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Abstract

We explore the relationship between a natural notion of unsupervised learning studied
by Kearns et al. (STOC ’94), which we call here “learning to create” (LTC), and the
standard PAC model of Valiant (CACM ’84), which is a form of supervised learning and
can be thought of as a formalization of “learning to appreciate”. Our main theorem states
that “if learning to appreciate is hard, then so is learning to create”. That is, we prove
that if PAC learning with respect to efficiently samplable input distributions is hard, then
solving the LTC problem is also hard. We also investigate ways in which our result are
tight.

1 Introduction

The P vs. NP question is often cast in the intuitively appealing language of “creativity” and
whether “creativity can be automated” (see e.g. the survey of Wigderson [28]). To explain this
view, one often uses as an analogy a great artist, say Beethoven, who produced widely appreciated
works of music. We model the process of deciding whether a piece of music is pleasing by an efficient
circuit fmusic. Then the process of creating pleasing music amounts to finding a satisfying assignment
to fmusic, while appreciating music only requires evaluating fmusic on a given input.1 Therefore, if
P = NP, one can automate the task of composing pleasing music because there would be an efficient
algorithm that found pleasing pieces of music (i.e. the satisfying assignments of fmusic).

The above analogy is not the only way one can view creativity through a computational lens. In
this paper we explore the question of automating creativity from a learning-theoretic point of view.
We will explore two models of learning that correspond to “learning to appreciate” and “learning
to create”. Both the studied models are standard: the first is the PAC model of Valiant [27], while
the second is a form of unsupervised learning, which we call “learning to create” (LTC), whose
complexity-theoretic study was initiated by Kearns et al. [16].

PAC learning is a “label prediction” problem, and in particular is a form of supervised learning.
In the PAC model, the learning algorithm is given examples labelled according to a hidden function
f and is supposed to learn how to label new examples as f would. For example, we might try to learn
how a particular person Alice appreciates music. In this case, we model Alice’s taste by a function
fAlice
music that takes input a piece of music and outputs whether or not Alice finds it pleasing. The

learning task would be, given a set of examples of music each labelled fAlice
music, to output a hypothesis

that labels new pieces of music the same way as fAlice
music would. Of course, Alice’s taste may be very

different from another person Bob, so the same learning algorithm should successfully learn fp
music

for all persons p, given examples labelled according to fp
music.

LTC is a “pattern reconstruction ” problem, and in particular is a form of unsupervised learn-
ing. In the LTC model, the learning algorithm is given many unlabelled examples drawn from a
hidden distribution D, and is supposed to construct a circuit that generates new examples that are
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1Of course the analogy is not entirely accurate since we believe that P 6= NP while, presumably,

Beethoven was bound by the Extended Church-Turing Hypothesis and could not solve NP-hard prob-
lems. But let us ignore this detail and suppose that Beethoven’s creativity was indeed the result of solving
an NP-hard problem.



distributed close to D. One can think of D as say generating a piece of music as Beethoven would.
Of course, the Beethoven’s distribution of music DBeethoven is very different from, say, DJohn Lennon,
and the learning algorithm should learn using examples how to produce music according to one style
or the other.

In this paper, when we refer to the PAC or LTC problem, we mean solving these problems for
“complete” concept classes (unless we specifically say otherwise). For instance, we study whether it
is possible to PAC learn all labellings computable by SIZE(n2) circuits, and whether it is possible
to solve LTC for the class of distributions samplable by SIZE(n2) circuits.

Our first result says roughly that if PAC is hard, then so is LTC.

Theorem 1.1 (LTC is as hard as PAC learning, informal). If the PAC learning problem with respect
to efficiently samplable input distributions cannot be solved by a polynomial-time algorithm, then the
LTC problem cannot be solved by a polynomial-time algorithm.

This theorem holds even for the more stringent requirement of agnostic learning. In addition
to our analogy about learning to create vs. learning to appreciate, one can also interpret our result
as saying that “unsupervised learning is as hard as supervised learning” in the context of these
particular models.

One may ask whether Theorem 1.1 can be strengthened to say that for every concept class F ,
if it is hard to PAC learn F , then it is also hard to solve LTC for the class F . 2 This is a stronger
statement than Theorem 1.1, since, as we will see, the proof of Theorem 1.1 will take a class F
that is hard in the PAC model and transform it into a (more complex) class F ′ that is hard in the
LTC model. We show that this stronger statement is false by exhibiting concrete concept classes for
which it does not hold.

Theorem 1.2 (PAC vs. LTC for specific concept classes, informal). Under standard cryptographic
assumptions, there exist concept classes for which PAC learning (even with respect to the uniform
input distribution) is hard while LTC is easy.

Another weakness in Theorem 1.1 is that it considers only PAC learning with respect to efficiently
samplable input distributions. In general, PAC learning allows the examples given to the learning
algorithm to be generated from any distribution; Theorem 1.1 adds the restriction that the examples
must be generated from a distribution that can be sampled by, say, a SIZE(n2) circuit.

In our last result, we study whether Theorem 1.1 can be generalized to encompass PAC learning
with respect to unsamplable input distributions. We show this is unlikely: we exhibit an oracle
relative to which LTC is easy (and therefore PAC learning is easy for all efficiently samplable input
distributions), but there exist functions that are hard to learn with respect to an unsamplable
distribution.

Theorem 1.3 (Separating LTC and PAC learning unsamplable input distributions). There exists

an oracle O relative to which solving LTC for SIZE
O(n2) is easy, while there is a function f ∈

SIZE
O(n2) that is an efficiently computable function that is hard to PAC learn on an unsamplable

input distribution.

