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Abstract

Multiarmed bandit problem is a typical example of a dilemma between exploration and exploita-
tion in reinforcement learning. This problem is expressed as a model of a gambler playing a slot
machine with multiple arms. We study stochastic bandit problem where each arm has a reward
distribution supported in a known bounded interval, e.g. [0, 1]. In this model, Auer et al. (2002)
proposed practical policies called UCB and derived finite-time regret of UCB policies. However,
policies achieving the asymptotic bound given by Burnetas and Katehakis (1996) have been un-
known for the model. We propose Deterministic Minimum Empirical Divergence (DMED) policy
and prove that DMED achieves the asymptotic bound. Furthermore, the index used in DMED for
choosing an arm can be computed easily by a convex optimization technique. Although we do not
derive a finite-time regret, we confirm by simulations that DMED achieves a regret close to the
asymptotic bound in finite time.

1 Introduction
The multiarmed bandit problem is a problem based on an analogy with a gambler playing a slot machine with
more than one arm or lever. The objective of the gambler is to maximize the collected sum of rewards by
choosing an arm to pull for each round. There is a dilemma between exploration and exploitation.

We consider a K-armed stochastic bandit problem. There are K arms Π1, . . . ,ΠK and each Πj has a
probability distribution Fj with the expected value µj . The gambler chooses an arm to pull based on a policy
and receives a reward according to Fj independently in each round. If the expected values of the arms are
known, it is optimal to always pull the arm with the maximum expected value µ∗ = maxj µj . There have
been many studies for this problem (Agrawal, 1995; Even-Dar et al., 2002; Meuleau & Bourgine, 1999;
Strens, 2000; Vermorel & Mohri, 2005; Yakowitz & Lowe, 1991). There are also many extensions for the
problem, such as non-stationary distributions (Gittins, 1989; Ishikida & Varaiya, 1994) and non-stochastic
bandit (Auer et al., 2003).

Lai and Robbins (1985) constructed a theoretical framework for determining optimal policies. Burnetas
and Katehakis (1996) extended their result to multiparameter or non-parametric models which is relevant to
our setting. Consider a model F , that is, a generic family of distributions. The player knows F and that each
Fj is an element of F . Let Tj(n) denote the number of times that Πj has been pulled over the first n rounds.
Πi is called suboptimal if µi < µ∗. A policy is consistent on model F if E[Ti(n)] = o(na) for all suboptimal
arms Πi and all a > 0.

Burnetas and Katehakis proved the following lower bound for any suboptimal Πi under consistent policy:

Ti(n) ≥
(

1
infG∈F :E(G)>µ∗ D(Fi||G)

+ o(1)
)

log n (1)

with probability tending to one, where E(G) is the expected value of distribution G and D(·||·) denotes the
Kullback-Leibler divergence. Under mild regularity conditions on F ,

inf
G∈F :E(G)>µ

D(F ||G) = inf
G∈F :E(G)≥µ

D(F ||G)

and we write
Dmin(F, µ) = inf

G∈F :E(G)≥µ
D(F ||G).



A policy is asymptotically optimal if the expected value of Tj(n) achieves the right-hand side of (1) as
n → ∞. Lai and Robbins (1985) and Burnetas and Katehakis (1996) also proposed policies based on the
notion of upper confidence bound and proved their optimality for some specific models. Furthermore, Auer
et al. (2002) proposed some practical policies called UCB for other models. UCB policies estimate the
expectation of each arm in a similar way to upper confidence bound. Note that this framework of the simple
K-armed stochastic bandit problem is also important for applications. It is because efficient policies for this
simple problem are also bases of some extended framework of bandit problems, such as Kleinberg (2005) for
uncountable arms or Kleinberg et al. (2008) for the case that some arms can not be chosen at some rounds.

Now consider our model A, the family of distributions on a known interval, e.g. [0, 1]. This model A
represents one of the most basic nonparametric bandit situations. In this model, UCB policies are popular for
their simple form and fine performance. However, although the performance of UCB policies is assured theo-
retically by a non-asymptotic form, their coefficients of the logarithmic term only depend on the expectations
and the variances of arms and do not depend on the distributions themselves. Therefore, these theoretical
analyses do not necessarily achieve the bound (1).

In this paper we propose Deterministic Minimum Empirical Divergence (DMED) policy. We prove the
asymptotic optimality of DMED for our model A. Although we do not give a finite bound of DMED as op-
posed to UCB policies, we confirm by simulations that DMED achieves performance close to the asymptotic
bound in finite time.

Our DMED policy is motivated by a Bayesian viewpoint for the problem (although we do not use a
Bayesian framework for theoretical analyses). Consider the case K = 2 and assume that Π1 seems to be the
best and n ≈ T1(n) � T2(n) at the n-th round. In this case the maximum likelihood that Π1 and Π2 are
the best are roughly 1 and exp(−T2(n)Dmin(F̂2, µ̂

∗)), respectively, where F̂2 is the empirical distribution
of rewards from Π2 and µ̂∗ is the current best sample mean. Then, the posterior expectation of the regret is
proportional to T2(n) · 1 + n · exp(−T2(n)Dmin(F̂2, µ̂

∗)). DMED tries to minimize this by balancing these
two terms. Note that DMED requires a computation of Dmin(F̂i, µ̂

∗) = infG∈A:E(G)≥µ̂∗ D(F̂i||G) at each
round. As shown in Theorem 8 below, Dmin can be expressed as a univariate convex optimization problem
and it can be computed efficiently .

This paper is organized as follows. In Section 2, we give definitions used throughout this paper and
recall the asymptotic bound by Burnetas and Katehakis (1996). In Section 3, we propose DMED policy
which achieves the asymptotic bound. In Section 4, we analyze Dmin(F, µ) as an optimal value function for
a practical implementation and a proof of the optimality of DMED. In Section 5, we prove the asymptotic
optimality of DMED by the results of Section 4. Some simulation results are shown in Section 6. We conclude
the paper with some remarks in Section 7.

