
Active Learning on Trees and Graphs

Nicolò Cesa-Bianchi
Università degli Studi di Milano

Italy
nicolo.cesa-bianchi@unimi.it

Claudio Gentile
Università dell’Insubria

Italy
claudio.gentile@uninsubria.it

Fabio Vitale Giovanni Zappella
Università degli Studi di Milano

Italy
fabio.vitale@unimi.it

giovanni.zappella@studenti.unimi.it

Abstract

We investigate the problem of active learning on a given tree whose nodes are assigned binary
labels in an adversarial way. Inspired by recent results by Guillory and Bilmes, we characterize
(up to constant factors) the optimal placement of queries so to minimize the mistakes made on the
non-queried nodes. Our query selection algorithm is extremely efficient, and the optimal number of
mistakes on the non-queried nodes is achieved by a simple and efficient mincut classifier. Through
a simple modification of the query selection algorithm we also show optimality (up to constant
factors) with respect to the trade-off between number of queries and number of mistakes on non-
queried nodes. By using spanning trees, our algorithms can be efficiently applied to general graphs,
although the problem of finding optimal and efficient active learning algorithms for general graphs
remains open. Towards this end, we provide a lower bound on the number of mistakes made
on arbitrary graphs by any active learning algorithm using a number of queries which is up to a
constant fraction of the graph size.

1 Introduction
The abundance of networked data in various application domains (web, social networks, bioinformatics, etc.)
motivates the development of scalable and accurate graph-based prediction algorithms. An important topic in
this area is the graph binary classification problem: Given a graph with unknown binary labels on its nodes,
the learner receives the labels on a subset of the nodes (the training set) and must predict the labels on the
remaining vertices. This is typically done by relying on some notion of label regularity depending on the
graph topology, such as that nearby nodes are likely to be labeled similarly. Standard approaches to this
problem predict with the assignment of labels minimizing the induced cutsize (e.g., [4, 5]), or by binarizing
the assignment that minimizes certain real-valued extensions of the cutsize function (e.g., [10, 2, 3] and
references therein).

In the active learning version of this problem the learner is allowed to choose the subset of training nodes.
Similarly to standard feature-based learning, one expects active methods to provide a significant boost of
predictive ability compared to a noninformed (e.g., random) draw of the training set. The following simple
example provides some intuition of why this could happen when the labels are chosen by an adversary, which
is the setting considered in this paper. Consider a “binary star system” of two star-shaped graphs whose
centers are connected by a bridge, where one star is a constant fraction bigger than the other. The adversary
draws two random binary labels and assigns the first label to all nodes of the first star graph, and the second
label to all nodes of the second star graph. Assume that the training set size is two. If we choose the centers
of the two stars and predict with a mincut strategy,1 we are guaranteed to make zero mistakes on all unseen
vertices. On the other hand, if we query two nodes at random, then with constant probability both of them
will belong to the bigger star, and all the unseen labels of the smaller star will be mistaken. This simple
example shows that the gap between the performance of passive and active learning on graphs can be made
arbitrarily big.

In general, one would like to devise a strategy for placing a certain budget of queries on the vertices of a
given graph. This should be done so as to minimize the number of mistakes made on the non-queried nodes
by some reasonable classifier like mincut. This question has been investigated from a theoretical viewpoint

1A mincut strategy considers all labelings consistent with the labels observed so far, and chooses among them one
that minimizes the resulting cutsize over the whole graph.

by Guillory and Bilmes [6], and by Afshani et al. [1]. Our work is related to an elegant result from [6] which
bounds the number of mistakes made by the mincut classifier on the worst-case assignment of labels in terms
of Φ/Ψ(L). Here Φ is the cutsize induced by the unknown labeling, and Ψ(L) is a function of the query (or
training) set L, which depends on the structural properties of the (unlabeled) graph. For instance, in the above
example of the binary system, the value of Ψ(L) when the query set L includes just the two centers is 1. This
implies that for the binary system graph, Guillory and Bilmes’ bound on the mincut strategy is Φ mistakes
in the worst case (note that in the above example Φ ≤ 1). Since Ψ(L) can be efficiently computed on any
given graph and query set L, the learner’s task might be reduced to finding a query set L that maximizes
Ψ(L) given a certain query budget (size of L). Unfortunately, no feasible general algorithm for solving this
maximization problem is known, and so one must resort to heuristic methods —see [6].

In this work we investigate the active learning problem on graphs in the important special case of trees.
We exhibit a simple iterative algorithm which, combined with a mincut classifier, is optimal (up to constant
factors) on any given labeled tree. This holds even if the algorithm is not given information on the actual
cutsize Φ. Our method is extremely efficient, requiring O(n ln Q) time for placing Q queries in an n-node
tree, and space linear in n. As a byproduct of our analysis, we show thatΨ can be efficiently maximized over
trees to within constant factors. Hence the bound minLΦ/Ψ(L) can be achieved efficiently.

Another interesting question is what kind of trade-off between queries and mistakes can be achieved if
the learner is not constrained by a given query budget. We show that a simple modification of our selection
algorithm is able to trade-off queries and mistakes in an optimal way up to constant factors.

Finally, we prove a general lower bound for predicting the labels of any given graph (not necessarily a
tree) when the query set is up to a constant fraction of the number of vertices. Our lower bound establishes
that the number of mistakes must then be at least a constant fraction of the cutsize weighted by the effective
resistances. This lower bound apparently yields a contradiction to the results of Afshani et al. [1], who
constructs the query set adaptively. This apparent contradiction is also obtained via a simple counterexample
that we detail in Section 5.

2 Preliminaries and basic notation
A labeled tree (T,y) is a tree T = (V,E) whose nodes V = {1, . . . , n} are assigned binary labels y =
(y1, . . . , yn) ∈ {−1,+1}n. We measure the label regularity of (T,y) by the cutsize ΦT (y) induced by y on
T , i.e., ΦT (y) =

∣∣{(i, j) ∈ E : yi $= yj}
∣∣. We consider the following active learning protocol: given a tree

T with unknown labeling y, the learner obtains all labels in a query set L ⊆ V , and is then required to predict
the labels of the remaining nodes V \ L. Active learning algorithms work in two-phases: a selection phase,
where a query set of given size is constructed, and a prediction phase, where the algorithm receives the labels
of the query set and predicts the labels of the remaining nodes. Note that the only labels ever observed by the
algorithm are those in the query set. In particular, no labels are revealed during the prediction phase.

We measure the ability of the algorithm by the number of prediction mistakes made on V \ L, where
it is reasonable to expect this number to depend on both the uknown cutsize ΦT (y) and the number |L| of
requested labels. A slightly different prediction measure is considered in Section 4.3.

Given a tree T and a query set L ⊆ V , a node i ∈ V \L is a fork node generated by L if and only if there
exist three distinct nodes i1, i2, i3 ∈ L that are connected to i through edge disjoint paths. Let FORK(L) be
the set of all fork nodes generated by L. Then L+ is the query set obtained by adding to L all the generated
fork nodes, i.e., L+ ! L ∪ FORK(L). We say that L ⊆ V is 0-forked iff L+ ≡ L. Note that L+ is 0-forked.
That is, FORK(L+) ≡ ∅ for all L ⊆ V .

