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Abstract

Let S be an arbitrary measurable space, T ⊂ R and (X, Y ) be a random couple in S × T with

unknown distribution P. Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. copies of (X, Y ). Denote by Pn the

empirical distribution based on the sample (Xi, Yi), i = 1, . . . , n. Let H be a set of uniformly

bounded functions on S. Suppose that H is equipped with a σ-algebra and with a finite measure

µ. Let D be a convex set of probability densities with respect to µ. For λ ∈ D, define the mixture

fλ(·) =
∫
H

h(·)λ(h)dµ(h). Given a loss function ` : T × R 7→ R such that, for all y ∈ T, `(y, ·)

is convex, denote (` • f)(x, y) = `(y; f(x)). We study the following penalized empirical risk

minimization problem

λ̂ε := argmin
λ∈D

[
Pn(` • fλ) + ε

∫
λ log λdµ

]
along with its distribution dependent version

λε := argmin
λ∈D

[
P (` • fλ) + ε

∫
λ log λdµ

]
.

We prove that the “approximate sparsity” of λε implies the “approximate sparsity” of λ̂ε and study

connections between the sparsity and the excess risk of empirical solutions λ̂ε.

1 Introduction

Sparsity phenomena in empirical risk minimization over linear spans or convex hulls of large finite dictionar-

ies have been extensively studied in the recent years (see, e.g., [MPTJ07], [Kol09b], [BRT09] and references

therein). In this paper, our goal is to extend some of these results to the case of empirical risk minimization

over convex hulls of infinite dictionaries which is a standard framework in machine learning (for instance, in

large margin classification, the dictionaries are often infinite families of functions such as decision stumps,

decision trees or subsets of reproducing kernel Hilbert spaces).

Let S be a measurable space, T ⊂ R be a Borel set and (X, Y ) be a random couple in S × T with

unknown distribution P . The marginal distribution of X will be denoted by Π. Let (X1, Y1), . . . , (Xn, Yn)

be the training data consisting of n i.i.d. copies of (X, Y ). In what follows, we will denote by Pn the empirical
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distribution based on a given sample of n training examples. Similarly, Πn will denote the empirical measure

based on the sample (X1, . . . , Xn). The integrals with respect to P and Pn are denoted by

Pg := Eg(X, Y ), Png :=
1
n

n∑
i=1

g(Xi, Yi).

Similar notations will be used for Π,Πn and other measures. Let `(y, ·) be the loss function such that for

all y ∈ T, `(y, ·) is convex. For a function f : S 7→ R, let (` • f)(x, y) := `(y, f(x)). A dictionary is a

given family H of measurable functions h : S 7→ [−1, 1]. Assume that H is equipped with a σ-algebra and

with a finite measure µ. In what follows, the complexity of the dictionary H will be characterized in terms

of L2(Π) and L2(Πn) covering numbers. Suppose Λ is a probability measure on H absolutely continuous

with respect to µ with λ = dΛ
dµ . The (negative) entropy H(λ) is defined as H(λ) :=

∫
H

λ(h) log λ(h)dµ(h).

In what follows, we consider only densities with finite entropies. Let fλ denote the mixture of the functions

from the dictionary H with respect to λ : fλ(·) :=
∫
H

h(·)λ(h)µ(dh). The excess risk E(f) of a function f is

defined as

E(f) = P (` • f)− inf
g:S 7→R

P (` • g) = P (` • f)− P (` • f∗) .

For simplicity, we assume throughout the paper that inf
g:S 7→R

P (` • g) is attained at some uniformly bounded

function f∗ (the infimum is taken over all measurable functions).

Let D be a convex set of probability densities on H. We will assume that, for all λ ∈ D, λ log λ ∈ L1(µ),

so, the entropy H(λ) is finite. Consider the following penalized risk minimization problem

λε := argminλ∈DF (λ), F (λ) := P (` • fλ) + εH(λ) (1.1)

together with its empirical version:

λ̂ε := argminλ∈DFn(λ), Fn(λ) := Pn(` • fλ) + εH(λ). (1.2)

Note that, due to the convexity of the loss, of the negative entropy and of the set D, both (1.1) and (1.2) are

convex optimization problems. We will use the notations Λε, Λ̂ε for the probability measures with densities

λε, λ̂ε, respectively.

Our first aim is to study problem (1.1) and to bound the approximation error E(fλε
) of its solution, which,

for the losses of quadratic type, is equivalent to bounding the L2(Π)-approximation error ‖fλε − f∗‖2
L2(Π).

We show that the size of this error can be controlled in terms of the approximation error of oracle solutions

λ ∈ D that are “sparse” in the sense that they are concentrated on a “small” set of functions H′ ⊂ H and,

at the same time, possess some regularity properties. Moreover, we show that if there exist “sparse” oracles

providing good approximation of the target function, then solutions λε of problem (1.1) are “approximately

sparse” in the sense that they “concentrate” on the support of “sparse” oracles.

