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Abstract

We derive generalization bounds for learning algorithms based on their robustness: the
property that if a testing sample is “similar” to a training sample, then the testing error is
close to the training error. This provides a novel approach, different from the complexity
or stability arguments, to study generalization of learning algorithms. We further show
that a weak notion of robustness is both sufficient and necessary for generalizability, which
implies that robustness is a fundamental property for learning algorithms to work.

1 Introduction

The key issue in the task of learning from a set of observed samples is the estimation of the risk
(i.e., generalization error) of learning algorithms. Typically, since the learned hypothesis depends on
the training data, its empirical measurement (i.e., training error) provides an optimistically biased
estimation, especially when the number of training samples is small. Several approaches have been
proposed to bound the deviation of the risk from its empirical measurement, among which methods
based on uniform convergence and stability are most widely used.

Uniform convergence of empirical quantities to their mean (e.g., Vapnik and Chervonenkis 1974;
1991) provides ways to bound the gap between the expected risk and the empirical risk by the com-
plexity of the hypothesis set. Examples to complexity measures are the Vapnik-Chervonenkis (VC)
dimension (e.g., Vapnik & Chervonenkis, 1991; Evgeniou et al., 2000), the fat-shattering dimension
(e.g., Alon et al., 1997; Bartlett, 1998), and the Rademacher complexity (Bartlett & Mendelson,
2002; Bartlett et al., 2005). Another well-known approach is based on stability. An algorithm is
stable if its output remains “similar” for different sets of training samples that are identical up to
removal or change of a single sample. The first results that relate stability to generalizability track
back to Devroye and Wagner (1979a; 1979b). Later, McDiarmid’s concentration inequalities (McDi-
armid, 1989) facilitated new bounds on generalization error (e.g., Bousquet & Elisseeff, 2002; Poggio
et al., 2004; Mukherjee et al., 2006).

In this paper we explore a different approach which we term algorithmic robustness. Briefly
speaking, an algorithm is robust if its solution has the following property: it achieves “similar”
performance on a testing sample and a training sample that are “close”. This notion of robustness is
rooted in robust optimization (Ben-Tal & Nemirovski, 1998; Ben-Tal & Nemirovski, 1999; Bertsimas
& Sim, 2004) where a decision maker aims to find a solution x that minimizes a (parameterized)
cost function f(x, ξ) with the knowledge that the unknown true parameter ξ may deviate from the

observed parameter ξ̂. Hence, instead of solving minx f(x, ξ̂) one solves minx[maxξ̃∈∆ f(x, ξ̃)], where
∆ includes all possible realizations of ξ. Robust optimization was introduced in machine learning
tasks to handle exogenous noise (e.g., Bhattacharyya et al., 2004; Shivaswamy et al., 2006; Globerson
& Roweis, 2006), i.e., the learning algorithm only has access to inaccurate observation of training
samples. Later on, Xu et al. (2010; 2009) showed that both Support Vector Machine(SVM) and
Lasso have robust optimization interpretation, i.e., they can be reformulated as

min
h∈H

max
(δ1,··· ,δn)∈∆

n
∑

i=1

l(h, zi + δi),

for some ∆. Here zi are the observed training samples and l(·, ·) is the loss function (hinge-loss
for SVM, and squared loss for Lasso), which means that SVM and Lasso essentially minimize the



empirical error under the worst possible perturbation. Indeed, as Xu et al. (2010; 2009) showed,
this reformulation leads to requiring that the loss of a sample “close” to zi is small, which further
implies statistical consistency of these two algorithms. In this paper we adopt this approach and
study the (finite sample) generalization ability of learning algorithms by investigating the loss of
learned hypotheses on samples that slightly deviate from training samples.

Of special interest is that robustness is more than just another way to establish generalization
bounds. Indeed, we show that a weaker notion of robustness is a necessary and sufficient condition of
(asymptotic) generalizability of (general) learning algorithms. While it is known having a finite VC-
dimension (Vapnik & Chervonenkis, 1991) or equivalently being CVEEEloo stable (Mukherjee et al.,
2006) is necessary and sufficient for the Empirical Risk Minimization (ERM) to generalize, much
less is known in the general case. Recently, Shalev-Shwartz et al. (2009) proposed a weaker notion
of stability that is necessary and sufficient for a learning algorithm to be consistent and generalizing,
provided that the problem itself is learnable. However, learnability requires that the convergence rate
is uniform with respect to all distributions, and is hence a fairly strong assumption. In particular,
the standard supervised learning setup where the hypothesis set is the set of measurable functions is
not learnable since no algorithm can achieve a uniform convergence rate (cf. Devroye et al., 1996).
Indeed, as Shalev-Shwartz et al. (2009) stated, for supervised learning problems learnability is
equivalent to the generalizability of ERM, and hence reduce to the aforementioned results on ERM
algorithms.

In particular, our main contributions are the following:

1. We propose a notion of algorithmic robustness. Algorithmic robustness is a desired property for
a learning algorithm since it implies a lack of sensitivity to (small) disturbances in the training
data.

2. Based on the notion of algorithmic robustness, we derive generalization bounds for IID samples.

3. To illustrate the applicability of the notion of algorithmic robustness, we provide some examples
of robust algorithms, including SVM, Lasso, feed-forward neural networks and PCA.

4. We propose a weaker notion of robustness and show that it is both necessary and sufficient for
a learning algorithm to generalize. This implies that robustness is an essential property needed
for a learning algorithm to work.

