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Abstract

We present a new family of subgradient methods that dynamically incorporate knowledge of the
geometry of the data observed in earlier iterations to perform more informative gradient-based
learning. The adaptation, in essence, allows us to find needles in haystacks in the form of very
predictive yet rarely observed features. Our paradigm stems from recent advances in online learning
which employ proximal functions to control the gradient steps of the algorithm. We describe and
analyze an apparatus for adaptively modifying the proximalfunction, which significantly simplifies
the task of setting a learning rate and results in regret guarantees that are provably as good as the
best proximal function that can be chosen in hindsight. We corroborate our theoretical results with
experiments on a text classification task, showing substantial improvements for classification with
sparse datasets.

1 Introduction
In many applications of online and stochastic learning, theinput instances are of very high dimension, yet
within any particular instance only a few features are non-zero. It is often the case, however, that the in-
frequently occurring features are highly informative and discriminative. The informativeness of rare features
has led practitioners to craft domain-specific feature weightings, such as TF-IDF (Salton and Buckley, 1988),
which pre-emphasize infrequently occurring features. We use this old idea as a motivation for applying mod-
ern learning-theoretic techniques to the problem of onlineand stochastic learning, focusing specifically on
(sub)gradient methods.

Standard stochastic subgradient methods largely follow a predetermined procedural scheme that is obliv-
ious to the characteristics of the data being observed. In contrast, our algorithms dynamically incorporate
knowledge of the geometry of the data from earlier iterations to perform more informative gradient-based
learning. Informally, our procedures associate frequently occurring features with low learning rates and in-
frequent features high learning rates. This construction prompts the learner to “take notice” each time an
infrequent feature is observed. Thus, the adaptation facilitates identification and adaptation of highly predic-
tive but comparatively rare features.

1.1 The Adaptive Gradient Algorithm

For simplicity, consider the basic online convex optimization setting. The algorithm iteratively makes a
predictionxt ∈ X , whereX ⊆ R

d is a closed convex set, and then receives a convex loss functionft. Define
the regret with respect to the (optimal) predictorx∗ ∈ X as

R(T ) ,
T
∑

t=1

[ft(xt)− ft(x
∗)] .

To achieve low regret, standard subgradient algorithms move the predictorxt in the opposite direction of
the subgradientgt ∈ ∂ft(xt) of the loss via the projected gradient update (e.g.Zinkevich, 2003)

xt+1 = ΠX (xt − ηgt) .

Our algorithm, called ADAGRAD, makes a second-order correction to the predictor using theprevious loss
functions. Denote the projection of a pointy ontoX by ΠAX (y) = argminx∈X ‖x− y‖A (where‖x‖A =
√

〈x,Ax〉). In this notation, our adaptation of gradient descent employs the update

xt+1 = Π
G

1/2
t

X

(

xt − ηG
−1/2
t gt

)

, (1)



where the matrixGt =
∑t
τ=1 gτgτ

⊤ is the outer product of all previous subgradients. The abovealgorithm
may be computationally impractical in high dimensions since it requires computation of the matrix square
root ofGt, the outer product matrix. We therefore also analyze a version in which we usediag(Gt), the
diagonal of the outer product matrix, instead ofGt:

xt+1 = Π
diag(Gt)

1/2

X

(

xt − η diag(Gt)
−1/2gt

)

. (2)

This latter update rule can be computed in linear time. Moreover, as we discuss later, when the vectorsgt are
sparse the update can often be performed in time proportional to the support of the gradient.

Let us compare the regret bounds attained by both variants ofgradient descent. Let the diameter ofX
be bounded, sosupx,y∈X ‖x− y‖2 ≤ D2. Then Zinkevich’s analysis of online gradient descent—withthe
optimal choice inhindsightfor the stepsizeη—achieves regret

R(T ) ≤
√
2D2

√

√

√

√

T
∑

t=1

‖gt‖22 . (3)

WhenX is bounded viasupx,y∈X ‖x− y‖∞ ≤ D∞, the following corollary is a consequence of our main
Theorem5.

Corollary 1 Let the sequence{xt} ⊂ R
d be generated by the update in Eq. (6) and letmaxt ‖x∗ − xt‖∞ ≤

D∞. Then with stepsizeη = D∞/
√
2, for anyx∗,

R(T ) ≤
√
2dD∞

√

√

√

√ inf
s�0,〈1,s〉≤d

T
∑

t=1

‖gt‖2diag(s)−1 =
√
2D∞

d
∑

i=1

‖g1:T,i‖2 .

The important parts of the bound are the infimum under the root, which allows us to perform better than using
the identity matrix, and the fact that the stepsize is easy toset a priori. For example, ifX = {x : ‖x‖∞ ≤ 1},
thenD2 = 2

√
d whileD∞ = 2. In the case of learning a dense predictor over a box, the bound in Corollary1

is thus better than Eq. (3) as the identity matrix belongs to the set over which we take the infimum.

1.2 Improvement and Motivating Examples

In Section6, we give empirical evidence in favor of adaptive algorithms. Here we give a few theoretical
examples that show that for sparse data—input sequences wheregt has low cardinality—the adaptive methods
are likely to perform better than non-adaptive methods. In all the cases we consider in this section we use the
hinge loss,ft(x) = [1− yt 〈zt, x〉]+, whereyt is the label of examplet andzt ∈ R

d is a data vector.
To begin, consider the following example of sparse random data. Assume that at each roundt, feature

i appears with probabilitypi = min{1, ci−α} for someα ≥ 2 and a constantc. Suppose also that with
probability1, at least one feature appears, for instance by settingp = 1. Taking the expectation of the bound
in Corollary1, we have

E

d
∑

i=1

‖g1:T,i‖2 =
d
∑

i=1

E

√

|{t : |gt,i| = 1}| ≤
d
∑

i=1

√

E|{t : |gt,i| = 1}| =
d
∑

i=1

√

piT

where to obtain the inequality above we used Jensen’s inequality. Now, notice that for the rightmost sum,
we havec

∑d
i=1 i

−α/2 = O(log d) sinceα ≥ 2. If the domain is a hypercube,X = {x : ‖x‖∞ ≤ 1}, then
D∞ = 2. Thus, the regret bound of ADAGRAD is R(T ) = O(log d

√
T ). In contrast, the standard regret

bound from Eq. (3) hasD2 = 2
√
d, and we know that‖gt‖22 ≥ 1, yielding a regret boundR(T ) = O(

√
dT ).1

Thus, ADAGRAD’s regret guarantee is exponentially smaller than the non-adaptive regret bound as a function
of dimension for this sparse data setting.