Next, we study the relationship between the problems (1.1) and (1.2). We show that the ”approximate

sparsity“ of the true penalized solution λε implies that the corresponding empirical solution λ̂ε possesses the

same property with a high probability. More precisely, if there exists a measurable set H′ ⊂ H such that

Λε(H \H′) is small and, at the same time, there exists a subspace L ⊂ L2(Π) of small dimension d that

provides a good L2(Π)-approximation of the functions from the set H′, we will show that in this case, with a

high probability, the empirical solution λ̂ε is also approximately supported on the same setH′ in the sense that

Λ̂ε(H \H′) is small. Thus, both the empirical solution λ̂ε and the true solution λε follow the same ”sparsity

pattern”: they are concentrated on the same set of functions H′ which can be well approximated by a linear



subspace of small dimension. We also obtain probabilistic bounds on the random error
∣∣∣E(fλ̂ε

)− E(fλε
)
∣∣∣ ,

or, equivalently, the L2(Π)-random error ‖fλ̂ε
− fλε‖2

L2(Π), in terms of characteristics of the sparsity of the

problem such as the measure Λε(H \H′) and the dimension d of the approximating space L. At the same

time, we derive upper bounds on the Kullback-Leibler type distance between λ̂ε and λε.

The idea of using entropy for complexity penalization is not new in machine learning (see, e.g., [Zha01]).

An approach to sparse recovery based on entropy penalization has been studied in the case of finite dictio-

naries H (see [Kol09a], [Kol08]). As in these papers, the fact that the penalty is strictly convex allows us

to study the random error independently of the approximation error, but geometric parameters of the dictio-

nary needed to control these two errors are not quite the same. `1-type penalization in the case of infinite

dictionaries was suggested in [RSSZ07] (however, sharp generalization error bounds were not studied in this

paper).

2 Preliminaries

Assumptions on the loss. Assume that for all y ∈ T , `(y, ·) is a convex twice differentiable function, `′′u

[here and in what follows the derivatives of the loss are taken with respect to the second variable] is uniformly

bounded in T × [−1, 1] and supy∈T `(y; 0) < +∞, supy∈T |`′u(y; 0)| < +∞. It will be also assumed that

m :=
1
2

inf
y∈T

inf
|u|≤1

`′′u(y, u) > 0.

In what follows, the loss functions ` satisfying the above assumptions will be called the losses of quadratic

type. In particular, the assumptions imply that

m‖fλ − f∗‖2
L2(Π) ≤ E (fλ) ≤ M‖fλ − f∗‖2

L2(Π),

where M := 1
2 sup

y,u
`′′u(y, u). Moreover, the following simple proposition also holds for such losses:

Proposition 1 There exists a constant C > 0 depending only on ` such that for all λ, λ̄ ∈ D,

|E(fλ̄)− E(fλ)| ≤ C

[
‖fλ̄ − fλ‖2

L2(Π)

∨ √
E(fλ)‖fλ̄ − fλ‖L2(Π)

]
.

Proof: See the proof of Theorem 3 in [Kol09a].

Common examples of such loss functions include the usual quadratic loss `(y, u) = (y − u)2 used in the

regression setting (with T being a bounded interval of R) as well as the exponential loss `(y, u) = e−yu and

the logit loss `(y, u) = log2 (1 + e−yu) used in large margin classification (with T = {−1, 1}).

Existence of solutions. We provide sufficient conditions of existence of solutions of problems (1.1) and

(1.2). Recall that all the densities λ in question have finite entropy.

Proposition 2 Problems (1.1), (1.2) have unique solutions in every convex weakly compact subset D of

Lp, p ≥ 1.

Proof: First, we show that the entropy functional H(λ) :=
∫
H

λ log λdµ is lower semi-continuous in Lp(µ),

p ≥ 1. Indeed, the functional is lower semi-continuous iff the level sets Lt = {λ : H(λ) ≤ t} are closed.

Suppose λn ∈ Lt, λn → λ0 in Lp. We can extract the subsequence λnk
converging to λ0 pointwise.

Noting that s log(s) + e−1 ≥ 0 and applying the Fatou lemma to the sequence {λnk
log(λnk

)}, we derive



the result. Next, under the assumptions on the loss, F (λ) is convex, bounded from below and lower semi-

continuous(continuity of the risk P (` • fλ) follows from the uniform boundedness of the dictionary and

integral Minkowski inequality), so that the level sets Lt = {λ : F (λ) ≤ t} are closed and convex. Mazur’s

theorem implies that they are also closed in weak topology, so F is weakly lower semi-continuous. Given

a minimizing sequence λn, we can extract a weakly convergent subsequence λnk
−→λ∞, and conclude that

λ∞ ∈ D, −∞ < F (λ∞) ≤ lim inf
k→∞

F (λnk
) . Convexity of the set D and strict convexity of the functional F

implies the uniqueness of the solution of (1.1). Replacing F by Fn, we get similar statements for (1.2).

We will assume throughout the paper that D is a convex set of probability densities such that λ log λ ∈
L1(µ), λ ∈ D and solutions of the problems (1.1), (1.2) exist in D.

Differentiability of the risk and of the entropy. To derive necessary conditions of the minima in the

optimization problems (1.1), (1.2), we have to study differentiability properties of the functions involved. For

G : D 7→ R, λ ∈ D and ν such that λ̄ := λ + t0ν ∈ D for some t0 > 0, denote

DG(λ; ν) := lim
t↓0

G(λ + tν)−G(λ)
t

,

provided that the limit exists. DG(λ; ν) is the (directional) derivative of G at point λ in the direction ν.

