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Abstract

We present a new family of subgradient methods that dyndiyicecorporate knowledge of the
geometry of the data observed in earlier iterations to perfmore informative gradient-based
learning. The adaptation, in essence, allows us to find esédlhaystacks in the form of very
predictive yet rarely observed features. Our paradigmsfeosm recent advances in online learning
which employ proximal functions to control the gradientpst@f the algorithm. We describe and
analyze an apparatus for adaptively modifying the proxiimattion, which significantly simplifies
the task of setting a learning rate and results in regretagit@es that are provably as good as the
best proximal function that can be chosen in hindsight. Weotmrate our theoretical results with
experiments on a text classification task, showing suliatantprovements for classification with
sparse datasets.

1 Introduction

In many applications of online and stochastic learning,itipeit instances are of very high dimension, yet
within any particular instance only a few features are neroz It is often the case, however, that the in-
frequently occurring features are highly informative amstdminative. The informativeness of rare features
has led practitioners to craft domain-specific feature Wigs, such as TF-IDFS@alton and Buckley1988),
which pre-emphasize infrequently occurring features. ¥éethis old idea as a motivation for applying mod-
ern learning-theoretic techniques to the problem of ordind stochastic learning, focusing specifically on
(sub)gradient methods.

Standard stochastic subgradient methods largely follovedgiermined procedural scheme that is obliv-
ious to the characteristics of the data being observed. ttrast, our algorithms dynamically incorporate
knowledge of the geometry of the data from earlier iteratiom perform more informative gradient-based
learning. Informally, our procedures associate freqyemtcurring features with low learning rates and in-
frequent features high learning rates. This constructimmpts the learner to “take notice” each time an
infrequent feature is observed. Thus, the adaptationteis identification and adaptation of highly predic-
tive but comparatively rare features.

1.1 TheAdaptive Gradient Algorithm

For simplicity, consider the basic online convex optimizatsetting. The algorithm iteratively makes a
predictionz, € X, whereX C R% is a closed convex set, and then receives a convex lossdanfgtiDefine
the regret with respect to the (optimal) predictére X as
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To achieve low regret, standard subgradient algorithmsentioe predictor:; in the opposite direction of

the subgradieny; € 0f;(z;) of the loss via the projected gradient update (Bigkevich, 2003

Ty = Uy (JTt - ngt) .
Our algorithm, called AAGRAD, makes a second-order correction to the predictor usingriégous loss
functions. Denote the projection of a poiponto X' by 114 (y) = argmin, y ||z — y|| 4 (Where||z| , =
v/ {z, Az)). In this notation, our adaptation of gradient descent eygpthe update

1/2

2 =105 (20 =G, g:) M



where the matrbG, = 23:1 g-g- is the outer product of all previous subgradients. The alatyerithm
may be computationally impractical in high dimensions siitorequires computation of the matrix square
root of G4, the outer product matrix. We therefore also analyze a @ersi which we useliag(G,), the
diagonal of the outer product matrix, instead®f

ia + 1/2 . _
g1 = H()i( g(Ge) (a:t — ndiag(Gy) 1/29t) ) (2)

This latter update rule can be computed in linear time. Megeas we discuss later, when the vecigrare
sparse the update can often be performed in time propottiotiae support of the gradient.

Let us compare the regret bounds attained by both variargsagdlient descent. Let the diameterBf
be bounded, seup, ,c v |z — yll, < D2. Then Zinkevich's analysis of online gradient descent—ufit
optimal choice irhindsightfor the stepsize—achieves regret

T
R(T) <V2D2,| > llgell5 - ®)
t=1
When &' is bounded viaup, ,c v [z — yll, < Dw, the following corollary is a consequence of our main
Theoremb.

Corollary 1 Let the sequencgr;} C R? be generated by the update in E) &nd letmax; ||z* — 24| <
D4 Then with stepsize = D, /v/2, for anyz*,

T d
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The important parts of the bound are the infimum under the vaath allows us to perform better than using
the identity matrix, and the fact that the stepsize is easgta priori. For example, ¥ = {x : [|z|| < 1},
thenD, = 2v/d while D, = 2. In the case of learning a dense predictor over a box, thediou@orollary1

is thus better than Eq3) as the identity matrix belongs to the set over which we takenfimum.

1.2 Improvement and Motivating Examples

In Section6, we give empirical evidence in favor of adaptive algorithnitere we give a few theoretical
examples that show that for sparse data—input sequences wylnes low cardinality—the adaptive methods
are likely to perform better than non-adaptive methodsllitha cases we consider in this section we use the
hinge loss fi(z) = [1 — y: (2, z)] _, wherey; is the label of exampleandz; € R4 is a data vector.

To begin, consider the following example of sparse randota.dAssume that at each roundfeature
i appears with probability; = min{1,ci~*} for somea > 2 and a constant. Suppose also that with
probability 1, at least one feature appears, for instance by settiad. Taking the expectation of the bound
in Corollary1, we have

d d d d
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where to obtain the inequality above we used Jensen’s itigguisow, notice that for the rightmost sum,
we havec Zle i~%/2 = O(log d) sincea > 2. If the domain is a hypercubel = {z : ||z|_ < 1}, then
D, = 2. Thus, the regret bound of BARGRAD is R(T) = O(logdy/T). In contrast, the standard regret
bound from Eq.8) hasD, = 2v/d, and we know thaltg;||> > 1, yielding a regret boun&(T) = O(v/dT).1
Thus, ADAGRAD’s regret guarantee is exponentially smaller than the rdaptive regret bound as a function
of dimension for this sparse data setting.