Note that while stability and robustness are similar on an intuitive level, there is a difference
between the two: stability requires that identical training sets with a single sample removed lead to
similar prediction rules, whereas robustness requires that a prediction rule has comparable perfor-
mance if tested on a sample close to a training sample. Simply put, stability compares two prediction
rules, whereas robustness investigates one prediction rule.

This paper is organized as follows. We define the notion of robustness in Section 2, and prove
generalization bounds for robust algorithms in Section 3. In Section 4 we propose a relaxed notion of
robustness, which is termed as pseudo-robustness, and provide corresponding generalization bounds.
Examples of learning algorithms that are robust or pseudo-robust are provided in Section 5. Finally,
we show that robustness is necessary and sufficient for generalizability in Section 6. Due to space
constraints, some of the proofs are deferred to the full version (Xu & Mannor, 2010).

1.1 Preliminaries

We consider the following general learning model: a set of training samples are given, and the
goal is to pick a hypothesis from a hypothesis set. Unless otherwise mentioned, throughout this
paper the size of training set is fixed as n. Therefore, we drop the dependence of parameters on
the number of training samples, while it should be understood that parameters may vary with the
number of training samples. We use Z and H to denote the set from which each sample is drawn,
and the hypothesis set, respectively. Throughout the paper we use s to denote the training sample
set consists of n training samples (s1, · · · , sn). A learning algorithm A is thus a mapping from Zn

to H. We use As to represent the hypothesis learned (given training set s). For each hypothesis
h ∈ H and a point z ∈ Z, there is an associated loss l(h, z). We ignore the issue of measurability
and further assume that l(h, z) is non-negative and upper-bounded uniformly by a scalar M .

In the special case of supervised learning, the sample space can be decomposed as Z = Y × X ,
and the goal is to learn a mapping from X to Y, i.e., to predict the y-component given x-component.
We hence use As(x) to represent the prediction of x ∈ X if trained on s. We call X the input space
and Y the output space. The output space can either be Y = {−1, +1} for a classification problem,
or Y = R for a regression problem. We use |x and |y to denote the x-component and y-component



of a point. For example, si|x is the x-component of si. To simplify notations, for a scaler c, we use

[c]+ to represent its non-negative part, i.e., [c]+ , max(0, c).
We recall the following standard notion of covering number from van der Vaart and Wellner

(2000).

Definition 1 (cf. van der Vaart & Wellner, 2000) For a metric space S, ρ and T ⊂ S we say

that T̂ ⊂ S is an ǫ-cover of T , if ∀t ∈ T , ∃t̂ ∈ T̂ such that ρ(t, t̂) ≤ ǫ. The ǫ-covering number of T is

N (ǫ, T, ρ) = min{|T̂ | : T̂ is an ǫ − cover of T }.

2 Robustness of Learning Algorithms

Before providing a precise definition of what we mean by “robustness” of an algorithm, we provide
some motivating examples which share a common property: if a testing sample is close to a training
sample, then the testing error is also close, a property we will later formalize as “robustness”.

We first consider large-margin classifiers: Let the loss function be l(As, z) = 1(As(z|x) 6= z|y).
Fix γ > 0. An algorithm As has a margin γ if for j = 1, · · · , n

As(x) = As(sj|x); ∀x : ‖x − sj|x‖2 < γ.

That is, any training sample is at least γ away from the classification boundary.

Example 1 Fix γ > 0 and put K = 2N (γ/2,X , ‖ · ‖2). If As has a margin γ, then Z can be
partitioned into K disjoint sets, denoted by {Ci}K

i=1, such that if sj and z ∈ Z belong to a same Ci,
then |l(As, sj) − l(As, z)| = 0.

Proof: By the definition of covering number, we can partition X into N (γ/2,X , ‖ · ‖2) subsets

(denoted X̂i) such that each subset has a diameter less or equal to γ. Further, Y can be partitioned
to {−1} and {+1}. Thus, we can partition Z into 2N (γ/2,X , ‖ · ‖2) subsets such that if z1, z2

belong to a same subset, then y1|y = y2|y and ‖x1|y − x2|y‖ ≤ γ. By the definition of the margin,
this guarantees that if sj and z ∈ Z belong to a same Ci, then |l(As, sj) − l(As, z)| = 0.

The next example is a linear regression algorithm. Let the loss function be l(As, z) = |z|y −
As(z|x)|, and let X be a bounded subset of Rm and fix c > 0. The norm-constrained linear regression
algorithm is

As = min
w∈Rm:‖w‖2≤c

n
∑

i=1

|si|y − w⊤si|x|, (1)

i.e., minimizing the empirical error among all linear classifiers whose norm is bounded.

Example 2 Fix ǫ > 0 and let K = N (ǫ/2,X , ‖ · ‖2) × N (ǫ/2,Y, | · |). Consider the algorithm as
in (1). The set Z can be partitioned into K disjoint sets, such that if sj and z ∈ Z belong to a same
Ci, then

|l(As, sj) − l(As, z)| ≤ (c + 1)ǫ.

Proof: Similarly to the previous example, we can partition Z to N (ǫ/2,X , ‖ · ‖2) ×N (ǫ/2,Y, | · |)
subsets, such that if z1, z2 belong to a same Ci, then ‖z1|x − z2|x‖2 ≤ ǫ, and |z1|y − z2|y| ≤ ǫ. Since
‖w‖2 ≤ c, we have

|l(w, z1) − l(w, z2)| =
∣

∣|z1|y − w⊤z1|x| − |z2|y − w⊤z2|x|
∣

∣

≤
∣

∣(z1|y − w⊤z1|x) − (z2|y − w⊤z2|x)
∣

∣

≤|z1|y − z2|y| + ‖w‖2‖z1|x − z2|x‖2

≤(1 + c)ǫ,

whenever z1, z2 belong to a same Ci.