First note that, under our assumptions on the loss function `, both the true risk D 3 λ 7→ P (`•fλ) =: L(λ)

and the empirical risk D 3 λ 7→ P (` • fλ) := Ln(λ) have directional derivatives at any point λ ∈ D in the

direction of any other point λ̄ = λ + t0ν ∈ D, t0 > 0. Moreover, the following formulas hold:

DL(λ, ν) = P (`′ • fλ)fν and DLn(λ, ν) = Pn(`′ • fλ)fν . (2.1)

Let λ1, λ2 be two densities from D and Λ1,Λ2 the corresponding probability measures on H. Denote

by K(λ1|λ2) :=
∫
H log λ1

λ2
λ1dµ the Kullback-Leibler divergence between λ1 and λ2 and let K(λ1, λ2) :=

K(λ1|λ2) + K(λ2|λ1) be the symmetrized Kullback-Leibler divergence.

Proposition 3 For all λ1, λ2 ∈ D, τ ∈ (0, 1) and measurable H′ ⊂ H

DH(λ1 + τ(λ2 − λ1);λ2 − λ1) =
∫
H

log(λ1 + τ(λ2 − λ1))(λ2 − λ1)dµ, (2.2)

K(λ1, λ2) = lim
t→0

∫
H

log
(1− t)λ1 + tλ2

tλ1 + (1− t)λ2
(λ1 − λ2)dµ, (2.3)

Λ1(H \H′) ≤ 2Λ2(H \H′) + K(λ1, λ2). (2.4)

The proof of (2.2) and (2.3) is based on a convexity argument and on the monotone convergence theorem.

To show (2.4), note that by the well known inequality relating the Kullback-Leibler and Hellinger distances,

for all H′ ⊂ H

K(λ1, λ2) ≥ 2
∫
H

(√
λ1 −

√
λ2

)2

≥ 2
∫

H\H′

(√
λ1 −

√
λ2

)2

≥

≥ 2
∫

H\H′

(
λ1 + λ2 −

λ1

2
− 2λ2

)
= Λ1(H \H′)− 2Λ2(H \H′).

3 Bounding approximation error

In what follows, our goal is to compare the excess risk of the estimator λε with the excess risk of “oracles”

λ ∈ D. Define a cone K := {c(λ1 − λ2) : λ1, λ2 ∈ D, c ∈ R} and for w ∈ L2(µ), define the alignment



coefficient γ(w) to be

γ(w) := sup
{
〈w, u〉L2(µ) : ‖fu‖L2(Π) = 1, u ∈ K

}
.

It is easy to see that, for all constants c ∈ R, γ(w + c) = γ(w). Denote by K the Gram operator of the

dictionary, i.e.,

(Ku)(h) =
∫
H
〈h, g〉L2(Π)u(g)µ(dg), h ∈ L2(Π),

which is a self-adjoint nonnegatively definite operator. Clearly,

‖fu‖2
L2(Π) = 〈Ku, u〉L2(µ) = 〈K 1

2 u, K
1
2 u〉L2(µ)

and it is easy to see that for all w ∈ Im(K1/2), γ(w) ≤ ‖K− 1
2 w‖L2(µ). Roughly speaking, γ(w) is small

if the function w is “properly aligned” with eigenspaces of the Gram operator K of the dictionary (say, it

belongs to the linear span of eigenspaces corresponding to large enough eigenvalues of K).

The following theorem shows that the approximation error E(fλε) of the true solution λε can be controlled

by the approximation error E(fλ) of “oracles” λ ∈ D up to an error term of the size γ2(log λ)ε2. Moreover,

it also shows that, for any oracle λ ∈ D, fλε
belongs to an L2(Π) ball around fλ whose radius is, up to a

constant, ‖fλ − f∗‖L2(Π) ∨ γ(log λ)ε. At the same time, λε belongs to a Kullback-Leibler “ball” around λ

whose radius is 1
ε‖fλ−f∗‖2

L2(Π)∨γ2(log λ)ε. Thus, the existence of an oracle λ that approximates the target

function well (i.e., ‖fλ − f∗‖L2(Π) is small) and that is “well aligned” with the dictionary (i.e., γ(log λ) is

small) would imply that fλε is L2(Π)-close to fλ and, at the same time, λε is close to λ in the Kullback-

Leibler distance. It would also imply that the approximation error E(fλε) is small and that the measures

Λε and Λ (with densities λε and λ) have similar “concentration pattern” (as the last two inequalities of the

theorem show).

Theorem 1 There exists a constant C > 0 depending only on the loss such that, for all oracles λ ∈ D,

‖fλε − fλ‖2
L2(Π) + εK(λε, λ) ≤ C

[
‖fλ − f∗‖2

L2(Π)

∨
γ2(log λ)ε2

]
.

Moreover, the following bound on the excess risk of λε holds

E(fλε) ≤ inf
λ∈D

[
E(fλ) + C

√
E(fλ)γ(log λ)ε + Cγ2(log λ)ε2

]
and, for all H′ ⊂ H,

Λε(H \H′) ≤ 2Λ(H \H′) +
C

ε

[
‖fλ − f∗‖2

L2(Π)

∨
γ2(log λ)ε2

]
,

Λ(H \H′) ≤ 2Λε(H \H′) +
C

ε

[
‖fλ − f∗‖2

L2(Π)

∨
γ2(log λ)ε2

]
.