Given a node subset S ⊆ V , we use T \ S to denote the forest obtained by removing from the tree T
all nodes in S and all edges incident to them. Moreover, given a second tree T ′, we denote by T \ T ′ the
forest T \ V ′, where V ′ is the set of nodes of T ′. Given a query set L ⊆ V , a hinge-tree is any connected
component of T \ L+. We call connection node of a hinge-tree a node of L adjacent to any node of the
hinge tree. We distinguish between 1-hinge and 2-hinge trees. A 1-hinge-tree has one connection node only,
whereas a 2-hinge-tree has two (note that a hinge tree cannot have more than two connection nodes because
L+ is zero-forked, see Figure 1).

3 The active learning algorithm
We now describe the two phases of our active learning algorithm. For the sake of exposition, we call SEL
the selection phase and PRED the prediction phase. SEL returns a 0-forked query set L+

SEL ⊆ V of desired
size. PRED takes in input the query set L+

SEL and the set of labels yi for all i ∈ L+
SEL. Then PRED returns a

prediction for the labels of all remaining nodes V \ L+
SEL.

In order to see the way SEL operates, we formally introduce the function Ψ∗. This is the reciprocal of the
Ψ function introduced in [6] and mentioned in Section 1.

Figure 1: A tree T = (V,E) whose nodes are shaded (the query set L) or white (the set V \ L). The shaded
nodes are also the connection nodes of the depicted hinge trees (not all hinge trees are contoured). The fork
nodes generated by L are denoted by double circles. The thick black edges connect the nodes in L.

Definition 1 Given a tree T = (V,E) and a set of nodes L ⊆ V ,

Ψ∗(L) ! max
∅$≡V ′⊆V \L

|V ′|∣∣{(i, j) ∈ E : i ∈ V ′, j ∈ V \ V ′}
∣∣ .

In words, Ψ∗(L) measures the largest set of nodes not in L that share the least number of edges with nodes
in L. From the adversary’s viewpoint, Ψ∗(L) can be described as the largest return in mistakes per unit of
cutsize invested. We now move on to the description of the algorithms SEL and PRED.

The selection algoritm SEL greedily computes a query set that minimizes Ψ∗ to within constant factors.
To this end, SEL exploits Lemma 10 (a) (see Section 4.2) stating that, for any fixed query set L, the subset
V ′ ⊆ V maximizing |V ′|∣∣{(i,j)∈E:i∈V ′,j∈V \V ′}

∣∣ is always included in a connected component of T \ L. Thus

SEL places its queries in order to end up with a query set L+
SEL such that the largest component of T \ L+

SEL is
as small as possible.

SEL operates as follows. Let Lt ⊆ L be the set including the first t nodes chosen by SEL, T t
max be the

largest connected component of T \Lt−1, and σ(T ′, i) be the size (number of nodes) of the largest component
of the forest T ′ \ {i}, where T ′ is any tree. At each step t = 1, 2, . . . , SEL simply picks the node it ∈ T t

max
that minimizes σ(T t

max, i) over i and sets Lt = Lt−1 ∪ {it}. During this iterative construction, SEL also
maintains a set containing all fork nodes generated in each step by adding nodes it to the sets Lt−1.2 After
the desired number of queries is reached (also counting the queries that would be caused by the stored fork
nodes), SEL has terminated the construction of the query set LSEL. The final query set L+

SEL, obtained by
adding all stored fork nodes to LSEL, is then returned.

The Prediction Algorithm PRED receives in input the labeled nodes of the 0-forked query set L+
SEL and

computes a mincut assignment. Since each component of T \ L+
SEL is either a 1-hinge-tree or a 2-hinge-tree,

PRED is simple to describe and is also very efficient. The algorithm predicts all the nodes of hinge-tree T
using the same label ŷT . This label is chosen according to the following two cases:

1. If T is a 1-hinge-tree, then ŷT is set to the label of its unique connection node;

2. If T is a 2-hinge-tree and the labels of its two connection nodes are equal, then ŷT is set to the label
of its connection nodes, otherwise ŷT is set as the label of the closer connection node (ties are broken
arbitrarily).

In Section 6 we show that SEL requires overall O(|V | log Q) time and O(|V |) memory space for selecting Q
query nodes. Also, we will see that the total running time taken by PRED for predicting all nodes in V \ L is
linear in |V |.

4 Analysis
For a given tree T , we denote bymA(L,y) the number of prediction mistakes that algorithm Amakes on the
labeled tree (T,y) when given the query set L. Introduce the function

mA(L,K) = max
y : ΦT (y)≤K

mA(L,y)

2In Section 6 we will see that during each step Lt−1 → Lt at most a single new fork node may be generated.

Figure 2: The SEL algorithm at work. The upper pane shows the initial tree T = T 1
max (in the box tagged with

“1”), and the subsequent subtrees T 2
max, T 3

max, T 4
max, and T 5

max. The left pane also shows the nodes selected
by SEL in chronological order. The four lower panes show the connected components of T \ Lt resulting
from this selection. Observe that at the end of round 3, SEL detects the generation of fork node 3′. This node
gets stored, and is added to LSEL at the end of the selection process.

denoting the number of prediction mistakes made by A with query set L on all labeled trees with cutsize
bounded by K. We will also find it useful to deal with the “lower bound” function LB(L,K). This is the
maximum expected number of mistakes that any prediction algorithmA can be forced to make on the labeled
tree (T,y) when the query set is L and the cutsize is not larger thanK.

We show that the number of mistakes made by PRED on any labeled tree when using the query set L+
SEL

satisfies
mPRED(L

+
SEL,K) ≤ 10 LB(L,K)

for all query sets L ⊆ V of size up to 1
8 |L

+
SEL|. Though neither SEL nor PRED do know the actual cutsize of

the labeled tree (T,y), the combined use of these procedures is competitive against any algorithm that knows
the cutsize budget K beforehand.

While this result implies the optimality (up to constant factors) of our algorithm, it does not relate the
mistake bound to the cutsize, which is a clearly interpretable measure of the label regularity. In order to
address this issue, we show that our algorithm also satisfies the bound

mPRED(L
+
SEL,y) ≤ 4Ψ∗(L)ΦT (y)

for all query sets L ⊆ V of size up to 1
8 |L

+
SEL|. The proof of these results needs a number of preliminary

lemmas.

Lemma 2 For any tree T = (V,E) it holds that min
v∈V

σ(T, v) ≤ 1
2 |V |.

Proof: Let i ∈ argminv∈V σ(T, v). For the sake of contradiction, assume there exists a component Ti =
(Vi, Ei) of T \ {i} such that |Vi| > |V |/2. Let s be the sum of the sizes all other components. Since

|Vi| + s = |V | − 1, we know that s ≤ |V |/2 − 1. Now let j be the node adjacent to i which belongs to
Vi and Tj = (Vj , Ej) be the largest component of T \ {j}. There are only two cases to consider: either
Vj ⊂ Vi or Vj ∩ Vi ≡ ∅. In the first case, |Vj | < |Vi|. In the second case, Vj ⊆ {i} ∪

(
T \ Vi

)
, which

implies |Vj | ≤ 1 + s ≤ |V |/2 < |Vi|. In both cases, i $∈ argminv∈V σ(T, v), which provides the desired
contradiction.

Lemma 3 For all subsets L ⊂ V of the nodes of a tree T = (V,E) we have
∣∣L+

∣∣ ≤ 2|L|.