Next we give two concrete examples for which the adaptive methods learn a perfect predictor afterd
iterations, while standard online gradient descent (Zinkevich, 2003) suffers much higher loss. We assume the
domainX is compact and thus for online gradient descent we setηt = 1/

√
t, which givesO(

√
T ) regret.

Diagonal Adaptation In this first example, we consider the diagonal version of ourproposed update in
Eq. (2) with X = {x : ‖x‖∞ ≤ 1}. Evidently, this choice results in the updatext+1 = xt−η diag(Gt)−1/2gt
followed by projection ontoX . Let ei denote theith unit basis vector, and assume that for eacht, zt = ±ei
for somei. Also letyt = sign(〈11, zt〉) so that there exists a perfect classifierx∗ = 1 ∈ X . We initializex1

1 Forα ∈ (1, 2), ADAGRAD has regretR(T ) = O(d1−α/2
√
T ) = o(

√
dT ).



to be the zero vector. On roundst = 1, . . . , d, we setzt = ±et, selecting the sign at random. It is clear that
both diagonal adaptive descent and online gradient descentsuffer a unit loss on each of the firstd examples.
However, the updates to parameterxi on iterationi differ and amount to

xt+1 = xt + et (ADAGRAD) xt+1 = xt +
1√
t
et (Gradient Descent) .

After the firstd rounds, the adaptive predictor hasxd+1 = xd+τ = 11 for all τ ≥ 1 and suffers no fur-
ther losses. The magnitude of the majority of the coordinates for gradient descent, though, is bounded by
∑t
i=1

1√
d/2+id

≤ 2
√
t√
d

after td iterations. Hence, forΩ(
√
d) iterations, the loss suffered per coordinate is

bounded from zero, for a total loss ofΩ(d
√
d) (compared withO(d) for ADAGRAD). With larger stepsizes

η/
√
t, gradient descent may suffer lower loss; however, an adversary can playzt = e1 indefinitely, forcing

online gradient descent to sufferΩ(d2) loss while ADAGRAD suffers constant regret per dimension.

Full Matrix Adaptation The above construction applies to the full matrix algorithmof Eq. (1) as well,
but in more general scenarios, as per the following example.When using full matrix proximal functions
we setX = {x : ‖x‖2 ≤

√
d}. Let V = [v1 . . . vd] ∈ R

d×d be an orthonormal matrix. Instead ofzt
cycling through the unit vectors, we havezt cycle through thevi so thatzt = ±v(t mod d)+1. We let the

labelyt = sign(
〈

11, V ⊤zt
〉

) = sign(
∑d
i=1 〈vi, zt〉). We provide an elaborated explanation in the full version

of this paper (Duchi et al., 2010a). Intuitively, ADAGRAD needs to observe each orthonormal vectorvi only
once while stochastic gradient descent’s loss is againΩ(d

√
d).

1.3 Framework and Outline of Results

Before describing our results formally, let us establish notation. Vectors and scalars are lower case italic
letters, such asx ∈ X . We denote a sequence of vectors by subscripts, i.e.xt, xt+1, . . ., and entries of each
vector by an additional subscript, e.g.xt,j . The subdifferential set of a functionf evaluated atx is denoted
∂f(x), and a particular vector in the subdifferential set is denoted byf ′(x) ∈ ∂f(x) or gt ∈ ∂ft(xt). We
use〈x, y〉 to denote the inner product betweenx andy. The Bregman divergence associated with a strongly
convex and differentiable functionψ is

Bψ(x, y) = ψ(x)− ψ(y)− 〈∇ψ(y), x− y〉 .

For a matrixA ∈ R
d×d, diag(A) ∈ R

d denotes its diagonal, while for a vectors ∈ R
d, diag(s) denotes

the diagonal matrix withs as its diagonal. We also make frequent use of the following two matrices. Let
g1:t = [g1 · · · gt] denote the matrix obtained by concatenating the subgradient sequence. We denote theith
row of this matrix, which amounts to the concatenation of theith component of each subgradient we observe,
by g1:t,i. Lastly, we define the outer product matrixGt =

∑t
τ=1 gτgτ

⊤.
We describe and analyze several different online learning algorithms and their stochastic convex opti-

mization counterparts. Formally, we consider online learning with a sequence of composite functionsφt.
Each function is of the formφt(x) = ft(x) + ϕ(x) whereft andϕ are (closed) convex functions. In the
learning settings we study,ft is either an instantaneous loss or a stochastic estimate of the objective function.
The functionϕ serves as a fixed regularization function and is typically used to control the complexity ofx.
At each round the algorithm makes a predictionxt ∈ X , whereX ⊆ R

d is a closed convex set, and then
receives the functionft. We define the regret with respect to the (optimal) predictorx∗ ∈ X as

Rφ(T ) ,

T
∑

t=1

[φt(xt)− φt(x
∗)] =

T
∑

t=1

[ft(xt) + ϕ(xt)− ft(x
∗)− ϕ(x∗)] . (4)

Our analysis applies to multiple methods for minimizing theregret defined in Eq. (4). The first is Nes-
terov’s primal-dual subgradient method (Nesterov, 2009), and in particularXiao’s 2009extension, regularized
dual averaging (RDA) (Xiao, 2009), and the follow-the-regularized-leader (FTRL) family ofalgorithms (e.g.
Kalai and Vempala, 2003; Hazan et al., 2006). In the primal-dual subgradient method the algorithm makes a
predictionxt on roundt using the average gradientḡt = 1

t

∑t
τ=1 gτ . The update encompasses a trade-off be-

tween a gradient-dependent linear term, the regularizerϕ, and a strongly-convex termψt for well-conditioned
predictions. Hereψt is theproximal term. The update amounts to solving the problem

xt+1 = argmin
x∈X

{

η 〈ḡt, x〉+ ηϕ(x) +
1

t
ψt(x)

}

, (5)

whereη is a step-size. The second method also has many names, such asproximal gradient, forward-
backward splitting, and composite mirror descent (Tseng, 2008; Duchi and Singer, 2009; Duchi et al., 2010b).