In concrete examples below, the dictionary is of the form H = {ht : t ∈ I}, where I ⊂ Rd is a bounded

domain in Rd. In such cases, one can assume that µ is a measure on I and the mixing densities λ are functions

on I. Often, it happens that K−1/2 can be defined in terms of certain differential operators and the alignment

coefficient γ(w) is bounded by a Sobolev type norm of the function w : for some A > 0 and α > 0,

γ(w) ≤ A‖w‖W2,α(I). (3.1)

We are interested in those oracles λ ∈ Λ for which γ(log λ) is not too large and it is controlled by “smooth-

ness” and “sparsity” of λ. Assume that µ is the Lebesgue measure on I and that condition (3.1) holds. Let



λ :=
∑d

j=1 λj + δ, where δ ∈ (0, 1) and λj are nonnegative functions, λj ∈ C∞(Rd), supp(λj) ⊂ Uj ,

Uj ⊂ T being disjoint balls. Finally, we assume that
∑d

j=1

∫
Rd λj(t)dt = 1− δ. Then it is easy to see that

log λ =
d∑

j=1

(log(λj + δ)− log δ) + log δ

and, for each j = 1, . . . , d, the function wj := log(λj + δ) − log δ ∈ C∞(Rd) and it is supported in Uj .

Therefore, since the functions wj have disjoint supports,

γ(log λ) ≤ A1

∥∥∥∥ d∑
j=1

wj

∥∥∥∥
W2,α(I)

≤ A

( d∑
j=1

‖wj‖2
W2,α(I)

)1/2

.

In this model, δ plays the role of a small “background density” (needed to make λ bounded away from 0)

and densities λj , j = 1, . . . , d are “spikes”. The resulting oracle density λ is ”approximately“ sparse in the

sense that most of the mass is concentrated in a small part of the space (in the union of balls Uj). For smooth

enough ”spikes“, γ(log λ) becomes of the order
√

d, so, it depends on the ”sparsity“ of the problem.

We now consider three more specific examples of the dictionaries.

Fourier dictionary. Suppose that S := Rd and let H = {cos〈t, ·〉, t ∈ I} , where I ⊂ Rd is a bounded

open set symmetric about the origin, i.e., I = −I . It can be assumed now that the measure µ and the densities

λ are defined on the set I. Suppose that measures µ, Π are absolutely continuous with respect to the Lebesgue

measure with densities m and p, respectively. It will be assumed that m(t) = m(−t), t ∈ I. We will also

assume that for λ ∈ D, λ(t) = λ(−t), t ∈ I. When it is needed, it will be assumed that functions λ, m

are defined on the whole space Rd and are equal to 0 on Rd \ I. Clearly, the function fλ is then the Fourier

transform of λm :

fλ(·) =
∫
Rd

ei〈t,·〉λ(t)m(t)dt := λ̂m(·).

Therefore, assuming that the density p is positive, we get, for all w ∈ C∞(Rd), u ∈ K

〈w, u〉L2(µ) = 〈w, u ·m〉L2(Rd) = 〈ŵ, ûm〉L2(Rd) = 〈ŵ, fu〉L2(Rd) =
〈

ŵ

p1/2
, fup1/2

〉
L2(Rd)

,

which easily implies that γ(w) ≤
∥∥∥ bw√

p

∥∥∥
L2(Rd)

. Under an additional assumption that for some L > 0, α > 0,

p(x) ≥ L(1 + |x|2)−α, x ∈ Rd, we get the following bound: γ(w) ≤ A1‖(I + ∆)α/2w‖L2(Rd) ≤
A‖w‖W2,α(Rd) (where ∆ stands for the Laplace operator).

Location dictionary. Suppose now that S := Td is the d-dimensional torus and letH =
{
h(· − θ), θ ∈ Td

}
for some bounded function h : Td → R and let µ be the Haar measure on Td. Assume that Π is a probability

measure on Td with density p (with respect to the Haar measure) that is bounded away from 0 by a constant

L > 0. Then, a simple Fourier analysis argument shows that

γ(w) ≤ A

( ∑
n∈Zd

∣∣∣∣ ŵn

ĥn

∣∣∣∣2)1/2

,

where ŵn, ĥn denote the Fourier coefficients of functions w, h. Under the assumption that |ĥn| ≥ L(1 +

|n|2)−α/2, it easily follows that

γ(w) ≤ A‖w‖W2,α(Td).



Monotone functions dictionary. Assuming that S = [0, 1], let H := {I[0,s] : s ∈ [0, 1]} and let µ

be the Lebesgue measure in [0, 1]. The mixtures of functions from H are decreasing absolutely continuous

functions f : [0, 1] 7→ [0, 1] such that f(0) = 1 and f(1) = 0. Suppose that Π is the Lebesgue measure in

[0, 1]. The Gram operator K is given by the kernel K(s, t) = 〈I[0,s], I[0,t]〉L2(Π) = min(s, t). Clearly, K is

a compact self-adjoint operator. It is well known that its eigenvalues are
(

1
π(k+1/2)

)2

and the corresponding

eigenfunctions are φk(t) =
√

2 sin((k + 1/2)πt), k = 0, 1, 2, . . . . For a function w ∈ W2,1[0, 1], w(0) = 0,

w =
∞∑

k=0

wkφk, we have

(
K−1/2w

)
(t) =

∞∑
k=0

π(k + 1/2)wkφk(t) = w′(t).