The two motivating examples both share a property: we can partition the sample set into finite
subsets, such that if a new sample falls into the same subset as a training sample, then the loss of
the former is close to the loss of the latter. We call an algorithm having this property “robust.”

Definition 2 Algorithm A is (K, ǫ(s)) robust if Z can be partitioned into K disjoint sets, denoted
by {Ci}K

i=1, such that ∀s ∈ s,

s, z ∈ Ci, =⇒ |l(As, s) − l(As, z)| ≤ ǫ(s). (2)

In the definition, both K and the partition sets {Ci}K
i=1 do not depend on the training set s. Note

that the definition of robustness requires that (2) holds for every training sample. Indeed, we can
relax the definition, so that the condition needs only hold for a subset of training samples. We call
an algorithm having this property “pseudo robust.” See Section 4 for details.



3 Generalization Properties of Robust Algorithms

In this section we investigate generalization of robust algorithms. In particular, in the following
subsections we derive PAC bounds for robust algorithms under two different conditions: (1) The
ubiquitous learning setup where the samples are i.i.d. and the goal of learning is to minimize expected
loss. (2) The learning goal is to minimize quantile loss. Indeed, the fact that we can provide results
in (2) indicates the fundamental nature of robustness as a property of learning algorithms.

3.1 IID samples and expected loss

In this section, we consider the standard learning setup, i.e., the sample set s consists of n i.i.d.
samples generated by an unknown distribution µ, and the goal of learning is to minimize expected

test loss. Let l̂(·) and lemp(·) denote the expected error and the training error, i.e.,

l̂(As) , Ez∼µl(As, z); lemp(As) ,
1

n

∑

si∈s

l(As, si).

Recall that the loss function l(·, ·) is upper bounded by M .

Theorem 3 If s consists of n i.i.d. samples, and A is (K, ǫ(s))-robust, then for any δ > 0, with
probability at least 1 − δ,

∣

∣

∣
l̂(As) − lemp(As)

∣

∣

∣
≤ ǫ(s) + M

√

2K ln 2 + 2 ln(1/δ)

n
.

Proof: Let Ni be the set of index of points of s that fall into Ci. Note that (|N1|, · · · , |NK |) is an
IID multinomial random variable with parameters n and (µ(C1), · · · , µ(CK)). The following holds
by the Breteganolle-Huber-Carol inequality (cf Proposition A6.6 of(van der Vaart & Wellner, 2000)):

Pr

{

K
∑

i=1

∣

∣

∣

∣

|Ni|

n
− µ(Ci)

∣

∣

∣

∣

≥ λ

}

≤ 2K exp(
−nλ2

2
).

Hence, the following holds with probability at least 1 − δ,

K
∑

i=1

∣

∣

∣

∣

|Ni|

n
− µ(Ci)

∣

∣

∣

∣

≤

√

2K ln 2 + 2 ln(1/δ)

n
. (3)

We have
∣

∣

∣
l̂(As) − lemp(As)

∣

∣

∣

=

∣

∣

∣

∣

∣

K
∑

i=1

E
(

l(As, z)|z ∈ Ci

)

µ(Ci) −
1

n

n
∑

i=1

l(As, si)

∣

∣

∣

∣

∣

(a)

≤

∣

∣

∣

∣

∣

K
∑

i=1

E
(

l(As, z)|z ∈ Ci

) |Ni|

n
−

1

n

n
∑

i=1

l(As, si)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

K
∑

i=1

E
(

l(As, z)|z ∈ Ci

)

µ(Ci) −
K
∑

i=1

E
(

l(As, z)|z ∈ Ci

) |Ni|

n

∣

∣

∣

∣

∣

(b)

≤

∣

∣

∣

∣

∣

∣

1

n

K
∑

i=1

∑

j∈Ni

max
z2∈Ci

|l(As, sj) − l(As, z2)|

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

max
z∈Z

|l(As,z)|
K
∑

i=1

∣

∣

∣

|Ni|

n
− µ(Ci)

∣

∣

∣

∣

∣

∣

∣

∣

(c)

≤ǫ(s) + M

K
∑

i=1

∣

∣

∣

∣

|Ni|

n
− µ(Ci)

∣

∣

∣

∣

,

(4)

where (a), (b), and (c) are due to the triangle inequality, the definition of Ni, and the definition of

ǫ(s) and M , respectively. The right-hand-side of (4) is upper-bounded by ǫ(s)+ M
√

2K ln 2+2 ln(1/δ)
n

with probability at least 1 − δ due to (3). The theorem follows.

Theorem 3 requires that we fix a K a priori. However, it is often worthwhile to consider adaptive
K. For example, in the large-margin classification case, typically the margin is known only after s is
realized. That is, the value of K depends on s. Because of this dependency, we needs a generalization
bound that holds uniformly for all K.



Corollary 4 If s consists of n i.i.d. samples, and A is (K, ǫK(s)) robust for all K ≥ 1, then for
any δ > 0, with probability at least 1 − δ,

∣

∣

∣
l̂(As) − lemp(As)

∣

∣

∣
≤ inf

K≥1



ǫK(s) + M

√

2K ln 2 + 2 ln K(K+1)
δ

n



 .

