented (including explicit pseudo-code). In this section, we just describe one subroutine,
based on the techniques discussed in Sec. 3. The other subroutines require a more detailed and
technical discussion, and thus their implementation is described as part of the proofs in Sec. 5. In
any case, the intuition behind the implementations and the techniques used are described in Sec. 3.

For simplicity, we will focus on a finite-horizon setting, where the number of online rounds T
is fixed and known to the learner. The algorithm can easily be modified to deal with the infinite
horizon setting, where the learner needs to achieve sub-linear regret for all T simultaneously. Also,
for the remainder of this subsection, we assume for simplicity that ` is a classification loss, namely
can be written as a function of `(y〈w,Ψ(x)〉). It is not hard to adapt the results below to the case
where ` is a regression loss (where ` is a function of 〈w,Ψ(x)〉 − y).

We note that at each round, the algorithm below constructs an object which we denote as Ψ̃(xt).
This object has two interpretations here: formally, it is an element of a reproducing kernel Hilbert
space (RKHS) corresponding to the kernel we use, and is equal in expectation to Ψ(xt). However,
in terms of implementation, it is simply a data structure consisting of a finite set of vectors from
Rd. Thus, it can be efficiently stored in memory and handled even for infinite-dimensional RKHS.

Algorithm 1 Kernel Learning Algorithm with Noisy Input
Parameters: Learning rate η > 0, number of rounds T , sample parameter p > 1.
Initialize:

αi = 0 for all i = 1, . . . , T .
Ψ̃(xi) for all i = 1, . . . , T

// Ψ̃(xi) is a data structure which can store a variable number of vectors in Rd
For t = 1 . . . T

Define wt =
∑t−1
i=1 αiΨ̃(xi)

Receive At, yt // The oracle At provides noisy estimates of xt
Let Ψ̃(xt) := Map Estimate(At, p) // Get unbiased estimate of Ψ(xt) in the RKHS
Let g̃t := Grad Length Estimate(At, yt, p) // Get unbiased estimate of `′(yt〈wt,Ψ(xt)〉)
Let αt := −g̃tη/

√
T // Perform gradient step

Let ñt :=
∑t
i=1

∑t
j=1 αt,iαt,jProd(Ψ̃(xi), Ψ̃(xj))

// Compute squared norm, where Prod(Ψ̃(xi), Ψ̃(xj)) returns 〈Ψ̃(xi), Ψ̃(xj)〉
If ñt > Bw // If norm squared is larger than Bw, then project

Let αi := αi
√
Bw

ñt
for all i = 1, . . . , t

Like Ψ̃(xt), wt+1 has also two interpretations: formally, it is an element in the RKHS, as defined
in the pseudocode. In terms of implementation, it is defined via the data structures Ψ̃(x1), . . . , Ψ̃(xt)
and the values of α1, . . . , αt at round t. To apply this hypothesis on a given instance x, we compute



∑t
i=1 αt,iProd(Ψ̃(xi),x′), where Prod(Ψ̃(xi),x′) is a subroutine which returns 〈Ψ̃(xi),Ψ(x′)〉 (a

pseudocode is provided as part of the proofs later on).
We now turn to the main results pertaining to the algorithm. The first result shows what regret

bound is achievable by the algorithm for any dot-product kernel, as well as characterize the number
of oracle queries per instance, and the overall running time of the algorithm.

Theorem 1. Assume that the loss function ` has an analytic derivative `′(a) =
∑∞
n=0 γna

n for all
a in its domain, and let `′+(a) =

∑∞
n=0 |γn|an (assuming it exists). Assume also that the kernel

k(x,x′) can be written as Q(〈x,x′〉) for all x,x′ ∈ Rd. Finally, assume that E[‖x̃t‖2] ≤ Bx̃ for any
x̃t returned by the oracle at round t, for all t = 1, . . . , T . Then, for all Bw > 0 and p > 1, it is
possible to implement the subroutines of Algorithm 1 such that:

• The expected number of queries to each oracle At is p
(p−1)2 .

• The expected running time of the algorithm is O
(
T 3
(

1 + dp
(p−1)2

))
.