We use the term composite mirror descent. The composite mirror descent method employs a more immediate
trade-off between the current gradientgt, ϕ, and staying close toxt using the proximal functionψ,

xt+1 = argmin
x∈X

{η 〈gt, x〉+ ηϕ(x) +Bψt
(x, xt)} . (6)

Our work focuses on temporal adaptation of the proximal function in a data driven way, while previous work
simply setsψt ≡ ψ, ψt(·) =

√
tψ(·), orψt(·) = tψ(·) for some fixedψ.

We provide formal analyses equally applicable to the above two updates and show how to automatically
choose the functionψt so as to achieve asymptotically small regret. We describe and analyze two algorithms.
Both algorithms use squared Mahalanobis norms as their proximal functions, settingψt(x) = 1

2 〈x,Htx〉 for
a symmetric matrixHt � 0. The first uses diagonal matrices while the second constructs full dimensional
matrices. Concretely, we set

Ht = diag(Gt)
1/2 (Diagonal) and Ht = G

1/2
t (Full) . (7)

Plugging the appropriate matrix from the above equation into ψt in Eq. (5) or Eq. (6) gives rise to our
ADAGRAD family of algorithms. Informally, we obtain algorithms similar to second-order gradient descent
by constructing approximations to the Hessian of the functionsft. These approximations are conservative
since we rely on the root of the gradient matrices.

We now outline our results, deferring formal statements of the theorems to later sections. Recall the
definitions ofg1:t as the matrix of concatenated subgradients andGt as the outer product matrix in the
prequel. When the proximal functionψt(x) =

〈

x, diag(Gt)
1/2x

〉

, the ADAGRAD algorithm has bounds
attainable in time at most linear in the dimensiond of the problem of

Rφ(T ) = O
(

‖x∗‖∞
d
∑

i=1

‖g1:T,i‖2
)

and Rφ(T ) = O
(

max
t≤T

‖xt − x∗‖∞
d
∑

i=1

‖g1:T,i‖2
)

.

We also show that

d
∑

i=1

‖g1:T,i‖2 = d1/2

√

√

√

√inf
s

{

T
∑

t=1

〈gt, diag(s)−1gt〉 : s � 0, 〈11, s〉 ≤ d

}

.

The ADAGRAD algorithm with full matrix divergences entertains bounds of the form

Rφ(T ) = O
(

‖x∗‖2 tr(G
1/2
T )

)

and Rφ(T ) = O
(

max
t≤T

‖xt − x∗‖2 tr(G
1/2
T )

)

.

Similar to the diagonal proximal function case, we further show that

tr
(

G
1/2
T

)

= d1/2

√

√

√

√inf
S

{

T
∑

t=1

〈gt, S−1gt〉 : S � 0, tr(S) ≤ d

}

.

We formally state the above regret bounds in Theorems5 and8, respectively, and we give further discus-
sion in their corollaries. Essentially, the theorems give oracle inequalities for online optimization. Though the
specific sequence of gradientsgt received by the algorithm changes when there is adaptation,the inequalities
say that our regret bounds are as good as the best quadratic proximal function in hindsight.

1.4 Related Work

The idea of adaptation in first order (gradient) methods is byno means new and can be traced back at least to
the 1970s. There, we findShor’s work on space dilation methods (1972) as well as variable metric methods,
such as the BFGS family of algorithms (e.g.Fletcher, 1970). This older work usually assumes that the func-
tion to be minimized is differentiable and, to our knowledge, did not consider stochastic, online, or composite
optimization. More recently,Bordes et al.(2009) proposed carefully designed Quasi-Newton stochastic gra-
dient descent, which is similar in spirit to our methods. However, their convergence results assume a smooth
objective function whose Hessian is strictly positive definite and bounded away from0. Our results are ap-
plicable in more general settings. In the online learning literature, there are results on adaptively choosing a
learning rateηt based on data seen so far (Auer et al., 2002; Bartlett et al., 2007). We, in contrast, actively
adapt the proximal functionψ itself.

The framework that is most related to ours is probably confidence weighted learning, whose most recent
success is the adaptive regularization of weights algorithm (AROW) ofCrammer et al.(2009). Crammer et al.
give a mistake-bound analysis for online binary classification, which is similar in spirit to the second-order



Perceptron (Cesa-Bianchi et al., 2005). AROW maintains a mean prediction vectorµt ∈ R
d and a covariance

matrixΣt ∈ R
d×d overµt as well. At every step of the algorithm, the learner receivesa pair(zt, yt) where

zt ∈ R
d is thetth example andyt ∈ {−1,+1} is the label. Whenever the predictorµt has margin less than

1, AROW performs the update

βt =
1

〈zt,Σtzt〉+ λ
, αt = [1− yt 〈zt, µt〉]+ , µt+1 = µt+αtΣtytzt, Σt+1 = Σt−βtΣtxtx⊤t Σt. (8)

In the above, one can setΣt to be diagonal, which reduces run-time and storage requirements but still gives
good performance (Crammer et al., 2009). In contrast to AROW, the ADAGRAD family uses theroot of a
covariance-like matrix, a consequence of our formal analysis. Crammer et al.’s algorithm and our algorithms
have similar run times—linear in the dimensiond—when using diagonal matrices. However, when using full
matrices the runtime of their algorithm isO(d2), which is faster than ours.

Our approach differs from previous approaches since instead of focusing on a particular loss function
or mistake bound, we view the problem of adapting the proximal function as an online (meta) learning
problem. We then obtain bounds comparable to the bound obtained using the best proximal function chosen
in hindsight. Our bounds are applicable to any convex Lipschitz loss and composite objective functions.

2 Adaptive Proximal Functions

In this section we give the template regret bounds for the family of subgradient algorithms we consider. Exam-
ining several well-known optimization bounds (e.g.Beck and Teboulle, 2003; Nesterov, 2009; Duchi et al.,
2010b), we see that we can bound the regret as

Rφ(T ) ≤
1

η
Bψ(x

∗, x1) +
η

2

T
∑

t=1

‖f ′t(xt)‖
2
∗ . (9)

Most of the regret depends on dual-norms off ′t(xt), where the dual norm in turn depends on the choice of
ψ. This naturally leads to the question of whether we can modify the proximal termψ along the run of the
algorithm in order to lower the contribution of the aforementioned norms. We achieve this goal by keeping
second order information about the sequenceft.

