
Ranking with kernels in Fourier space

Risi Kondor
Center for the Mathematics of Information

California Institute of Technology
risi@caltech.edu

Marconi Barbosa
NICTA, Australian National University

marconi.barbosa@nicta.com.au

Abstract

In typical ranking problems the total number n of items to be ranked is relatively large,
but each data instance involves only k << n items. This paper examines the structure of
such partial rankings in Fourier space. Specifically, we develop a kernel–based framework
for solving ranking problems, define some canonical kernels on permutations, and show
that by transforming to Fourier space, the complexity of computing the kernel between
two partial rankings can be reduced from O((n−k)!2) to O((2k)2k+3).

1 Introduction

The word “ranking” covers a wide array of problems from learning a preference function from lists,
through fusing the results of multiple search engines to methods for evaluating the results of elections.
A closely related problem is “permutation learning” which attempts to learn an assignment between
two sets of objects, rather than an ordering of a single set (Helmbold & Warmuth, 2009). On the
theory side, “rank aggregation”, i.e., finding a single ranking that best represents a collection of
individual rankings according to some metric, is known to be hard, but recently some tractable
approximations to this problem have emerged (Ailon et al., 2005).

The common feature of all these problems is that they involve aggregating information from a
large set of diverse ranking instances. Typically, the individual instances, rather than being complete
rankings of all n items under consideration, are partial rankings that only involve k << n items. For
example, in the search engine case, we might only take the top ten results from each search engine,
giving us a sequence of partially overlapping lists. Similarly, in a movie recommendation system no
user will have seen all the movies in our database, and even if they have, they would find it very
difficult to give a single linear ordering of a large number of them. Instead, in many situations,
including social surveys and election schemes, people are asked to rank order just a small subset of
the n items under consideration. An extreme case of this are sports tournaments, such as in chess,
where a single global ranking must be established from a large collection of game outcomes, each of
which involves only two players.

Ultimately, ranking is a problem of inference on the group of permutations of n objects, called
the symmetric group. However, for various mathematical and computational reasons, formulating
it as such is difficult. A number of approaches are popular that circumvent this combinatorial
problem by reducing ranking to a sequence of binary decisions (Ailon & Mohri, 2008; Balcan et al.,
2008), estimating a parametric distribution (Lebanon & Lafferty, 2002), or estimating a scoring
function. Depending on the problem at hand, these heuristics might be more or less appropriate.
For example, in the search engine case it is reasonable to assume that the relevance of each web page
can be described by a real valued score, and, in fact, formulating the ranking problem as learning
the score might be a good way to reduce the complexity of the hypothesis space. On the other hand,
in the collaborative filtering example the scoring heuristic is not so helpful, since there is no single
“best movie”. As a more extreme case, in social surveys there is a lot of interest not just in finding a
single consensus ranking, but in finding clusters, trends, and principal axes of variation in the data,
which really do force us to treat individual instances as permutations or sets of permutations and
take into account the combinatorial structure of the symmetric group.

The algorithmic framework that we use in this paper is that of kernel methods. There are a
number of reasons why this is attractive for ranking: (1) kernel methods are flexible in that once we
define an appropriate kernel between any two (partial) rankings they allow us to handle diverse data

involving a mixture of ranking instances of different types (partial rankings of different structure and
order); (2) by the representer theorem they allow us to circumvent the problem that the symmetric
group is of size n!; (3) by the input/output kernels formalism they allow us to predict rankings as
well as learn from rankings, in fact, there might not even be a distinction between input and output
spaces; (4) by the same token, they make it easy to introduce additional features (correlates) that
are not rankings; (5) finally, there is a wealth of algorithms to choose from to suit the learning
problem at hand.

Despite these potential advantages of kernel methods, they have not been used much in the
ranking domain, and to the best of our knowledge the issue of defining generic kernels on the
symmetric group has only been addressed in (Kondor, 2008). We believe that one of the main
reasons for this is that it is difficult to marginalize kernels to the types of partial rankings that
actually occur in data. The main practical conclusion of the present paper is that by a careful
analysis in Fourier space, heavily exploiting the underlying algebra of the symmetric group, it is
possible to compute such marginalized kernels quite fast.

Our focus in this paper is on structure and computational complexity rather than algorithms, so
we will mostly remain agnostic about which kernel algorithm to employ. As a short menu of options
we suggest the following.

In the unsupervised setting one can use kernel density estimation or some other similar method
to estimate a distribution over rankings. By the representer theorem the resulting distribution
takes the form of a linear combination p(σ) =

∑
i αiK(Ri, σ), and we can find the “best consensus

ranking” by finding arg maxσ∈Sn
〈p,σ〉. In political data, to find factors underlying people’s votes

one can use kernel PCA. Similarly, to find representative groups of individuals, we would use kernel
clustering.

In a more predictive setting, a typical type of question is “Given that user j ranked the movies
xi1 , . . . , xik

in the order xi1 � . . .� xik
, how would she rank xi′1

, . . . , xi′
`
? ” A natural algorithm for

this sort of problem is a multi–class SVM that minimizes a regularized risk of the form
∑

j L(f,Rj)+

〈f ,f〉
2
K , where the loss is the multi-class hinge loss comparing the correct ranking of xi′1

, . . . , xi′
`

conditional on xi1 �. . .� xik
to the highest scoring incorrect ranking,

L(f,Rj) = max
[
0, 1 −

(〈
f ,Re

j

〉
K
− max

τ∈Sk′\{e}

〈
f ,Rτ

j

〉
K

)]
, (1)

〈 · , · 〉K is the RKHS inner product, Rτ
j stands for (xi1 � . . . � xik

, xi′
τ−1(`)

� . . . � xi′
τ−1(1)

), which

is the j’th training example, the “outputs” of which have been permuted by τ , and e is the identity
permutation. The exact meaning of some of these notations will become clear later in the paper.

This paper has several goals: to define a canonical class of kernels on permutations (Section 3),
show how these kernels can be efficiently evaluated in Fourier space (Section 4), and give a detailed
analysis of the complexity of the computations involved (Section 5). Our main result is that the
inner product between any two k’th order partial rankings can be computed in at most (2k)2k+3

operations, irrespective of the number of items to be ranked (Theorem 13).
To get to this result we need a range of tools from algebra, which we try to present in a way that

is as concise yet intuitive as possible. Unfortunately, page limitations prevented us from making the
paper entirely self–contained. Background information from representation theory and most proofs
had to be relegated to a supplement, which will be published under separate cover.