Next we give two concrete examples for which the adaptivehou learn a perfect predictor aftér
iterations, while standard online gradient descgiiKevich, 2003 suffers much higher loss. We assume the
domainX’ is compact and thus for online gradient descent weyset 1/+/f, which givesO(/T') regret.

Diagonal Adaptation In this first example, we consider the diagonal version of mneposed update in
Eq. @ with X = {z : |lz|| . < 1}. Evidently, this choice results in the update., = z;—n diag(G;)~*/?g,
followed by projection ontot’. Let e; denote th&th unit basis vector, and assume that for egach = +e;
for somei. Also lety; = sign((1, z;)) so that there exists a perfect classifiér= 1 € X. We initializez

' Fora € (1,2), ADAGRAD has regreR(T) = O(d'~*/?V/T) = o(\/dT).



to be the zero vector. On rounds- 1,...,d, we setz; = +¢;, selecting the sign at random. It is clear that
both diagonal adaptive descent and online gradient desaéfet a unit loss on each of the fiksexamples.
However, the updates to parametgion iteration: differ and amount to

1
T =x; +¢; (ADAGRAD T =z + —e¢
t+1 t t ( ) t+1 t \/i t

After the firstd rounds, the adaptive predictor hag,; = z4+. = 1 for all = > 1 and suffers no fur-
ther losses. The magnitude of the majority of the coordm&te gradient descent, though, is bounded by

Zﬁ_ L < 2/t aftertd iterations. Hence, fof2(\/d) iterations, the loss suffered per coordinate is

=1 \/d/2+id — Vd
bounded from zero, for a total loss 8{d+/d) (compared withO(d) for ADAGRAD). With larger stepsizes
n/+/t, gradient descent may suffer lower loss; however, an adwemn playz; = e; indefinitely, forcing
online gradient descent to suff@d?) loss while ADAGRAD suffers constant regret per dimension.

(Gradient Descent) .

Full Matrix Adaptation The above construction applies to the full matrix algoritbfrtEq. (1) as well,
but in more general scenarios, as per the following exampiaen using full matrix proximal functions
we setX = {z : ||lz[|, < Vd}. LetV = [v; ... vg] € R?*? pe an orthonormal matrix. Instead of
cycling through the unit vectors, we hawvgcycle through they; so thatz; = +v(; wmoa ay+1. We let the

labely; = sign({(1,V " z)) = sign(3%_, (vi, 2;)). We provide an elaborated explanation in the full version
of this paper Duchi et al, 20103. Intuitively, ADAGRAD needs to observe each orthonormal vectanly
once while stochastic gradient descent’s loss is agéih/d).

1.3 Framework and Outline of Results

Before describing our results formally, let us establiskation. Vectors and scalars are lower case italic
letters, such as € X'. We denote a sequence of vectors by subscriptsgd,e.1, ..., and entries of each
vector by an additional subscript, exg.;. The subdifferential set of a functiohevaluated at is denoted
df(x), and a particular vector in the subdifferential set is deddty f'(z) € df(x) or g, € dfi(x;). We
use(z,y) to denote the inner product betweeandy. The Bregman divergence associated with a strongly
convex and differentiable function is

By(z,y) = ¥(x) —(y) — (VY(y),z —y) .

For a matrixA € R?*4, diag(A) € R? denotes its diagonal, while for a vectore R?, diag(s) denotes
the diagonal matrix withs as its diagonal. We also make frequent use of the following mvatrices. Let
g1t = [g1 -+ ¢¢] denote the matrix obtained by concatenating the subgreséguence. We denote tfth
row of this matrix, which amounts to the concatenation ofitheeomponent of each subgradient we observe,
by g1.¢,;. Lastly, we define the outer product matfi = 23:1 997 .

We describe and analyze several different online learniggrithms and their stochastic convex opti-
mization counterparts. Formally, we consider online leggrwith a sequence of composite functiofs
Each function is of the forng.(z) = f:(x) + ¢(z) where f; and are (closed) convex functions. In the
learning settings we studyj is either an instantaneous loss or a stochastic estimalte ahjective function.
The functiony serves as a fixed regularization function and is typicalldu® control the complexity of.

At each round the algorithm makes a predictigne X', wherexX C R? is a closed convex set, and then
receives the functiorf,. We define the regret with respect to the (optimal) predictoe X as

) £ Z [ (2+) Z [fe(@e) + p(ae) — fe(z®) —p(z")] . (4)
t=1 t=1

Our analysis applies to multiple methods for minimizing tegret defined in Eq4). The first is Nes-
terov’s primal-dual subgradient methddgsteroy2009, and in particulaiXiao's 2009extension, regularized
dual averaging (RDA)Xiao, 2009, and the follow-the-regularized-leader (FTRL) familyadfjorithms (e.g.
Kalai and Vempala2003 Hazan et al.2006. In the primal-dual subgradient method the algorithm nsake
predictionz; on roundt using the average gradiept= % Zizl g-. The update encompasses a trade-off be-
tween a gradient-dependent linear term, the regulagizand a strongly-convex tergh for well-conditioned
predictions. Here); is theproximalterm. The update amounts to solving the problem

s = avgmin {1 g1a) + nple) + 7102} ©
rzeX

wheren is a step-size. The second method also has many names, spcboxasal gradient, forward-
backward splitting, and composite mirror descdrsghg 2008 Duchi and Singer2009 Duchi et al, 20108.