Proof: Pick an arbitrary node of T and perform a depth-first visit of all nodes in T . This visit induces an
ordering T1, T2, . . . of the connected components in T \L based on the order of the nodes visited first in each
component. Now let T ′

1 , T ′
2 , . . . be such that each T ′

i is a component of Ti extended to include all nodes of
L adjacent to nodes in Ti. Then the ordering implies that, for i ≥ 2, T ′

i shares exactly one node (which must
be a leaf) with all previously visited trees. Since in any tree the number of nodes of degree larger than two
must be strictly smaller than the number of leaves, we have |FORK(T ′

i)| < |Λi| where, with slight abuse of
notation, we denote by FORK(T ′

i) the set of all fork nodes in subtree T ′
i . Also, we let Λi be the set of leaves

of T ′
i . This implies that, for i = 1, 2, . . . , each fork node in FORK(T ′

i) can be injectively associated with one
of the |Λi| − 1 leaves of T ′

i that are not shared with any of the previously visited trees. Since |FORK(L)| is
equal to the sum of |FORK(Ti)| over all indices i, this implies that |FORK(L)| ≤ |L|.

Lemma 4 Let Lt−1 ⊆ LSEL be the set of the first t− 1 nodes chosen by SEL. Given any tree T = (V,E), the
largest subtree of T \ Lt−1 contains no more than 2

t
|V | nodes.

Proof: Recall that is denotes the s-th node selected by SEL during the incremental construction of the query
set LSEL, and that T s

max is the largest component of T \ Ls−1. The first t steps of the recursive splitting
procedure performed by SEL can be associated with a splitting tree T ′ defined in the following way. The
internal nodes of T ′ are T s

max, for s ≥ 1. The children of T s
max are the connected components of T s

max \{is},
i.e., the subtrees of T s

max created by the selection of is. Hence, each leaf of T ′ is bijectively associated with
a tree in T \ Lt.

Let T ′
nol be the tree obtained from T ′ by deleting all leaves. Each node of T ′

nol is one of the t subtrees
split by SEL during the construction of Lt. As T t

max is split by it, it is a leaf in T ′
nol. We now add a second

child to each internal node s of T ′
nol having a single child. This second child of s is obtained by merging all

the subtrees belonging to leaves of T ′ that are also children of s. Let T ′′ be the resulting tree.
We now compare the cardinality of T t

max to that of the subtrees associated with the leaves of T ′′. Let Λ
be the set of all leaves of T ′′ and Λadd = T ′′ \ T ′

nol ⊂ Λ be the set of all leaves added to T ′
nol to obtain T ′′.

First of all, note that |T t
max| is not larger than the number of nodes in any leaf of T ′

nol. This is because the
selection rule of SEL ensures that T t

max cannot be larger than any subtree associated with a leaf in T ′
nol, since

it contains no node selected before time t. In what follows, we write |s| to denote the size of the forest or
subtree associated with a node s of T ′′. We now prove the following claim:
Claim. For all " ∈ Λ, |T t

max| ≤ |"|, and for all " ∈ Λadd, |T t
max|− 1 ≤ |"|.

Proof of Claim. The first part just follows from the observation that any " ∈ Λ was split by SEL before time
t. In order to prove the second part, pick a leaf " ∈ Λadd. Let "′ be its unique sibling in T ′′ and let p be
the parent of " and "′, also in T ′′. Lemma 2 applied to the subtree p implies |"′| ≤ 1

2 |p|. Moreover, since
|"| + |"′| = |p| − 1, we obtain |"| + 1 ≥ 1

2 |p| ≥ |"′| ≥ |T t
max|, the last inequality using the first part of the

claim. This implies |T t
max|− 1 ≤ |"|, and the claim is proven.

Let now N(Λ) be the number of nodes in subtrees and forests associated with the leaves of T ′′. With each
internal node of T ′′ we can associate a node of LSEL which does not belong to any leaf in Λ. Moreover, the
number |T ′′ \Λ| of internal nodes in T ′′ is bigger than the number |Λadd| of internal nodes of T ′

nol to which a
child has been added. Since these subtrees and forests are all distinct, we obtainN(Λ)+ |T ′′ \Λ| < N(Λ)+
|Λadd| ≤ |V |. Hence, using the above claim we can writeN(Λ) ≥

(
|Λ|−|Λadd|

)
|T t

max|+|Λadd|
(
|T t

max|−1
)
,

which implies |T t
max| ≤

(
N(Λ) + |Λadd|

)
/|Λ| ≤ |V |/|Λ|. Since each internal node of T ′′ has at least two

children, we have that |Λ| ≥ |T ′′|/2 ≥ |T ′
nol|/2 = t/2. Hence, we can conclude that |T t

max| ≤ 2|V |/t.

4.1 Lower bounds
We now state and prove a lower bound on the number of mistakes that any prediction algorithm (even knowing
the cutsize budget K) makes on any given tree, when the query set L is 0-forked. The bound depends on the
following quantity: Given a tree T (V,E), a node subset L ⊆ V and an integer K, the component function
Υ(L,K) is the sum of the sizes of theK largest components of T \ L, or |V \ L| if T \ L has less thanK
components.

Theorem 5 For all trees T = (V,E), for all 0-forked subsets L+ ⊆ V , and for all cutsize budgets K =
0, 1, . . . , |V |− 1, we have that LB(L+,K) ≥ 1

2Υ(L+,K).

Proof: We describe an adversarial strategy causing any algorithm to make at least Υ(L+,K)/2 mistakes
even when the cutsize budget K is known beforehand. Since L+ is 0-forked, each component of T \ L+ is
a hinge-tree. Let Fmax be the set of the K largest hinge-trees of T \ L+, and E(T) be the set of all edges
in E incident to at least one node of a hinge-tree T . The adversary creates at most one φ-edge3 in each edge
set E(T1) for all 1-hinge-trees T1 ∈ Fmax, exactly one φ-edge in each edge set E(T2) for all 2-hinge-trees
T2 ∈ Fmax, and no φ-edges in the edge set E(T) of any remaining hinge-tree T $∈ Fmax. This is done as
follows. By performing a depth-first visit of T , the adversary can always assign disagreeing labels to the
two connection nodes of each 2-hinge-tree in Fmax, and agreeing labels to the two connection nodes of each
2-hinge-tree not in Fmax. Then, for each hinge-tree T ∈ Fmax, the adversary assigns a unique random label
to all nodes of T , forcing |T |/2 mistakes in expectation. The labels of the remaining hinge-trees not in Fmax

are chosen in agreement with their connection nodes.

Remark 1 Note that Theorem 5 holds for all query sets, not only those that are 0-forked, since any adver-
sarial strategy for a query set L+ can force at least the same mistakes on the subset L ⊆ L+. Note also
that it is not difficult to modify the adversarial strategy described in the proof of Theorem 5 in order to deal
with algorithms that are allowed to adaptively choose the query nodes in L depending on the labels of the
previously selected nodes. The adversary simply assigns the same label to each node in the query set and then
forces, with the same method described in the proof, 1

2Υ
(
L+, K

2

)
mistakes in expectation on the K

2 largest
hinge-trees. Thus there are at most two φ-edges in each edge set E(T) for all hinge-trees T , yielding at most
K φ-edges in total. The resulting (slightly weaker) bound is LB(L+,K) ≥ 1

2Υ
(
L+, K

2

)
. Theorem 8 and

Corollary 9 can also be easily rewritten in order to extend the results in this direction.