Proof: Let

E(K) ,







∣

∣

∣
l̂(As) − lemp(As)

∣

∣

∣
> ǫK(s) + M

√

2K ln 2 + 2 ln K(K+1)
δ

n







.

From Theorem 3 we have Pr(E(K)) ≤ δ/(K(K + 1)) = δ/K − δ/(K + 1). By the union bound we
have

Pr







⋃

K≥1

E(K)







≤
∑

K≥1

Pr (E(K)) ≤
∑

K≥1

[

δ

K
−

δ

K + 1

]

= δ,

and the corollary follows.

If ǫ(s) does not depend on s, we can sharpen the bound given in Corollary 4.

Corollary 5 If s consists of n i.i.d. samples, and A is (K, ǫK) robust for all K ≥ 1, then for any
δ > 0, with probability at least 1 − δ,

∣

∣

∣
l̂(As) − lemp(As)

∣

∣

∣
≤ inf

K≥1



ǫK + M

√

2K ln 2 + 2 ln 1
δ

n



 .

Proof: Take K∗ that minimizes the right hand side, and note that it does not depend on s.
Therefore, plugging K∗ into Theorem 3 establishes the corollary.

3.2 Quantile Loss

So far we considered the standard expected loss setup. In this section we consider some less exten-
sively investigated loss functions, namely quantile value and truncated expectation (see the following
for precise definitions). These loss functions are of interest because they are less sensitive to the
presence of outliers than the standard average loss (Huber, 1981).

Definition 6 For a non-negative random variable X, the β-quantile value is

Qβ(X) , inf
{

c ∈ R : Pr
(

X ≤ c
)

≥ β
}

.

The β-truncated mean is

Tβ(X) ,







E
[

X · 1(X < Qβ(X))
]

if Pr
[

X = Qβ(X)
]

= 0;

E
[

X · 1(X < Qβ(X))
]

+
β−Pr

[

X<Qβ(X)
]

Pr
[

X=Qβ(X)
] Qβ(X) otherwise.

In words, the β−quantile loss is the smallest value that is larger or equal to X with probability
at least β. The β-truncated mean is the contribution to the expectation of the leftmost β fraction
of the distribution. For example, suppose X is supported on {c1, · · · , c10} (c1 < c2 < · · · < c10)
and the probability of taking each value equals 0.1. Then the 0.63-quantile loss of X is c7, and the
0.63-truncated mean of X equals 0.1(

∑6
i=1 ci + 0.3c7).

Given h ∈ H, β ∈ (0, 1), and a probability measure µ on Z, let

Q(h, β, µ) , Qβ(l(h, z)); where: z ∼ µ;

and
T (h, β, µ) , Tβ(l(h, z)); where: z ∼ µ;

i.e., the β-quantile value and β-truncated mean of the (random) testing error of hypothesis h if
the testing sample follows distribution µ. We have the following theorem that is a special case of
Theorem 10, hence we omit the proof.



Theorem 7 (Quantile Value & Truncated Mean) Suppose s are n i.i.d. samples drawn ac-

cording to µ, and denote the empirical distribution of s by µemp. Let λ0 =
√

2K ln 2+2 ln(1/δ)
n . If

0 ≤ β−λ0 ≤ β +λ0 ≤ 1 and A is (K, ǫ(s)) robust, then with probability at least 1− δ, the followings
hold

(I) Q (As, β − λ0, µemp) − ǫ(s) ≤ Q (As, β, µ) ≤ Q (As, β + λ0, µemp) + ǫ(s);

(II) T (As, β − λ0, µemp) − ǫ(s) ≤ T (As, β, µ) ≤ T (As, β + λ0, µemp) + ǫ(s).

In words, Theorem 7 essentially means that with high probability, the β-quantile value/truncated
mean of the testing error (recall that the testing error is a random variable) is (approximately)
bounded by the (β ± λ0)-quantile value/truncated mean of the empirical error, thus providing a
way to estimate the quantile value/truncated expectation of the testing error based on empirical
observations.

4 Pseudo Robustness

In this section we propose a relaxed definition of robustness that accounts for the case where Equa-
tion (2) holds for most of training samples, as opposed to Definition 2 where Equation (2) holds for
all training samples. Recall that the size of training set is fixed as n.

Definition 8 Algorithm A is (K, ǫ(s), n̂(s)) pseudo robust if Z can be partitioned into K disjoint
sets, denoted as {Ci}K

i=1, and there exists a subset of training samples ŝ with |ŝ| = n̂(s) such that
∀s ∈ ŝ,

s, z ∈ Ci, =⇒ |l(As, s) − l(As, z)| ≤ ǫ(s).

Observe that (K, ǫ(s))-robust is equivalent to (K, ǫ(s), n) pseudo robust.

Theorem 9 If s consists of n i.i.d. samples, and A is (K, ǫ(s), n̂(s)) pseudo robust, then for any
δ > 0, with probability at least 1 − δ,

∣

∣

∣
l̂(As) − lemp(As)

∣

∣

∣
≤

n̂(s)

n
ǫ(s) + M

(

n − n̂(s)

n
+

√

2K ln 2 + 2 ln(1/δ)

n

)

.