We use the term composite mirror descent. The compositendescent method employs a more immediate
trade-off between the current gradiept ¢, and staying close to, using the proximal functionp,

Ty = argrr)l(in {n{gt,z) +np(x) + By, (7, 24)} (6)
TE

Our work focuses on temporal adaptation of the proximaltiondn a data driven way, while previous work
simply sets); = ¥, ¥ (-) = Vb (-), or gy (-) = ty(-) for some fixedy.

We provide formal analyses equally applicable to the abaeupdates and show how to automatically
choose the functiog; so as to achieve asymptotically small regret. We descrideaaalyze two algorithms.
Both algorithms use squared Mahalanobis norms as theiirpedfunctions, setting,(z) = % (z, H,z) for
a symmetric matrixt{; = 0. The first uses diagonal matrices while the second constfulttdimensional
matrices. Concretely, we set

H, = diag(G,)"/? (Diagonal) and H, = Gi/Q (Full) . (7)

Plugging the appropriate matrix from the above equation it in Eq. () or Eq. 6) gives rise to our
ADAGRAD family of algorithms. Informally, we obtain algorithms siar to second-order gradient descent
by constructing approximations to the Hessian of the fomgtjf;. These approximations are conservative
since we rely on the root of the gradient matrices.

We now outline our results, deferring formal statementshef theorems to later sections. Recall the
definitions ofg;.; as the matrix of concatenated subgradients @pdas the outer product matrix in the
prequel. When the proximal function,(z) = (x,diag(G,)'/?z), the ADAGRAD algorithm has bounds
attainable in time at most linear in the dimensibaf the problem of

d d
Ry(T) —O(x*nw;ngm,ng) and Ry(T) = O max |z, —:c*||oo_21||gm,i||2).

We also show that

d
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i=1

T
, =d"?, |inf {Z (ge, diag(s)~1gs) © s = 0,(L,s) < d} .

t=1

The ADAGRAD algorithm with full matrix divergences entertains boundfithe form
Ro(T) = O([la” [, tr(G3*)) and Ro(T) = O mape lar — |, tr(G3/*) ).

Similar to the diagonal proximal function case, we furtheo\s that

T
tr (G;/Q) = d'/2, |inf {Z (ge,S1gs) + 8= 0,x(S) < d} .

t=1

We formally state the above regret bounds in Theorgmusd8, respectively, and we give further discus-
sion in their corollaries. Essentially, the theorems giraete inequalities for online optimization. Though the
specific sequence of gradientsreceived by the algorithm changes when there is adaptdktiernequalities
say that our regret bounds are as good as the best quad@atimpt function in hindsight.

1.4 Related Work

The idea of adaptation in first order (gradient) methods indoyneans new and can be traced back at least to
the 1970s. There, we finghors work on space dilation method$972 as well as variable metric methods,
such as the BFGS family of algorithms (eFdetcher 1970. This older work usually assumes that the func-
tion to be minimized is differentiable and, to our knowleddiel not consider stochastic, online, or composite
optimization. More recentiBordes et al(2009 proposed carefully designed Quasi-Newton stochastic gra
dient descent, which is similar in spirit to our methods. téwer, their convergence results assume a smooth
objective function whose Hessian is strictly positive diédimnd bounded away frot Our results are ap-
plicable in more general settings. In the online learniteyditure, there are results on adaptively choosing a
learning rate), based on data seen so féwgr et al, 2002 Bartlett et al, 2007). We, in contrast, actively
adapt the proximal functioty itself.

The framework that is most related to ours is probably confidaveighted learning, whose most recent
success is the adaptive regularization of weights algor{hROW) of Crammer et al(2009. Crammer et al.
give a mistake-bound analysis for online binary classificgtwhich is similar in spirit to the second-order



PerceptronCesa-Bianchi et 812005. AROW maintains a mean prediction vectgre R¢ and a covariance
matrix ©; € R?*? overy; as well. At every step of the algorithm, the learner receavesir (z;, y;) where
2 € R4 is thetth example and; € {—1,+1} is the label. Whenever the predicter has margin less than
1, AROW performs the update

1

[E U = = S41 = B¢ — BeSezea] Tp. (8
<Zt72tzt>+)\’ ap = | yt<2tnu’t>]+a M1 = g + Q2 Y 2, 1 = Bz 2y (8)

Br =
In the above, one can sEt to be diagonal, which reduces run-time and storage reqeinésbut still gives
good performanceQrammer et a).2009. In contrast to AROW, the AAGRAD family uses theaoot of a
covariance-like matrix, a consequence of our formal am&lrammer et ak algorithm and our algorithms
have similar run times—linear in the dimensi@r-when using diagonal matrices. However, when using full
matrices the runtime of their algorithmd(d?), which is faster than ours.