2 Preliminaries
In this section we introduce notation of this paper and present the asymptotic bound for a generic model,
which is established by Burnetas and Katehakis (1996).

Let F be a generic family of probability distributions on R and let Fj ∈ F be the distribution of Πj ,
j = 1, . . . , K. PF [·] and EF [·] denote the probability and the expectation under F ∈ F , respectively. When
we write e.g. PF [X ∈ A] (A ⊂ R) or EF [θ(X)] (θ(·) is a function R → R), X denotes a random variable
with distribution F . We define F (A) ≡ PF [X ∈ A] and E(F ) ≡ EF [X].

A set of probability distributions for K arms is denoted by F ≡ (F1, . . . , FK) ∈ FK ≡
∏K

j=1 F . The
joint probability and the expected value under F are denoted by PF [·], EF [·], respectively.

The expected value of Πj is denoted by µj ≡ E(Fj). We denote the optimal expected value by µ∗ ≡
maxj µj . Let Jn denote the arm chosen in the n-th round. Then

Tj(n) =
n∑

m=1

I[Jm = j],

where I[·] denotes the indicator function.
Let F̂j,t and µ̂j,t ≡ E(F̂j,t) be the empirical distribution and the mean of the first t rewards from Πj ,

respectively. Similarly, let F̂j(n) ≡ F̂j,Tj(n) and µ̂j(n) ≡ µ̂j,Tj(n) be the empirical distribution and the mean
of Πj after the first n rounds, respectively. µ̂∗(n) ≡ maxj µ̂j(n) denotes the highest empirical mean after
the first n rounds. We call Πj a current best if µ̂j(n) = µ̂∗(n).

The joint probability of two events A and B under F is written as PF [A ∩ B]. For notational simplicity
we often write, e.g., PF [Jn = j ∩ Tj(n) = t] instead of the more precise PF [{Jn = j} ∩ {Tj(n) = t}].

Finally we define an index for F ∈ F and µ ∈ R

Dinf(F, µ,F) ≡ inf
G∈F :E(G)>µ

D(F ||G)



where Kullback-Leibler divergence D(F ||G) is given by

D(F ||G) ≡
{

EF

[
log dF

dG

]
dF
dG exists,

+∞ otherwise.

Dinf represents how distinguishable F is from distributions having expectations larger than µ. If {G ∈ F :
E(G) > µ} is empty, we define Dinf(F, µ,F) = +∞.

Theorem 2 of Lai and Robbins (1985) gave a lower bound for E[Ti(n)] for any suboptimal Πi when a
consistent policy is adopted. However their result was hard to apply for multiparameter models and more
general non-parametric models. Later Burnetas and Katehakis (1996) extended the bound to general non-
parametric models. Their bound is given as follows.

Proposition 1 (Proposition 1 of Burnetas and Katehakis (1996)) Fix a consistent policy and F ∈ FK . If
µi < µ∗ and 0 < Dinf(Fi, µ

∗,F) < ∞, then for any ε > 0

lim
N→∞

PF

[
Ti(N) ≥ (1 − ε) log N

Dinf(Fi, µ∗,F)

]
= 1.

Consequently

lim inf
N→∞

EF [Ti(N)]
log N

≥ 1
Dinf(Fi, µ∗,F)

. (2)

3 An Asymptotically Optimal Policy
Let A ≡ {G : supp(G) ⊂ [a, b]} be the family of distributions with a bounded support, where supp(G) is
the support of distribution G and a, b are constants known to the player. We assume a = 0, b = 1 without
loss of generality. We consider A = {G : supp(G) ⊂ [0, 1]} as a model F for the rest of this paper.

When we adopt the model A, it is convenient to use

Dmin(F, µ,A) ≡ inf
G∈A:E(G)≥µ

D(F ||G)

instead of Dinf(F, µ,A) = infG∈A:E(G)>µ D(F ||G).

Lemma 2 Dmin(F, µ,A) = Dinf(F, µ,A) holds for all F ∈ A and µ < 0.

Proof: Dmin(F, µ,A) ≤ Dinf(F, µ,A) ≤ Dmin(F, µ + ε,A) holds for arbitrary ε > 0 from the definitions
of Dmin and Dinf . Dmin(F, µ,A) = Dinf(F, µ,A) follows by letting ε ↓ 0, since we will prove in Theorem
7 that Dmin(F, µ,A) is continuous in µ < 0.

We simply write Dmin(F, µ) ≡ Dmin(F, µ,A) when the third argument is obvious from the context. We
discuss properties of Dmin in Section 4.

Now we introduce Deterministic Minimum Empirical Divergence (DMED) policy and show its asymp-
totic optimality. We named it “deterministic” because our initial proposal, MED in Honda and Takemura
(2010), was a randomized policy.

In the following algorithm, some arms are pulled once in one loop. Through the loop, arms to be pulled
in the next loop are chosen and added to a list (a set) of arms. LC denotes the list of arms to be pulled in
the current loop. LN denotes the list of arms to be pulled in the next loop. LR ⊂ LC denotes the list of
remaining arms of LC which have not yet been pulled in the current loop. Arms are listed in LN according
to the occurrence of the event J ′

n(j) given by

J ′
n(j) ≡ {Tj(n)Dmin(F̂j(n), µ̂∗(n)) ≤ log n − log Tj(n)}. (3)

[Deterministic Minimum Empirical Divergence Policy]
Initialization. LC , LR := {1, · · · ,K}, LN := ∅. Pull each arm once. n := K.

Loop.