Proof: Let Ni and N̂i be the set of indices of points of s and ŝ that fall into the Ci, respectively.
Similarly to the proof of Theorem 3, we note that (|N1|, · · · , |NK |) is an IID multinomial random
variable with parameters n and (µ(C1), · · · , µ(CK)). And hence due to Breteganolle-Huber-Carol
Inequality, the following holds with probability at least 1 − δ,

K
∑

i=1

∣

∣

∣

∣

|Ni|

n
− µ(Ci)

∣

∣

∣

∣

≤

√

2K ln 2 + 2 ln(1/δ)

n
. (5)

Furthermore, we have
∣

∣

∣
l̂(As) − lemp(As)

∣

∣

∣

=

∣

∣

∣

∣

∣

K
∑

i=1

E
(

l(As, z)|z ∈ Ci

)

µ(Ci) −
1

n

n
∑

i=1

l(As, si)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

K
∑

i=1

E
(

l(As, z)|z ∈ Ci

) |Ni|

n
−

1

n

n
∑

i=1

l(As, si)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

K
∑

i=1

E
(

l(As, z)|z ∈ Ci

)

µ(Ci) −
K
∑

i=1

E
(

l(As, z)|z ∈ Ci

) |Ni|

n

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

1

n

K
∑

i=1

[

|Ni| × E
(

l(As, z)|z ∈ Ci

)

−
∑

j∈N̂i

l(As, sj) −
∑

j∈Ni,j 6∈N̂i

l(As, sj)
]

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

max
z∈Z

|l(As,z)|
K
∑

i=1

∣

∣

∣

|Ni|

n
− µ(Ci)

∣

∣

∣

∣

∣

∣

∣

∣

.



Note that due to the triangle inequality as well as the assumption that the loss is non-negative and
upper bounded by M , the right-hand side can be upper bounded by

∣

∣

∣

∣

∣

∣

1

n

K
∑

i=1

∑

j∈N̂i

max
z2∈Ci

|l(As, sj) − l(As, z2)|

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1

n

K
∑

i=1

∑

j∈Ni,j 6∈N̂i

max
z2∈Ci

|l(As, sj) − l(As, z2)|

∣

∣

∣

∣

∣

∣

+ M

K
∑

i=1

∣

∣

∣

∣

|Ni|

n
− µ(Ci)

∣

∣

∣

∣

≤
n̂(s)

n
ǫ(s) +

n − n̂(s)

n
M + M

K
∑

i=1

∣

∣

∣

∣

|Ni|

n
− µ(Ci)

∣

∣

∣

∣

.

where the inequality holds due to definition of Ni and N̂i. The theorem follows by applying (5).

Similarly, Theorem 7 can be generalized to the pseudo robust case. See the full version (Xu &
Mannor, 2010) for the proof.

Theorem 10 (Quantile Value & Truncated Expectation) Suppose s has n samples drawn i.i.d.

according to µ, and denote the empirical distribution of s as µemp. Let λ0 =
√

2K ln 2+2 ln(1/δ)
n . Sup-

pose 0 ≤ β − λ0 − (n− n̂)/n ≤ β + λ0 + (n− n̂)/n ≤ 1 and A is (K, ǫ(s), n̂(s)) pseudo robust. Then
with probability at least 1 − δ, the followings hold

(I) Q

(

As, β − λ0 −
n − n̂(s)

n
, µemp

)

− ǫ(s) ≤ Q (As, β, µ) ≤ Q

(

As, β + λ0 +
n − n̂(s)

n
, µemp

)

+ ǫ(s);

(II) T

(

As, β − λ0 −
n − n̂(s)

n
, µemp

)

− ǫ(s) ≤ T (As, β, µ) ≤ T

(

As, β + λ0 +
n − n̂(s)

n
, µemp

)

+ ǫ(s).

5 Examples of Robust Algorithms

In this section we provide some examples of robust algorithms. The proofs of the examples can
be found in the full version (Xu & Mannor, 2010). Our first example is Majority Voting (MV)
classification (cf Section 6.3 of Devroye et al., 1996) that partitions the input space X and labels
each partition set according to a majority vote of the training samples belonging to it.

Example 3 (Majority Voting) Let Y = {−1, +1}. Partition X to C1, · · · , CK, and use C(x) to
denote the set to which x belongs. A new sample xa ∈ X is labeled by

As(xa) ,

{

1, if
∑

si∈C(xa) 1(si|y = 1) ≥
∑

si∈C(xa) 1(si|y = −1);
−1, otherwise.

If the loss function is l(As, z) = f(z|y,As(z|x)) for some function f , then MV is (2K, 0) robust.

MV algorithm has a natural partition of the sample space that makes it robust. Another class of
robust algorithms are those that have approximately the same testing loss for testing samples that
are close (in the sense of geometric distance) to each other, since we can partition the sample space
with norm balls. The next theorem states that an algorithm is robust if two samples being close
implies that they have similar testing error.

Theorem 11 Fix γ > 0 and metric ρ of Z. Suppose A satisfies

|l(As, z1) − l(As, z2)| ≤ ǫ(s), ∀z1, z2 : z1 ∈ s, ρ(z1, z2) ≤ γ,

and N (γ/2,Z, ρ) < ∞. Then A is
(

N (γ/2,Z, ρ), ǫ(s)
)

-robust.

Proof:Let {c1, · · · , cN (γ/2,Z,ρ)} be a γ/2-cover of Z. whose existence is guaranteed by the defi-

nition of covering number. Let Ĉi = {z ∈ Z|ρ(z, ci) ≤ γ/2}, and Ci = Ĉi

⋂
(
⋃i−1

j=1 Ĉj

)c
. Thus,

C1, · · · , CN (γ/2,Z,ρ) is a partition of Z, and satisfies

z1, z2 ∈ Ci =⇒ ρ(z1, z2) ≤ ρ(z1, ci) + ρ(z2, ci) ≤ γ.