Hence

γ(w) ≤ ‖K−1/2w‖L2[0,1] = π

( ∞∑
k=0

(k + 1/2)2w2
k

)1/2

≤ A‖w‖W2,1[0,1].

Assume again that H is an arbitrary dictionary.

Weakly correlated partitions. Let Hj , j = 1, . . . , N be a measurable partition of H. As a concrete

example of such a partition, one can consider the case when S = [0, 1]N and, for each j = 1, . . . , N, Hj is

a class of functions depending on the j-th variable. We are interested in the situation when the number N

of function classes Hj is large and they are ”weakly correlated“. This might be viewed as an extension to

the case of infinite dictionaries of usual notions of ”almost orthogonality“ (such as, for instance, restricted

isometry property of Candes and Tao) frequently used in the literature on sparse recovery. It is also close to

”sparse additive models“ and ”sparse multiple kernel learning“ (see [KY08], [MvdGB09]). Suppose there

exist oracles λ ∈ D such that fλ provides a good approximation of the target f∗ and, at the same time, λ

is ”sparse“ in the sense that it is concentrated mostly on a small number of sets Hj . For each set Hj , let

Kj : L2(Hj ;µ) 7→ L2(Hj , µ) be the integral operator (self-adjoint and nonnegatively definite) defined by

(Kju)(h) :=
∫
Hj

covΠ(h, g)u(g)µ(dg), h ∈ Hj ,

where covΠ(h, g) := Π(hg)−Π(h)Π(g). We will also denote

σΠ(g) :=
√

covΠ(g, g) and ρΠ(h, g) :=
covΠ(h, g)
σΠ(h)σΠ(g)

.

Let Lj be the subspace of L2(Π) spanned by Hj and, for J ⊂ {1, . . . , N}, let

β2(J) := inf
{

β > 0 : ∀fj ∈ Lj , j = 1, . . . , N
∑
j∈J

σ2
Π(fj) ≤ β2σ2

Π

( N∑
j=1

fj

)}
.

Note that if the spaces Lj , j = 1, . . . , N are uncorrelated, i.e., covΠ(h, g) = 0, h ∈ Li, g ∈ Lj , i 6= j,

then β2(J) = 1. More generally, given hj ∈ Lj , j = 1, . . . , N, denote by κ({hj : j ∈ J}) the minimal

eigenvalue of the covariance matrix (covΠ(hi, hj))i,j∈J . Let

κ(J) := inf
{

κ({hj : j ∈ J}) : hj ∈ Lj , σΠ(hj) = 1
}

.

Denote LJ = l.s.
(⋃

j∈J Lj

)
(here l.s. means linear span) and let ρ(J) := sup

{
ρΠ(f, g) : f ∈ LJ , g ∈

LJc

}
. The quantity ρ(J) should be compared with the notion of canonical correlation often used in the

multivariate statistical analysis. It is easy to check (see [Kol08], proposition 7.1) that

β2(J) ≤ 1√
κ(J)(1− ρ2(J))

.

The next proposition easily follows from the definitions of γ(w), β2(J) and the operators Kj .



Proposition 4 For all J ⊂ {1, . . . , N} and all w =
∑

j∈J wj with wj ∈ Im(K1/2
j ),

γ(w) ≤ β2(J)
(∑

j∈J

‖K−1/2
j wj‖2

L2(Hj ,µ)

)1/2

. (3.2)

If now λ :=
∑

j∈J λj + δ, where δ ∈ (0, 1), λj are nonnegative functions defined on Hj and

d∑
j=1

∫
Hj

λj(h)dh = 1− δ,

then log λ =
∑

j∈J wjIHj + log δ, where wj := log(λj + δ)− log δ. Therefore, (3.2) implies

γ(log λ) ≤ β2(J)
(∑

j∈J

‖K−1/2
j wj‖2

L2(Hj ,µ)

)1/2

.

4 Bounding Random Error

The purpose of this section is to develop exponential bounds on the random error
∣∣∣E(fλ̂ε

)− E(fλε)
∣∣∣ that

depend on the “approximate sparsity” of the true penalized solution λε. Since we are dealing with a loss ` of

quadratic type, bounding the random error is essentially equivalent to bounding the norm ‖fλ̂ε
− fλε‖L2(Π)

(see Proposition 1). At the same time, we provide upper bounds on the symmetrized Kullback-Leibler dis-

tance between λ̂ε and λε and show that the “approximate sparsity” properties of these two functions are

closely related.

