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Abstract

In recent years analysis of complexity of learning Gaussian mixture models from sampled data
has received significant attention in computational machine learning and theory communities. In
this paper we present the first result showing that polynomial time learning of multidimensional
Gaussian Mixture distributions is possible when the separation between the component means is
arbitrarily small. Specifically, we present an algorithm for learning the parameters of a mixture of k
identical spherical Gaussians in n-dimensional space with an arbitrarily small separation between
the components, which is polynomial in dimension, inverse component separation and other input
parameters for a fixed number of components k. The algorithm uses a projection to k dimensions
and then a reduction to the 1-dimensional case. It relies on a theoretical analysis showing that
two 1-dimensional mixtures whose densities are close in the L2 norm must have similar means
and mixing coefficients. To produce the necessary lower bound for the L2 norm in terms of the
distances between the corresponding means, we analyze the behavior of the Fourier transform of a
mixture of Gaussians in one dimension around the origin, which turns out to be closely related to
the properties of the Vandermonde matrix obtained from the component means. Analysis of minors
of the Vandermonde matrix together with basic function approximation results allows us to provide
a lower bound for the norm of the mixture in the Fourier domain and hence a bound in the original
space. Additionally, we present a separate argument for reconstructing variance.

1 Introduction
Mixture models, particularly Gaussian mixture models, are a widely used tool for many problems of sta-
tistical inference (Titterington et al., 1985; McLachlan & Peel, 2000; McLachlan & Basford, 1988; Everitt
& Hand, 1981; Lindsay, 1995). The basic problem is to estimate the parameters of a mixture distribution,
such as the mixing coefficients, means and variances within some pre-specified precision from a number of
sampled data points. While the history of Gaussian mixture models goes back to (Pearson, 1894), in re-
cent years the theoretical aspects of mixture learning have attracted considerable attention in the theoretical
computer science, starting with the pioneering work of (Dasgupta, 1999), who showed that a mixture of k
spherical Gaussians in n dimensions can be learned in time polynomial in n, provided certain separation
conditions between the component means (separation of order

√
n) are satisfied. This work has been refined

and extended in a number of recent papers. The first result from (Dasgupta, 1999) was later improved to the
order of Ω(n

1
4 ) in (Dasgupta & Schulman, 2000) for spherical Gaussians and in (Arora & Kannan, 2001)

for general Gaussians. The separation requirement was further reduced and made independent of n to the

order of Ω(k
1
4 ) in (Vempala & Wang, 2002) for spherical Gaussians and to the order of Ω(k

3
2

ϵ2 ) in (Kannan
et al., 2005) for Logconcave distributions. In a related work (Achlioptas & McSherry, 2005) the separation
requirement was reduced to Ω(k +

√
k log n). An extension of PCA called isotropic PCA was introduced in

(Brubaker & Vempala, 2008) to learn mixtures of Gaussians when any pair of Gaussian components is sepa-
rated by a hyperplane having very small overlap along the hyperplane direction (so-called ”pancake layering
problem”).

In a slightly different direction the recent work (Feldman et al., 2006) made an important contribution to
the subject by providing a polynomial time algorithm for PAC-style learning of mixture of Gaussian distribu-
tions with arbitrary separation between the means. The authors used a grid search over the space of parameters
to a construct a hypothesis mixture of Gaussians that has density close to the actual mixture generating the
data. We note that the problem analyzed in (Feldman et al., 2006) can be viewed as density estimation within



a certain family of distributions and is different from most other work on the subject, including our paper,
which address parameter learning1.

We also note several recent papers dealing with the related problems of learning mixture of product
distributions and heavy tailed distributions. See for example, (Feldman et al., 2008; Dasgupta et al., 2005;
Chaudhuri & Rao, 2008a; Chaudhuri & Rao, 2008b).

In the statistics literature, (Chen, 1995) showed that optimal convergence rate of MLE estimator for finite
mixture of normal distributions is O(n− 1

2 ), where n is the sample size, if number of mixing components k is
known in advance and is O(n− 1

4 ) when the number of mixing components is known up to an upper bound.
However, this result does not address the computational aspects, especially in high dimension.

In this paper we develop a polynomial time (for a fixed k) algorithm to identify the parameters of the mix-
ture of k identical spherical Gaussians with potentially unknown variance for an arbitrarily small separation
between the components2. To the best of our knowledge this is the first result of this kind except for the si-
multaneous and independent work (Kalai et al., 2010), which analyzes the case of a mixture of two Gaussians
with arbitrary covariance matrices using the method of moments. We note that the results in (Kalai et al.,
2010) and in our paper are somewhat orthogonal. Each paper deals with a special case of the ultimate goal
(two arbitrary Gaussians in (Kalai et al., 2010) and k identical spherical Gaussians with unknown variance
in our case), which is to show polynomial learnability for a mixture with an arbitrary number of components
and arbitrary variance.

All other existing algorithms for parameter estimation require minimum separation between the compo-
nents to be an increasing function of at least one of n or k. Our result also implies a density estimate bound
along the lines of (Feldman et al., 2006). We note, however, that we do have to pay a price as our procedure
(similarly to that in (Feldman et al., 2006)) is super-exponential in k. Despite these limitations we believe
that our paper makes a step towards understanding the fundamental problem of polynomial learnability of
Gaussian mixture distributions. We also think that the technique used in the paper to obtain the lower bound
may be of independent interest.

The main algorithm in our paper involves a grid search over a certain space of parameters, specifically
means and mixing coefficients of the mixture (a completely separate argument is given to estimate the vari-
ance). By giving appropriate lower and upper bounds for the norm of the difference of two mixture distri-
butions in terms of their means, we show that such a grid search is guaranteed to find a mixture with nearly
correct values of the parameters.

To prove that, we need to provide a lower and upper bounds on the norm of the mixture. A key point
of our paper is the lower bound showing that two mixtures with different means cannot produce similar
density functions. This bound is obtained by reducing the problem to a 1-dimensional mixture distribution
and analyzing the behavior of the Fourier transform (closely related to the characteristic function, whose
coefficients are moments of a random variable up to multiplication by a power of the imaginary unit i) of
the difference between densities near zero. We use certain properties of minors of Vandermonde matrices
to show that the norm of the mixture in the Fourier domain is bounded from below. Since the L2 norm is
invariant under the Fourier transform this provides a lower bound on the norm of the mixture in the original
space.

We also note the work (Lindsay, 1989), where Vandermonde matrices appear in the analysis of mixture
distributions in the context of proving consistency of the method of moments (in fact, we rely on a result
from (Lindsay, 1989) to provide an estimate for the variance).

Finally, our lower bound, together with an upper bound and some results from the non-parametric density
estimation and spectral projections of mixture distributions allows us to set up a grid search algorithm over
the space of parameters with the desired guarantees.
Extended version of this paper is available at http://arxiv.org/abs/0907.1054.