1. For i ∈ LC in the ascending order,
1.1. n := n + 1 and pull Πi. LR := LR \ {i}.
1.2. LN := LN ∪ {j} (without a duplicate) for all j /∈ LR such that J ′

n(j) occurs.
2. LC , LR := LN and LN := ∅.



As shown above, |LC | arms are played in one loop. At every round, Πj is added to LN if j /∈ LR and J ′
n(j)

occurs. Note that if Πj is a current best for the n-th round then J ′
n(j) holds since Dmin(F̂j(n), µ̂∗(n)) = 0

for this case. Then LC is always not empty.
We use only the following fact as a property of DMED policy for our proof of the optimality:

Fact 3 (i) For any n it holds that
∑n

m=1 I[Jm = j] ≤ 2 +
∑n

m=1 I[J ′
m(j)].

(ii) If J ′
n0

(j) occurs for any n0 then Tj(n) ≥ Tj(n0) + 1 for all n ≥ n0 + K.

(i) and (ii) holds from the following reasons: (i) if Πj is pulled at round m > 2K then there exists a
corresponding nm < m such that J ′

nm
(j) occurs and j is listed newly in LN . The constant 2 is the effect

of the initialization phase. (ii) There exists only three cases when J ′
n0

(j) occurs at the n0-th round: (1) j is
listed newly in LN , (2) j is already listed in LN , (3) j is listed in LR. In each case Πj is pulled at least once
through n0 + 1, · · · , n0 + K-th rounds and Tj(n) is incremented.

Theorem 4 Fix F ∈ AK for which there exists j such that µj = µ∗ and µi < µ∗ for all i 6= j. Under
DMED policy, for any i 6= j and ε > 0 it holds that

EF [Ti(N)] ≤ 1 + ε

Dmin(Fi, µ∗)
log N + O(1)

where O(1) denotes a constant dependent on ε and F but independent of N .

Note that we obtain

lim sup
N→∞

EF [Ti(N)]
log N

≤ 1
Dmin(Fi, µ∗)

,

by dividing both sides by log N , letting N → ∞ and finally letting ε ↓ 0. In view of (2) we see that DMED
policy is asymptotically optimal. We prove Theorem 4 in Section 5 by using results on Dmin described in
Section 4.

Note that the same bound as Theorem 4 can be derived when we substitute log Tj(n) in the criterion J ′
n(j)

with an arbitrary constant or 0. However, we adopt the above criterion because simulation results seem better
than that of other criteria. Our criterion may be justified by the Bayesian interpretation given in Introduction.

4 Analyses on Minimum Divergence
Dmin(F, µ) is the essential quantity for our DMED policy. In this section we introduce a dual problem
D′

min(F, µ) for Dmin(F, µ), which is computable efficiently. The main goal of this section is to show Dmin =
D′

min and the continuity of them in F, µ. We discuss differentiability and continuity of D′
min(F, µ) as a

function of F and µ in Section 4.2. We show Dmin = D′
min in Section 4.3 by using the results of preceding

subsections.
We now endow our model A with a distance to define the continuities of Dmin(F, µ) and D′

min(F, µ) in
F ∈ A and closedness of a subset of A. We adopt Lévy distance

L(F, G) ≡ inf{h > 0 : F ((−∞, x − h]) − h ≤ G((−∞, x]) ≤ F ((−∞, x + h]) + h for all x}
for the distance between two distributions. Note that the convergence of the Lévy distance L(F, Fn) → 0 is
equivalent to the weak convergence of {Fn} to distribution F and we write Fn → F in this sense (see, e.g.,
Lamperti (1996) for detail).

4.1 A Dual Problem
For µ < 0, define

H(ν, F, µ) ≡ EF [log(1 − (X − µ)ν)]

H ′(ν, F, µ) ≡ ∂H(ν, F, µ)
∂ν

= −EF

[
X − µ

1 − (X − µ)ν

]
H ′′(ν, F, µ) ≡ ∂2H(ν, F, µ)

∂ν2
= −EF

[
(X − µ)2

(1 − (X − µ)ν)2

]
(4)

and

D′
min(F, µ) ≡ max

0≤ν≤ 1
1−µ

H(ν, F, µ). (5)

D′
min corresponds to the Lagrangian dual problem for Dmin. D′

min is a univariate convex optimization
problem and it can be computed efficiently by iterative methods such as Newton’s method (see, e.g., Boyd
and Vandenberghe (2004) for general methods of convex programming).



We write H(ν),H ′(ν), H ′′(ν) when we regard them as a function of ν and when other arguments are
obvious from the context. Note that H(ν) is concave and strictly concave except for the degenerate case
F ({µ}) = 1 from (4). Now we define an optimal solution for (5) as

ν∗(F, µ) ≡ argmax
0≤ν≤ 1

1−µ

H(ν, F, µ).

Note that ν∗(F, µ) is unique except for the case F ({µ}) = 1 from the strict concavity of H(ν, F, µ) in
ν. For the case F ({µ}) = 1, D′

min(F, µ) = H(ν, F, µ) holds for all ν ∈ [0, (1 − µ)−1] and we define
ν∗(F, µ) ≡ (1 − µ)−1. We write ν∗(F ) or more simply ν∗ when other arguments are obvious from the
context.

The following theorem is used through proofs in Section 4 and 5.

Theorem 5 Define EF [(1−µ)/(1−X)] = ∞ for the case F ({1}) > 0. If µ ≤ E(F ) then D′
min(F, µ) = 0.

If E(F ) ≤ µ and EF [(1 − µ)/(1 − X)] ≤ 1 then ν∗ = (1 − µ)−1 and (5) is simply written as

D′
min(F, µ) = H

(
1

1 − µ

)
= EF

[
log

1 − X

1 − µ

]
.