We begin by providing two corollaries based on previous workthat give the regret of our base algorithms
when the proximal functionψt is allowed to change. We assume thatψt is monotonically non-decreasing,
that is,ψt+1(x) ≥ ψt(x). We also assume thatψt is 1-strongly convex with respect to a time-dependent
seminorm‖·‖ψt

. Formally,

ψt(y) ≥ ψt(x) + 〈∇ψt(x), y − x〉+ 1

2
‖x− y‖2ψt

.

Strong convexity is guaranteed if and only ifBψt
(x, y) ≥ 1

2 ‖x− y‖2ψt
. We also denote the dual norm of

‖·‖ψt
by ‖·‖ψ∗

t
. For completeness, we provide the proofs of following two corollaries in the long version of

this paper (Duchi et al., 2010a), though they build straightforwardly onDuchi et al.(2010b) andXiao (2009).
For the primal-dual subgradient update of Eq. (5), the following regret bound holds.

Corollary 2 Let the sequence{xt} be defined by the update in Eq. (5). Then for anyx∗, we have

Rφ(T ) ≤
1

η
ψT (x

∗) +
η

2

T
∑

t=1

‖f ′t(xt)‖
2
ψ∗

t−1

. (10)

For composite mirror descent algorithms (Eq. (6)), under the assumption w.l.o.g. thatϕ(x1) = 0, we have

Corollary 3 Let the sequence{xt} be defined by the update in Eq. (6). Then for anyx∗,

Rφ(T ) ≤
1

η
Bψ1

(x∗, x1) +
1

η

T−1
∑

t=1

[

Bψt+1
(x∗, xt+1)−Bψt

(x∗, xt+1)
]

+
η

2

T
∑

t=1

‖f ′t(xt)‖
2
ψ∗

t
. (11)

The above corollaries allow us to prove regret bounds for a family of algorithms that iteratively modify
the proximal functionsψt.



Algorithm 1 ADAGRAD with Diagonal Matrices

Input: η > 0, δ ≥ 0. Initializex1 = 0, g1:0 = []
for t = 1 to T do

Suffer lossft(xt), receive subgradientgt ∈ ∂ft(xt) of ft atxt
Updateg1:t = [g1:t−1 gt], st,i = ‖g1:t,i‖2
SetHt = δI + diag(st), ψt(x) = 1

2 〈x,Ht x〉
Primal-Dual Subgradient Update (Eq. (5)):

xt+1 = argmin
x∈X

{

η

〈

1

t

t
∑

τ=1

gτ , x

〉

+ ηϕ(x) +
1

t
ψt(x)

}

.

Composite Mirror Descent Update (Eq. (6)):

xt+1 = argmin
x∈X

{η 〈gt, x〉+ ηϕ(x) +Bψt
(x, xt)} .

end for

3 Diagonal Matrix Proximal Functions

For now we restrict ourselves to using diagonal matrices to define matrix proximal functions and (semi)norms.
This restriction serves a two-fold purpose. First, the analysis for the general case is somewhat complicated
and thus the analysis of the diagonal case serves as a proxy for better understanding. Second, in problems with
high dimension where we expect this type of modification to help, maintaining more complicated proximal
functions is likely to be prohibitively expensive. A benefitof the adaptive algorithms is that there is no need to
keep track of a learning rate as in previous algorithms, as itis implicitly given by the growth of the proximal
function. To remind the reader,g1:t,i is theith row of the matrix obtained by concatenating the subgradients
from iteration1 throught in the online algorithm.

To provide some intuition for Alg.1, let us find the retrospectively optimal proximal function.If the
proximal function chosen isψ(x) = 1

2 〈x, diag(s)x〉 for somes � 0, then the associated norm is‖x‖2 =

〈x, diag(s)x〉 and the dual norm is‖x‖2∗ =
〈

x, diag(s)−1x
〉

. Recalling Eq. (9), we consider the problem

min
s

T
∑

t=1

〈

g, diag(s)−1g
〉

s.t. s � 0, 〈11, s〉 ≤ c .

This problem is solved by settingsi = ‖g1:T,i‖2 and scalings so that〈s, 11〉 = c. To see this, we can write
the Lagrangian of the minimization problem by introducing multipliersλ � 0 andθ ≥ 0 to get

L(s, λ, θ) =
d
∑

i=1

‖g1:T,i‖22
si

− 〈λ, s〉+ θ(〈1, s〉 − c).

Taking derivatives to find the infimum ofL, we see that−‖g1:T,i‖22 /s2i−λi+θ = 0, and the complementarity
conditions (Boyd and Vandenberghe, 2004) on λisi imply thatλi = 0. Thus we havesi = θ−

1
2 ‖g1:T,i‖2,

and normalizing usingθ givessi = c ‖g1:T,i‖2 /
∑d
j=1 ‖g1:T,j‖2. As a final note, pluggingsi in gives

inf
s

{

T
∑

t=1

d
∑

i=1

g2t,i
si

: s � 0, 〈1, s〉 ≤ c

}

=
1

c

(

d
∑

i=1

‖g1:T,i‖2

)2

. (12)

It is natural to suspect that if we use a proximal function similar to ψ(x) = 1
2 〈x, diag(s)x〉, we should do

well lowering the gradient terms in the regret in Eq. (10) and Eq. (11).
To prove a regret bound for our Alg.1, we note that both types of updates have regret bounds including a

term dependent solely on the gradients obtained along the algorithm’s run. Thus, the following lemma, which
says that the choice ofψt in Alg. 1 is optimal up to a multiplicative factor of 2, is applicable to both.

Lemma 4 Letgt = f ′t(xt) andg1:t andst be defined as in Alg.1. Then

T
∑

t=1

〈

gt, diag(st)
−1gt

〉

≤ 2
d
∑

i=1

‖g1:T,i‖2 .