4.2 Upper bounds
We now bound the total number of mistakes that PRED makes on any labeled tree when the queries are decided
by SEL. We use Lemma 2 and 3, together with the two lemmas below, to prove that mPRED(L

+
SEL,K) ≤

10 LB(L,K) for all cutsize budgets K and for all node subset L ⊆ V such that |L| ≤ 1
8 |L

+
SEL|.

Lemma 6 For all labeled trees (T,y) and for all 0-forked query sets L+ ⊆ V , the number of mistakes made
by PRED satisfies mPRED(L+,y) ≤ Υ

(
L+,ΦT (y)

)
.

Proof: As in the proof of Theorem 5, we first observe that each component of T \ L+ is a hinge-tree. Let
E(T) be the set of all edges in E incident to nodes of a hinge-tree T , and Fφ be the set of hinge-trees such
that, for all T ∈ Fφ, at least one edge of E(T) is a φ-edge. Since E(T)∩E(T ′) ≡ ∅ for all T , T ′ ∈ T \L+,
we have that |Fφ| ≤ ΦT (y). Moreover, since for any T $∈ Fφ there are no φ-edges in E(T), the nodes of
T must be labeled as its connections nodes. This, together with the prediction rule of PRED, implies that
PRED makes no mistakes over any of the hinge-trees T $∈ Fφ. Hence, the number of mistakes made by PRED
is bounded by the sum of the sizes of all hinge-trees T ∈ Fφ, which (by definition of Υ) is bounded by
Υ

(
L+,ΦT (y)

)
.

The next lemma, whose proof is a bit involved, provides the relevant properties of the component function
Υ(·, ·). Figure 3 helps visualizing the main ingredients of the proof.

Lemma 7 Given a tree T = (V,E), for all node subsets L ⊆ V such that |L| ≤ 1
2 |LSEL| and for all integers

k, we have: (a) Υ(LSEL, k) ≤ 5Υ(L, k); (b) Υ(LSEL, 1) ≤ Υ(L, 1).

Proof: We prove part (a) by constructing, via SEL, three bijective mappings µ1, µ2, µ3 : PSEL → PL, where
PSEL is a suitable partition of T \LSEL, PL is a subset of 2V such that any S ∈ PL is all contained in a single
connected component of T \ L, and the union of the domains of the three mappings covers the whole set
T \ LSEL. The mappings µ1, µ2 and µ3 are shown to satisfy, for all forests4 F ∈ PSEL,

|F | ≤ |µ1(F)|, |F | ≤ 2|µ2(F)|, |F | ≤ 2|µ3(F)| .

Since each S ∈ PL is all contained in a connected component of T \ L, this we will enable us to conclude
that, for each tree T ′ ∈ T \L, the forest of all trees T \LSEL mapped (via any of these mappings) to any node
subset of T ′ has at most five times the number of nodes of T ′. This would prove the statement in (a).

3A φ-edge (i, j) is one where yi "= yj .
4In this proof, |µ(A)| denotes the number of nodes in the set (of nodes) µ(A). Also, with a slight abuse of notation,

for all forests F ∈ PSEL, we denote by |F | the sum of the number of nodes in all trees of F . Finally, whenever F ∈ PSEL

contains a single tree, we refer to F as it were a tree, rather than a (singleton) forest containing only one tree.

Figure 3: The upper pane illustrates the different kinds of nodes chosen by SEL. Numbers in the square tags
indicate the first six subtrees T t

max, and their associated nodes it, selected by SEL. Node i1 is a [≥ 1;≥ 1]-
node, i2 is an initial [0;≥ 1]-node, i3 is a (noninitial) [0;≥ 1]-node, i4 is an initial collision node, i5 is a
(noninitial) collision node, and i6 is a [0; 0]-node. As in Figure 2, we denote by 3′ the fork node generated by
the inclusion of i3 into LSEL. Note that node i6 may be chosen arbitrarily among the four nodes in T 4

max \ i4.
The two black nodes are the set of nodes we are competing against, i.e., the nodes in the query set L. Forest
T \ L is made up of one large subtree and two small subtrees. In the lower panes we illustrate some steps
of the proof of Lemma 7, with reference to the upper pane. Time t = 2: Trees T 2

max and Ti2 are shown. As
explained in the proof, |Ti2 | ≤ |T 2

max \ Ti2 |. The circled black node is captured by i2. The nodes of tree
T 2

max \ Ti2 are shaded, and can be used for mapping any ζ-component through µ2. Time t = 3: Trees T 3
max

and Ti3 are shown. Again, one can easily verify that |Ti3 | ≤ |T 3
max \ Ti3 |. As before, the nodes of T 3

max \ Ti3
are shaded, and can be used for mapping any ζ-component via µ2. The reader can see that, according to the
injectivity of µ2, these grey nodes are well separated from the ones in T 2

max \ Ti2 . Time t = 4: T 4
max and the

initial collision node i4 are depicted. The latter is enclosed in a circled black node since it captures itself.
Time t = 5, 6: We depicted trees T 5

max and T 6
max, together with nodes i5 and i6. Node i5 is a collision node,

which is not initial since it was already captured by the [0;≥ 1]-node i2. Node i6 is a [0; 0] node, so that the
whole tree T 6

max is completely included in a component (the largest, in this case) of T \ L. Tree T 6
max can be

used for mapping via µ3 any ζ-component. The resulting forest T \L6 includes several single-node trees and
one two-node tree. If i6 is the last node selected by LSEL, then each component of T \ L6 can be exploited
by mapping µ1, since in this specific case none of these components contains nodes of L, i.e., there are no
ζ-components left.

The construction of these mappings requires some auxiliary definitions. We call ζ-component each con-
nected component of T \LSEL containing at least one node of L. Let it be the t-th node selected by SEL during
the incremental construction of the query set LSEL. We distinguish between four kinds of nodes chosen by
SEL—see Figure 3 for an example.

Node it is:

1. A collision node if it belongs to LSEL ∩ L;

2. a [0; 0]-node if, at time t, the tree T t
max does not contain any node of L;

3. a [0;≥ 1]-node if, at time t, the tree T t
max contains k ≥ 1 nodes j1, . . . , jk ∈ L all belonging to the same

connected component of T t
max \ {it};

4. a [≥ 1;≥ 1]-node if it $∈ L and, at time t, the tree T t
max contains k ≥ 2 nodes j1, . . . , jk ∈ L, which do

not belong to the same connected component of T t
max \ {it}.