• If we run Algorithm 1 with η = Bw

/√
u`′+

(√
(p− 1)u

)
, where u = Bw

(
p
p−1

)2

Q(pBx̃), then

E

[
T∑
t=1

`(yt〈wt,Ψ(xt)〉)− min
w : ‖w‖2≤Bw

T∑
t=1

`(yt〈w,Ψ(xt)〉)

]
≤ `′+

(√
(p− 1)u

)√
uT .

The expectations are with respect to the randomness of the oracles and the algorithm throughout its
run.

We note that the distribution of the number of oracle queries can be specified explicitly, and
it decays very rapidly - see the proof for details. Also, for simplicity, we only bound the expected
regret in the theorem above. If the noise is bounded almost surely or with sub-Gaussian tails (rather
than just bounded variance), then it is possible to obtain similar guarantees with high probability,
by relying on Azuma’s inequality or variants thereof (see for example [4]).

We now turn to the case of Gaussian kernels.

Theorem 2. Assume that the loss function ` has an analytic derivative `′(a) =
∑∞
n=0 γna

n for all
a in its domain, and let `′+(a) =

∑∞
n=0 |γn|an (assuming it exists). Assume that the kernel k(x,x′)

is defined as exp(−‖x − x‖2/σ2). Finally, assume that E[‖x̃t‖2] ≤ Bx̃ for any x̃t returned by the
oracle at round t, for all t = 1, . . . , T . Then for all Bw > 0 and p > 1 it is possible to implement
the subroutines of Algorithm 1 such that

• The expected number of queries to each oracle At is 3p
(p−1)2 .

• The expected running time of the algorithm is O
(
T 3
(

1 + dp
(p−1)2

))
.

• If we run Algorithm 1 with η = Bw

/√
u`′+

(√
(p− 1)u

)
, where

u = Bw

(
p

p− 1

)3

exp
(√

pBx̃ + 2p
√
Bx̃

σ2

)
then

E

[
T∑
t=1

`(yt〈wt,Ψ(xt)〉)− min
w : ‖w‖2≤Bw

T∑
t=1

`(yt〈w,Ψ(xt)〉)

]
≤ `′+(

√
(p− 1)u)

√
uT .

The expectations are with respect to the randomness of the oracles and the algorithm throughout its
run.

As in Thm. 1, note that the number of oracle queries has a fast decaying distribution. Also, note
that with Gaussian kernels, σ2 is usually chosen to be on the order of the example’s squared norms.
Thus, if the noise added to the examples is proportional to their original norm, we can assume that
Bx̃/σ

2 = O(1), and thus u which appears in the bound is also bounded by a constant.
As previously mentioned, most of the subroutines are described in the proofs section, as part

of the proof of Thm. 1. Here, we only show how to implement Grad Length Estimate subroutine,
which returns the gradient length estimate g̃t. The idea is based on the technique described in



Subsection 3.2. We prove that g̃t is an unbiased estimate of `′(yt〈wt,Ψ(xt)〉), and bound E[g̃2
t ]. As

discussed earlier, we assume that `′(·) is analytic and can be written as `′(a) =
∑∞
n=0 γna

n.

Subroutine 1 Grad Length Estimate(At, yt, p)
Sample nonnegative integer n according to P(n) = (p− 1)/pn+1

For j = 1, . . . , n
Let Ψ̃(xt)j := Map Estimate(At) // Get unbiased estimate of Ψ(xt) in the RKHS

Return g̃t := ytγn
pn+1

p−1

∏n
j=1

(∑t−1
i=1 αt−1,iProd(Ψ̃(xi), Ψ̃(xt)j)

)

Lemma 2. Assume that E[Ψ̃(xt)] = Ψ(xt), and that Prod(Ψ̃(x), Ψ̃(x′)) returns 〈Ψ̃(x), Ψ̃(x′)〉 for
all x,x′. Then for any given wt = αt−1,1Ψ̃(x1) + · · ·+ αt−1,t−1Ψ̃(xt−1) it holds that

Et[g̃t] = yt`
′(yt〈wt,Ψ(xt)〉) and Et[g̃2

t ] ≤ p

p− 1
`
′

+

(√
pBwBΨ̃(x)

)2

where the expectation is with respect to the randomness of Subroutine 1, and `′+(a) =
∑∞
n=0 |γn|an.