2 Partial rankings, multirankings, and the group algebra

Let X = {x1, x2, . . . , xn} be a set of items to be ranked. We will use x � x′ to denote that x is
ranked higher than x′ according to some ranking R. A total ranking of X is then a statement of
the form

xi1 � xi2 � . . . � xin
, (2)

where i1, . . . , in are distinct indices in [1, n] (in this paper [i, j] denotes {i, i+1, . . . , j}).
In contrast, a partial ranking is a statement of the form X1 � X2 � . . . � Xk, where

X1, X2, . . . , Xk are disjoint subsets of X , and the semantics is that for i < j anything in Xi is
ranked above anything in Xj . If a pair of items x and y are both in the same Xi, or one or both
of them are not in any of the Xi’s at all, then their relative order is indeterminate. In other words,
neither x� y, nor y � x.

Partial rankings can be of different types. For example, in an election example, the vote of each
person corresponds to a partial ranking of the form

xi1 � xi2 � . . . � xik
, k ≤ n, (3)

where, to simplify notation, we abbreviated {xij
} to just xij

. We call this an interleaving partial
ranking of order k, because in any total ranking satisfying (3), xi1 , xi2 , . . . , xik

are interleaved with
the other xi’s. The outcomes of individual games in a chess tournament are an example of this type
of partial ranking with k = 2. In contrast, the top k hits returned by a search engine induce what
we call top–k partial rankings

xi1 � xi2 � . . . � xik
� Xrest, (4)

where Xrest = X \ {xi1 , . . . , xik
}. Many other types of partial rankings are conceivable. For exam-

ple, a survey mentioned in (Diaconis, 1988) asked respondents which of 13 characteristics that a
child might have is the most desirable, next two most desirable, least desirable, and next two least
desirable. This corresponds to a partial ranking of the form X1 � X2 � X3 � X4 � X5, where
|X1 | = |X5 | = 1, |X2 | = |X4 | = 2 and |X3 | = 7. While the general framework described in this
paper does apply to such more complicated partial rankings, for brevity we will limit our discussion
to interleaving and top–k partial rankings.

We will also encounter cases where we have to deal with the conjunction of several partial
rankings. We call this a multiranking. For example, in a movie recommendation system we might
know that a certain user ranked movies x1, x2 and x3 in the order x1 � x2 � x3. Now based on a large
number of rankings of similar movies submitted by other users, we want to decide whether given her
choice x1 � x2 � x3 she is more likely to enjoy movie x4 or x5. This translates to predicting whether
overall the multi-ranking (x1 � x2 � x3, x4 � x5) or the multi-ranking (x1 � x2 � x3, x5 � x4) is
more probable. The most general form of multi-ranking is

(X1,1 � . . . � X1,k1
, . . . , X`,1 � . . . � X`,k`

),

but in this paper we will only discuss multi-rankings of the form

(xi1,1
� . . .� xi1,k1

, . . . , xi`,1
� . . .� xi`,k`

). (5)

For simplicity, we will loosely use the term “partial ranking” for both strict partial rankings and
multirankings.

2.1 Rankings as sets of permutations

We identify a total ranking, such as (2), with the unique permutation σ : [1, n] → [1, n] that moves
the index of the item ranked first into position n, the index of the item ranked second into position
n−1, etc.. In other words,

xσ−1(n) � xσ−1(n−1) � . . . � xσ−1(1). (6)

While at this point the reversal between ranks and mapping positions might seem like an unnecessary
complication, it will simplify the algebra later in the paper.

Partial rankings and multirankings are identified with the set of all permutations that satisfy
them. Thus, the interleaving partial ranking (3) corresponds to

Ai1,...,ik
= { σ | σ(ia) > σ(ib) if a < b } ,

while the top–k partial ranking (4) corresponds to

Bi1,...,ik
= { σ | σ(ij) = n−j +1, ∀j } .

Multi-rankings, in general, correspond to the intersection of the sets of permutations associated with

their constituents. In particular, the set corresponding to (5) is Ci1,1...i`,k`
=

⋂`
j=1 Aij,1,...,ij,kj

.

2.2 Rankings as vectors in C[Sn]

One of the key ideas of the present paper is to identify each (total, partial, or multi–) ranking with a
vector in a space called the group algebra of the symmetric group. Let us now clarify this statement.

If we define the product of one permutation σ1 with another permutation σ2 as their composition
σ2 ◦ σ1, then with respect to this operation the n! possible permutations of [1, n] form a group.
This group is called the symmetric group of degree n, and is denoted Sn.Since Sn is a non-
commutative group, in general, σ1 σ2 6= σ2 σ1. The identity permutation will be denoted e.

The group algebra of the symmetric group, denoted C[Sn], is an n!–dimensional complex1

vector space with canonical basis {eσ}σ∈Sn
, equipped with a notion of vector/vector multiplication

1Throughout the paper we use vector spaces defined over the complex numbers. This is because several
of the general results from representation theory are much easier to state over C than over R. However,
using the specific system of representations of Sn called Young’s Orthogonal Representation will allow us to
perform all actual computations over the reals.

inherited from the structure of the symmetric group. In particular, eσeσ′ = eσσ′ , and this is
extended to the rest of the space by linearity. In other words, for general vectors u =

∑
σ∈Sn

uσeσ

and v =
∑

σ∈Sn
vσeσ,

uv =
∑

µ∈Sn

∑

ν∈Sn

uµvνeµeν =
∑

µ,ν∈Sn

uµvνeµν =
∑

σ∈Sn

wσeσ, (7)

where wσ =
∑

ν∈Sn
uσν−1vν . The inner product on C[Sn] is the usual 〈u,v〉 =

∑
σ∈Sn

u∗
σ vσ, where

∗ stands for complex conjugation. For future reference we note that as a function w is called the
convolution of v with u, and denoted u?v.

Throughout the paper, if f is a function on permutations, then f will be the corresponding group
algebra vector

∑
σ∈Sn

f(σ) eσ. Similarly, if U ⊂ Sn, then U will be
∑

σ∈U eσ. In particular, we

represent the total ranking (2) by the basis vector σ ≡ eσ, and the partial rankings (3), (4) and (5)
by Ai1,...,ik

=
∑

σ∈Ai1,...,ik

eσ, Bi1,...,ik
=

∑
σ∈Bi1,...,ik

eσ, and Cii,1...i`,k`
=

∑
σ∈Ci1,1...i`,k`

eσ.

The significance of the multiplicative structure of C[Sn] is that it allows us to express these
partial ranking vectors as

Ai1,...,ik
= Πn

k

�
n−k πi1,...,ik

, (8)

Bi1,...,ik
=

�
n−k πi1,...,ik

, (9)

Ci1,1...i`,k`
= Πn

m`
. . . Πm2

m1

�
n−k πi1,1,...,i1,k1

,...,i`,k`
, (10)

where in the last equation k =
∑`

i=1 ki, and πi1,...,ik
, Π`

k and Sm are the following elementary sets
of permutations.