Proof: We prove the lemma by considering an arbitraryR-valued sequence{ai} and its vector representation
a1:i = [a1 · · · ai]. We are going to show that (where we set0/0 = 0)

T
∑

t=1

a2t
‖a1:t‖2

≤ 2 ‖a1:T ‖2 . (13)

We use induction onT . ForT = 1, the inequality trivially holds. Assume Eq. (13) holds true forT − 1, then

T
∑

t=1

a2t
‖a1:t‖2

=
T−1
∑

t=1

a2t
‖a1:t‖2

+
a2T

‖a1:T ‖2
≤ 2 ‖a1:T−1‖2 +

a2T
‖a1:T ‖2

,

where the inequality follows from the inductive hypothesis. We now definebT =
∑T
t=1 a

2
t and use first-order

inequality for concavity to obtain that so long asbT − a2T ≥ 0, we have
√

bT − a2T ≤
√
bT − a2T

1
2
√
bT

(we
use an identical technique in the full-matrix case; see Lemma10). Thus

2 ‖a1:T−1‖2 +
a2T

‖a1:T ‖2
= 2
√

bT − a2T +
a2T√
bT

≤ 2
√

bT = 2 ‖a1:T ‖2 .

Having proved Eq. (13), we note that by constructionst,i = ‖g1:t,i‖2, thus,

T
∑

t=1

〈

gt, diag(st)
−1gt

〉

=

T
∑

t=1

d
∑

i=1

g2t,i
‖g1:t,i‖2

≤ 2

d
∑

i=1

‖g1:T,i‖2 .

To get a regret bound, we consider the terms consisting of thedual-norm of the subgradients in Eq. (10)
and Eq. (11). Whenψt(x) = 〈x, (δI + diag(st))x〉, the associated dual-norm is‖g‖2ψ∗

t
=
〈

g, (δI + diag(st))
−1g

〉

.

From the definition ofst in Alg. 1, we clearly have‖f ′t(xt)‖
2
ψ∗

t
≤
〈

gt, diag(st)
−1gt

〉

. We replace the inverse
with a pseudo-inverse if needed, which is well defined sincegt is always in the column-space ofdiag(st).
Thus, Lemma4 gives

T
∑

t=1

‖f ′t(xt)‖
2
ψ∗

t
≤ 2

d
∑

i=1

‖g1:T,i‖2 .

To obtain a bound for a primal-dual subgradient method, we set δ ≥ maxt ‖gt‖∞, in which case‖gt‖2ψ∗

t−1

≤
〈

gt, diag(st)
−1gt

〉

, and follow the same lines of reasoning.
It remains to bound the various Bregman divergence terms in Corollary 3 and the termψT (x∗) in Corol-

lary 2. We focus first on composite mirror-descent updates. Examining Eq. (11) and Alg.1, we notice that

Bψt+1
(x∗, xt+1)−Bψt

(x∗, xt+1) =
1

2
〈x∗ − xt+1, diag(st+1 − st)(x

∗ − xt+1)〉

≤ 1

2
max
i

(x∗i − xt+1,i)
2 ‖st+1 − st‖1 .

Since‖st+1 − st‖1 = 〈st+1 − st, 1〉 and〈sT , 1〉 =
∑d
i=1 ‖g1:T,i‖2, we have

T−1
∑

t=1

Bψt+1
(x∗, xt+1)−Bψt

(x∗, xt+1) ≤ 1

2

T−1
∑

t=1

‖x∗ − xt+1‖2∞ 〈st+1 − st, 11〉

≤ 1

2
max
t≤T

‖x∗ − xt‖2∞
d
∑

i=1

‖g1:T,i‖2 −
1

2
‖x∗ − x1‖2∞ 〈s1, 11〉 . (14)

We also have

ψT (x
∗) = δ ‖x∗‖22 + 〈x∗, diag(sT )x∗〉 ≤ δ ‖x∗‖22 + ‖x∗‖2∞

d
∑

i=1

‖g1:T,i‖2 .

Combining the above arguments with Corollaries2and3, and combining Eq. (14) with the fact thatBψ1
(x∗, x1) ≤

1
2 ‖x∗ − x1‖2∞ 〈1, s1〉, we have proved the following theorem.



Theorem 5 Let the sequence{xt} be defined by Algorithm1. If we generatext using the primal-dual
subgradient update of Eq. (5) andδ ≥ maxt ‖gt‖∞, then for anyx∗ ∈ X we have

Rφ(T ) ≤
δ

η
‖x∗‖22 +

1

η
‖x∗‖2∞

d
∑

i=1

‖g1:T,i‖2 + η
d
∑

i=1

‖g1:T,i‖2 . (15)

If we use Algorithm1 with the composite mirror-descent update of Eq. (6), then for anyx∗ ∈ X

Rφ(T ) ≤
1

2η
max
t≤T

‖x∗ − xt‖2∞
d
∑

i=1

‖g1:T,i‖2 + η
d
∑

i=1

‖g1:T,i‖2 . (16)

The above theorem is a bit unwieldy. We thus perform a few algebraic simplifications to get the next corollary.
Let us assume thatX is compact and setD∞ = supx∈X ‖x− x∗‖∞. Furthermore, define

γ
T
=

d
∑

i=1

‖g1:T,i‖2 =

√

√

√

√inf
s

{

T
∑

t=1

〈gt, diag(s)−1gt〉 : 〈1, s〉 ≤
d
∑

i=1

‖g1:T,i‖2 , s � 0

}

.

The following corollary is immediate.

Corollary 6 Assume thatD∞ andγ
T

are defined as above. If we generate the sequence{xt} be given by
Algorithm1 using the primal-dual subgradient update Eq. (5) with η = ‖x∗‖∞, then for anyx∗ ∈ X

Rφ(T ) ≤ 2 ‖x∗‖∞
d
∑

i=1

‖g1:T,i‖2 + δ
‖x∗‖22
‖x∗‖∞

≤ 2 ‖x∗‖∞ γ
T
+ δ ‖x∗‖1 .

Using the composite mirror descent update of Eq. (6) to generate{xt} and settingη = D∞/
√
2, we have

Rφ(T ) ≤
√
2D∞

d
∑

i=1

‖g1:T,i‖2 =
√
2D∞γT

.