Proof. The result follows from Lemma 1, where g̃t corresponds to the estimator θ, the function f
corresponds to `′, and the random variable X corresponds to 〈wt, Ψ̃(xt)〉 (where Ψ̃(xt) is random
and wt is held fixed). The term E[X2] in Lemma 1 can be upper bounded as

Et
[(
〈wt, Ψ̃(xt)〉

)2] ≤ ‖wt‖2 Et
[
‖Ψ̃(xt)‖2

]
≤ BwBΨ̃(x) .

4.2 Loss Function Examples
Theorems 1 and 2 both deal with generic loss functions ` whose derivative can be written as∑∞
n=0 γna

n, and the regret bounds involve the functions `′+(a) =
∑∞
n=0 |γn|an. Below, we present a

few examples of loss functions and their corresponding `′+. As mentioned earlier, while the theorems
in the previous subsection are in terms of classification losses (i.e., ` is a function of y〈w,Ψ(x)〉),
virtually identical results can be proven for regression losses (i.e., ` is a function of 〈w,Ψ(x)〉 − y),
so we will give examples from both families. Working out the first two examples is straightforward.
The proofs of the other two appear in Sec. 5. The loss functions are illustrated graphically in Fig. 1.

Example 1. For the squared loss function, `(〈w,x〉, y) = (〈w,x〉− y)2, we have `′+
(√

(p− 1)u)
)

=
2
√

(p− 1)u.

Example 2. For the exponential loss function, `(〈w,x〉, y) = ey〈w,x〉, we have `′+
(√

(p− 1)u
)

=

e
√

(p−1)u.

Example 3. Consider a “smoothed” absolute loss function `σ(〈w,Ψ(x)〉 − y), defined as an an-
tiderivative of Erf(sa) for some s > 0 (see proof for exact analytic form). Then we have that
`′+
(√

(p− 1)u
)
≤ 1

2 + 1

s
√
π(p−1)u

(
es

2(p−1)u − 1
)

.

Example 4. Consider a “smoothed” hinge loss `(y〈w,Ψ(x)〉), defined as an antiderivative of
(Erf(s(a − 1)) − 1)/2 for some s > 0 (see proof for exact analytic form). Then we have that
`′+
(√

(p− 1)u
)
≤ 2

s
√
π(p−1)u

(
es

2(p−1)u−1
)

.

For any s, the loss function in the last two examples are convex, and respectively approximate
the absolute loss

∣∣〈w,Ψ(x)〉− y
∣∣ and the hinge loss max

{
0, 1− y〈w,Ψ(x)〉

}
arbitrarily well for large

enough s. Fig. 1 shows these loss functions graphically for s = 1. Note that s need not be large
in order to get a good approximation. Also, we note that both the loss itself and its gradient are
computationally easy to evaluate.

Finally, we remind the reader that as discussed in Subsection 3.2, performing an unbiased estimate
of the gradient for non-differentiable losses directly (such as the hinge loss or absolute loss) appears
to be impossible in general. On the flip side, if one is willing to use a random number of queries
with polynomial rather than exponential tails, then one can achieve much better sample complexity
results, by focusing on loss functions (or approximations thereof) which are only differentiable to a
bounded order, rather than fully analytic. This again demonstrates the tradeoff between the sample
size and the amount of information that needs to be gathered on each training example.
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Figure 1: Absolute loss, hinge loss, and smooth approximations

4.3 One Noisy Copy is Not Enough

The previous results might lead one to wonder whether it is really necessary to query the same
instance more than once. In some applications this is inconvenient, and one would prefer a method
which works when just a single noisy copy of each instance is made available. In this subsection
we show that, unfortunately, such a method cannot be found. Specifically, we prove that under
very mild assumptions, no method can achieve sub-linear regret when it has access to just a single
noisy copy of each instance. On the other hand, for the case of squared loss and linear kernels,
our techniques can be adapted to work with exactly two noisy copies of each instance,2 so without
further assumptions, the lower bound that we prove here is indeed tight. For simplicity, we prove
the result for linear kernels (i.e., where k(x,x′) = 〈x,x′〉). It is an interesting open problem to show
improved lower bounds when nonlinear kernels are used. We also note that the result crucially relies
on the learner not knowing the noise distribution, and we leave to future work the investigation of
what happens when this assumption is relaxed.