Our approach differs from previous approaches since idstédocusing on a particular loss function
or mistake bound, we view the problem of adapting the prokifuaction as an online (meta) learning
problem. We then obtain bounds comparable to the boundn#ataising the best proximal function chosen
in hindsight. Our bounds are applicable to any convex Lifisdbss and composite objective functions.

2 Adaptive Proximal Functions

In this section we give the template regret bounds for théljashsubgradient algorithms we consider. Exam-
ining several well-known optimization bounds (eBeck and Teboulle2003 Nesteroy 2009 Duchi et al,
2010b, we see that we can bound the regret as

T
Ry(T) € ~Bya") +a il ©)

Most of the regret depends on dual-normsfffx;), where the dual norm in turn depends on the choice of
1. This naturally leads to the question of whether we can nyatié proximal termy along the run of the
algorithm in order to lower the contribution of the aforertiened norms. We achieve this goal by keeping
second order information about the sequefice

We begin by providing two corollaries based on previous whgk give the regret of our base algorithms
when the proximal function); is allowed to change. We assume thigtis monotonically non-decreasing,
that is, ;1 (x) > ¢4 (x). We also assume thal; is 1-strongly convex with respect to a time-dependent
seminorm||-[|, . Formally,

Gily) > () + (Vo) g — 3} + 5 o=yl

Strong convexity is guaranteed if and onlyff, (z,y) > |lz — y|;,. We also denote the dual norm of
(I, BY [I] s - FOr completeness, we provide the proofs of following tweotlaries in the long version of

this paperDuchl et al, 20103, though they build straightforwardly dbuchi et al.(20108 andXiao (2009.
For the primal-dual subgradient update of Ef), the following regret bound holds.

Coroallary 2 Let the sequencgr; } be defined by the update in E§).(Then for any:*, we have

T

Z | fi ()]

Ry(T) < ¢T

I\D\d

(10)

1#*

For composite mirror descent algorithms (BE8))(under the assumption w.l.0.g. thatz,) = 0, we have

Corallary 3 Let the sequencgr; } be defined by the update in E6).(Then for any:*,

T-1

[Bwt+1 (J?*, xt-ﬁ-l) - Bl/lt (J?*, -rt-i-l
1

T
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Ro(T) < By, (", 21) + Z If ol Q1)

S|
1\3\3

t

The above corollaries allow us to prove regret bounds fomnalyeof algorithms that iteratively modify
the proximal functiong),.



Algorithm 1 ADAGRAD with Diagonal Matrices
Input: > 0,6 > 0. Initialize z; =0, g1.0 = |]
for t =1toT do
Suffer lossf;(z;), receive subgradient € df,(x,) of f, atx,
Updategi.; = [g1:t—1 9¢], 5¢,i = llg1:e.illo
SetH;, = 61 + diag(s,), Y1 (z) = 3 (z, H, x)
Primal-Dual Subgradient Update (E&)):

xm—argmm{ < ng, >+77s0 )+1¢t(x)}'

Composite Mirror Descent Update (E&)):

Tip1 = argn;in {n{ge,z) +np(x) + By, (z,24)} .
xe

end for

3 Diagonal Matrix Proximal Functions

For now we restrict ourselves to using diagonal matricegfimd matrix proximal functions and (semi)norms.
This restriction serves a two-fold purpose. First, the gsialfor the general case is somewhat complicated
and thus the analysis of the diagonal case serves as a prdgtter understanding. Second, in problems with
high dimension where we expect this type of modification tip heaintaining more complicated proximal
functions is likely to be prohibitively expensive. A bendithe adaptive algorithms is that there is no need to
keep track of a learning rate as in previous algorithms, iagmtplicitly given by the growth of the proximal
function. To remind the readey; ., ; is theith row of the matrix obtained by concatenating the subgradie
from iteration1 throught in the online algorithm.

To provide some intuition for Algl, let us find the retrospectively optimal proximal functiol.the

proximal function chosen ig(z) = 1 (z,diag(s)z) for somes = 0, then the associated norm|js|® =
(x, diag(s)z) and the dual norm i§z||? = (z, diag(s)~'x). Recalling Eq. ), we consider the problem

T
min Z (g, diag(s)"'g) s.t.s=0, (I,s) <c

This problem is solved by setting = ||g1.7,:||, and scalings so that(s, 1) = c. To see this, we can write
the Lagrangian of the minimization problem by introducingltipliers A > 0 and# > 0 to get

d 2
Lis A0 = lgvrally (A, s) +0((1,s) — c).

S
i=1 v

Taking derivatives to find the infimum df, we see that- Hglzmni /s2—\;+6 = 0, and the complementarity
conditions Boyd and Vandenbergh2004) on \;s; i
and normalizing using givess; = ,?:1 llg1:7.5l5- As afinal note, plugging; in gives

T o4 g2 1/ 2

i=1

It is natural to suspect that if we use a proximal functionikinto ¢ (z) = 1 (z, diag(s)z), we should do
well lowering the gradient terms in the regret in EbO)Yand Eq. 11).