We can also prove Corollary1.
Proof of Corollary 1: The proof simply uses Theorem5, Corollary6, and the fact that

inf
s

{

T
∑

t=1

d
∑

i=1

g2t,i
si

: s � 0, 〈1, s〉 ≤ d

}

=
1

d

(

d
∑

i=1

‖g1:T,i‖2

)2

as in Eq. (12) in the beginning of this section. Plugging theγT term in from Corollary6 and multiplyingD∞
by

√
d completes the proof.

Intuitively, as discussed in the introduction, Alg.1 should have good properties on sparse data. For
example, suppose that our gradient terms are based on 0/1-valued features for a logistic regression task. Then
the gradient terms in the bound

∑d
i=1 ‖g1:t,i‖2 should all be much smaller than

√
T . If we assume that

some features appear much more frequently than others, thenthe infimal representation ofγT and the infimal
equality in Corollary1 show that we can have much lower learning rates on commonly appearing features
and higher rates on uncommon features, and this will significantly lower the bound on the regret. Further, if
we are constructing a relatively dense predictorx—as is often the case in sparse prediction problems—then
‖x∗‖∞ is the bestp-norm we can have in the regret.

4 Full Matrix Proximal Functions

In this section we derive and analyze new updates when we estimate a full matrix for the proximal function
ψt instead of a diagonal one. In this generalized case, the algorithm uses the the square-root of the matrix of
outer products of the gradients that observed to update the parameters. As in the diagonal case, we build on
intuition garnered from an optimization problem. We seek a matrix S that solves the minimization problem

min
S

T
∑

t=1

〈

gt, S
−1gt

〉

s.t. S � 0, tr(S) ≤ c .

The solution is obtained by definingGt =
∑t
τ=1 gτgτ

⊤, and then settingS to be a normalized version of the

root ofGT , that is,S = cG
1/2
T / tr(G

1/2
T ). The next proposition formalizes this statement, and also shows

that whenGT is not full rank we can instead use its pseudo-inverse. The proof is inDuchi et al.(2010a).



Algorithm 2 ADAGRAD with Full Matrices
Inputη > 0, δ ≥ 0. Initializex = 0, S0 = 0,H0 = 0,G0 = 0
for t = 1 to T do

Suffer lossft(xt), receive subgradientgt ∈ ∂ft(xt) of ft atxt.

UpdateGt = Gt−1 + gtg
⊤
t , St = G

1
2

t .
LetHt = δI + St, ψt(x) = 1

2 〈x,Htx〉
Primal-Dual Subgradient Update (Eq. (5))

xt+1 = argmin
x∈X

{

η

〈

1

t

t
∑

τ=1

gt, x

〉

+ ηϕ(x) +
1

t
ψt(x)

}

Composite Mirror Descent Update (Eq. (6))

xt+1 = argmin
x∈X

{η 〈gt, x〉+ ηϕ(x) +Bψt
(x, xt)}

end for

Proposition 7 Consider the following minimization problem:

min
S

tr(S−1A) subject to S � 0, tr(S) ≤ c whereA � 0 . (17)

If A is of full rank, then the minimizer of Eq. (17) is S = cA
1
2 / tr(A

1
2 ). If A is not of full rank, then setting

S = cA
1
2 / tr(A

1
2 ) gives

tr(S†A) = inf
S

{

tr(S−1A) : S � 0, tr(S) ≤ c
}

.

In either case,tr(S†A) = tr(A
1
2 )2/c.

If we iteratively use proximal functions of the formψt(x) = 〈x,G1/2
t x〉, we hope as earlier to attain

low regret and collect gradient information. We achieve ourlow regret goal by employing a similar doubling
lemma to Lemma4. The resulting algorithm is given in Alg.2, and the next theorem provides a quantitative
analysis of the motivation above.

Theorem 8 Let Gt be the outer product matrix defined above. If we generatext using the primal-dual
subgradient update of Eq. (5) andδ ≥ maxt ‖gt‖2, then for anyx∗ ∈ X

Rφ(T ) ≤
δ

η
‖x∗‖22 +

1

η
‖x∗‖22 tr(G

1/2
T ) + η tr(G

1/2
T ). (18)

If we use Algorithm2 with the composite mirror-descent update of Eq. (6), then for anyx∗ andδ ≥ 0

Rφ(T ) ≤
δ

η
‖x∗‖22 +

1

2η
max
t≤T

‖x∗ − xt‖22 tr(G
1/2
T ) + η tr(G

1/2
T ). (19)

Proof: To begin, we consider the difference between the divergenceterms at timet + 1 and timet from
Eq. (11) in Corollary3. Letλmax(M) denote the largest eigenvalue of a matrixM . We have

Bψt+1
(x∗, xt+1)−Bψt

(x∗, xt+1) =
1

2

〈

x∗ − xt+1, (Gt+1
1/2 −Gt

1/2)(x∗ − xt+1)
〉

≤ 1

2
‖x∗ − xt+1‖22 λmax(G

1/2
t+1 −G

1/2
t ) ≤ 1

2
‖x∗ − xt+1‖22 tr(G

1/2
t+1 −G

1/2
t ) .

For the last inequality we used the fact that the trace of a matrix is equal to the sum of its eigenvalues
along with the propertyGt+1

1/2 − Gt
1/2 � 0 (Davis, 1963, Example 3) and thereforetr(G1/2

t+1 − G
1/2
t ) ≥

λmax(G
1/2
t+1 −G

1/2
t ). Thus, we get

T−1
∑

t=1

Bψt+1
(x∗, xt+1)−Bψt

(x∗, xt+1) ≤
1

2

T−1
∑

t=1

‖x∗ − xt+1‖22
(

tr(G
1/2
t+1)− tr(G

1/2
t )

)

≤ 1

2
max
t≤T

‖x∗ − xt‖22 tr(GT 1/2)− 1

2
‖x∗ − x1‖22 tr(G

1/2
1 ) . (20)

For the last inequality we used the fact thatG1 is a rank1 PSD matrix with non-negative trace. What remains
is to bound the gradient terms common to both updates. The following lemma is directly applicable.



Lemma 9 LetSt = Gt
1/2 be as defined in Alg.2. Then, using the pseudo-inverse when necessary,

T
∑

t=1

〈

gt, S
−1
t gt

〉

≤ 2

T
∑

t=1

〈

gt, S
−1
T gt

〉

= 2 tr(GT
1/2) .