Therefore,
|l(As, z1) − l(As, z2)| ≤ ǫ(s), ∀z1, z2 : z1 ∈ s, ρ(z1, z2) ≤ γ,



implies
z1 ∈ s z1, z2 ∈ Ci =⇒ |l(As, z1) − l(As, z2)| ≤ ǫ(s),

and the theorem follows.

Theorem 11 immediately leads to the next example: if the testing error given the output of an
algorithm is Lipschitz continuous, then the algorithm is robust.

Example 4 (Lipschitz continuous functions) If Z is compact w.r.t. metric ρ, l(As, ·) is Lips-
chitz continuous with Lipschitz constant c(s), i.e.,

|l(As, z1) − l(As, z2)| ≤ c(s)ρ(z1, z2), ∀z1, z2 ∈ Z,

then A is
(

N (γ/2,Z, ρ), c(s)γ
)

-robust for all γ > 0.

Theorem 11 also implies that SVM, Lasso, feed-forward neural network and PCA are robust, as
stated in Example 5 to Example 8. The proofs are deferred to Appendix.

Example 5 (Support Vector Machines) Let X be compact. Consider the standard SVM for-
mulation (Cortes & Vapnik, 1995; Schölkopf & Smola, 2002)

Minimize:w,d c‖w‖2
H +

1

n

n
∑

i=1

ξi

s. t. 1 − si|y[〈w, φ(si|x)〉 + d] ≤ ξi;

ξi ≥ 0.

Here φ(·) is a feature mapping, ‖ · ‖H is its RKHS kernel, and k(·, ·) is the kernel function.

Let l(·, ·) be the hinge-loss, i.e., l
(

(w, d), z
)

= [1 − z|y(〈w, φ(z|x)〉 + d)]+, and define fH(γ) ,

maxa,b∈X ,‖a−b‖2≤γ

(

k(a,a) + k(b,b)− 2k(a,b)
)

. If k(·, ·) is continuous, then for any γ > 0, fH(γ)

is finite, and SVM is (2N (γ/2,X , ‖ · ‖2),
√

fH(γ)/c) robust.

Example 6 (Lasso) Let Z be compact and the loss function be l(As, z) = |z|y − As(z|x)|. Lasso
(Tibshirani, 1996), which is the following regression formulation:

min
w

:
1

n

n
∑

i=1

(si|y − w⊤si|x)2 + c‖w‖1, (6)

is
(

N (γ/2,Z, ‖ · ‖∞), (Y (s)/c + 1)γ
)

-robust for all γ > 0, where Y (s) , 1
n

∑n
i=1 si|y

2 .

Example 7 (Feed-forward Neural Networks) Let Z be compact and the loss function be l(As, z) =
|z|y −As(z|x)|. Consider the d-layer neural network (trained on s), which is the following predicting
rule given an input x ∈ X

x0 := z|x

∀v = 1, · · · , d − 1 : xv
i := σ(

Nv−1
∑

j=1

wv−1
ij xv−1

j ); i = 1, · · · , Nv;

As(x) := σ(

Nd−1
∑

j=1

wd−1
j xd−1

j );

If there exists α and β such that the d-layer neural network satisfying that |σ(a) − σ(b)| ≤ β|a − b|,

and
∑Nv

j=1 |w
v
ij | ≤ α for all v, i, then it is

(

N (γ/2,Z, ‖ · ‖∞), αdβdγ
)

-robust, for all γ > 0.

We remark that in Example 7, the number of hidden units in each layer has no effect on the
robustness of the algorithm and consequently the bound on the testing error. This indeed agrees
with Bartlett (1998), where the author showed (using a different approach based on fat-shattering
dimension) that for neural networks, the weight plays a more important role than the number of
hidden units.

The next example considers an unsupervised learning algorithm, namely the principal component
analysis algorithm. We show that it is robust if the sample space is bounded. This does not contradict
with the well known fact that the principal component analysis is sensitive to outliers which are far
away from the origin.



Example 8 (Principal Component Analysis (PCA)) Let Z ⊂ Rm be such that maxz∈Z ‖z‖2 ≤

B. If the loss function is l((w1, · · · , wd), z) =
∑d

k=1(w
⊤
k z)2, then finding the first d principal com-

ponents, which solves the following optimization problem over d vectors w1, · · · , wd ∈ Rm,

Maximize:

n
∑

i=1

d
∑

k=1

(w⊤
k si)

2

Subject to: ‖wk‖2 = 1, k = 1, · · · , d;

w⊤
i wj = 0, i 6= j.

is (N (γ/2,Z, ‖ · ‖2), 2dγB)-robust.

The last example is large-margin classification, which is a generalization of Example 1. We need
the following standard definition (e.g., Bartlett, 1998) of the distance of a point to a classification
rule.

Definition 12 Fix a metric ρ of X . Given a classification rule ∆ and x ∈ X , the distance of x to
∆ is

D(x, ∆) , inf{c ≥ 0|∃x′ ∈ X : ρ(x, x′) ≤ c, ∆(x) 6= ∆(x′)}.

A large margin classifier is a classification rule such that most of the training samples are “far
away” from the classification boundary.