To prove a regret bound for our Ald, we note that both types of updates have regret bounds ingad
term dependent solely on the gradients obtained along goeidm’s run. Thus, the following lemma, which
says that the choice af; in Alg. 1is optimal up to a multiplicative factor of 2, is applicabéetoth.

Lemma4 Letg; = f/(x:) andg;.. ands; be defined as in Ald.. Then

d
Z g, diag(se) 'ge) < QZ lgrr,illy -
t=1 i1



Proof: We prove the lemma by considering an arbitf®ryalued sequenc; } and its vector representation
ay.; = [a1 -+ a;]. We are going to show that (where we 8¢0 = 0)

Z [lax:

We use induction off’. ForT = 1, the inequality trivially holds. Assume EdL3) holds true forT" — 1, then

SR
P Hfll t||2 lax.

.7l
where the inequality follows from the inductive hypothedie now definé, = ZtT ,a? and use first order

inequality for concavity to obtain that so long s — a3 > 0, we have\/br — a% < /by — a% 2F (we
use an identical technique in the full-matrix case; see Larh@) Thus

a2 a2
2 ||(11:T—1||2 + HCL% =24/br — a% + \/% < 2¢/br =2 Ha1:T|\2 .

B

|| < 2Ha‘12TH2 . (13)
2

2
ar

HalzTHz

S 2||a1:T*1||2+ )

lla1. tHz

Having proved Eq.X3), we note that by construction ; = ||gl:m||2, thus,

T T d
Z (ge, diag(s) " g:) = Z Z

||91 t zllg
|
To get a regret bound, we consider the terms consisting adhaénorm of the subgradients in EQ.0f
and Eq. (1). Whem,(x) = (z, (61 + diag(s;))z), the associated dual-normijig| 1214* = (g, (01 + diag(s;)) " 'g).

From the definition of, in Alg. 1, we clearly have| f/(z;)| fp; < (g¢,diag(s:) "' g:). We replace the inverse
with a pseudo-inverse if needed, which is well defined sipcs always in the column-space dfag(s;).

Thus, Lemmal gives
T ) d
Z [ £t (o) oy < QZ llgrrills -
t=1 i=1

To obtain a bound for a primal-dual subgradient method, wé $emax; ||g;|| ., in which casé|g, 12/1*,

(gt, diag(s:) "*g), and follow the same lines of reasoning.
It remains to bound the various Bregman divergence term®mlary 3 and the term)(x*) in Corol-
lary 2. We focus first on composite mirror-descent updates. Exaniag. (L1) and Alg.1, we notice that

1

By, (2%, 0041) — By, (2%, 0441) = 5 (% — wypq, diag(serr — s¢) (0" — 2441))

<

1
< = m?x(xf — @eg1,0)” ||Se41 — se|; -

Since|[si41 — s¢ll; = (se41 — 8¢, 1) and(sp, 1) = 2?21 lg1:1.ill5, we have

T-1

1
D By (@, 2041) = By, (¢%,2441) < 5 Dol =l (sipr — 50, 1)
t=1 =

1 1., 2
< gmaxle” —al Z\|gw||2—§||x —m (s 1) 14)

We also have

d
Yr(x*) = 8 |la*||3 + (o, diag(sr)z*) < 8 [l [[3 + 2|2 D llgrerilly
=1
Combining the above arguments with Corolla2esd3, and combining Eq.44) with the fact thaBB,,, (z*, x1) <
Llz* — Hio (1, s1), we have proved the following theorem.



Theorem 5 Let the sequencéz;} be defined by Algorithmd. If we generater; using the primal-dual
subgradient update of Eg5Yandd > max; ||g:|| ., then for anyz* € & we have

d d
1) w112 1 112
Ry(T) < p = H2+5llx 120 D lgverilly + 2 llgraill, - (15)
=1 =1

If we use Algorithni with the composite mirror-descent update of Hj, then for anyz* € X

d
1
Ry(T) < %r&axﬂx - xt” Z lg1:7.ill5 ‘H?Z llg1:7.ill5

(16)

The above theorem is a bit unwieldy. We thus perform a fewakge simplifications to get the next corollary.
Let us assume that is compact and séb., = sup,cy ||z — 2*| . Furthermore, define

T d
igf {Z (g¢, diag(s)~1ge) = (1, 8) < Z lgr:1,illy s s = 0} .

t=1 =1

The following corollary is immediate.

Corollary 6 Assume thaD., and~, are defined as above. If we generate the sequé¢ngkbe given by
Algorithm1 using the primal-dual subgradient update E8) withn = ||z*| ., then for anyz* € X

[EallE
Ry(T) < 2|2"]| Z||91Tz||2+5 :

- le s =

<22 e + O ll" ]Iy -
Using the composite mirror descent update of B)t¢ generate{z;} and setting; = D /v/2, we have
d
Rs(T) < V2D > llgrmilly = V2Doc, -
=1

We can also prove Corollary,
Proof of Corollary 1: The proof simply uses TheorebyCorollary6, and the fact that

inf {ZZ : (1,5) } (Z lgx. Tz||2>

flzll

asin Eqg. 12) in the beginning of this section. Plugging the term in from Corollary and multiplyingD
by v/d completes the proof. ]

Intuitively, as discussed in the introduction, Alfy.should have good properties on sparse data. For
example, suppose that our gradient terms are based on lDddvieatures for a logistic regression task. Then

the gradient terms in the boud?_, [|g1..;||, should all be much smaller thariT. If we assume that
some features appear much more frequently than otherstitbémfimal representation efr and the infimal
equality in Corollaryl show that we can have much lower learning rates on commomlgamg features
and higher rates on uncommon features, and this will sigmiflg lower the bound on the regret. Further, if
we are constructing a relatively dense prediateras is often the case in sparse prediction problems—then
|lz*| ., is the besp-norm we can have in the regret.