2 Outline of the argument
In this section we provide an informal outline of the argument that leads to the main result. To simplify the
discussion, we will assume that the variance for the components is known or estimated by using the estimation
algorithm provided in Section 3.3. It is straightforward (but requires a lot of technical details) to see that all
results go through if the actual variance is replaced by a sufficiently (polynomially) accurate estimate.

We will denote the n-dimensional Gaussian density 1
(
√
2πσ)n

exp
(
−∥x−µi∥

2

2σ2

)
by K(x,µ), where x,µ ∈

1Note that density estimation is generally easier than parameter learning since quite different configurations of param-
eters could conceivably lead to very similar density functions, while similar configurations of parameters always result in
similar density functions.

2We point out that some non-zero separation is necessary since the problem of learning parameters without any
separation assumptions at all is ill-defined.



Rn or, when appropriate, in Rk. The notation ∥ · ∥ will always be used to represent L2 norm while dH(·, ·)
will be used to denote the Hausdorff distance between sets of points. Let p(x) =

∑k
i=1 αiK(x,µi) be a

mixture of k Gaussian components with the covariance matrix σ2I in Rn. The goal will be to identify the
means µi and the mixing coefficients αi under the assumption that the minimum distance ∥µi − µj∥, i ̸= j
is bounded from below by some given (arbitrarily small) dmin and the minimum mixing weight is bounded
from below by αmin. We note that while σ can also be estimated, we will assume that it is known in advance
to simplify the arguments. The number of components needs to be known in advance which is in line with
other work on the subject. Our main result is an algorithm guaranteed to produce an approximating mixture
p̃, whose means and mixing coefficients are all within ϵ of their true values and whose running time is a
polynomial in all parameters other than k. Input to our algorithm is αmin, σ, k, N points in Rn sampled from
p and an arbitrary small positive ϵ satisfying ϵ ≤ dmin

2 . The algorithm has the following main steps.
Parameters: αmin, dmin, σ, k.
Input: ϵ ≤ dmin

2 , N points in Rn sampled from p.
Output: θ∗, the vector of approximated means and mixing coefficients.

Step 1. (Reduction to k dimensions). Given a polynomial number of data points sampled from p it is
possible to identify the k-dimensional span of the means µi in Rn by using Singular Value Decomposition
(see (Vempala & Wang, 2002)). By an additional argument the problem can be reduced to analyzing a mixture
of k Gaussians in Rk.

Step 2. (Construction of kernel density estimator). Using Step 1, we can assume that n = k. Given a
sample of N points in Rk, we construct a density function pkde using an appropriately chosen kernel density
estimator. Given sufficiently many points, ∥p− pkde∥ can be made arbitrarily small. Note that while pkde is
a mixture of Gaussians, it is not a mixture of k Gaussians.

Step 3. (Grid search). Let Θ = (Rk)k ×Rk be the k2 + k-dimensional space of parameters (component
means and mixing coefficients) to be estimated. Because of Step 1, we can assume (see Lemma 1) µis are in
Rk.

For any θ̃ = (µ̃1, µ̃2, · · · , µ̃k, α̃) = (m̃, α̃) ∈ Θ, let p(x, θ̃) be the corresponding mixture distribution.
Note that θ = (m,α) ∈ Θ are the true parameters. We obtain a value G (polynomial in all arguments for
a fixed k) from Theorem 4 and take a grid MG of size G in Θ. The value θ∗ is found from a grid search
according to the following equation

θ∗ = argmin
θ̃∈MG

{
∥p(x, θ̃)− pkde∥

}
(1)

We show that the means and mixing coefficients obtained by taking θ∗ are close to the true underlying
means and mixing coefficients of p with high probability. We note that our algorithm is deterministic and the
uncertainty comes only from the sample (through the SVD projection and density estimation).

While a somewhat different grid search algorithm was used in (Feldman et al., 2006), the main novelty
of our result is showing that the parameters estimated from the grid search are close to the true underlying
parameters of the mixture. In principle, it is conceivable that two different configurations of Gaussians could
give rise to very similar mixture distributions. However, we show that this is not the case. Specifically,
and this is the theoretical core of this paper, we show that mixtures with different means/mixing coefficients
cannot be close in L2 norm3 (Theorem 2) and thus the grid search yields parameter values θ∗ that are close
to the true values of the means and mixing coefficients.

To provide a better high-level overview of the whole proof we give a high level summary of the argument
(Steps 2 and 3).

1. Since we do not know the underlying probability distribution p directly, we construct pkde, which is a
proxy for p = p(x,θ). pkde is obtained by taking an appropriate non-parametric density estimate and,
given a sufficiently large polynomial sample, can be made to be arbitrarily close to p in L2 norm (see
Lemma 9). Thus the problem of approximating p in L2 norm can be replaced by approximating pkde.

2. The main technical part of the paper are the lower and upper bounds on the norm ∥p(x,θ)−p(x, θ̃)∥ in
terms of the Hausdorff distance between the component means (considered as sets of k points) m and
m̃. Specifically, in Theorem 2 and Lemma 3 we prove that for θ̃ = (m̃, α̃)

dH(m, m̃) ≤ f(∥p(x,θ)− p(x, θ̃)∥) ≤ h(dH(m, m̃) + ∥α− α̃∥1)
where f, h are some explicitly given increasing functions. The lower bound shows that dH(m, m̃) can
be controlled by making ∥p(x,θ) − p(x, θ̃)∥ sufficiently small, which (assuming minimum separation

3Note that our notion of distance between two density functions is slightly different from the standard ones used in
literature, e.g., Hellinger distance or KL divergence. However, our goal is to estimate the parameters and here we use L2

norm merely as a tool to describe that two distributions are different.



dmin between the components of p) immediately implies that each component mean of m is close to
exactly one component mean of m̃.

On the other hand, the upper bound guarantees that a search over a sufficiently fine grid in the space Θ
will produce a value θ∗, s.t. ∥p(x,θ)− p(x,θ∗)∥ is small.

3. Once the component means m and m̃ are shown to be close an argument using the Lipschitz property
of the mixture with respect to the mean locations can be used to establish that the corresponding mixing
coefficient are also close (Corollary 5).

We will now briefly outline the argument for the main theoretical contribution of this paper which is a lower
bound on the L2 norm in terms of the Hausdorff distance (Theorem 2).

1. (Minimum distance, reduction from Rk to R1) Suppose a component mean µi, is separated from every
estimated mean µ̃j by a distance of at least d, then there exists a unit vector v in Rk such than ∀i,j
|⟨v, (µ̃i − µj)⟩| ≥ d

4k2 . In other words a certain amount of separation is preserved after an appropriate
projection to one dimension. See Lemma 10 for a proof.