Theorem 3. Let W be a compact convex subset of Rd, and let `(·, 1) : R 7→ R satisfies the following:
(1) it is bounded from below; (2) it is differentiable at 0 with `′(0, 1) < 0. For any learning algorithm
which selects hypotheses from W and is allowed access to a single noisy copy of the instance at each
round t, there exists a strategy for the adversary such that the sequence w1,w2, . . . of predictors
output by the algorithm satisfies

lim sup
T→∞

max
w∈W

1
T

T∑
t=1

(
`(〈wt,xt〉, yt)− `(〈w,xt〉, yt)

)
> 0

with probability 1 with respect to the randomness of the oracles.

Note that condition (1) is satisfied by virtually any loss function other than the linear loss,
while condition (2) is satisfied by most regression losses, and by all classification calibrated losses,
which include all reasonable losses for classification (see [13]). The most obvious example where the
conditions are not satisfied is when `(·, 1) is a linear function. This is not surprising, because when
`(·, 1) is linear, the learner is always robust to noise (see the discussion at Sec. 3).

The intuition of the proof is very simple: the adversary chooses beforehand whether the examples
are drawn i.i.d. from a distribution D, and then perturbed by noise, or drawn i.i.d. from some
other distribution D′ without adding noise. The distributions D,D′ and the noise are designed so
that the examples observed by the learner are distributed in the same way irrespective to which
of the two sampling strategies the adversary chooses. Therefore, it is impossible for the learner
accessing a single copy of each instance to be statistically consistent with respect to both distributions
simultaneously. As a result, the adversary can always choose a distribution on which the algorithm
will be inconsistent, leading to constant regret. The full proof is presented in Section 5.3.

2In a nutshell, for squared loss and linear kernels, we just need to estimate 2(〈wt,xt〉 − yt)xt in an
unbiased manner at each round t. This can be done by computing 2(〈wt, x̃t〉 − yt)x̃

′
t, where x̃t, x̃

′
t are two

noisy copies of xt.



5 Proofs

Due to the lack of space, some of the proofs are given in the [7].

5.1 Preliminary Result
To prove Thm. 1 and Thm. 2, we need a theorem which basically states that if all subroutines in
algorithm 1 behave as they should, then one can achieve an O(

√
T ) regret bound. This is provided

in the following theorem, which is an adaptation of a standard result of online convex optimization
(see, e.g., [18]). The proof is given in [7].

Theorem 4. Assume the following conditions hold with respect to Algorithm 1:

1. For all t, Ψ̃(xt) and g̃t are independent of each other (as random variables induced by the
randomness of Algorithm 1) as well as independent of any Ψ̃(xi) and g̃i for i < t.

2. For all t, E[Ψ̃(xt)] = Ψ(xt), and there exists a constant BΨ̃ > 0 such that E[‖Ψ̃(xt)‖2] ≤ BΨ̃.

3. For all t, E[g̃t] = yt`
′(yt〈wt,Ψ(xt)〉), and there exists a constant Bg̃ > 0 such that E[g̃2

t ] ≤ Bg̃.

4. For any pair of instances x,x′, Prod(Ψ̃(x), Ψ̃(x′)) = 〈Ψ̃(x), Ψ̃(x′)〉.

Then if Algorithm 1 is run with η =
√

Bw

Bg̃BΨ̃
, the following inequality holds

E

[
T∑
t=1

`
(
yt〈wt,Ψ(xt)〉

)
− min

w : ‖w‖2≤Bw

T∑
t=1

`
(
yt〈w,Ψ(xt)〉

)]
≤
√
BwBg̃BΨ̃T .

where the expectation is with respect to the randomness of the oracles and the algorithm throughout
its run.