4  Full Matrix Proximal Functions

In this section we derive and analyze new updates when waastia full matrix for the proximal function
1, instead of a diagonal one. In this generalized case, theitdgouses the the square-root of the matrix of
outer products of the gradients that observed to updateateaeters. As in the diagonal case, we build on
intuition garnered from an optimization problem. We seekadrix S that solves the minimization problem

T
i o) st S = <c.
min ;<gt,5 gt) st.8=0, tr(S) <c
The solution is obtained by definin@; = Zizl g-g+ , and then setting to be a normalized version of the

root of G, that is,S = cGl/Q/t (G 1/2) The next proposition formalizes this statement, and atewvs
that whenG'r is not full rank we can instead use its pseudo-inverse. Toefs in Duchi et al.(20103.



Algorithm 2 ADAGRAD with Full Matrices
Inputn > 0,6 > 0. Initializex = 0, Sy =0, Hy =0,Go =0
for t =1to7T do
Suffer lossf;(z:), receive subgradiemt € 0 f;(z;) of f; ata,.
UpdateG; = Gy_1 + gig, , St = G7.
Let H, = 61 + Sy, ¢(2) = 3 (2, Hyx)
Primal-Dual Subgradient Update (E&)X

It+1argmln{ < th; >JF77S/J )JFi?/)t(x)}

Composite Mirror Descent Update (E)X

Ty1 = argmin {n (g, x) + np(z) + By, (z,24)}
reX

end for

Proposition 7 Consider the following minimization problem:
msin tr(S_lA) subject to S > 0, tr(S) <c where A > 0. a7
If A'is of full rank, then the minimizer of EqLY) is S = cAz /tr(Az). If A is not of full rank, then setting
S = cA2 /tr(A2) gives
tr(STA) = inf {tr(S7'A): S =0, tr(S) <} .

In either casefr(STA) = tr(42)2/c.

If we iteratively use proximal functions of the forgy(z) = (z, Gi/Q:c), we hope as earlier to attain
low regret and collect gradient information. We achievelourregret goal by employing a similar doubling
lemma to Lemmal. The resulting algorithm is given in Al@, and the next theorem provides a quantitative
analysis of the motivation above.

Theorem 8 Let GG; be the outer product matrix defined above. If we genesatesing the primal-dual
subgradient update of Eg5Yandd > max; ||g¢||,, then for anyz* € X

1) 1
RBo(T) < a5+ o 2”5 (G ) + nta(GH). (18)
If we use Algorithn® with the composite mirror-descent update of ), then for any:* andd > 0
) w12 1 % 2 1/2 1/2
Ry(T) < p || H2—|—%rtn§a%<\|x — x5 tr (G 7)) + ntr(GF 7). (19)

Proof: To begin, we consider the difference between the divergésrees at timet + 1 and timet from
Eqg. 1) in Corollary3. Let \,,,.x (M) denote the largest eigenvalue of a mafvix We have

* * 1 * *
By, (2", 0141) — By, (2%, 0441) = 3 <$ — 241, (Geg1? = G2 (2" — $t+1)>

< 5l zenlE G — G < Sl — w3 (G - G
For the last inequality we used the fact that the trace of aixnit equal to the sum of its eigenvalues
along with the property?; /2 — G;'/? = 0 (Davis 1963 Example 3) and therefore (G2 — G,'%) >
)\max(thfl — GY/%). Thus, we get
= * * 1 * 2 1/2 1/2
> Buu @' 241) = By, (@" 241) < 5 3 " =z} (G - 0r(G%))

1

t=1
< - max ||z — o |3 tr(Gr'/?) — Hx — a3 1(GY%) . (20)

For the last inequality we used the fact thatis a rankl PSD matrix with non—negatwe trace. What remains
is to bound the gradient terms common to both updates. Theviolg lemma is directly applicable.



Lemma9 LetS; = G,/? be as defined in Al®. Then, using the pseudo-inverse when necessary,

T T

Z(gusflgt <2 Z 9, St gt =2tr(Gr'/?).

t=1 t=1

Before we prove the lemma, we state two linear-algebraiariamthat make its proof and that of the

theorem much more straightforward. The lemmas are quitenteal, so we prove them in the long version
of this paper Duchi et al, 2010g. The first auxiliary lemma is the matrix-analogue of thet fémt for
nonnegativer, y with z > y, /r — y < v/ — y/(24/), a consequence of the concavity,&f.