Example 9 (Large-margin classifier) If there exist γ and n̂ such that

n
∑

i=1

1
(

D(si|x,As) > γ
)

≥ n̂,

then algorithm A is (2N (γ/2,X , ρ), 0, n̂) pseudo robust, provided that N (γ/2,X , ρ) < ∞.

Proof: Set ŝ as
ŝ , {si ∈ s|D(si,As) > γ}.

And let c1, · · · , cN (γ/2,X ,ρ) be a γ/2 cover of X . Thus, we can partition Z to 2N (γ/2,X , ρ) subsets
{Ci}, such that if

z1, z2 ∈ Ci; =⇒ y1 = y2; & ρ(x1, x2) ≤ γ.

This implies that:

z1 ∈ ŝ, z1, z2 ∈ Ci; =⇒ y1 = y2; As(x1) = As(x2); =⇒ l(As, z1) = l(As, z2).

By definition, A is (2N (γ/2,X , ρ), 0, n̂) pseudo robust.

Note that by taking ρ to be the Euclidean norm, and letting n̂ = n, we recover Example 1.

6 Necessity of Robustness

Thus far we have considered finite sample generalization bounds of robust algorithms. We now turn
to asymptotic analysis, i.e., we are given an increasing set of training samples s = (s1, s2, · · · ) and
are tested on an increasing set of testing samples t = (t1, t2, · · · ). We use s(n) and t(n) to denote
the first n elements of training samples and testing samples respectively. For succinctness, we let
L(·, ·) to be the average loss given a set of samples, i.e., for h ∈ H,

L(h, t(n)) ≡
1

n

n
∑

i=1

l(h, ti).

We show in this section that robustness is an essential property of successful learning. In partic-
ular, a (weaker) notion of robustness characterizes generalizability, i.e., a learning algorithm gener-
alizes if and only if it is weakly robust. To make this precise, we define the notion of generalizability
and weak robustness first.

Definition 13 1. A learning algorithm A generalizes w.r.t. s if

lim sup
n

{

Et

(

l(As(n), t)
)

− L(As(n), s(n))
}

≤ 0.



2. A learning algorithm A generalize w.p. 1 if it generalize w.r.t. almost every s.

We remark that the proposed notion of generalizability differs slightly from the standard one in
the sense that the latter requires that the empirical risk and the expected risk converges in mean,
while the proposed notion requires convergence w.p.1. It is straightforward that the proposed notion
implies the standard one.

Definition 14 1. A learning algorithm A is weakly robust w.r.t s if there exists a sequence of
{Dn ⊆ Zn} such that Pr(t(n) ∈ Dn) → 1, and

lim sup
n

{

max
ŝ(n)∈Dn

[

L(As(n), ŝ(n)) − L(As(n), s(n))
]

}

≤ 0.

2. A learning algorithm A is a.s. weakly robust if it is robust w.r.t. almost every s.

We briefly comment on the definition of weak robustness. Recall that the definition of robustness
requires that the sample space can be partitioned into disjoint subsets such that if a testing sample
belongs to the same partitioning set of a training sample, then they have similar loss. Weak robust-
ness generalizes such notion by considering the average loss of testing samples and training samples.
That is, if for a large (in the probabilistic sense) subset of Zn, the testing error is close to the training
error, then the algorithm is weakly robust. It is easy to see, by Breteganolle-Huber-Carol lemma,
that if for any fixed ǫ > 0 there exists K such that A is (K, ǫ) robust, then A is weakly robust.

We now establish the main result of this section: weak robustness and generalizability are equiv-
alent.

Theorem 15 An algorithm A generalizes w.r.t. s if and only if it is weakly robust w.r.t. s.

Proof: We prove the sufficiency of weak robustness first. When A is weakly robust w.r.t. s,
by definition there exists {Dn} such that for any δ, ǫ > 0, there exists N(δ, ǫ) such that for all
n > N(δ, ǫ), Pr(t(n) ∈ Dn) > 1 − δ, and

sup
ŝ(n)∈Dn

L(As(n), ŝ(n)) − L(As(n), s(n)) < ǫ. (7)

Therefore, the following holds for any n > N(δ, ǫ),

Et

(

l(As(n), t)
)

− L(As(n), s(n))

=Et(n)

(

L(As(n), t(n))
)

− L(As(n), s(n))

=Pr(t(n) 6∈ Dn)E
(

L(As(n), t(n))|t(n) 6∈ Dn

)

+ Pr(t(n) ∈ Dn)E
(

L(As(n), t(n))|t(n) ∈ Dn

)

− L(As(n), s(n))

≤δM + sup
ŝ(n)∈Dn

{

L(As(n), ŝ(n)) − L(As(n), s(n))
}

≤ δM + ǫ.

Here, the first equality holds since t(n) are i.i.d., and the second equality holds by conditional
expectation. The inequalities hold due to the assumption that the loss function is upper bounded
by M , as well as (7).

We thus conclude that the algorithm A generalizes for s, because ǫ and δ can be arbitrary.
Now we turn to the necessity of weak robustness. First, we establish the following lemma.

Lemma 16 Given s, if algorithm A is not weakly robust w.r.t. s, then there exists ǫ∗, δ∗ > 0 such
that the following holds for infinitely many n,

Pr
(

L(As(n), t(n)) ≥ L(As(n), s(n)) + ǫ∗
)

≥ δ∗. (8)

Proof: We prove the lemma by contradiction. Assume that such ǫ∗ and δ∗ do not exist. Let
ǫv = δv = 1/v for v = 1, 2 · · · , then there exists a non-decreasing sequence {N(v)}∞v=1 such that

for all v, if n ≥ N(v) then Pr
(

L(As(n), t(n)) ≥ L(As(n), s(n)) + ǫv

)

< δv. For each n, define the

following set:

Dv
n , {ŝ(n)|L(As(n), ŝ(n)) − L(As(n), s(n)) < ǫv}.