Before we prove the lemma, we state two linear-algebraic lemmas that make its proof and that of the
theorem much more straightforward. The lemmas are quite technical, so we prove them in the long version
of this paper (Duchi et al., 2010a). The first auxiliary lemma is the matrix-analogue of the fact that for
nonnegativex, y with x ≥ y,

√
x− y ≤ √

x− y/(2
√
x), a consequence of the concavity of

√·.
Lemma 10 LetB � 0 andB−1/2 denote the root of the inverse (or pseudo-inverse) ofB. For anyc such
thatB − cgg⊤ � 0, the following inequality holds:

2 tr((B − cgg⊤)1/2) ≤ 2 tr(B1/2)− c tr(B−1/2gg⊤) .

Lemma 11 Let δ ≥ ‖g‖2 andA � 0. Then
〈

g, (δI +A1/2)−1g
〉

≤
〈

g,
(

(A+ gg⊤)†
)1/2

g
〉

.

Proof of Lemma 9: We prove the lemma by induction. The base case is immediate, since〈g1, G−1/2
1 g1〉 =

〈g1,g1〉
‖g1‖2

= ‖g1‖2 ≤ 2 ‖g1‖2. Now, assume the lemma is true forT − 1, so from the inductive assumption

T
∑

t=1

〈

gt, S
−1
t gt

〉

≤ 2
T−1
∑

t=1

〈

gt, S
−1
T−1gt

〉

+
〈

gT , S
−1
T gT

〉

.

SinceST−1 does not depend ont,
∑T−1
t=1

〈

gt, S
−1
T−1gt

〉

= tr
(

S−1
T−1

∑T−1
t=1 gtg

⊤
t

)

= tr(G
−1/2
T−1 GT−1), where

the right-most equality follows from the definitions ofSt andGt. Therefore, we get
T
∑

t=1

〈

gt, S
−1
t gt

〉

≤ 2 tr(G
−1/2
T−1 GT−1) +

〈

gT , G
−1/2
T gT

〉

= 2 tr(G
1/2
T−1) +

〈

gT , G
−1/2
T gT

〉

.

Lemma10, which also justifies the use of pseudo-inverses, lets us exploit the concavity of the function
tr(A1/2) to bound the above sum by2 tr(G1/2

T ). N

We can now finalize our proof of the theorem. As in the diagonalcase, we have that the squared dual
norm (seminorm whenδ = 0) associated withψt is

‖x‖2ψ∗

t
=
〈

x, (δI + St)
−1x

〉

.

Thus it is clear that‖gt‖2ψ∗

t
≤
〈

gt, S
−1
t gt

〉

. For the dual-averaging algorithms, we use Lemma11 to see

that ‖gt‖2ψ∗

t−1

≤
〈

gt, S
−1
t gt

〉

so long asδ ≥ ‖gt‖2. The doubling inequality from Lemma9 implies that
∑T
t=1 ‖f ′t(xt)‖

2
ψ∗

t
≤ 2 tr(G

1/2
T ) for mirror-descent algorithms and that

∑T
t=1 ‖f ′t(xt)‖

2
ψ∗

t−1

≤ 2 tr(G
1/2
T ) for

primal-dual subgradient algorithms.
Note thatBψ1

(x∗, x1) ≤ 1
2 ‖x∗ − x1‖22 tr(G

1/2
1 ) whenδ = 0. Combining the first of the last bounds in

the previous paragraph with this and the bound on
∑T−1
t=1 Bψt+1

(x∗, xt+1) − Bψt
(x∗, xt+1) from Eq. (20),

we see that Corollary3 gives the bound for the mirror-descent family of algorithms. Combining the second
of the bounds in the previous paragraph and Eq. (20) with Corollary2 gives the desired bound onRφ(T ) for
the primal-dual subgradient algorithms, which completes the proof of the theorem.

As before, we give a corollary that clarifies the bound implied by Theorem8. The infimal equalities in
the corollary use Proposition7. The corollary suggests that if there is a rotation of the space in which the
gradient vectorsgt have small inner products—a sparse basis for the subgradientsgt—then using full-matrix
proximal functions can significantly lower the regret.

Corollary 12 The sequence{xt} generated by Alg.2 with the primal-dual update andη = ‖x∗‖2 satisfies

Rφ(T ) ≤ 2 ‖x∗‖2 tr(G
1/2
T )+δ ‖x∗‖2 = 2

√
d ‖x∗‖2

√

√

√

√inf
S

{

T
∑

t=1

〈gt, S−1gt〉 : S � 0, tr(S) ≤ d

}

+δ ‖x∗‖2 .

LetX be compact so thatsupx∈X ‖x− x∗‖2 ≤ D2. Letη = D2/
√
2 and{xt} be generated by Alg.2 using

the composite mirror descent update withδ = 0. Then

Rφ(T ) ≤
√
2D2 tr(G

1/2
T ) =

√
2dD2

√

√

√

√inf
S

{

T
∑

t=1

〈gt, S−1gt〉 : S � 0, tr(S) ≤ d

}

.



5 Lowering the Regret for Strongly Convex Functions

It is now well established that strong convexity of the functionsft can give significant improvements in the
regret of online convex optimization algorithms (Hazan et al., 2006; Shalev-Shwartz and Singer, 2007). We
can likewise derive lower regret bounds in the presence of strong convexity. We assume that our functions
ft + ϕ are strongly convex with respect to a norm‖·‖. For simplicity, we assume that each has the same
strong convexity parameterλ,

ft(y) + ϕ(y) ≥ ft(x) + ϕ(x) + 〈f ′t(x), y − x〉+ 〈ϕ′(x), y − x〉+ λ

2
‖x− y‖2 .

We focus on composite mirror descent algorithms, as the analysis of strongly convex variants of primal-dual
subgradient algorithms does not seem to lend itself to dynamic learning rate adaptation. The tightest analysis
of the primal-dual method for strongly-convex functions keeps the functionψ intact rather than growing it
at a rate of

√
t, as in standard RDA (Xiao, 2009). Allowing ψ to grow makes attaining the stronger regret

bound impossible. It may be possible to analyze RDA when theregularizationfunctionϕ is time-dependent,
but we leave this topic to future research. Without loss of generality letϕ(x1) = 0 andx1 = 0. Rather than
give the proof of the lower regret, we simply state the result, as it is not difficult to prove using techniques
of Hazan et al.(2006), though we include the proof in the full version of this paper (Duchi et al., 2010a).