2. (Norm estimation, reduction from Rk to R1). Let p and p̃ be the true and estimated density respectively
and let v be a unit vector in Rk. pv and p̃v will denote the one-dimensional marginal densities obtained
by integrating p and p̃ in the directions orthogonal to v. It is easy to see that pv and p̃v are mixtures
of 1-dimensional Gaussians, whose means are projections of the original means onto v. It is shown in
Lemma 11 that

∥p− p̃∥2 ≥
(

1

cσ

)k

∥pv − p̃v∥2

and thus to provide a lower bound for ∥p − p̃∥ it is sufficient to provide an analogous bound (with a
different separation between the means) in one dimension.

3. (1-d lower bound) Finally, we consider a mixture q of 2k Gaussians in one dimension, with the assump-
tion that one of the component means is separated from the rest of the component means by at least t
and that the (not necessarily positive) mixing weights exceed αmin in absolute value. Assuming that the
means lie in an interval [−a, a] we show (Theorem 6)

∥q∥2 ≥ α4k
min

(
t

a2

)Ck2

for some positive constant C independent of k.

The proof of this result relies on analyzing the Taylor series for the Fourier transform of q near zeros,
which turns out to be closely related to a certain Vandermonde matrix.

Combining 1 and 2 above and applying the result in 3, q = pv−p̃v yields the desired lower bound for ∥p−p̃∥.

3 Main Results
In this section we present our main results. First we show that we can reduce the problem in Rn to a corre-
sponding problem in Rk , where n represents the dimension and k is the number of components, at the cost
of an arbitrarily small error. Then we solve the reduced problem in Rk, again allowing for only an arbitrarily
small error, by establishing appropriate lower and upper bounds of a mixture norm in Rk.

Lemma 1 (Reduction from Rn to Rk) Consider a mixture of k n-dimensional spherical Gaussians p(x) =∑k
i=1 αiK(x,µi) where the means lie within a cube [−1, 1]n, ∥µi − µj∥ ≥ dmin > 0, ∀i̸=j and for all

i, αi > αmin. For any positive ϵ ≤ dmin

2 and δ ∈ (0, 1), given a sample of size poly
(

n
ϵαmin

)
· log

(
1
δ

)
,

with probability greater than 1− δ, the problem of learning the parameters (means and mixing weights) of p
within ϵ error can be reduced to learning the parameters of a k-dimensional mixture of spherical Gaussians
po(x) =

∑k
i=1 αiK(x,νi) where the means lie within a cube [−

√
n
k ,
√

n
k ]

k, ∥νi − νj∥ > dmin

2 > 0, ∀i ̸=j .
However, in Rk we need to learn the means within ϵ

2 error.

Proof: For i = 1, . . . , k, let vi ∈ Rn be the top k right singular vectors of a data matrix of size poly
(

n
ϵαmin

)
·

log
(
1
δ

)
sampled from p(x). It is well known (see (Vempala & Wang, 2002)) that the space spanned by the



means {µi}ki=1 remains arbitrarily close to the space spanned by {vi}ki=1. In particular, with probability
greater than 1− δ, the projected means {µ̃i}ki=1 satisfy ∥µi − µ̃i∥ ≤ ϵ

2 for all i (see Lemma 12).
Note that each projected mean µ̃i ∈ Rn can be represented by a k dimensional vector νi which are

the coefficients along the singular vectors vjs, that is for all i, µ̃i =
∑k

j=1 νijvj . Thus, for any i ̸=
j, ∥µ̃i − µ̃j∥ = ∥νi − νj∥. Since ∥µ̃i − µ̃j∥ ≥ dmin − ϵ

2 − ϵ
2 = dmin − ϵ ≥ dmin − dmin

2 = dmin

2 , we have
∥νi − νj∥ ≥ dmin

2 . Also note that each νi lie within a cube of [−
√

n
k ,
√

n
k ]

k where the axes of the cube are
along the top k singular vectors vjs.

Now suppose we can estimate each νi by ν̃i ∈ Rk such that ∥νi − ν̃i∥ ≤ ϵ
2 . Again each ν̃i has a

corresponding representation µ̂i ∈ Rn such that µ̂i =
∑k

j=1 ν̃ijvj and ∥µ̃i− µ̂i∥ = ∥νi− ν̃i∥. This implies
for each i, ∥µi − µ̂i∥ ≤ ∥µi − µ̃i∥+ ∥µ̃i − µ̂i∥ ≤ ϵ

2 + ϵ
2 = ϵ.

From here onwards we will deal with mixture of Gaussians in Rk. Thus we will assume that po denotes
the true mixture with means {νi}ki=1 while p̃o represents any other mixture in Rk with different means and
mixing weights.

We first prove a lower bound for ∥po − p̃o∥.

Theorem 2 (Lower bound in Rk) Consider a mixture of k k-dimensional spherical Gaussians po(x) =∑k
i=1 αiK(x,νi) where the means lie within a cube [−

√
n
k ,
√

n
k ]

k, ∥νi − νj∥ ≥ dmin

2 > 0, ∀i̸=j and
for all i,αi > αmin. Let p̃o(x) =

∑k
i=1 α̃iK(x, ν̃i) be some arbitrary mixture such that the Hausdorff

distance between the set of true means m and the estimated means m̃ satisfies dH(m, m̃) ≤ dmin

4 . Then

∥po − p̃o∥2 ≥
(

α4
min

cσ

)k (
dH(m,m̃)

4nk2

)Ck2

where C, c are some positive constants independent of n, k.

Proof: Consider any arbitrary νi such that its closest estimate ν̃i from m̃ is t = ∥νi − ν̃i∥. Note that
t ≤ dmin

4 and all other νj , ν̃j , j ̸= i are at a distance at least t from νi. Lemma 10 ensures the existence
of a direction v ∈ Rk such that upon projecting on which |⟨v, (νi − ν̃i)⟩| ≥ t

4k2 and all other projected
means ⟨v,νj⟩, ⟨v, ν̃j⟩, j ̸= i are at a distance at least t

4k2 from ⟨v,νi⟩. Note that after projecting on v,
the mixture becomes a mixture of 1-dimensional Gaussians with variance σ2 and whose projected means
lie within [−

√
n,

√
n]. Let us denote these 1-dimensional mixtures by pv and p̃v respectively. Then using

Theorem 6 ∥pv − p̃v∥2 ≥ α4k
min

(
(t/4k2)

n

)Ck2

. Note that we obtain pv (respectively p̃v) by integrating po

(respectively p̃o) in all (k − 1) orthogonal directions to v. Now we need to relate ∥po − p̃o∥ and ∥pv − p̃v∥.
This is done in Lemma 11 to ensure that ∥po − p̃o∥2 ≥

(
1
cσ

)k ∥pv − p̃v∥2 where c > is in chosen such a
way that in any arbitrary direction probability mass of each projected Gaussian on that direction becomes

negligible outside the interval of [−cσ/2, cσ/2]. Thus, ∥po − p̃o∥2 ≥
(αmin4

cσ

)k ( t
4nk2

)Ck2

. Since this holds
for any arbitrary νi, we can replace t by dH(m, m̃).

Next, we prove a straightforward upper bound for ∥po − p̃o∥.