Thus, for n ≥ N(v) we have

Pr(t(n) ∈ Dv
n) = 1 − Pr

(

L(As(n), t(n)) ≥ L(As(n), s(n)) + ǫv

)

> 1 − δv.

For n ≥ N(1), define Dn , D
v(n)
n , where: v(n) , max

(

v|N(t) ≤ n; v ≤ n
)

. Thus for all n ≥ N(1)
we have that Pr(t(n) ∈ Dn) > 1− δv(n) and supŝ(n)∈Dn

L(As(n), ŝ(n))−L(As(n), s(n)) < ǫv(n). Note

that v(n) ↑ ∞, it follows that δv(n) → 0 and ǫv(n) → 0. Therefore, Pr(t(n) ∈ Dn) → 1, and

lim sup
n→∞

{

sup
ŝ(n)∈Dn

L(As(n), ŝ(n)) − L(As(n), s(n))
}

≤ 0.

That is, A is weakly robust w.r.t. s, which is a desired contradiction.

We now prove the necessity of weak robustness. Recall that l(·, ·) is uniformly bounded. Thus
by Hoeffding’s inequality we have that for any ǫ and δ, there exists n∗ such that for any n > n∗,

with probability at least 1− δ, we have
∣

∣

∣

1
n

∑n
i=1 l(As(n), ti)−Et(l(As(n), t))

∣

∣

∣
≤ ǫ. This implies that

L(As(n), t(n)) − Etl(As(n), t)
Pr
−→ 0. (9)

Since algorithm A is not weakly robust, Lemma 16 implies that (8) holds for infinitely many n. This,
combined with Equation (9) implies that for infinitely many n,

Etl(As(n), t) ≥ L(As(n), s(n)) +
ǫ∗

2
,

which means that A does not generalize. Thus, the necessity of weak robustness is established.

Theorem 15 immediately leads to the following corollary.

Corollary 17 An algorithm A generalizes w.p. 1 if and only if it is a.s. weakly robust.

7 Discussion

In this paper we investigated the generalization of learning algorithm based on their robustness:
the property that if a testing sample is “similar” to a training sample, then its loss is close to the
training error. This provides a novel approach, different from complexity or stability arguments,
in studying the performance of learning algorithms. We further showed that a weak notion of
robustness characterizes generalizability, which implies that robustness is the fundamental property
that makes learning algorithms work.

Before concluding the paper, we outline several directions for future research.

• Adaptive partition: In Definition 2 when the notion of robustness was introduced, we required
that the partitioning of Z into K sets is fixed. That is, regardless of the training sample set,
we partition Z into the same K sets. A natural and interesting question is what if such fixed
partition does not exist, while instead we can only partition Z into K sets adaptively, i.e., for
different training set we will have a different partitioning of Z. Adaptive partition setup can be
used to study algorithms such as k-NN. Our current proof technique does not straightforwardly
extend to such a setup, and we would like to understand whether a meaningful generalization
bound under this weaker notion of robustness can be obtained.

• Mismatched datasets: One advantage of algorithmic robustness framework is the ability to
handle non-standard learning setups. For example, in Section 3.2 we derived generalization
bounds for quantile loss. A problem of the same essence is the mismatched datasets, also called
as domain adaption, see Ben-David et al. (2007), Mansour et al. (2009) and reference therein.
Here the training samples are generated according to a distribution slightly different from that of
the testing samples, e.g., the two distributions may have a small K-L divergence. We conjecture
that in this case a generalization bound similar to Theorem 3 would be possible, with an extra
term depending on the magnitude of the difference of the two distributions.

• Outlier removal: One possible reason that the training samples is generated differently from
the testing sample is corruption by outliers. It is often the case that the training sample set is
corrupted by some outliers. In addition, algorithms designed to be outlier resistent abound in
the literature (Huber, 1981; Rousseeuw & Leroy, 1987). The robust framework may provide a
novel approach in studying both the generalization ability and the outlier resistent property of
these algorithms. In particular, the results reported in Section 3.2 can serve as a starting point
of future research in this direction.



• Consistency: We addressed in this paper the relationship between robustness and generaliz-
ability. An equally important feature of learning algorithms is consistency: the property that a
learning algorithm guarantees to recover the global optimal solution as the size of the training set
increases. While it is straightforward that if an algorithm minimizes the empirical error asymp-
totically and also generalizes (or equivalently is weakly robust), then it is consistent, much less
is known for a necessary condition for an algorithm to be consistent. It is certainly interesting
to investigate the relationship between consistency and robustness, and in particular whether
robustness is necessary for consistency, at least for algorithms that asymptotically minimize the
empirical error.

• Other robust algorithms: The proposed robust approach considers a general learning setup.
However, except for PCA, the algorithms investigated in Section 5 are in the supervised learning
setting. One natural extension is to investigate other robust unsupervised and semi-supervised
learning algorithms. One difficulty is that compared to supervised learning case, the analysis
of unsupervised/semi-supervised learning algorithms can be challenging, due to the fact that
many of them are random iterative algorithms (e.g., k-means).
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