Theorem 13 Assume thatϕ is λ-strongly convex with respect to‖·‖22 over the setX . Assume further that
‖g‖∞ ≤ G∞ for all g ∈ ∂ft(x) for x ∈ X . Let{xt} be the sequence of vectors generated by Algorithm1

with the diagonal proximal functionψt(x) = 〈x, (δI + diag(st))x〉 andst,i = ‖g1:t,i‖22. Settingη ≥ G2
∞

λ ,
the regret is bounded by

Rφ(T ) ≤
2G2

∞δ

λ
‖x1 − x∗‖22 +

G2
∞
λ

d
∑

i=1

log

(

‖g1:T,i‖22
δ

+ 1

)

= O

(

dG2
∞
λ

log(TG∞)

)

.

6 Experiments

In this section, we present the results of experiments with natural datasets that suggest that adaptive methods
significantly outperform related non-adaptive methods. Wefocus on the fully stochastic optimization setting,
in which at each iteration the learning algorithm receives asingle example. We measure performance using
two metrics: the online loss or error and the test set performance of the predictor the learning algorithm
outputs at the end of a single pass through the training data.We also give some results that show how im-
posing sparsity constraints (in the form ofℓ1 and mixed-norm regularization) affects the learning algorithm’s
performance. One benefit of the ADAGRAD framework is its ability to straightforwardly generalize to do-
main constraintsX 6= R

d and arbitrary regularization functionsϕ, in contrast to previous adaptive online
algorithms. SeeDuchi et al.(2010a) for a more complete experimental evaluation.

We experiment with RDA (Xiao, 2009), FOBOS (Duchi and Singer, 2009), adaptive RDA, adaptive FO-
BOS, the Passive-Aggressive (PA) algorithm (Crammer et al., 2006), and AROW (Crammer et al., 2009). To
remind the reader, PA is an online learning procedure with the update

xt+1 = argmin
x

[1− yt 〈zt, x〉]+ +
λ

2
‖x− xt‖22 ,

whereλ is a regularization parameter. PA’s update is similar to theupdate employed by AROW (see Eq. (8)),
but the latter maintains second order information onx. Using the representer theorem, it is also possible to
derive efficient updates for PA and AROW for the logistic loss, log(1+exp(−yt 〈zt, xt〉)). We thus compare
the above six algorithms using both hinge and logistic loss.

The Reuters RCV1 dataset is a collection of approximately 800,000 text articles, each of which is as-
signed multiple labels. There are 4 high-level categories—Economics, Commerce, Medical, and Government
(ECAT, CCAT, MCAT, GCAT)—and multiple more specific categories. We focus on training binary classi-
fiers for each of the four major categories. The input features we use are 0/1 bigram features, which (post
word stemming) yield a representation of approximately 2 million dimensions. The feature vectors are very
sparse, however, and most examples have fewer than 5000 non-zero features.

We compare the twelve different algorithms mentioned in theprequel as well as variants of FOBOS and
RDA with ℓ1-regularization. We summarize the results of theℓ1-regularized runs as well as AROW and PA in
Table1. We found the results for both the hinge loss and the logisticloss to be qualitatively and quantitatively
very similar. We thus report results only for training with the hinge loss in Table1. Each row in the table
represents the average of four different experiments in which we hold out 25% of the data for test and perform
a single online learning pass on the remaining 75% of the data. For RDA and FOBOS, we cross-validate the



RDA FB ADAGRAD-RDA ADAGRAD-FB PA AROW
ECAT .051 (.099) .058 (.194) .044 (.086) .044 (.238) .059 .049
CCAT .064 (.123) .111 (.226) .053 (.105) .053 (.276) .107 .061
GCAT .046 (.092) .056 (.183) .040 (.080) .040 (.225) .066 .044
MCAT .037 (.074) .056 (.146) .035 (.063) .034 (.176) .053 .039

Table 1: Test set error rates and proportion non-zero weights (in parenthesis) on Reuters RCV1.

stepsize parameterη by running multiple passes and then choosing the output of the learner that had the
fewest mistakes during training. For PA and AROW we chooseλ using the same approach. We use the
same regularization multiplier for theℓ1 term to execute RDA and FOBOS. The regularization multiplier was
selected so that RDA yielded a weight vector with approximately 10% non-zero components.

It is evident from the results presented in Table1 that the adaptive algorithms (AROW and ADAGRAD)
are far superior to non-adaptive algorithms in terms of error rate on test data. In addition, the ADAGRAD
algorithms naturally incorporate sparsity since they wererun with ℓ1-regularization, though RDA obtained
significantly higher sparsity levels while the solutions ofPA and AROW are dense. Furthermore, although
omitted from the table for brevity, ineverytest with the RCV1 corpus, the adaptive algorithms outperformed
the non-adaptive algorithms. Moreover, both ADAGRAD-RDA and ADAGRAD-Fobos outperform AROW
on all the classification tasks. Unregularized RDA and FOBOS attained similar results to theℓ1-regularized
variants, though of course the solution of the former versions were not sparse.

7 Conclusions

We presented a paradigm that adapts subgradient methods to the geometry of the problem at hand. The
adaptation allows us to derive strong regret guarantees, which for some natural data distributions achieve
better performance guarantees than previous algorithms. Our online convergence results can be naturally
converted into rate of convergence and generalization bounds (Cesa-Bianchi et al., 2004). The ADAGRAD
family of algorithms incorporates regularization throughϕ and can thus easily generate sparse or otherwise
structured solutions. Our algorithms are straightforwardto implement and can be easily specialized to many
useful constraint setsX and regularization termsϕ. We conducted comprehensive experiments showing that
adaptive methods clearly outperform their non-adaptive counterparts. These results are available in the long
version of this paper (Duchi et al., 2010a). We believe that there are a few theoretical questions thatare still
unanswered in this line of work. The first is whether we canefficientlyuse full matrices in the proximal
functions, as in Section4, or whether a different algorithm is necessary. A second open issue is whether it
is possible to use non-Euclidean proximal functions. For example, is it possible to adapt the KL divergence
between distributions to characteristics of the problem athand? We hope to investigate such extensions in the
near future.
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