If E(F ) ≤ µ and EF [(1 − µ)/(1 − X)] ≥ 1 then ν∗ satisfies H ′(ν∗) = 0 and

EF

[
1

1 − (X − µ)ν∗

]
= 1, EF

[
X

1 − (X − µ)ν∗

]
= µ. (6)

Proof: D′
min(F, µ) = 0 for µ ≤ E(F ) follows from H(0) = 0, H ′(0) = µ−E(F ) ≤ 0 and the concavity of

H(ν). ν∗ = (1 − µ)−1 for the case EF [(1 − µ)/(1 − X)] ≤ 1 follows from H ′((1 − µ)−1) = (1 − µ)(1 −
EF [(1 − µ)/(1 − X)]) ≥ 0 and the concavity of H(ν).

Finally we consider the case E(F ) ≤ µ and EF [(1−µ)/(1−X)] ≥ 1. For this case H ′(0) = µ−E(F ) ≥
0 and H ′((1 − µ)−1) = (1 − µ)(1 − EF [(1 − µ)/(1 − X)]) ≤ 0. Therefore H ′(ν∗) = 0 hold from the
concavity of H(ν). (6) follow from

EF

[
1

1 − (X − µ)ν∗

]
= EF

[
1 − (X − µ)ν∗

1 − (X − µ)ν∗

]
+ ν∗EF

[
X − µ

1 − (X − µ)ν∗

]
= 1 − ν∗H ′(ν∗) = 1

and

EF

[
X

1 − (X − µ)ν∗

]
= EF

[
X − µ

1 − (X − µ)ν∗

]
+ µ EF

[
1

1 − (X − µ)ν∗

]
= −H ′(ν∗) + µ = µ.

4.2 Continuity and Differentiability of the Dual Problem
In this subsection we discuss the differentiability and the continuity of D′

min(F, µ) in F and µ. We will show
Dmin = D′

min in the next subsection and the result for D′
min in this subsection also holds for Dmin.

Theorem 6 D′
min(F, µ) is differentiable in µ ∈ (E(F ), 1) for any F ∈ A with

∂

∂µ
D′

min(F, µ) = ν∗

We omit the proof but it can be proved by Corollary 3.4.3 of Fiacco (1983), which gives the differentiability
of an optimal value function with parameters.

Theorem 7 D′
min(F, µ) is continuous in (i) µ < 1 and (ii) F ∈ A.

Proof: (i) The continuity in µ is obvious in the interval (E(F ), 1) from the differentiability in Theorem 6.
The continuity in µ < E(F ) is also obvious since D′

min(F, µ) = 0 holds for all µ < E(F ). Finally we
consider the continuity at µ = E(F ). From (5) and the concavity of H(ν), it holds that

H(0) ≤ D′
min(F, µ) ≤ max{H(0), H(0) + H ′(0) 1

1−µ}

or equivalently

0 ≤ D′
min(F, µ) ≤ max

{
0, µ−E(F )

1−µ

}
.

Then limµ→E(F ) D′
min(F, µ) = D′

min(F, E(F )) = 0 is obtained by letting µ → E(F ).
(ii) We consider the lower semicontinuity and the upper semicontinuity separately.



First we show the lower semicontinuity. Fix an arbitrary ε > 0. From (5) and the continuity of H(ν),
there exists ν0 ∈ [0, (1 − µ)−1) such that EF [log(1 − (X − µ)ν0)] ≥ D′

min(F, µ) − ε. Then we obtain

lim inf
F ′→F

D′
min(F ′, µ) ≥ lim inf

F ′→F
EF ′ [log(1 − (X − µ)ν0)]

= EF [log(1 − (X − µ)ν0)] (7)
≥ D′

min(F, µ) − ε.

Note that log(1 − (x − µ)ν0) is continuous and bounded in x ∈ [0, 1] and (7) follows from the definition of
weak convergence. The lower semicontinuity holds since ε is arbitrary.

Next we prove the upper semicontinuity. First we consider the case E(F ) > µ. In this case, E(F ′) >
µ holds for all F ′ sufficiently close to F . Then D′

min(F, µ) = D′
min(F ′, µ) = 0 holds and the upper

semicontinuity is obtained.
Next we consider the case EF [(1 − µ)/(1 − X)] > 1 and E(F ) ≤ µ. Since ν∗(F ) < (1 − µ)−1 in this

case, we obtain

lim sup
F ′→F

D′
min(F ′, µ)

≤ lim sup
F ′→F

(
H(ν∗(F ), F ′, µ) + 1

1−µ

∣∣H ′(ν∗(F ), F ′, µ)
∣∣) (by the concavity of H(ν))

= H(ν∗(F ), F, µ) + 1
1−µ

∣∣H ′(ν∗(F ), F, µ)
∣∣ (by the definition of weak convergence)

= D′
min(F, µ)

and the upper semicontinuity is proved for this case.
For the case EF [(1 − µ)/(1 − X)] ≤ 1, we omit the proof for lack of space.

The proof of the upper semicontinuity is a little complicated for the last case EF [(1−µ)/(1−X)] ≤ 1. It
is because ν∗ = (1−µ)−1 holds for the case and H(ν, F, µ) is difficult to analyze at ν = (1−µ)−1. In fact, in
every neighborhood of F , there exists G ∈ A such that H((1− µ)−1, G, µ) = H ′((1− µ)−1, G, µ) = −∞.
The upper semicontinuity can be proved by using the definition of the Lévy distance explicitly.

4.3 Equality of Minimum Divergence with the Dual Problem
In this subsection we prove Dmin = D′

min in Theorem 8. Therefore we can compute Dmin efficiently by
solving the univariate convex optimization in D′

min. Furthermore, the differentiability and the continuity in
Theorem 6 and 7 also hold for Dmin.

Theorem 8 Dmin(F, µ) = D′
min(F, µ) holds for all F ∈ A and µ < 1.