Lemma 3 (Upper bound in Rk) Consider a mixture of k, k-dimensional spherical Gaussians po(x) =∑k
i=1 αiK(x,νi) where the means lie within a cube [−

√
n
k ,
√

n
k ]

k, ∥νi − νj∥ ≥ dmin

2 > 0, ∀i̸=j and
for all i,αi > αmin. Let p̃o(x) =

∑k
i=1 α̃iK(x, ν̃i) be some arbitrary mixture such that the Hausdorff

distance between the set of true means m and the estimated means m̃ satisfies dH(m, m̃) ≤ dmin

4 . Then
there exists a permutation π : {1, 2, . . . , k} → {1, 2, , . . . , k} such that

∥po − p̃o∥ ≤ 1

(2πσ2)k/2

k∑
i=1

(√
|αi − α̃π(i)|2 +

d2H(m, m̃)

σ2

)
Proof: Due to the constraint on the Hausdorff distance and constraint on the pair wise distance between
the means of m, there exists a permutation π : {1, 2, . . . , k} → {1, 2, , . . . , k} such that ∥νi − ν̂π(i)∥ ≤
dH(m, m̃). Due to one-to-one correspondence, without loss of generality we can write,
∥po − p̃o∥ ≤

∑k
i=1 ||gi∥ where gi(x) = αiK(x,νi)− α̃π(i)K(x, ν̃π(i)). Now using Lemma 13,

∥gi∥2 ≤ 1
(2πσ2)k

(
α2
i + α̃2

π(i) − 2αiα̃π(i) exp
(
−∥νi−ν̃π(i)∥2

2σ2

))
= 1

(2πσ2)k

(
(αi − α̃π(i))

2 + 2αiα̃π(i)

(
1− exp

(
−∥νi−ν̃π(i)∥2

2σ2

)))
≤ 1

(2πσ2)k

(
(αi − α̃π(i))

2 +
αiα̃π(i)∥νi−ν̃π(i)∥2

σ2

)
We now present our main result for learning mixture of Gaussians with arbitrary small separation.



Theorem 4 Consider a mixture of k n-dimensional spherical Gaussians p(x) =
∑k

i=1 αiK(x,µi) where
the means lie within a cube [−1, 1]n, ∥µi − µj∥ > dmin > 0, ∀i̸=j and for all i, αi > αmin. Then given any
positive ϵ ≤ dmin

2 and δ ∈ (0, 1), there exists a positive C1 independent of n and k such that using a sample of

size N = poly

((
nk2

ϵ

)k3

· logk
(
2
δ

))
and a grid MG of size G =

(α4
min)

k

k3/2

(
ϵ

8nk2

)C1k
2

, our algorithm given

by Equation 1 runs in time k3/2

(α4
minσ)

k

(
n3/2k1/2

ϵ

)C1k
2

and provides mean estimates which, with probability
greater than 1− δ, are within ϵ of their corresponding true values.

Proof: The proof has several parts.
SVD projection: We have shown in Lemma 1 that after projecting to SVD space (using a sample of size
poly

(
n

αminϵ

)
· log

(
2
δ

)
), we need to estimate the parameters of the mixture in Rk, po(x) =

∑k
i=1 αiK(x,νi)

where we must estimate the means within ϵ
2 error.

Grid Search: Let us denote the parameters4 of the underlying mixture po(x,θ) by
θ = (m,α) = (ν1, . . . ,νk,α) ∈ Rk2+k and any approximating mixture po(x, θ̃) has parameters θ̃ =

(m̃, α̃). We have proved the bounds f1 (dH(m, m̃)) ≤ ∥p(x,θ)− p(x, θ̃)∥ ≤ f2(dH(m, m̃)+ ∥α− α̃∥1)
(see Theorem 2, Lemma 3), where f1 and f2 are increasing functions. Let G be the step/grid size (whose value
we need to set) that we use for gridding along each of the k2 + k parameters over the grid MG. We note that
the L2 norm of the difference can be computed efficiently by multidimensional trapezoidal rule or any other
standard numerical analysis technique (see e.g., (Burden & Faires, 1993)). Since this integration needs to be
preformed on a (k2 + k)-dimensional space, for any pre-specified precision parameter ϵ, this can be done in

time
(
1
ϵ

)O(k2). Now note that there exists a point θ∗ = (m∗,α∗) on the grid MG , such that if somehow we
can identify this point as our parameter estimate then we make an error at most G/2 in estimating each mixing
weight and make an error at most G

√
k/2 in estimating each mean. Since there are k mixing weights and k

means to be estimated, ∥po(x,θ)− po(x,θ
∗)∥ ≤ f2(dH(m,m∗) + ∥α−α∗∥1) ≤ f2(G) =

k
√

1+k/σ2

2(2πσ2)k/2 G.
Thus,

f1 (dH(m,m∗)) ≤ ∥po(x,θ)− po(x,θ
∗)∥ ≤ f2(G)

Now, according to Lemma 9, using a sample of size Ω
([

log(2/δ)
ϵ2∗

]k)
we can obtain a kernel density estimate

such that with probability greater than 1− δ
2 ,

∥pkde − po(x,θ)∥ ≤ ϵ∗ (2)

By triangular inequality this implies,

f1 (dH(m,m∗))− ϵ∗ ≤ ∥pkde − po(x,θ
∗)∥ ≤ f2(G) + ϵ∗ (3)

Since there is a one-to-one correspondence between the set of means of m and m∗, dH(m,m∗) essentially
provides the maximum estimation error for any pair of true mean and its corresponding estimate. Suppose
we choose G such that it satisfies

2ϵ∗ + f2(G) ≤ f1

( ϵ
2

)
(4)

For this choice of grid size, Equation 3 and Equation 4 ensures that f1 (dH(m,m∗)) ≤ f2(G) + 2ϵ∗ ≤
f1
(
ϵ
2

)
. Hence dH(m,m∗) ≤ ϵ

2 . Now consider a point θN = (mN ,αN ) on the grid MG such that
dH(m,mN ) > ϵ

2 . This implies,

f1
(
dH(m,mN )

)
> f1

( ϵ
2

)
(5)

Now,
∥po(x,θN )− pkde∥

a
≥ ∥po(x,θN )− po(x,θ)∥ − ∥po(x,θ)− pkde∥

b
≥ f1

(
dH(m,mN )

)
− ϵ∗

c
> f1

(
ϵ
2

)
− ϵ∗

d
≥ f2(G) + ϵ∗
e
≥ ∥po(x,θ∗)− pkde∥

4To make our presentation simple we assume that the single parameter variance is fixed and known. Note that it can
also be estimated.



where, inequality a follows from triangular inequality, inequality b follows from Equation 2, strict inequality c
follows from Equation 5, inequality d follows from Equation 4 and finally inequality e follows from Equation
3. Setting ϵ∗ = 1

3f1
(
ϵ
2

)
, Equation 4 and the above strict inequality guarantees that for a choice of Grid size

G = f−1
2

(
1
3f1

(
ϵ
2

))
=
(

α4k
min

k3/2

) (
ϵ

8nk2

)C1k
2

the solution obtained by equation 1 can have mean estimation

error at most ϵ
2 . Once projected onto SVD space each projected mean lies within a cube [−

√
n
k ,
√

n
k ]

k. With

the above chosen grid size, grid search for the means runs in time
(

k3/2

α4k
min

)
·
(

n3/2k1/2

ϵ

)C1k
2

. Note that grid

search for the mixing weights runs in time
(

k3/2

α4k
min

)
·
(

nk2

ϵ

)C1k
2

.