5.2 Proof of Thm. 1
In this subsection, we present the proof of Thm. 1. We first show how to implement the subroutines
of Algorithm 1, and prove the relevant results on their behavior. Then, we prove the theorem itself.

It is known that for k(·, ·) = Q(〈x,x′〉) to be a valid kernel, it is necessary that Q(〈x,x′〉) can
be written as a Taylor expansion

∑∞
n=0 βn(〈x,x′〉)n, where βn ≥ 0 (see theorem 4.19 in [15]). This

makes these types of kernels amenable to our techniques.
We start by constructing an explicit feature mapping Ψ(·) corresponding to the RKHS induced

by our kernel. For any x,x′, we have that

k(x,x′) =
∞∑
n=0

βn(〈x,x′〉)n =
∞∑
n=0

βn

(
d∑
i=1

xix
′
i

)n

=
∞∑
n=0

βn

d∑
k1=1

· · ·
d∑

kn=1

xk1xk2 · · ·xkn
x′k1

x′k2
· · ·x′kn

=
∞∑
n=0

d∑
k1=1

· · ·
d∑

kn=1

(√
βnxk1xk2 · · ·xkn

)(√
βnx

′
k1
x′k2
· · ·x′kn

)
.

This suggests the following feature representation: for any x, Ψ(x) returns an infinite-dimensional
vector, indexed by n and k1, . . . , kn ∈ {1, . . . , d}, with the entry corresponding to n, k1, . . . , kn being√
βnxk1 · · ·xkn . The dot product between Ψ(x) and Ψ(x′) is similar to a standard dot product

between two vectors, and by the derivation above equals k(x,x′) as required.
We now use a slightly more elaborate variant of our unbiased estimate technique, to derive an

unbiased estimate of Ψ(x). First, we sample N according to P(N = n) = (p − 1)/pn+1. Then, we
query the oracle for x for N times to get x̃(1), . . . , x̃(N), and formally define Ψ̃(x) as

Ψ̃(x) =
√
βn

pn+1

p− 1

d∑
k1=1

· · ·
d∑

kn=1

x̃
(1)
k1
· · · x̃(n)

kn
en,k1,...,kn

(2)

where en,k1,...,kn represents the unit vector in the direction indexed by n, k1, . . . , kn as explained
above. Since the oracle queries are i.i.d., the expectation of this expression is
∞∑
n=0

p− 1
pn+1

√
βn

pn+1

p− 1

d∑
k1=1

· · ·
d∑

kn=1

E
[
x̃

(1)
k1
· · · x̃(n)

kn

]
en,k1,...,kn

=
∞∑
n=0

d∑
k1=1

· · ·
d∑

kn=1

√
βnx

(1)
k1
· · ·x(n)

kn
en,k1,...,kn

which is exactly Ψ(x). We formalize the needed properties of Ψ̃(x) in the following lemma.



Lemma 3. Assuming Ψ̃(x) is constructed as in the discussion above, it holds that E[Ψ̃(x)] = Ψ(x)
for any x. Moreover, if the noisy samples x̃t returned by the oracle At satisfy E[‖x̃t‖2] ≤ Bx̃, then

E
[
‖Ψ̃(xt)‖2

]
≤ p

p− 1
Q(pBx̃)

where we recall that Q defines the kernel by k(x,x′) = Q(〈x,x′〉).

Proof. The first part of the lemma follows from the discussion above. As to the second part, note
that by (2),

E
[
‖Ψ̃(xt)‖2

]
= E

βn p2n+2

(p− 1)2

d∑
k1...,kn=1

(
x̃

(1)
t,k1
· · · x̃(N)

t,kn

)2

 = E

βn p2n+2

(p− 1)2

n∏
j=1

∥∥x̃(j)
t

∥∥2


=
∞∑
n=0

p− 1
pn+1

βn
p2n+2

(p− 1)2

(
E
[
x̃2
t

])n
=

p

p− 1

∞∑
n=0

βn
(
pE
[
x̃2
t

])n ≤ p

p− 1

∞∑
n=0

βn
(
pBx̃

)n =
p

p− 1
Q(pBx̃)

where the second-to-last step used the fact that βn ≥ 0 for all n.