To prove this theorem, we additionally define Af and Af (F ), families of distributions with finite supports by

Af ≡ {G ∈ A : |supp(G)| < ∞},
Af (F ) ≡ {G ∈ Af : supp(G) ⊂ supp′(F )} (F ∈ Af )

where supp′(F ) ≡ {1} ∪ supp(F ). Note that Af (F ) ⊂ Af ⊂ A for all F ∈ Af .

Lemma 9 Dmin(F, µ,A) = Dmin(F, µ,Af (F )) holds for all F ∈ Af .

We omit the proof but it can be proved by the following fact: if G(A) ≥ G′(A) for all A ⊂ supp(F ) then
D(F ||G) ≤ D(F ||G′).

Before proving Dmin(F, µ) = D′
min(F, µ) for general F ∈ A, we show the equality for F ∈ Af and

E(F ) < µ < 1 by the technique of Lagrange multipliers.

Lemma 10 If E(F ) < µ < 1 and F ∈ Af then Dmin(F, µ) = D′
min(F, µ) holds.

Proof (Sketch): Let M ≡ |supp′(F )| and denote the finite symbols in supp′(F ) by x1 . . . , xM , i.e. {1} ∪
supp(F ) = {x1, . . . , xM}. We assume x1 = 1 and xi < 1 for i > 1 without loss of generality and
write fi ≡ F ({xi}). Dmin(F, µ) is expressed as the following parametric convex optimization problem for
G = (g1, . . . , gM ) from Lemma 9:

minimize :
M∑
i=1

fi log
fi

gi
, subject to : gi ≥ 0, ∀i,

M∑
i=1

xigi ≥ µ,
M∑
i=1

gi = 1.



It is checked by the technique of Lagrange multipliers (see e.g. Section 28 of Rockafellar (1970)) that the
optimal solution is

g∗i =

{
1−µ
1−xi

fi i 6= 1
1 −

∑M
i=2

1−µ
1−xi

fi i = 1,

for the case EF [(1 − µ)/(1 − X)] ≤ 1 and

g∗i =

{
0 i = 1 and f1 = 0,

fi

1−(xi−µ)ν∗ otherwise

for the case EF [(1 − µ)/(1 − X)] ≥ 1 from (6). The lemma is proved immediately from these expressions
of {g∗i }.
Proof of Theorem 8: It is easy to check that Dmin(F, µ) = D′

min(F, µ) = 0 for µ ≤ E(F ). Hence we
consider the case E(F ) < µ < 1.

First we prove D′
min(F, µ) ≥ Dmin(F, µ). Define a measure G∗ on [0, 1] as

G∗(A) ≡

{∫
A

1−µ
1−xdF + (1 − EF [(1 − µ)/(1 − X)])I[0 ∈ A] EF [(1 − µ)/(1 − X)] ≤ 1∫

A
dF

1−(x−µ)ν∗ EF [(1 − µ)/(1 − X)] > 1.

To prove D′
min(F, µ) ≥ Dmin(F, µ), it is sufficient to show that G∗ is a probability measure with E(G∗) ≥ µ

since D(F ||G∗) = D′
min(F, µ). It is checked easily for the case EF [(1 − µ)/(1 − X)] ≤ 1. For the case

EF [(1 − µ)/(1 − X)] > 1, it is checked from (6).
Next we prove Dmin(F, µ) ≥ D′

min(F, µ). Take an arbitrary G ∈ A satisfying E(G) ≥ µ. Consider a
finite partition {Ui}i=0,··· ,n of [0, 1]:

Ui ≡
{
{0} i = 0(

i−1
n , i

n

]
i = 1, · · · , n

and define Fn, Gn ∈ Af as

Fn
({

i
n

})
≡ F (Ui), Gn

({
i
n

})
≡ G(Ui).

Then we have

D(F ||G) ≥ D(Fn||Gn) (by Theorem 2.4.2 of Pinsker (1964))
≥ Dmin(Fn, µ) (by E(Gn) ≥ E(G) ≥ µ)
= D′

min(Fn, µ) (by Lemma 10) (8)

Note that L(Fn, F ) ≤ 1/n then Fn → F as n → ∞. Therefore it holds for any ε > 0 that

D′
min(Fn, µ) ≥ D′

min(F, µ) − ε (9)

for sufficiently large n from the lower semicontinuity of D′
min(F, µ) in F .

From (8) and (9) we obtain for all G satisfying E(G) ≥ µ that

D(F ||G) ≥ D′
min(F, µ) − ε

and

Dmin(F, µ) ≥ D′
min(F, µ) − ε.

Dmin(F, µ) ≥ D′
min(F, µ) follows since ε > 0 is arbitrary.

5 A Proof of Theorem 4
Before proving Theorem 4, we show Lemmas 11–14 on properties of Dmin and ν∗.

Lemma 11 Dmin(F, µ) is monotonically increasing in µ.

This lemma follows immediately from the definition Dmin(F, µ) = minG∈A:E(G)≥µ D(F ||G). We use this
monotonicity in the proof of Theorem 4 implicitly.

Lemma 12 If E(F ) < µ then ν∗ = ν∗(F, µ) satisfies

ν∗ ≥ µ − E(F )
µ(1 − µ)

.



Proof: This lemma is easily checked for the case EF [(1 − µ)/(1 − X)] ≤ 1 from ν∗ = (1 − µ)−1 and we
consider the case EF [(1 − µ)/(1 − X)] ≥ 1. Define

w(x, ν) ≡ x − µ

1 − (x − µ)ν
.

For any fixed ν ∈ [0, (1 − µ)−1], w(x, ν) is convex in x ∈ [0, 1]. Therefore
H ′(ν) = −EF [w(X, ν)]

≥ −EF [(1 − X)w(0, ν) + Xw(1, ν)]
= (E(F ) − 1)w(0, ν) − E(F )w(1, ν). (10)

The right-hand side of (10) is 0 for ν = (µ − E(F ))/(µ(1 − µ)) and therefore we obtain

H ′
(

µ − E(F )
µ(1 − µ)

)
≥ 0.