• πi1,...,ik
is the selector permutation that maps i1, . . . , ik to positions n, n− 1, . . . , n− k + 1.

Where it maps all other numbers is presently irrelevant, so we leave it undefined.

• Π`
k is the set of interleavings of [n−`+1, n−k] with [n−k+1, n], i.e., the set of permutations

that satisfy
σ(i) = i if 1 ≤ i ≤ n−`,

σ(i) < σ(j) if n−` + 1 ≤ i < j ≤ n−k,

σ(i) < σ(j) if n−k + 1 ≤ i < j ≤ n.

This concept is the same as the riffle shuffles introduced in (Huang & Guestrin, 2009).

• Sm is the subgroup of permutations that only permute [1,m] and leave [m+1, n] fixed.

Intuitively, (8)–(10) describe the way that Ai1,...,ik
, Bi1,...,ik

and Ci1,1,...,i`,k`
can be “built up”

through a sequence of operations. For example, Ai1,...,ik
is the set of permutations that we get by

performing the following operations: (1) first map i1 7→ n, i2 7→ n−1, etc. up to ik 7→ n−k+1; (2)
then permute all the “unoccupied” positions [1, n−k] in all possible ways; (3) finally interleave the
numbers occupying [n−k+1, n] with whatever is in positions [1, n−k], while preserving their relative
ordering (see Figure 1). We will find that such factorizations are key to unraveling the spectral
structure of partial rankings and for efficiently computing kernels. Before describing this, however,
we need to develop some general results regarding kernels on permutations.

3 Kernels on the symmetric group

In studying kernels on R
d a lot of attention is focused on translation invariance (or stationarity) in the

sense of k(x, x′) = k(x+z, x′+z) for all z ∈R
d. When looking at kernels on non-commutative groups

we find a similar notion of invariance, but now right–invariance, meaning K(σπ, σ ′π) = K(σ, σ′)
for all σ, σ′ and π, and left–invariance, meaning K(πσ, πσ′) = K(σ, σ′) for all σ, σ′ and π, are
distinct concepts.

Right–invariance is a natural requirement in ranking, since it captures the notion that if we take
any permutation π, then the similarity between two rankings should not change if we relabel the
underlying items x1, . . . , xn as xπ−1(1), . . . , xπ−1(n). A right–invariant kernel on Sn can always be

expressed as K(σ′, σ) = κ(σ′σ−1) for some κ : Sn → R. A function κ : Sn → C is said to be a
positive (semi–)definite function on Sn if the corresponding K(σ′, σ) = κ(σ′σ−1) is a positive
(semi–)definite kernel. Note that in this case κ(σ) = K(σ, e) = K(e, σ) = κ(σ−1).

Left–invariance is not desirable in ranking, since it would imply that the value of the kernel
between a pair of rankings that rank a specific item in positions one and two respectively should
be the same as if they ranked it in positions, say, one and twenty (assuming that the ranking of

Π
n
k � n−k πi1,...,ik

n

vvnnnnnnnn n oo n

��

~~||
||

||
||

||
n−1 oo n−1 oo i2

����
��

��
��

��
��

�
oo

��

����
��
��
��
��
��
��
��
�

n−k+1 oo n−k+1

[[7777777777777
i1

XX

n−k oo

vv

~~

��

n−k

aaCCCCCCCCCCC

ZZ

hh

oo

vv

~~ }}

`` ``

hh

oo

vv

[[77777777777777
ik

1

hh

1

[[

``

hh

oo 1

aa

Figure 1: An illustration of the factorization Ai1,...,ik
= Πn

k

�
n−k πi1,...,ik

. First, πi1,...,ik

moves (i1, i2, . . . , ik) into positions (n, n−1, . . . , n−k+1). Next,
�

n−k permutes positions 1, 2, . . . , n−k
in all possible ways. Finally, Πn

k maps n, n−1, . . . , n−k +1 to 1, 2, . . . , n in all possible ways that
respects their relative ordering.

other shared items does not change). However, in permutation learning, for example when we are
trying to learn the optimal assignment between aircraft and routes, left–invariance might be just as
natural a requirement as right–invariance. A kernel which is both left– and right–invariant is called
bi–invariant. In the bi–invariant case κ is a class function, which means that κ(τ−1στ) = κ(σ) for
all τ and σ.

On R
d Bochner’s theorem tells us that positive definite functions are characterized by the fact that

their Fourier transform is pointwise positive. On finite non-commutative groups we have a similar
result, except that now the ordinary Fourier transform must be replaced by its non-commutative
generalization. In the case of the symmetric group this takes the form

κ̂(λ) =
∑

σ∈Sn

κ(σ) ρλ(σ) λ ` n, (11)

and differs from the usual commutative Fourier transforms in two key respects:

1. Instead of frequency, the individual Fourier components are now indexed by integer partitions
of n, by which we mean a sequence λ = (λ1, . . . , λk) of weakly decreasing positive integers

summing to n (i.e., λ1, . . . , λk ∈ Z, λ1 ≥ λ2 ≥ . . . ≥ λk,
∑k

i=1 λi = n). A convenient graphical
representation for partitions is provided by so–called Young diagrams, consisting of λ1, . . . , λk

boxes placed in consecutive rows. For example,

is the Young diagram of λ = (4, 3, 1). The notation λ ` n just means that λ is an integer
partition of n.

2. Instead of expressions like eikx/2π, the weighting factors ρλ(σ) appearing in (11) are complex–
valued matrices, specifically elements of the irreducible representation (or irrep) of Sn

corresponding to λ. For the definition of what this means and how to construct such matrices
the reader is referred to the supplementary document. For now what is important to note is
that the Fourier transform (κ̂(λ))λ`n is a sequence of matrices of different sizes. We use dλ to
denote the dimensionality of the irrep indexed by λ, hence κ̂(λ) ∈ C

dλ×dλ . We also assume
throughout the paper that the irreps are unitary, and hence ρλ(σ−1) = ρλ(σ)†.

Aside from these two perhaps surprising features, (11) shares many important properties with ordi-
nary Fourier transformation. In particular, with respect to the appropriate matrix norms, κ 7→ κ̂ is
a unitary transformation, the inverse transform being

κ(σ) =
1

n!