We now show that not only the mean estimates but also the mixing weights obtained by solving Equation
1 satisfy |αi − α̃i| ≤ ϵ for all i. In particular we show that if two mixtures have almost same means and
the L2 norm of difference of their densities is small then the difference of the corresponding mixing weights
must also be small.

Corollary 5 With sample size and grid size as in Theorem 4, the solution of Equation 1 provides mixing
weight estimates which are, with high probability, within ϵ of their true values.

Due to space limitation we defer the proof is omitted.

3.1 Lower Bound in 1-Dimensional Setting
In this section we provide the proof of our main theoretical result in 1-dimensional setting. Before we present
the actual proof, we provide high level arguments that lead us to this result. First note that Fourier transform
of a mixture of k univariate Gaussians q(x) =

∑k
i=1 αiK(x, µi) is given by

F(q)(u) = 1√
2π

∫
q(x) exp(−iux)dx = 1√

2π

∑k
j=1 αj exp

(
− 1

2 (σ
2u2 + i2uµj)

)
= 1√

2π
exp

(
−σ2u2

2

)∑k
j=1 αj exp(−iuµj)

Thus, ∥F(q)∥2 = 1
2π

∫
|
∑k

j=1 αj exp(−iuµj)|2 exp(−σ2u2)du. Since L2 norm of a function and its
Fourier transform are the same, we can write,
∥q∥2 = 1

2π

∫
|
∑k

j=1 αj exp(−iuµj)|2 exp(−σ2u2)du.

Further, 1
2π

∫
|
∑k

j=1 αj exp(−iuµj)|2 exp(−σ2u2)du = 1
2π

∫
|
∑k

j=1 αj exp(iuµj)|2 exp(−σ2u2)du and
we can write,

∥q∥2 =
1

2π

∫
|g(u)|2 exp(−σ2u2)du

where g(u) =
∑k

j=1 αj exp(iµju). This a complex valued function of a real variable which is infinitely
differentiable everywhere. In order to bound the above square norm from below, now our goal is to find an
interval where |g(u)|2 is bounded away from zero. In order to achieve this, we write Taylor series expansion
of g(u) at the origin using (k − 1) terms. This can be written in matrix vector multiplication format g(u) =
utAα + O(uk), where ut = [1 u u2

2! · · ·
uk−1

(k−1)! ], such that Aα captures the function value and (k −
1) derivative values at origin. In particular, ∥Aα∥2 is the sum of the squares of the function g and k −
1 derivatives at origin. Noting that A is a Vandermonde matrix we establish (see Lemma 16) ∥Aα∥ ≥

αmin

(
t

2
√
n

)k−1

. This implies that at least one of the (k − 1) derivatives, say the jth one, of g is bounded

away from zero at origin. Once this fact is established, and noting that (j + 1)th derivative of g is bounded
from above everywhere, it is easy to show (see Lemma 14) that it is possible to find an interval (0, a) where
jth derivative of g is bounded away from zero in this whole interval. Then using Lemma 15, it can be shown
that, it is possible to find a subinterval of (0, a) where the (j − 1)th derivative of g is bounded away from
zero. And thus, successively repeating this Lemma j times, it is easy to show that there exists a subinterval
of (0, a) where |g| is bounded away from zero. Once this subinterval is found, it is easy to show that ∥q∥2 is
lower bounded as well.

Now we present the formal statement of our result.

Theorem 6 (Lower bound in R) Consider a mixture of k univariate Gaussians q(x) =
∑k

i=1 αiK(x, µi)
where, for all i, the mixing coefficients αi ∈ (−1, 1) and the means µi ∈ [−

√
n,

√
n]. Suppose there

exists a µl such that minj |µl − µj | ≥ t, and for all i, |αi| ≥ αmin. Then the L2 norm of q satisfies

||q||2 ≥ α2k
min

(
t
n

)Ck2

where C is some positive constant independent of k.



Proof: Note that,

∥q∥2 =
1

2π

∫
|g(u)|2 exp(−σ2u2)du

where, g(u) =
∑k

j=1 αj exp(iµju). Thus, in order to bound the above square norm from below, we need
to find an interval where g(u) is bounded away from zero. Note that g(u) is an infinitely differentiable
function with nth order derivative 5 g(n)(u) =

∑k
j=1 αj(iµj)

n exp(iµju). Now we can write the Taylor
series expansion of g(u) about origin as,

g(u) = g(0) + g(1)(0)
u

1!
+ g(2)(0)

u2

2!
+ ...+ g(k−1)(0)

u(k−1)

(k − 1)!
+O(uk)

which can be written as

g(u) =
[

1 u u2

2!
· · · uk−1

(k−1)!

]


1 1 1 · · · 1
iµ1 iµ2 iµ3 · · · iµk

(iµ1)
2 (iµ2)

2 (iµ3)
2 · · · (iµk)

2

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

(iµ1)
k−1 (iµ2)

k−1 (iµ3)
k−1 · · · (iµk)

k−1


︸ ︷︷ ︸

A


α1

α2

·
·
αk


︸ ︷︷ ︸

α

+O(uk)

Note that matrix A is Vandermonde matrix thus, using Lemma 16 this implies |g(0)|2 + |g(1)(0)|2 + · · · +

|g(k−1)(0)|2 = ∥Aα∥2 ≥ α2
min

(
t

1+
√
n

)2(k−1)

≥ α2
min

(
t

2
√
n

)2(k−1)

. This further implies that either

|g(0)|2 ≥ α2
min

k

(
t

2
√
n

)2(k−1)

or there exists a j ∈ {1, 2, · · · , k−1} such that |g(j)(0)|2 ≥ α2
min

k

(
t

2
√
n

)2(k−1)

.
In the worst case we can have j = k− 1, i.e. the (k− 1)-th derivative of g is lower bounded at origin and we
need to find an interval where g itself is lower bounded.

Next, note that for any u, g(k)(u) =
∑k

j=1 αj(iµj)
k exp(iuµj). Thus, |g(k)| ≤

∑k
j=1 |αj ||(iµj)

k| ≤

αmax(
√
n)k. Assuming t ≤ 2

√
n, if we let M = αmin√

k

(
t

2
√
n

)k
, then using Lemma 14, if we choose

a = M
2
√
2αmax(

√
n)k

= αmin

αmax2
√
2k

(
t
2n

)k
, and thus, in the interval [0, a], |g(k−1)| > M

2 = αmin

2
√
k

(
t

2
√
n

)k
.