Of course, explicitly storing Ψ̃(x) as defined above is infeasible, since the number of entries is
huge. Fortunately, this is not needed: we just need to store x̃(1)

t , . . . , x̃(N)
t . The representation above

is used implicitly when we calculate dot products between Ψ̃(x) and other elements in the RKHS,
via the subroutine Prod. We note that while N is a random quantity which might be unbounded,
its distribution decays exponentially fast, so the number of vectors to store is essentially bounded.

After the discussion above, the pseudocode for Map Estimate below should be self-explanatory.

Subroutine 2 Map Estimate(At, p)
Sample nonnegative integer N according to P(N = n) = (p− 1)/pn+1

Query At for N times to get x̃(1)
t , . . . , x̃(N)

t

Return x̃(1)
t , . . . , x̃(N)

t as Ψ̃(xt).

We now turn to the subroutine Prod, which given two elements in the RKHS, returns their dot
product. This subroutine comes in two flavors: either as a procedure defined over Ψ̃(x), Ψ̃(x′) and
returning 〈Ψ̃(x), Ψ̃(x′)〉 (Subroutine 3); or as a procedure defined over Ψ̃(x),x′ (Subroutine 4, where
the second element is an explicitely given vector) and returning 〈Ψ̃(x),Ψ(x′)〉. This second variant
of Prod is needed when we wish to apply the learned predictor on a new given instance x′.

Subroutine 3 Prod(Ψ̃(x), Ψ̃(x′))

Let x(1), . . . ,x(n) be the index and vectors comprising Ψ(x)
Let x′(1), . . . ,x′(n

′) be the index and vectors comprising Ψ(x′)
If n 6= n′ return 0, else return βn

p2n+2

(p−1)2

∏n
j=1〈x̃(j), x̃′(j)〉

Lemma 4. Prod(Ψ̃(x), Ψ̃(x′)) returns 〈Ψ̃(x)Ψ̃(x′)〉.

Proof. Using the formal representation of Ψ̃(x), Ψ̃(x′) in (2), we have that 〈Ψ̃(x), Ψ̃(x′)〉 is 0 when-
ever n 6= n′ (because then these two elements are composed of different unit vectors with respect to
an orthogonal basis). Otherwise, we have that

〈Ψ̃(x)Ψ̃(x′)〉 = βn
p2n+2

(p− 1)2

d∑
k1,...,kn=1

x̃
(1)
k1
· · · x̃(n)

kn
x̃
′(1)
k1
· · · x̃′(n)

kn

= βn
p2n+2

(p− 1)2

(
d∑

k1=1

x̃
(1)
k1
x̃
′(1)
k1

)
· · ·

(
d∑

kN =1

x̃
(n)
kN
x̃
′(n)
kN

)
= βn

p2n+2

(p− 1)2

N∏
j=1

(
〈x̃(j), x̃′(j)〉

)
which is exactly what the algorithm returns, hence the lemma follows.



The pseudocode for calculating the dot product 〈Ψ̃(x),Ψ(x′)〉 (where x′ is known) is very similar,
and the proof is essentially the same.

Subroutine 4 Prod(Ψ̃(x),x′)

Let n,x(1), . . . ,x(n) be the index and vectors comprising Ψ(x)
Return βn

pn+1

p−1

∏n
j=1〈x̃(j),x′〉

We are now ready to prove Thm. 1. First, regarding the expected number of queries, notice
that to run Algorithm 1, we invoke Map Estimate and Grad Length Estimate once at round t.
Map Estimate uses a random number B of queries distributed as P(B = n) = (p − 1)/pn+1, and
Grad Length Estimate invokes Map Estimate a random number C of times, distributed as P(C =
n) = (p − 1)/pn+1. The total number of queries is therefore

∑C+1
j=1 Bj , where Bj for all j are i.i.d.

copies of B. The expected value of this expression, using a standard result on the expected value
of a sum of a random number of independent random variables, is equal to (1 + E[C])E[Bj ], or(
1 + 1

p−1

)
1
p−1 = p

(p−1)2 .