∑

λ`n

dλ tr
[
κ̂(λ) ρλ(σ−1)

]
,

and we also have analogs of the convolution and correlation theorems. By unitarity, the total size
of the Fourier matrices must be the same as the size of the original function, that is,

∑
λ`n d2

λ = n!.
Bochner’s theorem generalizes as follows. We do not claim that this result is novel to mathematics,
so the attributions only serve to indicate its first appearance in the machine learning literature.

Proposition 1 (Kondor, 2008, Thm. 4.5.4)(Fukumizu et al., 2009, Thm. 11) A function κ : Sn →
C is positive (semi–)definite if and only if each of the κ̂(λ) matrices in (11) are positive (semi–
)definite.

Much of the following discussion will revolve around moving back and forth between three different
views of the same objects: (1) the function view (f : Sn → C); (2) the group algebra vector view

(f ∈ C[Sn]); and (3) the Fourier transform view f̂ . Therefore, we will use the symbol ̂ very liberally:
if it is placed over a group algebra element, it will denote the Fourier transform of the corresponding
function, and if it is placed over a group element or set of group elements, it will denote the Fourier
transform of the corresponding indicator function.

3.1 Diffusion kernels

While Proposition 1 gives a general characterization of right–invariant kernels on the symmetric
group, it does not give us much guidance as to what specific kernel we should use for ranking. One
way to derive a kernel would be to induce it from a right–invariant metric on Sn, for example, one of
the metrics described in (Diaconis, 1988). However, if we then wanted to perform operations on the
kernel in Fourier space, as we will do in the next section, we would at some point have to perform
an explicit Fourier transform, which is very expensive.2

To avoid this problem, in the present paper we use diffusion kernels (Kondor & Lafferty, 2002),
which have strong connections to spectral theory. Recall that to define a diffusion kernel we start
with an adjacency relation ∼, which induces a graph. The corresponding graph Laplacian is the
matrix

∆σ′,σ =





1 if σ′∼ σ

−dσ if σ′= σ

0 otherwise,

and the diffusion kernel is K(σ′, σ) = [eβ∆]σ′,σ for some diffusion parameter β ∈R, where eβ∆ is the
matrix exponential limm→∞(I + β∆/m)m.

A diffusion kernel on a group is right–invariant if and only if ∼ is a right–invariant relation,
which is equivalent to saying that σ′∼ σ ⇐⇒ σ′σ−1 ∈ Q for some Q ⊂ Sn. To ensure symmetry, Q
must also be symmetric in the sense that π ∈Q ⇐⇒ π−1∈Q. The set Q can be interpreted as the
“elementary steps” σ 7→ πσ that one can take from any σ to reach its neighbors. In fact, for the
graph to be connected, Q must be a generating set of Sn. In this case the adjacency graph is known
as the Cayley graph induced by Q.

The natural generalization of the above to weighted graphs involves setting ∆σ′,σ = q(σ′σ−1),
where q is a function that must satisfy q(π−1) = q(π) and

∑
π∈Sn

q(π) = 0. The following result
characterizes all possible right–invariant diffusion kernels on Sn and shows how to compute them in
Fourier space.

Proposition 2 If ∆σ′,σ = q(σ′σ−1) and q satisfies the above two conditions, then the diffusion
kernel K(σ′, σ) = [eβ∆]σ′,σ is right–invariant, and K(σ′, σ) = κ(σ′σ−1), where κ̂(λ) = exp(β q̂(λ))
for each λ ` n.

Proposition 2 tells us that instead of exponentiating the n!-dimensional matrix ∆ (at a cost of
O(n!3)), it is more efficient to compute the diffusion kernel in Fourier space, where we only have to
exponentiate individual Fourier matrices (at a total cost of O(

∑
λ`n d 3

λ)). The question remains as
to what adjacency relation ∼ is appropriate for ranking problems.

A transposition (i, j) is a permutation that swaps i with j and leaves everything else fixed.
Since transpositions are in many ways the simplest non–trivial permutations, they seem like a natural
choice for Q. However, because transpositions form a conjugacy class (i.e., π ∈ Q ⇒ µ−1πµ ∈

2Naively, the complexity of computing a Fourier transform on Sn is O(n!2). Fast Fourier transforms, such
as Clausen’s FFT (Clausen, 1989), can bring this complexity down to O(n3n!) or even O(n2n!) (Maslen,
1998), but the the n! factor still makes using such kernels infeasible for large n, unless we can derive the
form of their Fourier transform analytically.

Q ∀µ), the resulting Ktransp will be bi–invariant, so, for the reasons we discussed above, this type
of kernel is more appropriate for permutation learning than for ranking. From a purely algebraic
point of view, however, Ktransp is a canonical choice, showing some similarities with the Gaussian
RBF kernel on R

d. In fact, using a result on page 40 of (Diaconis, 1988), the Fourier transform of
this kernel can be derived in closed form.

Proposition 3 If Ktransp : Sn×Sn → R is the diffusion kernel induced by the class of transpositions,
then

κ̂transp(λ) = exp
(
−β

(
n
2

)
(1 − r(λ))

)
Idλ

, (12)

where r(λ) =
(
n
2

)−1 ∑
i

(
λi

2

)
−

(
λ′

i

2

)
, λ′ is the transpose of the partition λ, and Idλ

denotes the dλ–
dimensional identity matrix.

For ranking a better choice of kernel is Kadj, the diffusion kernel induced by the subset of adjacent

transpositions {τi := (i, i+1)}
n−1
i=1 . This is the kernel that we use in our experiments. Unfortu-

nately, we have no closed form expression for κ̂adj. While q̂adj is relatively easy to compute by a
direct Fourier transform since there are only n−1 adjacent transpositions, for large n exponentiating
these matrices might be problematic. Note, however, that this is a one–time computation.

A natural variant on Kadj is to give different adjacent transpositions different weights. In learning
from the top–k rankings returned by search engines, for example, we could give less weight to adjacent
transpositions between the first few rankings than those lower down, reflecting the fact that whether
something is ranked first or second is much more important than whether it is ranked, say 15th
or 16th. While we do not pursue this direction further in the rest of the paper, we note that our
computational results would hold for this variant of Kadj equally well.

4 Computing kernels in Fourier space

We started our discussion by stating that in typical ranking problems individual examples are not
total rankings, but partial rankings of k out of n items. The easiest and most general way to extend
the kernels of the previous section to this setting is to define the kernel between a pair of partial
rankings R and R′ as

K(R′, R) =
1

|R′ | |R |

∑

σ′∈R′

∑

σ∈R

K(σ′, σ), (13)

where, overloading notation somewhat, R and R ′ double as the set of all permutations satisfying
the two partial rankings.