This implies |Re[g(k−1)]|2 + |Im[g(k−1)]|2 >
α2

min

4k

(
t

2
√
n

)2k
. For simplicity denote by h = Re[g], thus,

h(k−1) = Re[g(k−1)] and without loss of generality assume |h(k−1)| > αmin

2
√
2k

(
t

2
√
n

)k
= M

2
√
2

in the interval

(0, a). Now repeatedly applying Lemma 15 (k − 1) times yields that in the interval
(

(3k−1−1)
3k−1 a, a

)
, (or in

any other subinterval of length a
3k−1 within [0, a])

|h| > M
2
√
2
(a6 )(

a
6.3 )(

a
6.32 ) · · · (

a
6.3k−1 ) =

(
M
2
√
2

) (
a
6

)k ( 1

3
k(k−1)

2

)
= αmax(

√
n)kak+1

2k3
k2+k

2

In particular, this implies, |g|2 ≥ |h|2 >
α2

maxn
ka2(k+1)

22k3k2+k
in an interval

(
(3k−1−1)

3k−1 a, a
)

.

Next, note that 0 < a ≤ 1 ⇒ exp(−σ2) ≤ exp(−σ2a2). Now, denoting β1 = (3k−1−1)
3k−1 a, β2 = a, we

have,
∥q∥2 ≥ 1

2π

∫ β2

β1
|g(u)|2 exp(−σ2u2)du ≥ β2−β1

2π |g(β2)|2 exp(−σ2)

=
(

exp(−σ2)
2π

)
α2

maxn
ka2k+3

22k3k2+2k−1
=
(

exp(−σ2)α2k+3
min

2π

)(
t2k

2+3k

22k2+5k+9/23k2+2k−1(αmax)2k+1kk+3/2n2k2+2k

)
≥
(

exp(−σ2)α2k+3
min

2π

)(
t2k

2+3k

22k2+5k+9/23k2+2k−1kk+3/2n2k2+2k

)
≥ α2k

min

(
t2k

2+3k

2O(k2 log n)

)
= α2k

min

(
t
n

)O(k2)

where the last inequality follows from the fact that if we let,
F (k) = 22k

2+5k+9/23k
2+2k−1kk+3/2nk2+2k then taking log with base 2 on both sides yields,

log(F (k)) = (2k2 + 5k+ 9/2) + (k2 + 2k− 1) log 3 + (k + 3/2) log k+ (2k2 + 2k) log n = O(k2 log n).
Thus, F (k) = 2O(k2 logn) = nO(k2).

5Note that Fourier transform is closely related to the characteristics function and the nth derivative of g at origin is
related to the nth order moment of the mixture in the Fourier domain.



3.2 Determinant of Vandermonde Like Matrices
In this section we derive a result for the determinant of a Vandermonde-like matrix. This result will be useful
in finding the angle made by any column of a Vandermonde matrix to the space spanned by the rest of the
columns and will be useful in deriving the lower bound in Theorem 6.

Consider any (n+ 1)× n matrix B of the form

B =


1 1 1 · · · 1
x1 x2 x3 · · · xn

x2
1 x2

2 x2
3 · · · x2

n
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
xn
1 xn

2 xn
3 · · · xn

n


If the last row is removed then it exactly becomes an n×n Vandermonde matrix having determinant Πi>j(xi−
xj). The interesting fact is that if any other row except the last one is removed then the corresponding n× n
matrix has a structure very similar to that of a Vandermonde matrix. The following result shows how the
determinants of such matrices are related to Πi>j(xi − xj).

Lemma 7 For 1 ≤ i ≤ (n−1), let Bi represents the n×n matrix obtained by removing the ith row from B.
Then det(Bi) = ciΠs>t(xs −xt) where ci is a polynomial having

(
n

i−1

)
terms with each term having degree

(n− i+ 1). Terms of the polynomial ci represent the possible ways in which (n− i+ 1) xjs can be chosen
from {xi}ni=1.

Proof: First note that if a matrix has elements that are monomials in some set of variables, then its determinant
will in general be polynomial in those variables. Next, by the basic property of a determinant, that it is zero if
two of its columns are same, we can deduce that for 1 ≤ i < n, det(Bi) = 0 if xs = xt for some s ̸= t, 1 ≤
s, t < n, and hence qi(x1, x2, ..., xn) = det(Bi) contains a factor p(x1, x2, ..., xn) = Πs>t(xs − xt). Let
qi(x1, x2, ..., xn) = p(x1, x2, ..., xn)ri(x1, x2, ..., xn).

Now, note that each term of p(x1, x2, ..., xn) has degree 0+1+2+...+(n−1) = n(n−1)
2 . Similarly, each

term of the polynomial qi(x1, x2, ..., xn) has degree (0+1+2+ ...+n)− (i−1) = n(n+1)
2 − (i−1). Hence

each term of the polynomial ri(x1, x2, ..., xn) must be of degree n(n+1)
2 − (i− 1)− n(n−1)

2 = (n− i+ 1).
However in each term of ri(x1, x2, ..., xn), the maximum power of any xj can not be greater than 1. This
follows from the fact that maximum power of xj in any term of qi(x1, x2, ..., xn) is n and in any term of
p(x1, x2, ..., xn) is (n − 1). Hence each term of ri(x1, x2, ..., xn) consists of (n − i + 1) different xjs and
represents the different ways in which (n− i+1) xjs can be chosen from {xi}ni=1. And since it can be done
in
(

n
n−i+1

)
=
(

n
i−1

)
ways there will be

(
n

i−1

)
terms in ri(x1, x2, ..., xn).

3.3 Estimation of Unknown Variance
In this section we discuss a procedure for consistent estimation of the unknown variance due to (Lindsay,
1989) (for the one-dimensional case) and prove that the estimate is polynomial. This estimated variance can
then be used in place of true variance in our main algorithm discussed earlier and the remaining mixture
parameters can be estimated subsequently.

We start by noting a mixture of k identical spherical Gaussians
∑k

i=1 αiN (µi, σ
2I) in Rn projected on

an arbitrary line becomes a mixture of identical 1-dimensional Gaussians p(x) =
∑k

i=1 αiN (µi, σ
2). While

the means of components may no longer be different, the variance does not change. Thus, the problem is
easily reduced to the 1-dimensional case.

We will now show that the variance of a mixture of k Gaussians in 1 dimension can be estimated from
a sample of size poly

(
1
ϵ ,

1
δ

)
, where ϵ > 0 is the precision ,with probability 1 − δ in time poly

(
1
ϵ ,

1
δ

)
. This

will lead to an estimate for the n-dimensional mixture using poly
(
n, 1

ϵ ,
1
δ

)
sample points/operations.