We now turn to building the three mappings.
µ1 simply maps each tree T ′ ∈ T \ LSEL that is not a ζ-component to the node set of T ′ itself. This

immediately implies |F | ≤ |µ1(F)| for all forests F (which are actually single trees) in the domain of µ1.
Mappings µ2 and µ3 deal with the ζ-components of T \LSEL. Let Z be the set of all such ζ-components, and
denote by V0;0, V0;1, and V1;1 the set of all [0; 0]-nodes, [0;≥ 1]-nodes, and [≥ 1;≥ 1]-nodes, respectively.
Observe that |V1;1| < |L|. Combined with the assumption |LSEL| ≥ 2|L|, this implies that |V0;0|+ |V0;1| plus
the total number of collision nodes must be larger than |L|; as a consequence, |V0;0| + |V0;1| > |Z|. Each
node it ∈ V0;1 chosen by SEL splits the tree T t

max into one component Tit
containing at least one node of L

and one or more components all contained in a single tree T ′
it
of T \L. Now mapping µ2 can be constructed

incrementally in the following way. For each [0;≥ 1]-node selected by SEL at time t, µ2 sequentially maps
any ζ-component generated to the set of nodes in T t

max \ Tit
, the latter being just a subset of a component of

T \ L. A future time step t′ > t might feature the selection of a new [0;≥ 1]-node within Tit
, but mapping

µ2 would cover a different subset of such component of T \ L. Now, applying Lemma 2 to tree T t
max, we

can see that |T t
max \ Tit

| ≥ |T t
max|/2. Since the selection rule of SEL guarantees that the number of nodes in

T t
max is larger than the number of nodes of any ζ-component, we have |F | ≤ 2|µ2(F)|, for any ζ-component

F considered in the construction of µ2.
Mapping µ3 maps all the remaining ζ-components that are not mapped through µ2. Let ∼ be an equiv-

alence relation over V0;0 defined as follows: i ∼ j iff i is connected to j by a path containing only [0; 0]-
nodes and nodes in V \ (LSEL ∪ L). Let it1 , it2 , . . . , itk

be the sequence of nodes of any given equivalence
class [C]∼, sorted according to SEL’s chronological selection. Lemma 4 applied to tree T t1

max shows that
|T tk

max| ≤ 2|T t1
max|/k. Moreover, the selection rule of SEL guarantees that the number of nodes of T tk

max
cannot be smaller than the number of nodes of any ζ-component. Hence, for each equivalence class [C]∼
containing k nodes of type [0; 0], we map through µ3 a set Fζ of k arbitrarily chosen ζ-components to T t1

max.
Since the size of each ζ-component is ≤ |T tk

max|, we can write |Fζ | ≤ k|T tk

max| ≤ 2|T t1
max|, which implies

|Fζ | ≤ 2|µ3(Fζ)| for all Fζ in the domain of µ3. Finally, observe that the number of ζ-components that are
not mapped through µ2 cannot be larger than |V0;0|, thus the union of mappings µ2 and µ3 do actually map
all ζ-components. This, in turn, implies that the union of the domains of the three mappings covers the whole
set T \ LSEL, thereby concluding the proof of part (a).

The proof of (b) is built on the definition of collision nodes, [0; 0]-nodes, [0;≥ 1]-nodes and [≥ 1;≥ 1]-
nodes given in part (a). Let Lt ⊆ LSEL be the set of the first t nodes chosed by SEL. Here, we make a
further distinction within the collision and [0;≥ 1]-nodes. We say that during the selection of node it ∈ V0;1,
the nodes in L ∩ T t

max are captured by it. This notion of capture extends to collision nodes by saying that
a collision node it ∈ L ∩ LSEL just captures itself. We say that it is an initial [0;≥ 1]-node (resp., initial
collision node) if it is a [0;≥ 1]-node (resp., collision node) such that the whole set of nodes in L captured by
it contains no nodes captured so far. See Figure 3 for reference. The simple observation leading to the proof
of part (b) is the following. If it is a [0; 0]-node, then T t

max cannot be larger than the component of T \L that
contains T t

max, which in turn cannot be larger thanΥ(L, 1). This would already implyΥ(Lt−1, 1) ≤ Υ(L, 1).
Let now it be an initial [0;≥ 1]-node and Tit

be the unique component of T t
max \{it} containing one or more

nodes of L. Applying Lemma 2 to tree T t
max we can see that |Tit

| cannot be larger than |T t
max \ Tit

|,
which in turn cannot be larger than Υ(L, 1). If at time t′ > t the procedure SEL selects it′ ∈ Tit

then
|T t′

max| ≤ |Tit
| ≤ Υ(L, 1). Hence, the maximum integer q such that Υ(Lq, 1) > Υ(L, 1) is bounded by

the number of [≥ 1;≥ 1]-nodes plus the number of initial [0;≥ 1]-nodes plus the number of initial collision
nodes. We now bound this sum as follows. The number of [≥ 1;≥ 1]-nodes is clearly bounded by |L| − 1.
Also, any initial [0;≥ 1]-node or initial collision node selected by SEL captures at least a new node in L,
thereby implying that the total number of initial [0;≥ 1]-node or initial collision node must be ≤ |L|. After
q = 2|L| − 1 rounds, we are sure that the size of the largest tree of T q

max is not larger than the size of the
largest component of T \ L, i.e., Υ(L, 1) .

We now put the above lemmas together to prove our main result concerning the number of mistakes made
by PRED on the query set chosen by SEL.

Theorem 8 For all trees T and all cutsize budgets K, the number of mistakes made by PRED on the query
set L+

SEL satisfies
mPRED(L

+
SEL,K) ≤ min

L⊆V : |L|≤
1
8 |L+

SEL|

10 LB
(
L,K

)
.

Proof: Pick any L ⊆ V such that |L| ≤ 1
8 |L

+
SEL|. Then

mPRED(L
+
SEL,K)

(Lem. 6)
≤ Υ(L+

SEL,K)
(A)
≤ Υ(LSEL,K)

(Lem. 7 (a))
≤ 5Υ(L+,K)

(Thm. 5)
≤ 10 LB(L+,K)

(B)
≤ 10 LB(L,K) .

Inequality (A) holds because LSEL ⊆ L+
SEL, and thus T \ L+

SEL has connected components of smaller size than
LSEL. In order to apply Lemma 7 (a), we need the condition |L+| ≤ 1

2 |LSEL|. This condition is seen to hold
after combining Lemma 3 with our assumptions: |L+| ≤ 2|L| ≤ 1

4 |L
+
SEL| ≤

1
2 |LSEL|. Finally, inequality (B)

holds because any adversarial strategy using query set L can also be used with the larger query set L+ ⊇ L.

Note also that Theorem 5 and Lemma 6 imply the following statement about the optimality of PRED over
0-forked query sets.

Corollary 9 For all trees T , for all cutsize budgets K, and for all 0-forked query sets L+ ⊆ V , the number
of mistakes made by PRED satisfies mPRED(L+,K) ≤ 2LB

(
L+,K

)
.

In the rest of this section we derive a more intepretable bound on mPRED(L+,y) based on the function Ψ∗

introduced in [6]. To this end, we prove that LSEL minimizes Ψ∗ up to constant factors, and thus is an optimal
query set according to the analysis of [6].

For any subset V ′ ⊆ V , let Γ(V ′, V \ V ′) be the number of edges between nodes of V ′ and nodes of
V \ V ′. Using this notation, we can write

Ψ∗(L) = max
∅$≡V ′⊆V \L

|V ′|

Γ(V ′, V \ V ′)
.

Lemma 10 For any tree T = (V,E) and any L ⊆ V the following holds.

(a) A maximizer of |V ′|
Γ(V ′,V \V ′) exists which is included in the node set of a single component of T \ L;

(b) Ψ∗(L) ≤ Υ(L, 1).