Lemma 10 Let B = 0 and B—'/2 denote the root of the inverse (or pseudo-inverselpofor any ¢ such
that B — cgg' > 0, the following inequality holds:

2tr((B — cgg")/?) < 2te(BY?) — ctr(B~?gg7) .
Lemma 11 Lets > |igll, and A = 0. Then(g, (67 + A/2)1g) < (g, (A + 997))) " g).

Proof of Lemma 9: We prove the lemma by induction. The base case is immediats &, G;l/zgﬁ =

ﬁ’;lﬂl) = llg1ll, < 21lg1]l,- Now, assume the lemma is true fBr— 1, so from the inductive assumption

T T-1
> g S ta) <2 g Splige) + (g0, Sptar) -
t=1 t=1

SinceSy_ does notdepend an>"; ' (g;, 57" g:) = tr (S LT g, ) = tr(G;/*Gr_1), where

the right-most equality follows from the definitions 8f andG;. Therefore, we get
T
> (g5 < 260G Gro) + (1. G Pgr ) = 260(GH2) + (97,67 Pgr)
t=1
Lemmal10, which also justifies the use of pseudo-inverses, lets ubigxhe concavity of the function
tr(A'/2) to bound the above sum Bytr(G/%). A

We can now finalize our proof of the theorem. As in the diagaaale, we have that the squared dual
norm (seminorm when = 0) associated with), is

12112‘ = (2, (01 + Sy)"'z) .
Thus it is clear that|g; fb: < <gt,Sflgt>. For the dual-averaging algorithms, we use Lentido see
that[|g:||>. < (g:,S; *g:) so long asy > ||g;||,- The doubling inequality from Lemm@ implies that

Yia
5 < 2 tr(G4/?) for mirror-descent algorithms and tHat/_, It olly, | < 2tr(GH/?) for

DORg FHEN]
primal-dual subgradient algorithms.

Note thatBy, (z*,21) < L |la* — 21| tr(G}/*) whens = 0. Combining the first of the last bounds in
the previous paragraph with this and the boundof_," By, ., (z*, z*1) — By, (z*,2'*1) from Eq. Q0),
we see that Corollarg gives the bound for the mirror-descent family of algorithr@®mbining the second
of the bounds in the previous paragraph and E6) {ith Corollary 2 gives the desired bound d#y(T") for
the primal-dual subgradient algorithms, which completesgroof of the theorem. |

As before, we give a corollary that clarifies the bound ingly TheorenB. The infimal equalities in
the corollary use Proposition The corollary suggests that if there is a rotation of thecega which the
gradient vectorg, have small inner products—a sparse basis for the subgradierthen using full-matrix
proximal functions can significantly lower the regret.

Corollary 12 The sequencéz, } generated by Al with the primal-dual update angl = ||z*||, satisfies

]

T

Ro(T) < 2"l te(GH2) 5 [l*l, = 2V o $ i {Z (90,57 1e) = § = 0,12(8) < d}+5 a1l -

t=1

LetX’ be compact so thatip, . v ||z — 2*|, < D.. Letn = Dy /+/2 and{z;} be generated by Al@ using
the composite mirror descent update witk- 0. Then

T
Ry(T) < V2D, tx(Gy?) = mDQJ inf {Z (90,87 gr) = 8= 0,2(8) < d} :




5 LoweringtheRegret for Strongly Convex Functions

It is now well established that strong convexity of the fumies f; can give significant improvements in the
regret of online convex optimization algorithnidgzan et al.2006 Shalev-Shwartz and Singet007). We

can likewise derive lower regret bounds in the presencerohgtconvexity. We assume that our functions
f+ + o are strongly convex with respect to a nofjafi. For simplicity, we assume that each has the same
strong convexity parametey;

fily) + o) = filz) + o) + (fi(z),y — 2) + (¢ (x),y — z) + % lz = y)I*.

We focus on composite mirror descent algorithms, as theysisadf strongly convex variants of primal-dual
subgradient algorithms does not seem to lend itself to dymbsarning rate adaptation. The tightest analysis
of the primal-dual method for strongly-convex functiongpe the function) intact rather than growing it
at a rate ofy/¢, as in standard RDAXjao, 2009. Allowing ) to grow makes attaining the stronger regret
bound impossible. It may be possible to analyze RDA whemdfelarizationfunction ¢ is time-dependent,
but we leave this topic to future research. Without loss ofegality lety(z1) = 0 andz; = 0. Rather than
give the proof of the lower regret, we simply state the resstit is not difficult to prove using techniques
of Hazan et al(2006), though we include the proof in the full version of this paf@uchi et al, 20103.

Theorem 13 Assume thap is A-strongly convex with respect tp||§ over the setY. Assume further that
lgll.. < G forall g € 0f;(x) for z € X. Let{z,} be the sequence of vectors generated by Algorthm

with the diagonal proximal functiom; () = (x, (31 + diag(s;))=) ands,; = [|g1..:]|>. Settingy > %=

the regret is bounded by
2
+ 1) 0] (dG;C log(TGoo)> .