Consider now the set of Hermite polynomials γi(x, τ) given by the recurrence relation γi(x, τ) =
xγi−1(x, τ)− (i−1)τ2γi−2(x, τ), where γ0(x, τ) = 1 and γ1(x, τ) = x. Take M to be the (k+1)× (k+1)
matrix defined by

Mij = Ep[γi+j(X, τ)], 0 ≤ i+ j ≤ 2k.

It is shown in Lemma 5A of (Lindsay, 1989) that the determinant det(M) is a polynomial in τ and, moreover,
that the smallest positive root of det(M), viewed is a function of τ , is equal to the variance σ of the original
mixture p. We will use d(τ) to represent det(M).

This result leads to an estimation procedure, after observing that Ep[γi+j(X, τ)] can be replaced by its
empirical value given a sample X1, X2, ..., XN from the mixture distribution p. Indeed, one can construct



the empirical version of the matrix M by putting

M̂ij =
1

N

N∑
t=1

[γi+j(Xt, τ)], 0 ≤ i+ j ≤ 2k. (6)

It is clear that d̂(τ) = det(M̂)(τ) is a polynomial in τ . Thus we can provide an estimate σ∗ for the variance
σ by taking the smallest positive root of d̂(τ). This leads to the following estimation procedure :

Parameter: Number of components k.
Input: N points in Rn sampled from

∑k
i=1 αiN (µi, σ

2I).
Output: σ∗, estimate of the unknown variance.

Step 1. Select an arbitrary direction v ∈ Rn and project the data points onto this direction.
Step 2. Construct the (k + 1)× (k + 1) matrix M̂(τ) using Eq. 6
Step 3. Compute the polynomial d̂(τ) = det(M̂)(τ). Obtain the estimated variance σ∗ by approximating

the smallest positive root of d̂(τ). This can be done efficiently by using any standard numerical method or
even a grid search.

We will now state our main result in this section, which establishes that this algorithm for variance esti-
mation is indeed polynomial in both the ambient dimension n and the inverse of the desired accuracy ϵ.

Theorem 8 For any ϵ > 0, 0 < δ < 1, if sample size N > O
(

npoly(k)

ϵ2δ

)
, then the above procedure provides

an estimate σ∗ of the unknown variance σ such that |σ − σ∗| ≤ ϵ with probability greater than 1− δ.

The idea of the proof is to show that the coefficients of the polynomials d(τ) and d̂(τ) are polynomially
close, given enough samples from p. That (under some additional technical conditions) can be shown to
imply that the smallest positive roots of these polynomials are also close. To verify that d(τ) and d̂(τ) are
close, we use the fact that the coefficients of d(τ) are polynomial functions of the first 2k moments of p, while
coefficients of d̂(τ) are the same functions of the empirical moment estimates. Using standard concentration
inequalities for the first 2k moments and providing a bound for these functions the result.

Proof: It is shown in Lemma 5A of (Lindsay, 1989) that the smallest positive root of the determinant d(τ) =
det(M)(τ), viewed is a function of τ , is equal to the variance σ of the original mixture p and also that d(τ)
undergoes a sign change at its smallest positive root. Let the smallest positive root of d̂(τ) = det(M̂)(τ) be
σ̂. We now show for any ϵ > 0 that σ and σ̂ are within ϵ given O

(
npoly(k)

ϵ2δ

)
samples.

In Corollary 18 we show that both d(τ) and d̂(τ) are polynomials of degree k(k + 1) and the highest
degree coefficient of d̂(τ) is independent of the sample. The rest of the coefficients of d(τ) and d̂(τ) are
sums of products of the coefficients of individual entries of the matrices M and M̂ respectively.

Note that E(M̂) = M , i.e., for any 1 ≤ i, j,≤ (k + 1),E(M̂i,j(τ)) = Mi,j(τ). Since Mi,j(τ) is
a polynomial in τ , using standard concentration results we can show that coefficients of the polynomial
M̂i,j(τ) are close to the corresponding coefficients of the polynomial Mi,j(τ) given large enough sample

size. Specifically, we show in Lemma 21 that given a sample of size O
(

npoly(k)

ϵ2δ

)
each of the coefficients of

each of the polynomials Mi,j(τ) can be estimated within error O
(

ϵ
npoly(k)

)
with probability at least 1− δ.

Next, in Lemma 22 we show that estimating each of the coefficients of the polynomial Mi,j(τ) for all
i, j with accuracy O

(
ϵ

npoly(k)

)
ensures that all coefficients of d(τ̂) are O

(
ϵ
k

)
close to the corresponding

coefficients of d(τ) with high probability.
Consequently, in Lemma 20 we show that when all coefficients of d̂(τ) are within O

(
ϵ
k

)
of the cor-

responding coefficients of d(τ), the smallest positive root of d̂(τ), σ̂, is at most ϵ away from the smallest
positive root σ of d(τ).

Observing that there exist many efficient numerical methods for estimating roots of polynomial of one
variable within the desires accuracy completes the proof.
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A Appendix
In this appendix we provide some of the auxiliary lemmas that are required in the main text. Due to
space limitation the proofs are omitted. Extended version of this paper containing the proofs is available
at http://arxiv.org/abs/0907.1054.
For the purpose of estimating the sample size requirement for an appropriate non-parametric density estimator
that is arbitrarily close in L2 norm sense, we define the Sobolev class as follows. In the following, Sobolev
space W 2,2 is defined as the subset of L2 such that if f ∈ W 2,2 then f and its weak derivatives up to order 2
have finite L2 norm.

Definition 1 Let L > 0. The Sobolev class S(2, L) is defined as the set of all functions f : Rd → R such
that f ∈ W 2,2, and all the second order partial derivatives ∂2f

∂x
α1
1 ...∂x

αd
d

, where α = (α1, α2, . . . , αd) is a

multi-index with |α| = 2 , satisfy ∥∥∥∥ ∂2f

∂xα1
1 . . . ∂xαd

d

∥∥∥∥
2

≤ L

Note that when the parameters are bounded, mixture of k Gaussian distributions belongs to Sobolev class
as defined above and the following Lemma shows that we can approximate the density of such a mixture
arbitrarily well in L2 norm sense.

Lemma 9 Let p ∈ S(2, L) be a d-dimensional probability density function and K : Rd → R be any
kernel function with diagonal bandwidth matrix h2I, h > 0, satisfying

∫
K(x)dx = 1,

∫
xK(x)dx =

0,
∫
xTxK(x)dx < C1 and

∫
K2(x)dx < C2 for positive C1, C2. Then for any ϵ0 > 0 and any δ ∈

(0, 1), with probability grater than 1 − δ, the kernel density estimate p̂S obtained using a sample S of size

Ω

([
log(1/δ)

ϵ20

]d)
satisfies,

∫
(p(x)− p̂S(x))

2
dx ≤ ϵ0.