Proof: Let V ′
max be any maximizer of

|V ′|
Γ(V ′,V \V ′) . For the sake of contradiction, assume that the nodes of

V ′
max belong to k ≥ 2 components T1, T2, . . . , Tk ∈ T \ L. Let V ′

i ⊂ V ′
max be the subset of nodes included

in the node set of Ti, for i = 1, . . . , k. Then |V ′| =
∑

i≤k |V
′
i | and Γ(V ′, V \ V ′) =

∑
i≤k Γ(V ′

i , V \ V ′
i).

Now let i∗ = argmaxi≤k|V
′
i |/Γ(V ′

i , V \ V ′
i). Since

(∑
i ai

)/(∑
i bi

)
≤ maxi ai/bi for all ai, bi ≥ 0,

we immediately obtain Ψ(V ′
i∗) ≥ Ψ(V ′

max), contradicting our assumption. This proves (a). Part (b) is an
immediate consequence of (a).

Lemma 11 For any tree T = (V,E) and any 0-forked subset L+ ⊆ V we have Υ(L+, 1) ≤ 2Ψ∗(L+).

Proof: Let Tmax be the largest component of T \ L+ and Vmax be its node set. Since L+ is a 0-forked query
set, Tmax must be either a 1-hinge-tree or a 2-hinge-tree. Since the only edges that connect a hinge-tree to
external nodes are the edges leading to connection nodes, we find that Γ(Vmax, V \ Vmax) ≤ 2. We can now
write

Ψ∗(L+) = max
∅$≡V ′⊆V \L+

|V ′|

Γ(V ′, V \ V ′)
≥

|Vmax|

Γ(Vmax, V \ Vmax)
≥

|Vmax|

2
=
Υ(L+, 1)

2

thereby concluding the proof.

Lemma 12 For any tree T = (V,E) and any subset L ⊆ V we have Ψ∗(L+) ≤ Ψ∗(L).

Proof: Let V ′
max be any set maximizing Ψ∗(L+). Since V ′

max ∈ V \ L+, V ′
max cannot contain any node of

L ⊆ L+. Hence

Ψ∗(L) = max
∅$≡V ′⊆V \L

|V ′|

Γ(V ′, V \ V ′)
≥

|V ′
max|

Γ(V ′
max, V \ V ′

max)
= Ψ∗(L+)

which concludes the proof.
We now put together the previous lemmas to show that the query set LSEL minimizes Ψ∗ up to constant

factors.

Theorem 13 For any tree T = (V,E) we have Ψ∗(LSEL) ≤ min
L⊆V : |L|≤

1
4 |LSEL|

2Ψ∗(L).

Proof: Let L be a query set such that |L| ≤ |LSEL|/4. Then we have the following chain of inequalities:

Ψ∗(LSEL)
(Lemma 10 (b))

≤ Υ(LSEL, 1)
(Lemma 7 (b))

≤ Υ(L+, 1)
(Lemma 11)

≤ 2Ψ∗(L+)
(Lemma 12)

≤ 2Ψ∗(L) .

In order to apply Lemma 7 (b), we need the condition |L+| ≤ 1
2 |LSEL|. This condition holds because, by

Lemma 3, |L+| ≤ 2|L| ≤ 1
2 |LSEL|.

Finally, as promised, the following corollary contains an interpretable mistake bound for PRED run with
a query set returned by SEL.

Corollary 14 For any labeled tree (T,y), the number of mistakes made by PRED when run with query set
L+
SEL satisfies

mPRED(L
+
SEL,y) ≤ 4 min

L⊆V : |L|≤
1
8 |L+

SEL|

Ψ∗(L)ΦT (y) .

Proof: Observe that PRED assigns labels to nodes in V \ L+
SEL so as to minimize the resulting cutsize given

the labels in the query set L+
SEL. We can then invoke [6, Lemma 1], which bounds the number of mistakes

made by the mincut strategy in terms of the functions Ψ∗ and the cutsize. This yields

mPRED(L
+
SEL,y)

[6, Lemma 1]
≤ 2Ψ∗(L+

SEL)ΦT (y)
(A)
≤ 2Ψ∗(LSEL)ΦT (y)

(Theorem 13)
≤ 4Ψ∗(L)ΦT (y) .

Inequality (A) holds because LSEL ⊆ L+
SEL, and thus T \ L+

SEL has connected components of smaller size
than LSEL. In order to apply Theorem 13, we need the conditon |L| ≤ 1

4 |LSEL|, which follows from a simple
combination of Lemma 3 and our assumptions: |L| ≤ 1

8 |L
+
SEL| ≤

1
4 |LSEL|.

Remark 2 A mincut algorithm exists which efficiently predicts even when the query set L is not 0-forked
(thereby gaining a factor of 2 in the cardinality of the competing query sets L – see Theorem 8 and Corol-
lary 14). This algorithm is a ”batch” variant of the TreeOpt algorithm analyzed in [7]. The algorithm can
be implemented in such a way that the total time for predicting |V |− |L| labels is O(|V |).

4.3 Automatic calibration of the number of queries
A key aspect to the query selection task is deciding when to stop asking queries. Since the more queries are
asked the less mistakes are made afterwards, a reasonable way to deal with this trade-off is to minimize the
number of queries issued during the selection phase plus the number of mistakes made during the prediction
phase. For a given pair A = 〈S, P 〉 of prediction and selection algorithms, we denote by [q +m]A the sum of
queries made by S and prediction mistakes made by P . Similarly to mA introduced in Section 4, [q + m]A
has to scale with the cutsize ΦT (y) of the labeled tree (T,y) under consideration.

As a simple example of computing [q + m]A, consider a line graph T = (V,E). Since each query set
on T is 0-forked, Theorem 5 and Corollary 9 ensure that an optimal strategy for selecting the queries in T is
choosing a sequence of nodes such that the distance between any pair of neighbor nodes in L is equal. The
total number of mistakes that can be forced on V \L is, up to a constant factor,

(
|V |/|L|

)
ΦT (y). Hence, the

optimal value of [q + m]A is about

|L| +
|V |

|L|
ΦT (y) . (1)

Minimizing the above expression over |L| clearly requires knowledge of ΦT (y), which is typically unavail-
able. In this section we investigate a method for choosing the number of queries when the labeling is known
to be sufficiently regular, that is when a bound K is known on the cutsize ΦT (y) induced by the adversarial
labeling.5

We now show that when a bound K on the cutsize is known, a simple modification of SEL(we call it
SEL%) exists which optimizes the [q +m]A criterion. This means that the combination of SEL% and PRED can
trade-off optimally (up to constant factors) queries against mistakes.

5In [1] a labeling y of a graph G is said to be α-balanced if, after the elimination of all φ-edges, each connected
component ofG is not smaller thanα|V | for some known constantα ∈ (0, 1). In the case of labeled trees, theα-balancing
condition is stronger than our regularity assumption. This is because any α-balanced labeling y implies ΦT (y) ≤
1/α − 1. In fact, getting back to the line graph example, we immediately see that, if y is α-balanced, then the optimal
number of queries |L| is order of

p

|V |(1/α − 1), which is also infA[q + m]A.