LetH′ be a measurable subset ofH. In the theorem below, it will be a subset of the dictionaryH on which

both λ̂ε and λε are approximately concentrated. Let L be a finite dimensional subspace of L2(Π) that will be

used to approximate the functions fromH′. Let d := dim(L) and denote UL(x) := suph∈L,‖h‖L2(Π)≤1 |h(x)|.
It is easy to check (using the Cauchy-Schwarz inequality) that ‖UL‖L2(Π) =

√
d. Denote U(L) := ‖UL‖L∞+

1. Note that U(L) is of the order
√

d if there exists an orthonormal basis φ1, . . . , φd of L such that the func-

tions φj are uniformly bounded by a constant. Finally, let ρ(H′;L) := sup
h∈H′

‖PL⊥h‖L2(Π), where PL⊥ stands

for the orthogonal projection on L⊥. We are interested in those subspaces L for which d and U(L) are not

very large and ρ(H′;L) is small enough, i.e., the space L provides a reasonably good L2(Π)-approximation

of the functions from H′. A natural choice of L might be a subspace spanned on the centers of the L2(Π)-

balls of small enough radius δ covering H′; in this case ρ(H′;L) ≤ δ and d is equal to the cardinality of such

a δ-covering.

For a function class G and a probability measure Q on S, let N(G;L2(Q); ε) denote the minimal number

of L2(Q)-balls of radius ε covering G. We will need the following complexity assumption on the base class

H : there exists a nonnegative nonincreasing function Ω such that Ω(u) → ∞ as u → 0, Ω is a regularly

varying function of exponent α ∈ [0, 2) and, with probability 1,

log N(H;L2(Πn);u/2) ≤ Ω(u), u > 0, n ∈ N. (4.1)

In particular, for VC-type classes of VC-dimension V such a bound holds with Ω(u) of the order V log(1/u).

Theorem 2 Suppose that the complexity assumption (4.1) holds. There exist constants C,D > 0 depending

only on ` such that for all measurable subsets H′ ⊂ H, for all finite dimensional subspaces L ⊂ L2(Π) with

d := dim(L) and ρ := ρ(H′;L), for all

ε ≥ D

√
Ω(1/

√
d)

n



and for all t > 0, the following bounds hold with probability at least 1− e−t :

Λ̂ε(H \H′) ≤ C

Λε(H \H′)
∨ d + tn

nε

∨ ρ

ε

√
Ω(ρ/

√
d)

n

∨ U(L)Ω(ρ/
√

d)
nε

 , (4.2)

Λε(H \H′) ≤ C

Λ̂ε(H \H′)
∨ d + tn

nε

∨ ρ

ε

√
Ω(ρ/

√
d)

n

∨ U(L)Ω(ρ/
√

d)
nε

 (4.3)

and

‖fλ̂ε
− fλε

‖2
L2(Π) + εK(λ̂ε, λε) ≤ C

[
d + tn

n

∨
ρ

√
Ω(ρ/

√
d)

n

∨
Λε(H \H′)

√
Ω(1/

√
d)

n

∨ U(L)Ω(ρ/
√

d)
n

]
, (4.4)

where tn := t + 4 log log2 n + 2 log 2.

Theorems 1, 2 and Proposition 1 yield the following sparsity oracle inequality for the excess risk of

fλ̂ε
: for all oracles λ ∈ D, with probability at least 1− e−t,

E(fλ̂ε
) ≤ 2E(fλ) + C

d + tn
n

∨
ρ

√
Ω(ρ/

√
d)

n

∨
Λ(H \H′)

√
Ω(1/

√
d)

n

∨
∨ U(L)Ω(ρ/

√
d)

n

∨
ε2γ2(log λ)

]
.

Proof: Let λε be the solution of (1.1) and λ̂ε be the solution of (1.2). Denote

Λε(A) :=
∫

A

λε(h)µ(dh), Λ̂ε(A) :=
∫

A

λ̂ε(h)µ(dh).

Using (2.1) and (2.2), for all τ ∈ (0, 1), the directional derivative of F exists at the point λε + τ λ̂ε in the

direction λ̂ε − λε and

DF (λε + τ(λ̂ε − λε); λ̂ε − λε) = (4.5)

P (`′ • fλε+τ(λ̂ε−λε))(fλ̂ε
− fλε) + ε

∫
H

(λ̂ε − λε) log(λε + τ(λ̂ε − λε))dµ ≥ 0.

[Note that the directional derivative of entropy H in the direction of λ̂ε − λε does not necessarily exist at the

point λε itself which explains the need in a somewhat more complicated argument given here]. Moreover,

since the function [0, 1] 3 τ 7→ F (λε + τ(λ̂ε − λε)) is convex, its right derivative, which coincides with

DF (λε+τ(λ̂ε−λε); λ̂ε−λε), is nondecreasing in τ ∈ [0, 1]. Since λε is the minimal point of F, this implies

that, for τ ∈ (0, 1),

DF (λε + τ(λ̂ε − λε); λ̂ε − λε) =

= P (`′ • fλε+τ(λ̂ε−λε))(fλ̂ε
− fλε) + ε

∫
H

(λ̂ε − λε) log(λε + τ(λ̂ε − λε))dµ ≥ 0. (4.6)

A similar argument shows that for all τ ∈ (0, 1)

DFn(λ̂ε + τ(λε − λ̂ε); λ̂ε − λε) = (4.7)

Pn(`′ • fλ̂ε+τ(λε−λ̂ε))(fλ̂ε
− fλε) + ε

∫
H

(λ̂ε − λε) log(λ̂ε + τ(λε − λ̂ε))dµ ≤ 0.