In terms of running time, we note that the expected running time of Prod is O
(
1 + d

p−1

)
,

this because it performs N multiplications of inner products, each one with running time O(d),
and E[N ] = 1

p−1 . The expected running time of Map Estimate is O
(
1 + 1

p−1

)
. The expected

running time of Grad Length Estimate is O
(
1 + 1

p−1

(
1 + 1

p−1

)
+T

(
1 + d

p−1

))
, which can be written

as O
(

p
(p−1)2 + T

(
1 + d

p−1

))
. Since Algorithm 1 at each of T rounds calls Map Estimate once,

Grad Length Estimate once, Prod for O(T 2) times, and performs O(1) other operations, we get
that the overall runtime is

O

(
T

(
1 +

1
p− 1

+
p

(p− 1)2
+ T

(
1 +

d

p− 1

)
+ T 2

(
1 +

d

p− 1

)))
.

Since 1
p−1 ≤

p
(p−1)2 , we can upper bound this by

O

(
T

(
1 +

p

(p− 1)2
+ T 2

(
1 +

dp

(p− 1)2

)))
= O

(
T 3

(
1 +

dp

(p− 1)2

))
.

The regret bound in the theorem follows from Thm. 4, with the expressions for constants following
from Lemma 2, Lemma 3, and Lemma 4.

5.3 Proof Sketch of Thm. 3

To prove the theorem, we use a more general result which leads to non-vanishing regret, and then
show that under the assumptions of Thm. 3, the result holds. The proof of the result is given in [7].

Theorem 5. Let W be a compact convex subset of Rd and pick any learning algorithm which selects
hypotheses from W and is allowed access to a single noisy copy of the instance at each round t. If
there exists a distribution over a compact subset of Rd such that

argmin
w∈W

E
[
`(〈w,x〉, 1)

]
and argmin

w∈W
`
(
〈w,E[x]〉, 1

)
(3)

are disjoint, then there exists a strategy for the adversary such that the sequence w1,w2, · · · ∈ W of
predictors output by the algorithm satisfies

lim sup
T→∞

max
w∈W

1
T

T∑
t=1

(
`(〈wt,xt〉, yt)− `(〈w,xt〉, yt)

)
> 0

with probability 1 with respect to the randomness of the oracles.

Another way to phrase this theorem is that the regret cannot vanish, if given examples sampled
i.i.d. from a distribution, the learning problem is more complicated than just finding the mean of the
data. Indeed, the adversary’s strategy we choose later on is simply drawing and presenting examples
from such a distribution. Below, we sketch how we use Thm. 5 in order to prove Thm. 3. A full
proof is provided in [7].



We construct a very simple one-dimensional distribution, which satisfies the conditions of Thm. 5:
it is simply the uniform distribution on {3x,−x}, where x is the vector (1, 0, . . . , 0). Thus, it is
enough to show that

argmin
w : |w|2≤Bw

`(3w, 1) + `(−w, 1) and argmin
w : |w|2≤Bw

`(w, 1) (4)

are disjoint, for some appropriately chosen Bw. Assuming the contrary, then under the assumptions
on `, we show that the first set in Eq. (4) is inside a bounded ball around the origin, in a way
which is independent of Bw, no matter how large it is. Thus, if we pick Bw to be large enough,
and assume that the two sets in Eq. (4) are not disjoint, then there must be some w such that both
`(3w, 1) + `(−w, 1) and `(w, 1) have a subgradient of zero at w. However, this can be shown to
contradict the assumptions on `, leading to the desired result.

6 Future Work

There are several interesting research directions worth pursuing in the noisy learning framework
introduced here. For instance, doing away with unbiasedness, which could lead to the design of
estimators that are applicable to more types of loss functions, for which unbiased estimators may
not even exist. Also, it would be interesting to show how additional information one has about the
noise distribution can be used to design improved estimates, possibly in association with specific
losses or kernels. Another open question is whether our lower bound (Thm. 3) can be improved
when nonlinear kernels are used.
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