22 a2 & ;
o) = 25 oy =4 G Yoo (”g”

In this section, we present the results of experiments vathnal datasets that suggest that adaptive methods
significantly outperform related non-adaptive methods.foes on the fully stochastic optimization setting,
in which at each iteration the learning algorithm receivasingle example. We measure performance using
two metrics: the online loss or error and the test set perdiona of the predictor the learning algorithm
outputs at the end of a single pass through the training détaalso give some results that show how im-
posing sparsity constraints (in the form#fand mixed-norm regularization) affects the learning dtgor’s
performance. One benefit of theDAGRAD framework is its ability to straightforwardly generalize do-
main constraintst’ # R<¢ and arbitrary regularization functions in contrast to previous adaptive online
algorithms. Se®uchi et al.(20104 for a more complete experimental evaluation.

We experiment with RDAXiao, 2009, Fosos (Duchi and Singer2009, adaptive RDA, adaptive ¢~
BOS, the Passive-Aggressive (PA) algorith@rémmer et a).2006, and AROW Crammer et a).2009. To
remind the reader, PA is an online learning procedure wihuihdate

6 Experiments

Tyy1 = argmin [1 — y; (2, 2)], + = ||z — xt||§ ,
xT

2
where) is a regularization parameter. PA's update is similar taujpeate employed by AROW (see E))

but the latter maintains second order informationrorsing the representer theorem, it is also possible to
derive efficient updates for PA and AROW for the logistic ldsg(1 + exp(—y: (z+, x+))). We thus compare
the above six algorithms using both hinge and logistic loss.

The Reuters RCV1 dataset is a collection of approximately;@ID text articles, each of which is as-
signed multiple labels. There are 4 high-level categoriesermics, Commerce, Medical, and Government
(ECAT, CCAT, MCAT, GCAT)—and multiple more specific categesi We focus on training binary classi-
fiers for each of the four major categories. The input featuve use are 0/1 bigram features, which (post
word stemming) yield a representation of approximately Bioni dimensions. The feature vectors are very
sparse, however, and most examples have fewer than 5002emorfieatures.

We compare the twelve different algorithms mentioned ingrezjuel as well as variants oblBosand
RDA with ¢;-regularization. We summarize the results of theegularized runs as well as AROW and PA in
Tablel. We found the results for both the hinge loss and the lodissis to be qualitatively and quantitatively
very similar. We thus report results only for training witiethinge loss in Tablé. Each row in the table
represents the average of four different experiments ichwvie hold out 25% of the data for test and perform
a single online learning pass on the remaining 75% of the dadaRDA and ©BOS, we cross-validate the



| [ RDA | FB | ADAGRAD-RDA | ADAGRAD-FB | PA | AROW |

ECAT || .051 (.099)] .058 (.194)]  .044 (.086) 044 (238) | .059| .049
CCAT || .064 (.123) .111 (.226)|  .053 (.105) 053(276) | .107| .061
GCAT || .046 (.092) .056 (.183)|  .040 (.080) 040 (225) | .066| .044
MCAT || .037 (.074)| .056 (.146)|  .035 (063) 034 (176) | .053| .039

Table 1: Test set error rates and proportion non-zero weignparenthesis) on Reuters RCV1.

stepsize parameter by running multiple passes and then choosing the outputefdarner that had the
fewest mistakes during training. For PA and AROW we chodsesing the same approach. We use the
same regularization multiplier for thg term to execute RDA anddB0s. The regularization multiplier was
selected so that RDA yielded a weight vector with approxetyat0% non-zero components.

It is evident from the results presented in Tabl#hat the adaptive algorithms (AROW andAGRAD)
are far superior to non-adaptive algorithms in terms ofrerate on test data. In addition, thebDAGRAD
algorithms naturally incorporate sparsity since they werewith ¢, -regularization, though RDA obtained
significantly higher sparsity levels while the solutionsR#f and AROW are dense. Furthermore, although
omitted from the table for brevity, iaverytest with the RCV1 corpus, the adaptive algorithms outperéal
the non-adaptive algorithms. Moreover, both#GRAD-RDA and ADAGRAD-Fobos outperform AROW
on all the classification tasks. Unregularized RDA armBBs attained similar results to thg-regularized
variants, though of course the solution of the former versiwere not sparse.

7 Conclusions

We presented a paradigm that adapts subgradient metholls tgebmetry of the problem at hand. The
adaptation allows us to derive strong regret guaranteeghvwibr some natural data distributions achieve
better performance guarantees than previous algorithms. o@line convergence results can be naturally
converted into rate of convergence and generalization dm{@esa-Bianchi et 312004. The ADAGRAD
family of algorithms incorporates regularization througland can thus easily generate sparse or otherwise
structured solutions. Our algorithms are straightforwtarinplement and can be easily specialized to many
useful constraint set¥” and regularization terms. We conducted comprehensive experiments showing that
adaptive methods clearly outperform their non-adaptiventerparts. These results are available in the long
version of this paperuchi et al, 20109. We believe that there are a few theoretical questionsaiteastill
unanswered in this line of work. The first is whether we efiicientlyuse full matrices in the proximal
functions, as in Sectiod, or whether a different algorithm is necessary. A secondéggue is whether it

is possible to use non-Euclidean proximal functions. Faneple, is it possible to adapt the KL divergence
between distributions to characteristics of the problelvead? We hope to investigate such extensions in the
near future.
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