The lemma is proved since H ′(ν∗) = 0 holds and H ′ is monotonically decreasing.

Lemma 13 Fix arbitrary µ, µ′ ∈ (0, 1) satisfying µ′ < µ. Then there exists C(µ, µ′) > 0 such that
Dmin(F, µ) − Dmin(F, µ′) ≥ C(µ, µ′).

for all F ∈ A satisfying E(F ) ≤ µ′.

Proof: Since Dmin(F, µ) is differentiable in µ ∈ (E(F ), 1) and continuous in µ < 1, we have

Dmin(F, µ) − Dmin(F, µ′) = lim
t↓µ′

∫ µ

t

∂

∂u
Dmin(F, u)du

≥ lim
t↓µ′

∫ µ

t

u − µ′

u(1 − u)
du (by Theorem 5 and Lemma 12)

≥ (µ − µ′)2

2µ(1 − µ′)
(

=: C(µ, µ′)
)
.

Lemma 14 supG∈A Dmin(G,µ) ≤ − log(1 − µ) < +∞ for all 0 ≤ µ < 1.

Proof: By applying Jensen’s inequality for
Dmin(G,µ) = max

0≤ν≤ 1
1−µ

EG[log(1 − (X − µ)ν)],

we obtain
sup
G∈A

Dmin(G,µ) ≤ sup
G∈A

max
0≤ν≤ 1

1−µ

log(1 − (E(G) − µ)ν)

= sup
G∈A

max
{

0, log
1 − E(G)

1 − µ

}
= − log(1 − µ).

Proof of Theorem 4: We assume j = 1 and µ2 = maxk 6=1 µk without loss of generality. Then µ1 = µ∗ and
µk ≤ µ2 for k = 2, · · · , K.

Note that µ1 = 1 is a trivial case and we assume µ1 < 1 in the following. For the case µ1 = 1,
F1({1}) = 1 and µ∗(n) is always equal to 0. Therefore J ′

i(n) never occurs for sufficiently large n, because
Dmin(F̂i(n), 1) = +∞ always holds except for the case F̂i(n) = F1.

We obtain from Fact 3 (i) that

Ti(N) =
N∑

n=1

I[Jn = i] ≤ 2 +
N∑

n=1

I[J ′
n(i)].

Now we define events An and Bn as
An ≡ {µ̂1(n) ≥ µ1 − δ},

Bn ≡ {µ̂∗(n) ≤ µ2 + δ} =
K∩

k=1

{µ̂k(n) ≤ µ2 + δ}.

Cn =
K∪

k=1

{µ̂∗(n) = µ̂k(n) ∩ |µ̂k(n) − µk| ≥ δ}



where δ > 0 is a constant satisfying µ2 < µ1−δ and set sufficiently small in an evaluation on An. It is easily
checked that {Ac

n ∩ Bc
n} ⊂ Cn. Therefore EF [Ti(N)] is bounded as

EF [Ti(N)] ≤ 2 + EF

[
N∑

n=1

I[J ′
n(i) ∩ An]

]
+ EF

[
N∑

n=1

I[Bn]

]
+ EF

[
N∑

n=1

I [Cn]

]
. (11)

In the following Lemmas 15–17 we bound the right-hand side of (11) in this order and they prove the
theorem.

Lemma 15 For all ε > 0 it holds that

EF

[
N∑

n=1

I[J ′
n(i) ∩ An]

]
≤ 1 + ε

Dmin(Fi, µ1)
log N + O(1).

Lemma 16

EF

[
N∑

n=1

I[Bn]

]
= O(1).

Lemma 17

EF

[
N∑

n=1

I[Cn]

]
= O(1).

Before proving these lemmas, we give intuitive interpretations for these terms.∑N
n=1 I[J ′

n(i) ∩ An] is the main term of Ti(N). Roughly speaking, in DMED policy, Πi is pulled and
Ti(n) is incremented until Ti(n)Dmin(F̂i(n), µ̂∗(n)) and log n−log Ti(n)(≈ log n) in (3) balance. Consider
the following two cases on the event An:

(1) If An happens and F̂i is sufficiently close to Fi, then Dmin(F̂i, µ̂
∗) & Dmin(Fi, µ

∗) holds and the above
two terms balance when Ti(n) . log n/Dmin(Fi, µ

∗), which is exactly the asymptotic bound to be
achieved.

(2) If An and Dmin(F̂i, µ̂
∗) < Dmin(Fi, µ

∗) happen, Πi may be pulled more frequently than case (1). How-
ever, as Πi is pulled, F̂i approaches Fi and Dmin(F̂i, µ̂

∗) approaches Dmin(Fi, µ
∗). Then eventually

Dmin(F̂i, µ̂
∗) < Dmin(Fi, µ

∗) does not hold and the effect of this event is not large.

The term involving Bn is essential for the consistency of DMED. If Bn occurs then µ̂1(n) is not yet
close to µ1. It requires many rounds for Π1 to be pulled since Π1 may seem to be suboptimal in this event.
Therefore Bn may happen for many n.

On the other hand when Cn occurs, empirical mean µ̂k(n) of current best Πk is not close to the true
expectation µk. Then Πk is pulled more frequently and µ̂k(n) approaches µk. As a result, Cn happens only
for a few n.

In the proofs of these three lemmas, we use Theorem 6.2.10 of Dembo and Zeitouni (1998) on the empir-
ical distribution:

Proposition 18 (Sanov’s Theorem) For every closed set Γ of probability distributions (with respect to the
Lévy distance),

lim sup
t→∞

1
t

log PF [F̂t ∈ Γ] ≤ − inf
G∈Γ

D(G||F ).

where F̂t is the empirical distribution of t samples from F .