Subtracting (4.6) from (4.7) and rearranging the terms, we get

P
(
`′ • fλ̂ε+τ(λε−λ̂ε) − `′ • fλε+τ(λ̂ε−λε)

)
(fλ̂ε

− fλε)+ (4.8)

+ ε

∫ (
λ̂ε − λε

)
log

(1− τ)λ̂ε + τλε

(1− τ)λε + τ λ̂ε

dµ ≤
∣∣∣(P − Pn)(`′ • fλ̂ε+τ(λε−λ̂ε))(fλ̂ε

− fλε)
∣∣∣ .

Under the assumptions on the loss (in particular, continuity of `′), passing to the limit as τ → 0, using the

dominated convergence, equation (2.3) of Proposition 3 and the bound

P
(
`′ • fλ̂ε

− `′ • fλε

)
(fλ̂ε

− fλε) ≥ c‖fλ̂ε
− fλε‖2

L2(Π)

that holds for losses of quadratic type, we get

c‖fλ̂ε
− fλε‖2

L2(Π) + εK(λ̂ε, λε) ≤
∣∣∣(P − Pn)(`′ • fλ̂ε

)(fλ̂ε
− fλε)

∣∣∣. (4.9)

To complete the proof of the theorem, it remains to bound
∣∣∣(P − Pn)(`′ • fλ̂ε

)(fλ̂ε
− fλε)

∣∣∣ . Let

Λ(δ,∆) :=

λ ∈ D : ‖fλ − fλε‖L2(Π) ≤ δ,

∫
H\H′

λ(h)µ(dh) ≤ ∆


and

αn(δ,∆) := sup {|(Pn − P )(`′ • fλ)(fλ − fλε)|, λ ∈ Λ(δ,∆)} .

In what follows we will use Rademacher processes

Rn(f) := n−1
n∑

j=1

εjf(Xj),

where {εj} is a sequence of i.i.d. Rademacher random variables (taking values +1 and −1 with probability

1/2) independent of {Xj}.

Lemma 3 Let H be a class of functions on S uniformly bounded by 1 and let L ⊂ L2(Π) be a finite

dimensional subspace with d := dim(L) and ρ := ρ(H;L). Suppose that assumption (4.1) holds for some

function Ω. Then with some constant C > 0

E sup
h∈H

|Rn(PL⊥h)| ≤ C

[
ρ

√
Ω(ρ/

√
d)

n

∨ U(L)Ω(ρ/
√

d)
n

]
.

Proof: The following is true for all h1, h2 ∈ H

|PL(h1)(x)− PL(h2)(x)| ≤ UL(x)‖PL(h1)− PL(h2)‖L2(Π) ≤ UL(x)‖h1 − h2‖L2(Π)

and it implies that

‖PL(h1)− PL(h2)‖L2(Πn) ≤ ‖UL‖L2(Πn)‖h1 − h2‖L2(Π).

Therefore,

log N(PL(H);L2(Πn);u) ≤ log N

(
H;L2(Π);

u

‖UL‖L2(Πn)

)
. (4.10)

Complexity assumption (4.1), together with the law of large numbers, gives the bound for covering numbers

with respect to L2(Π)(see the proof of Theorem 3.4 in [GK06]):

log N (H;L2(Π), u) ≤ Ω(u). (4.11)



Since PL⊥h = h− PLh, (4.10) implies

N(PL⊥(H);L2(Πn);u) ≤ N (H;L2(Πn), u/2) N

(
H;L2(Π);

u

2‖UL‖L2(Πn)

)
.

Recalling the complexity conditions (4.1) and (4.11), we easily get

log N(PL⊥(H);L2(Πn);u) ≤ Ω(u) + Ω
(

u

2‖UL‖L2(Πn)

)
.

It remains to use Theorem 3.1 from [GK06] to complete the proof.

Lemma 4 Under the assumptions of Theorem 2, there exists a constant C > 0 depending only on the loss

such that with probability at least 1− e−t for all 1√
n
≤ δ ≤ 1, 1√

n
≤ ∆ ≤ 1

αn(δ,∆) ≤C

δ

√
d + tn

n

∨
ρ

√
Ω(ρ/

√
d)

n

∨
Λε(H \H′)

√
Ω(1/

√
d)

n

∨

∆

√
Ω(1/

√
d)

n

∨ U(L)Ω(ρ/
√

d)
n

∨ tn
n

 =: β̂n(δ,∆).

where tn := t + 4 log log2 n + 2 log 2.

Proof: Recall that αn(δ,∆) := sup {|(P − Pn)(`′ • fλ)(fλ − fλε)|, λ ∈ Λ(δ,∆)} . The function u 7→
`′(y, fλε+u)u, |u| ≤ 2 is Lipschitz with Lipschitz constant depending only on `. Note that `′(y, fλ(·))(fλ(·)−
fλε(·)) = `′(y, fλε +u)u|u=fλ(·)−fλε (·) This allows us to apply the symmetrization and contraction inequal-

ities (see [vdVW96], Lemma 2.3.6 and Proposition A.3.2) which results in the following bound:

Eαn(δ,∆) ≤ CE sup
λ∈Λ(δ,∆)

|Rn(fλ − fλε)|,

where C > 0 is a constant depending only on `. Let PL denote the orthogonal projection on a d-dimensional

subspace L. The following representation is straightforward:

fλ − fλε = PL (fλ − fλε) +
∫
H′

PL⊥(h) (λ(h)− λε(h))µ(dh) +
∫

H\H′

PL⊥(h) (λ(h)− λε(h))µ(dh).