Given a selection algorithm S and a prediction algorithm P , define [q + m]〈S,P 〉 by

[q + m]〈S,P 〉 = min
Q≥1

(
Q + mP (LS(Q),K)

)

where LS(Q) is the query set output by S given query budgetQ, andmP (LS(Q),K) is the maximum number
of mistakes made by P with query setLS(Q) on any labeling y withΦT (y) ≤ K —see definition in Section 4.
Define also [q + m]OPT = infS,P [q + m]〈S,P 〉, where OPT = 〈S∗, P ∗〉 is an optimal pair of selection and
prediction algorithms. If SEL knows the size of the query set L∗ selected by S∗, so that SEL can choose a
query budget Q = 8|L∗|, then a direct application of Theorem 8 guarantees that |L+

SEL| + mPRED(L
+
SEL,K) ≤

10 [q + m]OPT. We now show that SEL%, the announced modification of SEL, can efficiently search for a
query set size Q such that Q + mPRED(L

+
SEL(Q),K) = O

(
[q + m]OPT

)
when only K, rather than |L∗|, is

known. In fact, Theorem 5 and Corollary 9 ensure that mPRED(L
+
SEL,K) = Θ

(
Υ(L+

SEL,K)
)
. When K is

given as side information, SEL% can operate as follows. For each t ≤ |V |, the algorithm builds the query
set L+

t and computes Υ(L+
t ,K). Then it finds the smallest value t∗ minimizing t + Υ(L+

t ,K) over all
t ≤ |V |, and selects LSEL# ≡ Lt∗ . We stress that the above is only possible because the algorithm can
estimate within constant factors its own future mistake bound (Theorem 5 and Corollary 9), and because the
combination of SEL and PRED is competitive against all query sets whose size is a constant fraction of |L+

SEL|
—see Theorem 8. Putting together, we have shown the following result.

Theorem 15 For all trees (T,y), for all cutsize budgets K, and for all labelings y such that ΦT (y) ≤ K,
the combination of SEL% and PRED achieves |LSEL#| + mPRED(L

+
SEL#,K) = O

(
[q + m]OPT

)
when K is given

to SEL% as input.

Just to give a few simple examples of how SEL% works, consider a star graph. It is not difficult to see that
in this case t∗ = 1 independent of K, i.e., SEL% always selects the center of the star, which is intuitively
the optimal choice. If T is the “binary system” mentioned in the introduction, then t∗ = 2 and SEL% always
selects the centers of the two stars, again independent of K. At the other extreme, if T is a line graph, then
SEL% picks the query nodes in such a way that the distance between two consecutive nodes of L in T is (up to
a constant factor) equal to

√
|V |/K. Hence |L| = Θ(

√
|V |K), which is the minimum of (1) over |L| when

ΦT (y) ≤ K.

5 On the prediction of general graphs
In this section we provide a general lower bound for prediction on arbitrary labeled graphs (G,y). We then
contrast this lower bound to some results contained in Afshani et al. [1].

Let ΦR
G(y) be the sum of the effective resistances (see, e.g., [9]) on the φ-edges of G = (V,E). The

theorem below shows that any prediction algorithm using any query set L such that |L| ≤ 1
4 |V | makes at

least order of ΦR
G(y) mistakes. This lower bound holds even if the algorithm is allowed to use a randomized

adaptive strategy for choosing the query set L, that is, a randomized strategy where the next node of the query
set is chosen after receiving the labels of all previously chosen nodes.

Theorem 16 Given a labeled graph (G,y), for all K ≤ |V |/2, there exists a randomized labeling strategy
such that for all prediction algorithms A choosing a query set of size |L| ≤ 1

4 |V | via a possibly randomized
adaptive strategy, the expected number of mistakes made by A on the remaining nodes V \L is at least K/4,
while ΦR

G(y) ≤ K.

The above lower bound (whose proof is omitted) appears to contradict an argument by Afshani et al. [1,
Section 5]. This argument establishes that for any ε > 0 there exists a randomized algorithm using at most
K ln(3/ε) + K ln(|V |/K) + O(K) queries on any given graph G = (V,E) with cutsize K, and making
at most ε|V | mistakes on the remaining vertices. This contradiction is easily obtained through the following
simple counterexample: assume G is a line graph where all node labels are +1 but for K = o

(
|V |/ ln |V |

)

randomly chosen nodes, which are also given random labels. For all ε = o
(

K
|V |

)
, the above argument implies

that order ofK ln |V | = o(|V |) queries are sufficient to make at most ε|V | = o(K)mistakes on the remaining
nodes, among which Ω(K) have random labels —which is clearly impossible.

6 Efficient Implementation
In this section we describe an efficient implementation of SEL and PRED. We will show that the total time
needed for selecting Q queries is O(|V | log Q), the total time for predicting |V | − Q nodes is O(|V |), and
that the overall memory space is again O(|V |).

In order to locate the largest subtree of T \Lt−1, the algorithmmaintains a priority deque [8]D containing
at most Q items. This data-structure enables to find and eliminate the item with the smallest (resp., largest)
key in time O(1) (resp., time O(log Q)). In addition, the insertion of a new element takes time O(log Q).

Each item inD has two records: a reference to a node in T and the priority key associated with that node.
Just before the selection of the6 t-th query node it, the Q references point to nodes contained in the Q largest
subtrees in T \ Lt−1, while the corresponding keys are the sizes of such subtrees. Hence at time t the item
top of D having the largest key points to a node in T t

max.
First, during an initialization step, SEL creates, for each edge (i, j) ∈ E, a directed edge [i, j] from i to

j and the twin directed edge [j, i] from j to i. During the construction of LSEL the algorithm also stores and
maintains the current size σ(D) of D, i.e., the total number of items contained in D. We first describe the
way SEL finds node it in T t

max. Then we will see how SEL can efficiently augment the query set LSEL to
obtain L+

SEL.
Starting from the node r of T t

max referred to by7 D, SEL performs a depth-first visit of T t
max, followed by

the elimination of the item with the largest key in D. For the sake of simplicity, consider T t
max as rooted at

node r. Given any edge (i, j), we let Ti and Tj be the two subtrees obtained from T t
max after removing edge

(i, j), where Ti contains node i, and Tj contains node j. During each backtracking step of the depth-first visit
from a node i to a node j, SEL stores the number of nodes |Ti| contained in Ti. This number gets associated
with [j, i]. Observe that this task can be accomplished very efficiently, since |Ti| is equal to 1 plus the number
of nodes of the union of Tc(i) over all children c(i) of i. These numbers can be recursively calculated by
summing the size values that SEL associates with all direct edges [i, c(i)] in the previous backtracking steps.
Just after storing the value |Ti|, the algorithm also stores |Tj | = |T t

max|− |Ti| and associates this value with
the twin directed edge [i, j]. The size of T t

max is then stored in D as the key record of the pointer to node r.
It is now important to observe that the quantity σ(T t

max, i) used by SEL (see Section 3) is simply the
largest key associated with the directed edges [i, j] over all j such that (i, j) is an edge of T t

max. Hence, a new
depth-first visit is enough to find in timeO(|T t

max|) the t-th node it = arg mini∈T t
max
σ(T t

max, i) selected by
SEL. Let N(it) be the set of all nodes adjacent to node it in T t

max. For all nodes i′ ∈ N(it), SEL compares
|Ti′ | to the smallest key bottom stored in D. We have three cases:
1. If |Ti′ | ≤ bottom and σ(D) ≥ Q−t then the algorithm does nothing, since Ti′ (or subtrees thereof) will
never be largest in the subsequent steps of the construction of LSEL, i.e., there will not exist any node it′
with t′ > t such that it′ ∈ Ti′ .