Proof of Lemma 15 (Sketch): By partitioning the event J ′
n(i) according to the value of Ti(n), we obtain

N∑
n=1

I[J ′
n(i) ∩ An]

=
N∑

t=1

I

[
N∪

n=1

{
{tDmin(F̂i,t, µ̂

∗(n)) ≤ log n − log t} ∩ An ∩ Ti(n) = t
}]



≤ (1 + ε) log N

Dmin(Fi, µ1)
+

N∑
t=

(1+ε) log N
Dmin(Fi,µ1)

I

[
N∪

n=1

{
{tDmin(F̂i,t, µ̂

∗(n)) ≤ log n} ∩ An ∩ Ti(n) = t
}]

≤ (1 + ε) log N

Dmin(Fi, µ1)
+

N∑
t=

(1+ε) log N
Dmin(Fi,µ1)

I
[
(1 + ε) log N

Dmin(Fi, µ1)
Dmin(F̂i,t, µ1 − δ) ≤ log N

]
(
µ1 − δ ≤ µ̂∗(n) on An

)
=

(1 + ε) log N

Dmin(Fi, µ1)
+

N∑
t=

(1+ε) log N
Dmin(Fi,µ1)

I
[
Dmin(F̂i,t, µ1 − δ) ≤ Dmin(Fi, µ1)

1 + ε

]
. (12)

Define Γδ ≡ {G ∈ A : L(Fi, G) ≥ δ}. By applying Sanov’s Theorem with F := Fi and Γ := Γδ , there
exists C1 such that

PFi [F̂i,t ∈ Γδ] = O(exp(−t C1)). (13)

Here we use the fact that for sufficiently small δ > 0{
Dmin(F̂i,t, µ1 − δ) ≤ Dmin(Fi, µ1)

1 + ε

}
⊂ {F̂i,t ∈ Γδ} (14)

or equivalently {L(F̂i,t, Fi) < δ} ⊂ {Dmin(F̂i,t, µ1 − δ) > Dmin(Fi, µ1)/(1 + ε)}. This can be proved by
the continuity in F and the differentiability in µ of Dmin(F, µ).

From (12), (13) and (14), we obtain

EF

[
N∑

n=1

I[Jn(i) ∩ An]

]
≤ (1 + ε) log N

Dmin(Fi, µ1)
+

N∑
t=

(1+ε) log N
Dmin(Fi,µ1)

O(exp(−t C1))

=
(1 + ε) log N

Dmin(Fi, µ1)
+ O(1).

Proof of Lemma 16: Define C2 ≡ C(µ1, µ2 + δ)/3 and Q ≡ dsupG∈A Dmin(G,µ2 + δ)/C2e. Q < +∞
holds from Lemma 14. Take a finite cover {Sq}q=1,2,··· ,Q of {G ∈ A : E(G) ≤ µ2 + δ} as

Sq ≡ {G ∈ A : E(G) ≤ µ2 + δ, (q − 1)C2 ≤ Dmin(G,µ2 + δ) ≤ q C2} .

Since Dmin(F, µ) is continuous in F , each Sq is a closed set. By applying Sanov’s Theorem with F := F1

and Γ := Sq, there exists tq > 0 such that for all t > tq

PF1 [F̂1,t ∈ Sq] ≤ exp
(
−t

(
inf

G∈Sq

D(G||F1) − C2

))
≤ exp

(
−t

(
inf

G∈Sq

Dmin(G, µ1) − C2

))
≤ exp

(
−t

(
inf

G∈Sq

Dmin(G, µ2 + δ) + C(µ1, µ2 + δ) − C2

))
(by Lemma 13)

≤ exp (−t(q + 1)C2) .

(
by inf

G∈Sq

Dmin(G,µ2 + δ) ≥ (q − 1)C2

)
Therefore, by defining t′ ≡ maxq=1,··· ,Q tq, it holds for all t > t′ that

PF1 [F̂1,t ∈ Sq] ≤ exp (−t(q + 1)C2) . (15)∑N
n=1 I[Bn] is bounded as

∞∑
n=1

I[Bn] ≤
Q∑

q=1

∞∑
t=1

∞∑
n=1

I[Bn ∩ T1(n) = t ∩ F̂1,t ∈ Sq] (16)

since {F̂1(n) ∈
∪Q

q=1 Sq} = {µ̂1(n) ≤ µ2 + δ} ⊃ Bn. Now for each t and q we show that
∞∑

n=1

I[Bn ∩ T1(n) = t ∩ F̂1,t ∈ Sq] ≤ t exp(t q C2) + K. (17)



Assume that
∑∞

n=1 I[Bn ∩ T1(n) = t ∩ F̂1,t ∈ Sq] ≥ t exp(t q C2). On this event, we can take an integer
m ≥ t exp(t q C2) such that the events

Bm ∩ T1(m) = t ∩ F̂1,t ∈ Sq (18)

and
m∑

n=1

I[Bn ∩ T1(n) = t ∩ F̂1,t ∈ Sq] = dt exp(t q C2)e (19)

occur. For this m, it holds that

T1(m)Dmin(F̂1(m), µ̂∗(m)) ≤ t sup
G∈Sq

Dmin(G,µ2 + δ) (by (18))

≤ t q C2

≤ log m − log t. (by m ≥ t exp(t q C2))
Then J ′

m(1) holds and T1(n) ≥ t + 1 for all n ≥ m + K from Fact 3 (ii). Therefore we obtain (17) from
∞∑

n=1

I[Bn ∩ T1(n) = t ∩ F̂1,t ∈ Sq] =
m+K−1∑

n=1

I[Bn ∩ T1(n) = t ∩ F̂1,t ∈ Sq]

≤ dt exp(t q C2)e + K − 1 (by (19))
≤ t exp(t q C2) + K.