The advantage of such an averaged kernel is its flexibility: R and R′ can be any type of partial
rankings (interleaving, top–k, or some multiranking combining elements of the former), and even
the orders (k and k′) of R and R′ may be different. This allows kernel–based ranking algorithms to
aggregate information from a diverse array of inputs.

The problem with (13) is that it appears to be very expensive to compute: naively, its complexity
is O((n−k)!(n−k′)!). The rest of the paper addresses this computational issue, showing that (13)
can be computed efficiently in Fourier space. We begin with the following two general lemmas that
both follow from the convolution theorem, which states that û ?v(λ) = û(λ) v̂(λ).

Lemma 4 If u,v ∈C[Sn] and w = uv, then ŵ(λ) = û(λ) v̂(λ) for each λ ` n.

Lemma 5 For any u,v ∈C[Sn],

〈u,v〉 =
1

n!

∑

λ`n

dλ tr
[
û(λ)† v̂(λ)

]
, (14)

where † denotes the Hermitian conjugate.

Using these lemmas it is easy to derive the Fourier form of our kernel.

Proposition 6 If K is right–invariant with K(σ′, σ)= κ(σ′σ−1), then (13) can be expressed as

K(R′, R) =
1

n!|R′||R|

∑

λ`n

dλ tr
[
R̂′(λ)† κ̂(λ) R̂(λ)

]
. (15)

Proof. By right–invariance
∑

σ′∈R′

∑

σ∈R

K(σ′, σ) =
∑

σ′∈Sn

∑

σ∈Sn

R′(σ′)K(σ′, σ)R(σ) =
∑

σ′∈Sn

∑

σ∈Sn

R′(σ′)κ(σ′, σ−1)R(σ) = 〈R′,κR〉 ,

where, as before, R(σ) is the indicator function of the set R and R =
∑

σ∈R eσ is the corresponding
vector in the group algebra. Hence,

K(R′, R) = |R′ |
−1

|R |
−1

〈R′,κR〉 , (16)

and (15) follows by Lemmas 4 and 5. �

By itself, (15) does not make our kernel any easier to evaluate, since the combined size of the matrices

appearing under the sum is still O(n!). The key is to additionally exploit the sparsity of R̂ and R̂′.
We derive the structure of these Fourier transforms in two stages: first describing their matrix–level
sparsity, and then examining the row/column–level sparsity of their individual matrix components.

4.1 Matrix level sparsity

We say that a vector v ∈ C[Sn] (equivalently, the function v or the Fourier transform v̂) is ban-
dlimited to some subset Λ of {λ ` n} if the only non-zero components of v̂ are {v̂(λ)}λ∈Λ. Several
recent papers have used bandlimited functions to approximate distributions over permutations, most
notably in the context of multi–object tracking (Kondor et al., 2007; Huang et al., 2009; Huang &
Guestrin, 2009).

In the present paper bandlimitedness is not an approximation, but an inherent feature of our
problem. Typically, this is a sign of invariance to a subgroup, in our case, invariance to the ranking
position of the n−k items not involved in the partial ranking at hand. The key to unraveling this
structure are the factorizations (8)–(10), and specifically, the

�
n−k factors appearing in them.

Proposition 7 The group algebra element
�

n−k ∈ C[Sn] is bandlimited to the set Λn
n−k defined

Λn
n−k = { λ ` n | λ1 ≥ n − k }.

In terms of Young diagrams, Λn
n−k is the set of diagrams of n boxes with at least n−k boxes in their

first row. For example, Λ10
7 = {(10), (9, 1), (8, 2), (8, 1, 1), (7, 3), (7, 2, 1), (7, 1, 1, 1)}, so the Fourier

transform of
�

7 in C[S10] has just 7 non–zero components. An immediate consequence of Lemma 4
is that if u is Λu–bandlimited and v is Λv–bandlimited, then uv will be Λu∩Λv–bandlimited. Thus,
the k’th order partial ranking vectors (8)–(10) will all inherit the bandlimited structure of

�
n−k,

and the summation in (15) need only extend over Λn
n−min(k,k′), giving us the following result.

Proposition 8 If R and R′ are a pair of partial rankings of orders k and k′, respectively, then the
kernel (15) can be written as

K(R′, R) =
1

n!|R′||R|

∑

λ∈Λn
n−min(k,k′)

dλ tr
[
R̂′(λ)† κ̂(λ) R̂(λ)

]
. (17)

In particular, given R̂, R̂′ and κ̂, the kernel can be computed in
∑

λ∈Λn
n−min(k,k′)

2d3
λ operations.3

Several authors (Diaconis, 1988; Huang et al., 2009; Kondor et al., 2007) discuss that one possible
interpretation of the Fourier matrices is that they capture detail at different scales: given a distri-
bution p on Sn, (p̂(λ))λ∈Λn

n−k
is exactly the information needed to reconstruct p up to its k’th order

marginals. In this respect it is not surprising that (17) should involve exactly these Fourier matrices,
and our result fits nicely in the general theory of spectral analysis on permutations.

Unfortunately, in general, the dimensionality of the largest matrices in (R(λ))λ∈Λn
n−k

grows with

O(nk), so while Proposition 8 greatly reduces the number of Fourier matrices that need to be
summed over, for n greater than about a dozen evaluating (17) is still problematic (see Table 1).
This motivates a finer grained analysis, also taking the internal structure of the Fourier matrices
into account.

3Throughout this paper, in line with the literature, by a single operation we mean multiplying two scalars
and adding them to a third. We assume that multiplication by constants and copying information is free.

̂�
3((5)) = (20) ̂�

3((4, 1)) =




20 0 0 0
0 20 0 0
0 0 0 0
0 0 0 0




̂�
3((3, 2)) =




20 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




̂�
3((3, 1, 1)) =




20 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




Figure 2: The non–zero Fourier matrices of
�

3 ∈ C[S5], relevant to any binary ranking out of 5
items. Any

�
n−2 ∈ C[Sn] would have the same structure except that for n > 5 the matrices would

be larger.

4.2 Row/column level sparsity

Ultimately, the sparsity of ̂�
n−k is a consequence of the way that the irreps of Sn reduce into a

direct sum of irreps of Sn−k on restriction to this subgroup. Specifically, a result called Young’s
branching rule tells us that if τ ∈ Sn−1, then

ρλ(τ) = T−1
[⊕

λ−∈λ↓n−1

ρλ−(τ)
]

T,

where λ ↓n−1 is the set of all partitions of n−1 that we can get from λ by removing a single box,
ρλ− is the irrep of Sn−1 indexed by λ−, and T is a unitary matrix that depends on exactly what
system of irreps we use. For simplicity, in the following we will assume that all irreps are from
Young’s Orthogonal Representation (YOR) (see supplement), in which case the T matrices
may be dropped because they are always equal to the identity.