Lemma 10 Consider any set of k points {xi}ki=1 in Rd. There exists a direction v ∈ Rd, ∥v∥ = 1 such for
any i, j |⟨xi,v⟩ − ⟨xj ,v⟩| > ∥xi−xj∥

k2 .

Note that in the above Lemma dimensionality of the space Rd is irrelevant but the number of samples k is
important. This Lemma can also be considered as a special kind of one sided version of Johnson-Lindenstraus
Lemma, and by choosing v at random from Rd the same result can be shown to hold with high probability.
However, the above result is deterministic.

Lemma 11 Let g : Rk → R be a continuous bounded function. Let v,u1, ...,uk−1 ∈ Rk be an orthonormal
basis of Rk and let g1 : R → R be defined as g1(v) =

∫
· · ·
∫
g(v, u1, ...uk−1)du1 · · · duk−1. Then for some

c > 0, ∥g∥2 ≥
(

1
cσ

)k ∥g1∥2.

A version of the following Lemma was proved in (Vempala & Wang, 2002). We tailor it for our purpose.

Lemma 12 Let the rows of A ∈ RN×n be picked according to a mixture of Gaussians with means µ1,µ2, . . . ,
µk ∈ Rn, common variance σ2 and mixing weights α1, α2, . . . , αk with minimum mixing weight being αmin.
Let µ̃1, µ̃2, . . . , µ̃k be the projections of these means on to the subspace spanned by the top k right singular
vectors of the sample matrix A. Then for any 0 < ϵ < 1, 0 < δ < 1, with probability at least 1 − δ,
∥µi − µ̃i∥ ≤ ϵ

2 , provided N = Ω
(

n3σ4

α3
minϵ

4

(
log
(

nσ
ϵαmin

)
+ 1

n(n−k) log(
1
δ )
))

,

In the following Lemma we consider a mixture of Gaussians where the mixing weights are allowed to take
negative values. This might sound counter intuitive since mixture of Gaussians are never allowed to take
negative mixing weights. However, if we have two separate mixtures, for example, one true mixture density
p(x) and one its estimate p̂(x), the function (p−p̂)(x) that describes the difference between the two densities
can be thought of as a mixture of Gaussians with negative coefficients. Our goal is to find a bound of the L2

norm of such a function.

Lemma 13 Consider a mixture of m k-dimensional Gaussians f(x) =
∑m

i=1 αiK(x,νi) where the mixing

coefficients αi ∈ (−1, 1), i = 1, 2, . . . ,m. Then the L2 norm of f satisfies ∥f∥2 ≤
(

1
(2πσ2)k

)
αT K̂α,

where K̂ is a m×m matrix with K̂ij = exp
(
−∥νi−νj∥2

2σ2

)
and α = (α1, α2, . . . , αm)T .



Lemma 14 Let h : R → C be an infinitely differentiable function such that for some positive integer n and
real M,T > 0, |h(n)(0)| > M and |h(n+1)| < T . Then for any 0 < a < M

T
√
2

, |h(n)| > M −
√
2Ta in the

interval [0, a].

Lemma 15 Let h : R → R be an infinitely differentiable function such that for some positive integer n and
real M > 0, |h(n)| > M in an interval (a, b). Then |h(n−1)| > M(b − a)/6 in a smaller interval either in
(a, 2a+b

3 ) or in (a+2b
3 , b).

Let A be a k × k Vandermonde matrix defined as follows.

A =


1 1 1 · · · 1
x1 x2 x3 · · · xk

x2
1 x2

2 x2
3 · · · x2

k
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
xk−1
1 xk−1

2 xk−1
3 · · · xk−1

k


Then we can prove the following result.

Lemma 16 For any integer k > 1, and positive a, t ∈ R, let x1, x2, ..., xk ∈ [−a, a] and there exists an xi

such that t = minj,j ̸=i |xi − xj |. Let α = (α1, α2, ..., αk) ∈ Rk with mini |αi| ≥ αmin. Then for A as

defined above, ∥Aα∥ ≥ αmin

(
t

1+a

)k−1

.

Lemma 17 Consider the (k+ 1)× (k+ 1) Hankel matrix Γ, Γij = (γi+j(x, τ)) for i, j = 0, 1, ..., k, where
γn(x, τ) is the nth Hermite polynomial as described above. Then det(Γ)(x, τ) is a homogeneous polynomial
of degree k(k + 1) of two variables x and τ .

Using the above Lemma, we have the following simple corollary.

Corollary 18 d(τ) is a polynomial of of degree k(k+1), with the coefficient of the leading term independent
of the probability distribution p. Similarly, d̂(τ) is a polynomial of of degree k(k + 1), with the leading term
having coefficient independent of the coefficients of the sampled data.

Lemma 19 Let f(x) = xm+am−1x
m−1+am−2x

m−2+ · · ·+a1x+a0 be a polynomial having a smallest
positive real root x0 with multiplicity one and f ′(x0) ̸= 0. Let f̂(x) = xm + âm−1x

m−1 + âm−2x
m−2 +

· · · + â1x + â0 be another polynomial such that ∥a − â∥ ≤ ϵ for some sufficiently small ϵ > 0, where
a = (a0, a1, . . . , am−1) and â = (â0, â1, . . . , âm−1). Then there exists a C > 0 such that the smallest
positive root x̂0 of f̂(x) satisfies ∥x0 − x̂0∥ ≤ Cϵ.

Lemma 20 Let σ be the smallest positive root of d(τ). Suppose d̂(τ) be the polynomial where each of the
coefficients of d(τ) are estimated within ϵ error for some sufficiently small ϵ > 0. Let σ̂ be the smallest
positive root of d̂(τ). Then |σ̂ − σ| = O(kϵ).

The matrix M defined in Section 3.3 has 2k different entries which is clear from its construction. Each such
entry is a polynomial in τ . Let us denote these distinct entries by mi(τ) = E[γi(x, τ)], i = 1, 2, . . . , 2k.
Note that the empirical version of the matrix M is M̂ where each entry mi(τ) is replaced by its empirical
counterpart m̂i(τ). Using standard concentration inequality we show that for any mi(τ), its coefficients are
arbitrarily close to the corresponding coefficients of m̂i(τ) provided a large enough sample size is used to
estimate m̂i(τ).

Lemma 21 For any mi(τ), i = 1, , 2, . . . , 2k, let β be any arbitrary coefficient of the polynomial mi(τ).
Suppose X1, X2, . . . , XN iid samples from p is used to estimate m̂i(τ) and the corresponding coefficient is
β̂. Then there exists a polynomial η1(k) such that for any ϵ > 0 and 0 < δ, |β − β̂| ≤ ϵ with probability at
least 1− δ, provided N > nη1(k)

ϵ2δ .

Lemma 22 There exists a polynomial η2(k) such that if coefficients of each of the entries of matrix M (where
each such entry is a polynomial of τ ) are estimated within error ϵ

nη2(k) then each of the coefficients of d(τ)
are estimated within ϵ error.