Now we obtain from (15), (16) and (17) that

EF

[
N∑

n=1

I[Bn]

]
≤

Q∑
q=1

∞∑
t=1

PF1 [F̂1,t ∈ Sq] (t exp(t q C2) + K)

≤
Q∑

q=1

t′∑
t=1

(t exp(t q C2) + K) +
Q∑

q=1

∞∑
t=t′

exp (−t(q + 1)C2) (t exp(t q C2) + K)

≤ O(1) + Q

∞∑
t=t′

(
t exp (−t C2) + K exp (−2 t C2)

)
= O(1).

Proof of Lemma 17: We obtain from the definition of Cn that
N∑

n=1

I[Cn] ≤
K∑

k=1

∞∑
n=1

I[µ̂∗(n) = µ̂k(n) ∩ |µ̂k(n) − µk| ≥ δ]

≤
K∑

k=1

∞∑
t=1

∞∑
n=1

I[µ̂∗(n) = µ̂k,t ∩ |µ̂k,t − µk| ≥ δ ∩ Tk(n) = t].

Suppose that µ̂∗(n0) = µ̂k,t ∩ Tk(n0) = t occurs at n0-th round for the first time. Then Πk is a current best
at the n0-th round and J ′

n0
(k) holds. Therefore Tk(n) ≥ t + 1 for all n ≥ n0 + K from Fact 3 (ii). As a

result, we obtain
∞∑

n=1

I[µ̂∗(n) = µ̂k,t ∩ |µ̂k,t − µk| ≥ δ ∩ Tk(n) = t]

=
n0+K−1∑

n=n0

I[µ̂∗(n) = µ̂k,t ∩ |µ̂k,t − µk| ≥ δ ∩ Tk(n) = t] ≤ K

and

EF

[
N∑

n=1

I[Cn]

]
≤ K

K∑
k=1

∞∑
t=1

PFk
[ |µ̂k,t − µk| ≥ δ].

By applying Sanov’s Theorem with F := Fk and Γ := {G ∈ A : |E(G) − µk| ≥ δ}, there exists C3 > 0
such that PFk

[ |µ̂k,t − µk| ≥ δ] = O(exp(−t C3)). Now we obtain

EF

[
N∑

n=1

I[Cn]

]
≤ K

K∑
k=1

∞∑
t=1

O(exp(−t C3)) = O(1).
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Figure 1: Experiment for beta distributions.
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Figure 2: Experiment for distributions, which are hard
to distinguish.

6 Experiments
In this section we give experimental results using UCB2, UCB-tuned (Auer et al., 2002) and DMED. In the
implementation of DMED, Dmin(F̂i(n), µ̂∗(n)) has to be computed at each round. We can compute it by
solving the dual problem discussed in Section 4 with e.g. Newton’s method. We omit detailed description
of our implementation of DMED but we note that Dmin can be computed (or approximated) efficiently as
follows:

(1) The optimal solution ν∗(F̂i(n − 1), µ̂i(n − 1)) of the previous round is a good approximation of the
current ν∗(F̂i(n), µ̂i(n)) and the iteration for the optimization halts quickly.

(2) µ̂∗(n) does not deviate significantly from µ∗ for sufficiently large n and Dmin(F, µ) is differentiable in µ

from Theorem 6. Therefore, Dmin(F̂i, µ̂
∗) can be approximated accurately by the linear approximation

on µ̂∗ as long as F̂i is not updated. On the other hand, F̂i is updated only O(log n) times through n
rounds and its effect on the complexity is small.

Each plot is an average over 1,000 different runs. The labels of each figure are as follows. “regret”
denotes

∑
i:µi<µ∗(µ∗ − µi)Ti(n), which is the loss due to choosing suboptimal arms. “Dmin” stands for the

asymptotic bound for a consistent policy,
∑

i:µi<µ∗(µ∗ − µi) log n/Dmin(Fi, µ
∗). The asymptotic slope of

the regret (in the semi-logarithmic plot) of a consistent policy is more than or equal to that of “Dmin”.
Figure 1 is a result for five arms with beta distributions. Beta distribution is an example of a simple contin-

uous distribution on [0, 1]. Parameters for beta distributions are (0.9, 0.1), (7, 3), (0.5, 0.5), (3, 7), (0.1, 0.9)
and expectations are µi = 0.9, 0.7, 0.5, 0.3, 0.1. Figure 2 is a result for two arms with discrete distributions

F1({0}) = 0.99, F1({1}) = 0.01, µ1 = 0.01,

F2({0.008}) = 0.5, F2({0.009}) = 0.5, µ2 = 0.0085.

It is an example of a problem where the optimal arm is hard to distinguish since the suboptimal arm appears
to be optimal at first with high probability. We see from these figures that DMED achieves a regret near the
asymptotic bound.

7 Conclusion
We proposed a policy, DMED, and proved that our policy achieves the asymptotic bound for bounded support
models. We also showed that our policy can be implemented efficiently by a convex optimization technique.

There are many models that Dmin can be computed explicitly, such as normal distribution model with
unknown mean and variance. We expect that our DMED can be extended to these models.

It is also important to consider the finite horizon case and to derive a finite-time bound of DMED. A
finite-time bound may be derived by a non-asymptotic form of Sanov’s Theorem in Exercise 6.2.19 of Dembo
and Zeitouni (1998). However, its naive application makes the whole discussion extremely longer, e.g. the
continuity of Dmin(F, µ) in F has to be of the form “if L(F, F ′) ≤ ε then |Dmin(F, µ) − Dmin(F ′, µ)| ≤
δ(ε, F, µ)” with explicit δ(·, ·, ·). Therefore other approaches may be more realistic.
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