Now if we establish a partial order on partitions according to which λ ≥ λ′ if and only λ′ is a
subdiagram of λ, recursively applying the branching rule down to n−k gives that for λ′ ` n−k and
τ ∈ Sn−k, ρλ′(τ) will be featured in the decomposition of ρλ(τ) if and only if λ≥ λ′. In particular,
ρ(n−k)(τ) appears whenever λ ≥ (n− k), which is equivalent to λ ∈ Λn

n−k. Proposition 7 follows
by considering that

∑
τ∈Sn−m

ρλ′(τ) = 0 for all λ′ ` n−k except for λ′ = (n−k) (see the proof of

Proposition 9 in the supplement).

The precise structure of ̂�
n−k can be uncovered by repeating this analysis on the level of in-

dividual matrix entries. First recall that the individual rows/columns of Fourier matrices such as

Ŝn−k(λ) are indexed by the standard Young tableaux (SYT) of shape λ, such as

t =
1 2 4 5 7
3 6 9
8 ,

which is a SYT of shape λ = (5, 3, 1). Just like partitions, SYT also have a natural inclusion order,

for example if t′ =
1 2 4 5 7

3 6 , then t ≥ t′ because t can be constructed from t′ by adding 8 and 9 . A
convenient shorthand for SYT are Yamanouchi symbols, in particular, [. . .]m denotes 1 2 3 . . . m .
Using these notations, the branching rule in YOR can be made more explicit as

[ρλ(τ)]t,t′ =

{
[ρλ−(τ)]u,u′ if u≤ t, u′ ≤ t′, and u and u′ are both of shape λ− `n−1,

0 otherwise.
(18)

Using this result we can derive the exact form of ̂�
n−k.

Proposition 9 For 0 ≤ k ≤ n−1 the Fourier transform of
�

n−k ∈ C[Sn] (in YOR) is of the form

[Ŝn−k(λ)]t,t′ =

{
(n−k)! if t = t′ and t ≥ [. . .]n−k ,

0 otherwise.

In simple terms t ≥ [. . .]n−k means that the first m = n− k boxes in the first row of t must be
1 2 3 . . . m , which is a very severe restriction. Thus, not only is

�
n−k bandlimited to just a few

matrix components, even those components will have few non–zero entries. As an example, Figure
2 shows the actual Fourier matrices of

�
3 ∈ C[S5]. Taking advantage of this form of sparsity is more

difficult than just taking advantage of bandlimitedness because in expressions such as (8)
�

n−k is
multiplied from both the left and the right. To overcome this problem, we need to introduce adjoints.

Proposition 10 For any u,v,w ∈ C[Sn], there is a v† ∈ C[Sn] called the adjoint of v, such that

〈u,vw〉 = 〈v†u,w〉 and 〈u,wv〉 = 〈uv†,w〉.

Moreover, v†(σ) = v(σ−1)∗ for all σ ∈ Sn, and in YOR (̂v†)(λ) = v̂(λ)† for all λ ` n.

Substituting a pair of interleaving rankings Ai1,...,ik
and Ai′1,...,i′

k
for R and R′ in (16) we can now

rearrange the inner product as
〈
Ai′1,...,i′

k
,κAi1,...,ik

〉
=

〈
Πn

k

�
n−k πi′1,...,i′

k
, κΠn

k

�
n−k πi1,...,ik

〉
=

〈 �
n−k πi′1,...,i′

k
π

†
i1,...,ik

� †
n−k, Πn

k
†
κΠn

k

〉
=

〈 �
n−k πi′1,...,i′

k
π−1

i1,...,ik

�
n−k, Πn

k
†
κΠn

k

〉
,

where the last line follows from
� †

n−k =
�

n−k and π
†
i1,...,ik

= π−1
i1,...,ik

. Now the first argument of
the last inner product contains an expression sandwiched between two

�
n−k’s, which has the effect

of zeroing out all rows and columns indexed by t 6≥ [. . .]n−k. This dramatically reduces the effective
size of the Fourier matrices that we need to multiply together to compute the kernel. Introducing
the notation [M]≥[...]n−k

for the submatrix of the Fourier matrix indexed by rows/columns indexed

by SYT descended from [. . .]n−k, we have the following result.

Proposition 11 If R = Ai1,i2,...,ik
and R′ = Ai′1,i′2,...,i′

k
, then the kernel (13) can be expressed as

K(R,R′) =
(n − k)!2

n! |R′||R|

∑

λ∈Λn
n−k

dλ

[
Ω̂(λ)

]
≥[...]n−k

�
[
κ̂(λ)

]
≥[...]n−k

, (19)

where Ω = πi′1,...,i′
k
π−1

i1,...,ik
, κ = Πn

k
†
κΠn

k and � denotes the matrix inner product A � B =∑
i,j Ai,jBi,j.

The restricted matrices appearing in (19) are much smaller than the matrices that we had to multiply
together in (15) (see Table 1), and what is particularly attractive is that their size is independent of

n. To be fair, (19) also requires computing [Ω̂(λ)]≥[...]n−k
. The next section explains how to do that

efficiently, with a complexity that does not grow with n, either.
Clearly, formulae similar to (19) also hold for the more general case k 6= k′, as well as for other

types of partial rankings. For example, if R and R′ are both top–k rankings, then all that we need
to change is to set κ = κ. If R is an interleaving ranking, but R ′ is a top-k ranking, then κ = κΠn

k ,
and so on.

5 Complexity

A function f : Sn → C is called right Sn−k–invariant if f(στ) = f(σ) for all τ ∈ Sn−k. Clearly, the
space spanned by these functions has dimension n!/(n−k)!. In (Kondor et al., 2009) it was argued

that such functions are bandlimited to {f̂(λ)}λ∈Λn
n−k

and that their Fourier transforms fully occupy

at least one column in each of these matrices. Therefore,
∑

λ∈Λn
n−k

dλ ≤ n!/(n−k)!, and thus, even

if we assume that κ̂(λ), R̂(λ) and R̂′(λ) have all been pre-computed, the complexity of computing
(17) is ∑

λ∈Λn
n−k

2d3
λ ≤ 2(n!/(n − k)!)3 = O(n3k)

for fixed k = k′. See Table 1 for the exact operation count for n = 20 and some small values of k.
In contrast, denoting the set of all SYT of shape λ by T λ, and denoting its subset of SYT

descended from [. . .]n−k by T λ
n−k, computing (19) only requires

∑
λ∈Λn

n−k
(T λ

n−k)2 operations. Now

k 2 3 4 5 6 7
c0 2.0 ·107 1.8 ·1010 7.0 ·1012 4.2 ·1015 2.6 ·1017 2.6 · 1019

c1 7 34 209 1,546 13,327 130,922
c2 1068 8, 7 ·104 7.7 ·106 7.9 ·108 9.2 ·1010 1.2 ·1013