2. If |Ti′ | ≤ bottom and σ(D) < Q − t, or if |Ti′ | > bottom and σ(D) < Q then SEL inserts a pointer to
i′ together with the associated key |Ti′ |. Note that, since D is not full (i.e., σ(D) < Q), the algorithm
need not eliminate any item inD.

3. If |Ti′ | > bottom and σ(D) = Q then SEL eliminates from D the item having the smallest key, and
inserts a pointer to i′, together with the associated key |Ti′ |.

Finally, SEL eliminates node it and all edges (both undirected and directed) incident to it. Note that this
elimination implies that we can easily perform a depth-first visit within T s

max for each s ≤ Q, since T s
max is

always completely disconnected from the rest of the tree T .
In order to turnLSEL intoL+

SEL, the algorithm proceeds incrementally, using a technique borrowed from [7].
Just after the selection of the first node i1, a depth-first visit starting from i1 is performed. During each back-
tracking step of this visit, the algorithm associates with each edge (i, j), the closer node to i1 between the two
nodes i and j. In other words, SEL assigns a direction to each undirected edge (i, j) so as to be able to effi-
ciently find the path connecting each given node i to i1. When the t-th node it is selected, SEL follows these
edge directions from it towards i1. Let us denote by π(i, j) the path connecting node i to node j. During the
traversal of π(i1, it), the algorithm assigns a special mark to each visited node, until the algorithm reaches the
first node j ∈ π(i1, it) which has already been marked. Let η(i, L) be the maximum number of edge disjoint
paths connecting i to nodes in the query set L. Observe that all nodes i for which η(i, Lt) > η(i, Lt−1) must
necessarily belong to π(it, j). We have η(it, Lt) = 1, and η(i, Lt) = 2, for all internal nodes i in the path
π(it, j). Hence, j is the unique node that we may need to add as a new fork node (if j $∈ FORK(Lt−1)).
In fact, j is the unique node such that the number of edge-disjoint paths connecting it to query nodes may
increase, and be actually larger than 2.

Therefore if j ∈ L+
t−1 we need not add any fork node during the incremental construction of L

+
SEL. On the

other hand, if j $∈ L+
t−1 then η(i, Lt−1) = 2, which implies η(i, Lt) = 3. This is the case when SEL views j

as new fork node to be added to the query set LSEL under consideration.
In order to bound the total time required by SEL for selecting Q nodes, we rely on Lemma 4, showing

that |T t
max| ≤ 2|V |/t. The two depth-first visits performed for each node it take O(|T t

max|) steps. Hence
the overall running time spent on the depth-first visits is O(

∑
t≤Q 2|V |/t) = O(|V | log Q). The total time

6If t = 1 the priority dequeD is empty.
7In the initial step t = 1 (i.e., when T t

max ≡ T) node r can be chosen arbitrarily .

spent for incrementally finding the fork nodes of LSEL is linear in the number of nodes marked by the algo-
rithm, which is equal to |V |. Finally, handling the priority deque D takes |V | times the worst-case time for
eliminating an item with the smallest (or largest) key or adding a new item. This is again O(|V | log Q).

We now turn to the implementation of the prediction phase. PRED operates in two phases. In the first
phase, the algorithm performs a depth-first visit of each hinge-tree T , starting from each connection node
(thereby visiting the nodes of all 1-hinge-tree once, and the nodes of all 2-hinge-tree twice). During these
visits, we add to the nodes a tag containing (i) the label of node iT from which the depth-first visit started,
and (ii) the distance between iT and the currently visited node. In the second phase, we perform a second
depth-first visit, this time on the whole tree T . During this visit, we predict each node i ∈ V \ L with the
label coupled with smaller distance stored in the tags of8 i. The total time of these visits is linear in |V | since
each node of T gets visited at most 3 times.

7 Conclusions and ongoing work
The results proven in this paper characterize, up to constant factors, the optimal algorithms for adversarial
active learning on trees in two main settings. In the first setting the goal is to minimize the number of mistakes
on the non-queried vertices under a certain query budget. In the second setting the goal is to minimize the
sum of queries and mistakes under no restriction on the number of queries.

An important open question is the extension of our results to the general case of active learning on graphs.
While a direct characterization of optimality on general graphs is likely to require new analytical tools, an
alternative line of attack is reducing the graph learning problem to the tree learning problem via the use of
spanning trees. Certain types of spanning trees, such as random spanning trees, are known to summarize
well the graph structure relevant to passive learning —see, e.g., [7]. In the case of active learning, however,
we want good query sets on the graph to correspond to good query sets on the spanning tree, and random
spanning trees may fail to do so in simple cases. For example, consider a set ofm cliques connected through
bridges, so that each clique is connected to, say, k other cliques. The breadth-first spanning tree of this graph
is a set of connected stars. This tree clearly reveals a query set (the star centers) which is good for regular
labelings (cfr., the binary system example of Section 1). On the other hand, for certain choices of m and k a
random spanning tree has a good probability of hiding the clustered nature of the original graph, thus leading
to the selection of bad query sets.

In order to gain intuition about this phenomenon, we are currently running experiments on various real-
world graphs using different types of spanning trees, where we measure the number of mistakes made by our
algorithm (for various choices of the budget size) against common baselines.

We also believe that an extension to general graphs of our algorithm does actually exist. However, the
complexity of the methods employed in [6] suggests that techniques based on minimizing Ψ∗ on general
graphs are computationally very expensive.
Acknowledgments. This work was supported in part by Google Inc. through a Google Research Award
and by the PASCAL2 Network of Excellence under EC grant no. 216886. This publication only reflects the
authors’ views.
References
[1] P. Afshani, E. Chiniforooshan, R. Dorrigiv, A. Farzan, M. Mirzazadeh, N. Simjour, H. Zarrabi-Zadeh.

On the complexity of finding an unknown cut via vertex queries. COCOON 2007, pages 459–469.
[2] Belkin, M., Matveeva, I., and Niyogi, P. Regularization and semi-supervised learning on large graphs.

COLT 2004, pages 624–638.
[3] Bengio, Y., Delalleau, O., and Le Roux, N. Label propagation and quadratic criterion. In Semi-

Supervised Learning, pages 193–216. MIT Press, 2006.
[4] Blum, A. and Chawla, S. Learning from labeled and unlabeled data using graph mincuts. ICML 2001,

pages 19–26.
[5] A. Blum, J. Lafferty, R. Reddy, and M.R. Rwebangira. Semi-supervised learning using randomized

mincuts. ICML 2004.
[6] A. Guillory and J. Bilmes. Label Selection on Graphs. NIPS 2009.
[7] N. Cesa-Bianchi, C. Gentile, F. Vitale. Fast and optimal prediction of a labeled tree. COLT 2009.
[8] J. Katajainen, F. Vitale. Navigation piles with applications to sorting, priority queues, and priority de-

ques. Nordic Journal of Computing, 10(3):238–262, 2003.
[9] R. Lyons and Y. Peres. Probability on Trees and Networks. Manuscript, 2009.
[10] Zhu, X., Ghahramani, Z., and Lafferty, J. Semi-supervised learning using Gaussian fields and harmonic

functions. In ICML Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning
and Data Mining, 2003.

8If i belongs to a 1-hinge-tree, we simply predict yi with the unique label stored in the tag.