(4.12)

Hence, it is enough to bound separately the expected supremum of the Rademacher process Rn for each term

in the sum. For the first term, the standard bound on Rademacher processes indexed by a finite dimensional

subspace (see, e.g., [Kol08], proposition 3.2) yields

E sup
λ∈Λ(δ,∆)

|Rn (PL(fλ − fλε))| ≤ δ

√
d

n
. (4.13)

To bound the remaining terms, we will use Lemma 3. First, due to linearity of the Rademacher process,

E sup
λ∈Λ(δ,∆)

∣∣∣∣∣∣∣Rn

 ∫
H\H′

(λ− λε)(h)PL⊥h µ(dh)


∣∣∣∣∣∣∣ ≤

(
∆ + Λε(H \H′)

)
E sup

h∈H\H′
|Rn(PL⊥h)|. (4.14)

We now use the bound of Lemma 3 with H \H′ instead of H and with ρ = 1 to get

E sup
λ∈Λ(δ,∆)

∣∣∣∣∣∣∣Rn

 ∫
H\H′

(λ− λε)(h)PL⊥h µ(dh)


∣∣∣∣∣∣∣ ≤ (4.15)

C
(
∆ + Λε(H \H′)

)[√
Ω(1/

√
d)

n

∨ U(L)Ω(1/
√

d)
n

]
.



Similarly,

E sup
λ∈Λ(δ,∆)

∣∣∣∣∣∣Rn

∫
H′

(λ− λε)PL⊥hdµ(h)

∣∣∣∣∣∣ ≤ 2E sup
h∈H′

|Rn(PL⊥h)|

and using the bound of Lemma 3 with H′ instead of H and with ρ := ρ(H′, L), we get

E sup
λ∈Λ(δ,∆)

∣∣∣∣∣∣Rn

∫
H′

(λ− λε)(h)PL⊥hdµ(h)

∣∣∣∣∣∣ ≤ C

[
ρ

√
Ω(ρ/

√
d)

n

∨ U(L)Ω(ρ/
√

d)
n

]
. (4.16)

Combining (4.13)–(4.16) results in the following bound:

Eαn(δ,∆) ≤ C

δ

√
d

n

∨
ρ

√
Ω(ρ/

√
d)

n

∨
(4.17)

Λε(H \H′)

√
Ω(1/

√
d)

n

∨
∆

√
Ω(1/

√
d)

n

∨ U(L)Ω(ρ/
√

d)
n

 .

Talagrand’s concentration inequality (see, e.g., [Bou02]) implies that with probability at least 1 − e−s and

with a proper choice of constant C > 0

αn(δ,∆) ≤ βn(δ,∆, s) := 2
(

Eαn(δ,∆) + Cδ

√
s

n
+ C

s

n

)
. (4.18)

We have to make the bound uniform with respect to 1√
n
≤ δ ≤ 1, 1√

n
≤ ∆ ≤ 1. To this end, let

δj = ∆j =
1
2j

, ti,j = t + 2 log(i + 1) + 2 log(j + 1) + 2 log 2, i, j ≥ 0. (4.19)

Then, with probability at least

1−
∑

i,j:δi,∆j≥n−1/2

exp{−ti,j} ≥ 1− e−t−log 4(
∑
j≥0

(j + 1)−2)2 ≥ 1− e−t,

for all i, j such that δi,∆j ≥ n−1/2 and all δ,∆ such that δ ∈ (δi+1, δi], ∆ ∈ (∆j+1,∆j ], the following

bounds hold: α(δ,∆) ≤ β(δi,∆j , ti,j). Note that

ti,j ≤ t + 2 log 2 + 2 log log2

(
1
δ

)
+ 2 log log2

(
1
∆

)
,

2 log log2

(
1
∆

)
n

≤ 2
log log2(n)

n
,

2 log log2

(
1
δ

)
n

≤ 2
log log2(n)

n
,

implying that ti,j ≤ tn. Thus, with probability at least 1− e−t, for all δ,∆ ∈ [n−1/2, 1]

αn(δ,∆) ≤ β̂n(δ,∆) := C

δ

√
d + tn

n

∨
ρ

√
Ω(ρ/

√
d)

n

∨

Λε(H \H′)

√
Ω(1/

√
d)

n

∨
∆

√
Ω(1/

√
d)

n

∨ U(L)Ω(ρ/
√

d)
n

∨ tn
n

 .

To complete the proof of the theorem, denote δ̂ := ‖fλ̂ε
− fλε‖L2(Π), and ∆̂ := Λ̂ε(H \H′). By Lemma

4, (4.9) and (2.4) of Proposition 3, the following inequalities hold with probability at least 1− e−t

cδ̂2 ≤ β̂n(δ̂, ∆̂), (4.20)

ε∆̂ ≤ 2εΛε(H \H′) + β̂n(δ̂, ∆̂), (4.21)

provided that δ̂ ≥ n−1/2, ∆̂ ≥ n−1/2. It remains to solve (4.20), (4.21) for δ̂, ∆̂ (using the assumption on

ε) to get the desired bounds (in the cases when δ̂ < n−1/2 and/or ∆̂ < n−1/2 the derivation becomes even

simpler).
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