(2k)2k+2 4096 1.7 ·106 1.0 ·109 1.0 ·1012 1.3 ·1015 2.2 ·1018

Table 1: Comparison of the cost of computing the kernel with different methods. Here c0 is the
cost of computing (17) using naive matrix multiplication for n = 20. In contrast, c1 is the cost of

computing (19) given the Ω̂(λ) and κ̂(λ) Fourier matrices (irrespective of n). The maximum number

of operations required to compute [Ω̂(λ)]≥[...]n−k
as an input to (19) is c2. Finally, the last row is

our (loose) upper bound on c2.

assuming that n≥ 2k, imagine that we construct each t∈
⋃

λ∈Λn
n−k

T λ
n−k in two stages: first deciding

which of the numbers [n−k+1, n] should appear in row one, and then placing the remaining, say `,
numbers in subsequent rows. As a result of this placement, rows two and higher will form a diagram
λ′ of their own, and the number of ways that λ′ can be filled with the ` numbers is the same as
the number of ways that it could be filled with [1, `], i.e., | T λ′ |. In summary, the total number of
entries in the matrices appearing in (19) is

k∑

`=0

(
k

`

)2 ∑

λ′``

| T λ′ |2. (20)

By the unitarity of the Fourier transform, we know that the total size of the Fourier matrices must be

the same as the size of the group, so
∑

λ′``|T
λ′ |

2
= ` !, giving a complexity of

∑k
`=0

(
k
`

)2
` ! = O(k2k+1)

for computing all the matrix inner products in (19) (see “c1” in Table 1).

It remains to quantify the complexity of computing [Ω̂(λ)]≥[...]n−k
. This hinges on the special

structure of YOR, namely that if τ is an adjacent transposition, then ρλ(τ) has only two non–zero
elements in each row (or column) and therefore for any M ∈C

dλ×dλ the product ρλ(τ)M takes only
2d2

λ operations to compute. By a bubblesort type procedure (see, e.g., (Kondor et al., 2009) or
the original Sn FFT paper (Clausen, 1989)) any permutation can be decomposed into a product
of at most

(
n
2

)
transpositions, so if σ = πi′1,...,i′

k
π−1

i1,...,ik
, then σ̂(λ) can be computed in n(n− 1)d 2

λ

operations. Since, as we have seen, dλ = O(nk), computing Ω̂(λ) this way would make the total
complexity of kernel evaluations O(n2k+2), which is not much better than what we had for (15).

5.1 Relabeling

To address this problem we observe that the role of π−1
i1,...,ik

is to map [n− k +1, n] to some item

labels, and πi′1,...,i′
k

maps some of those labels back to [n− k +1, n]. However, when we sandwich

this product between two
�

n−k’s, where exactly we map [1, n−k], and what is mapped to [1, n−k]
does not matter. This lets us “relabel” our items so that the permutations only touch [n−2k+1, n].
More formally, we can find a pair of permutations µ and µ′ that fix [1, n−2k] and have the property
that �

n−k πi′1,...,i′
k
π−1

i1,...,ik

�
n−k =

�
n−k µ′µ−1 �

n−k. (21)

Once again, we find that in YOR the representation matrices of such permutations have a special
form. If T ⊂ T λ, then we say that [ρλ(σ)]T,T is a block in ρλ(σ) if [ρλ(σ)]t,t′ = 0 whenever t∈ T ,
but t′ 6∈ T or vice versa. By the definition of YOR, if τi is the adjacent transposition (i, i+1) and
[ρλ(τi)]t,t′ 6= 0, then t and t′ must differ by at most the position of i and i′ in their tableaux. In

particular, if t ∈ T λ
m, then the first row of t starts with boxes numbered 1, . . . ,m, so if i > m and

[ρλ(τi)]t,t′ 6= 0, then the first row of t′ must also start with 1, . . . ,m, i.e., [ρλ(τi)]T λ
m,T λ

m
is a block.

Since any σ that fixes [1,m] can be written as a product of such adjacent transpositions, we have
the following result.

Proposition 12 If σ ∈ Sn fixes [1,m], then in YOR [ρλ(τ)]T λ
m,T λ

m
is a block in ρλ(τ) for any λ ∈ Λn

m.

Letting σ = µ′µ−1 from (21), Proposition 12 tells us that [ρλ(σ)]T λ
n−2k

,T λ
n−2k

is a block, and clearly

[Ω̂(λ)]≥[...]n−k
needed by (19) is a submatrix of this block. Therefore, to compute [Ω̂(λ)]≥[...]n−k

we

need only construct this block and not the whole matrix Ω̂(λ). Using the same argument as what

lead to (20) and multiplying by the
(
2k
2

)
adjacent transpositions necessary we finally arrive at the

following result.

Theorem 13 Given the exponentiated kernel Fourier matrices [κ̂(λ)]≥[...]n−k
, the kernel (13) can

be computed in Fourier space in

k(k−1)

k∑

`=0

(
2k

`

)2

` ! +

k∑

`=0

(
k

`

)2

` ! = O((2k)2k+3)

operations, including computing the {[Ω̂(λ)]≥[...]n−k
}λ∈Λn

n−k
matrices appearing in (19).

It should be stressed that (2k)2k+3 is only an upper bound on the cost of {[Ω̂(λ)]≥[...]n−k
}λ∈Λn

n−k
,

and in practice, the size of the [ρλ(σ)]T λ
n−2k

,T λ
n−2k

blocks does not grow as fast as implied by Theorem

13 (see “c2” in Table 1 for an exact operations count). We have not addressed the complexity of
computing [κ̂(λ)]≥[...]n−k

, because these are constant matrices that can be pre–computed before any
kernel evaluations take place. For top–k rankings the issue here is computing the diffusion kernel,

which is significantly accelerated by Proposition 2. For interleaving rankings the Π̂n
k (λ) also have to

be computed. In our experience for n around 10 all this takes just a few minutes. For much larger
n, however, some additional computational tricks or approximations will have to be employed.

6 Experiments

Fourier transforms on Sn can be computed with the open source FFT library Snob (Kondor, 2006).
However, Snob can only manipulate dense Fourier matrices, so to take advantage of the results
described in Section 4 it had to be substantially extended.

We tested our kernel Kadj on the “sushi” dataset, available at http://www.kamishima.net,
which is a dataset of 5000 total rankings of n = 10 sushi dishes ranked by different individuals. We
subsampled the data to produce 500 “3+2” multirankings, i.e., multirankings of the form (xi1 �
xi2 � xi3 , xi4 � xi5) and used 80% of the dataset for training and tested on the remaining 20%
to see how well we can predict whether a given individual will choose xi4 � xi5 or xi5 � xi4 given
that she ranked the sushis xi1 , xi2 , xi3 in the order xi1 � xi2 � xi3 . To solve this conditional
prediction problem we used an SVM, as in the introduction, which in this particular case, because
our prediction is just binary (xi4 � xi5 vs. xi5 � xi4), reduces to ordinary two-class classification.

As a baseline we used the same SVM with a kernel based on the correlation between partial
rankings as described in (Kamishima & Akaho, 2006). Our experiments showed that the SVM
trained with our method is relatively insensitive to the value of β and the regularization parameter
C, attaining about a 20% error rate (with 10–fold cross-validation) in a wide range of parameter
space. In contrast, the optimal performance of the baseline kernel was 42% error. While admit-
tedly preliminary, these experiments show that the adjacent transpositions based diffusion kernel is
promising for some types of applications.

Using the Fourier method and caching kernel values that have already been computed, generating
the entire 1000× 1000 Gram matrix on a desktop machine took less than five minutes. The bulk of
this time was taken up by exponentiating the kernel and computing the “riffled kernels” κ̂(λ), both
of which are pre-computations. Our kernel would have no trouble scaling to larger datasets or much
larger n, provided that κ̂(λ) can be computed ahead of time or approximated in some way.

7 Conclusions

In this paper we argued that kernels methods are a powerful framework for solving a wide variety of
learning tasks involving ranking and ordering. To establish such algorithms, we started by defining
some canonical kernels on permutations, namely the diffusion kernels induced from transpositions
and adjacent transpositions.

The difficulty with such kernels is that in most ranking problems individual training/test exam-
ples are not, in fact, total rankings of all n items under consideration, but partial rankings involving
only k items, and thus, naively, each kernel evaluation involves summing over many possibilities.
The main technical contribution of this paper was to address this computational issue by showing
that in Fourier space the kernel can be efficiently computed.

In particular, we showed that the indicator functions of partial rankings are bandlimited, and
that this reduces the complexity of kernel evaluations to O(n3k). While this result is novel, it is
in many ways a natural extension of spectral analysis on permutations developed in e.g. (Diaconis,
1988), and by itself would not be difficult to derive.

Our more surprising result is that by using techniques involving the group algebra, the complexity
can be further reduced to O((2k)2k+3), which does not involve n at all. This result applies to
averaging any right–invariant kernel over partial rankings, not just diffusion kernels. The reason we

elected to use diffusion kernels was (a) because we believe they are a canonical class of kernels on
permutations, and (b) because by Proposition 2 their Fourier transform is easy to pre–compute.

In practice the scaling behavior is much better than what is suggested by our (2k)2k+3 upper
bound. Still, computationally our kernels are limited to partial rankings of order up to about k = 7.
For problems where k is large, such as in merging long lists of results from different search engines,
it would be better to employ a method that reduces partial rankings to binary rankings or employs
a scoring function.

The strength of our method is that it is based purely on the algebra of permutations and does
not employ any reduction heuristic, which might cover up some of the structure in the data. Thus,
it is best suited to relatively small problems where a careful analysis of the data is required, such as
the evaluation of social surveys or voting schemes.

Our paper concentrated on just the kernel, rather than any specific algorithm that it is to be
plugged into. There is much room for research on the algorithms side, and on quantifying the
complexity of the function classes induced by our kernels. More generally, we feel that our results
on the spectral structure of partial rankings are relevant to not just the kernels approach, but to
other ranking methods, as well.

Acknowledgments

R. K. would like to thank Tony Jebara for his contributions to some of the initial work on kernels
on permutations. Much of the present work was done while M. B. was visiting R. K. at the Gatsby
Computational Neuroscience Unit, University College London. National ICT Australia is funded
by the Australian Government as represented by the Department of Broadband, Communications
and the Digital Economy and the Australian National Research Council through the ICT Center of
Excellence program.

References

Ailon, N., Charikar, M., & Newman, A. (2005). Aggregating inconsistent information: Ranking and
clustering. Proceedings of STOC 2005.

Ailon, N., & Mohri, M. (2008). An efficient reduction of ranking to classification. COLT 2008.

Balcan, M.-F., Bansal, N., Beygelzimer, A., Coppersmith, D., Langford, J., & Sorkin, G. B. (2008).
Robust reductions from ranking to classification. Mach. Learn., 72, 139–153.

Clausen, M. (1989). Fast generalized Fourier transforms. Theor. Comput. Sci., 55–63.

Diaconis, P. (1988). Group representation in probability and statistics, vol. 11 of IMS Lecture Series.
Institute of Mathematical Statistics.

Fukumizu, K., Sriperumbudur, B. K., Gretton, A., & Schölkopf, B. (2009). Characteristic kernels
on groups and semigroups. In NIPS 2008, 473–480.

Helmbold, D. P., & Warmuth, M. K. (2009). Learning permutations with exponential weights.
Journal of Machine Learning Research, 10, 1687–1718.

Huang, J., & Guestrin, C. (2009). Riffled independence for ranked data. In NIPS 2009, 799–807.

Huang, J., Guestrin, C., & Guibas, L. (2009). Fourier theoretic probabilistic inference over permu-
tations. Journal of Machine Learning Research, 10, 997–1070.

Kamishima, T., & Akaho, S. (2006). Nantonac collaborative filtering: Recommendation based on
multiple order responses. Proceedings of the international workshop on data mining and statistical
science.

Kondor, R. (2006). Snob: a C++ library for fast Fourier transforms on the symmetric group.
Currently available at http://www.its.caltech.edu/~risi/Snob/.

Kondor, R. (2008). Group theoretical methods in machine learning. Ph.D. thesis, Columbia Univer-
sity.

Kondor, R., Howard, A., & Jebara, T. (2007). Multi-object tracking with representations of the
symmetric group. AISTATS 2007.

Kondor, R., & Lafferty, J. (2002). Diffusion kernels on graphs and other discrete structures. ICML
2002.

Kondor, R., Shervashidze, N., & Borgwardt, K. (2009). The graphlet spectrum. ICML 2009.

Lebanon, G., & Lafferty, J. (2002). Cranking: Combining rankings using conditional probability
models on permutations. ICML 2002.

Maslen, D. K. (1998). The efficient computation of Fourier transforms on the symmetric group.
Mathematics of Computation, 67, 1121–1147.