1.1 Relation to previous work

Hardness of learning. It is widely believed that both the PAC and LTC problems are hard.
Both problems can be proven hard if one assumes the existence of cryptography [27, 17] or the
weaker assumption that zero knowledge is non-trivial [1] (see also Corollary 2.11). However, to the
best of our knowledge, prior to this work there were no results establishing a relationship between
the hardness of PAC learning and the LTC problem.

Previous work on complexity of LTC. The computational complexity of PAC learning has
been studied extensively since its first appearance [27, 15, 22, 17, 4]. The complexity of LTC was first
studied in [16] but overall is less well-understood. One question about LTC that has received some
attention is its relation to a related notion of “learning to evaluate probabilities”: given samples as
in the LTC problem, construct a hypothesis h : {0, 1}n → [0, 1] such that h(x) = Pr[D = x], i.e.
the hypothesis evaluates the probability that x is drawn from D. It is known that under reasonable
assumptions, there is a concrete concept class for which “learning to evaluate probabilities” is hard
and LTC is easy [16], while there is also a concept class for which “learning to evaluate probabilities”
is easy yet LTC is hard [20].

2Since LTC deals with classes of functions with multi-bit outputs while PAC deals with classes of functions
with single-bit outputs, it must be clarified how we obtain both single- and multi-bit functions from a single
class F . We defer this discussion to Section 4.



Complexity of learning via complete problems. Much of the literature comparing different
learning models has focused on concrete problems. In this kind of comparison, one exhibits a
single concept class that is learnable in one model but not in another (under some reasonable
complexity assumption). This has led to valuable insights into the complexity of various models,
including the power of membership oracles [5], faulty vs. perfect membership oracles [25, 6], and the
aforementioned difference between learning to evaluate probabilities and LTC [16, 20]. Furthermore,
this kind of comparison is perhaps the most reasonable when comparing models where one model
is obviously more complex than the other, and the goal is to show that this relationship is in some
sense strict (e.g. [5], where clearly having a membership oracle makes the learning task easier).

On the other hand, this approach has the drawback that in some cases it can lead to conflicting
evidence, as in the case of learning to evaluate probabilities and LTC, where looking at one concept
class suggests that the learning in the first model is harder than in the second model, but looking
at a different concept class suggests the opposite.

A different approach to understanding the complexity of the learning model is to examine a
complete problem for the model. Namely, if we consider the problem of learning a “complete”
concept class (e.g. SIZE(n2) circuits) in learning model M , then the existence of any hard-to-learn
concept class for M would imply that learning SIZE(n2) is hard. This approach was explored in
Applebaum et al. [1], Xiao [29, 30] to understand the complexity of PAC learning relative to the
complexity of NP, auxiliary-input one-way functions [21], and zero knowledge. In this paper we
apply this approach to the complete problems for PAC learning and for LTC.

PAC learning with respect to efficient distributions. We already noted that Theorem 1.1
only relates LTC to PAC learning or agnostic learning with respect to efficiently samplable input
distributions. We believe that this is a reasonable restriction: according to the strong Church-Turing
thesis, all physical phenomena can be explained by efficient (polynomial-time) computation. There-
fore, one can suppose that from whatever source one obtains the examples to be learned, if one can
suppose that they are i.i.d. samples from a distribution then one may as well suppose that this distri-
bution is polynomial-time samplable. Furthermore, Theorem 1.3 says that no relativizing reduction
can strengthen Theorem 1.1 to include PAC learning with respect to unsamplable distributions.

1.2 Our techniques

1.2.1 Proving Theorem 1.1

Cryptography using circuits. Our Theorem 1.1 is proven using a variation of standard cryp-
tographic techniques. Standard cryptography is based on uniform cryptographic primitives: for
example, one-way functions or pseudo-random functions that are computable using one Turing Ma-
chine for all input lengths. This is because in order to use these primitives, one needs an efficient
way to compute them for any desired input size. On the other hand, it is often required that these
primitives are hard-to-break even for non-uniform families of polynomial-size circuits, since it may
happen that the adversary has some side-information about the cryptosystem that is best modelled
as non-uniform advice.

Because we are looking at things from a learning-theoretic point of view, we consider analogues of
one-way functions and pseudorandom functions that are computable by circuits (with non-uniform
advice), but which are only required to be secure against uniform adversaries. Such primitives,
which we call one-way circuits or pseudorandom circuits in this paper, were studied in the context
of zero knowledge, first in Ostrovsky and Wigderson [21] and later in Vadhan [26], who used a
slightly different definition. (They were called auxiliary-input one-way functions in these contexts.)
The connection between one-way circuits and learning theory (also linking learning theory to zero
knowledge) was explored in Applebaum et al. [1], Xiao [29, 30]. The main fact about one-way
circuits we use to prove Theorem 1.1 is that if one-way circuits exist, then the LTC problem is hard
(Corollary 2.11).

Circuit agnostic learning. Another ingredient in the proof of Theorem 1.1 is a variation of the
standard PAC/agnostic learning problem that we call circuit agnostic learning, implicit in [1] and
made explicit in [30] (see Definition 3.1). Whereas in the standard PAC/agnostic learning models,
the learning algorithm only receives a collection of labelled examples, in the circuit agnostic learning
model the learning algorithm is given a circuit that samples the distribution of labelled examples.
Notice that this does not trivialize the problem: knowing a circuit that generates labelled examples
does not necessarily reveal how to label examples. See Section 3.1 for more discussion.

We know that if one-way circuits exist, then PAC learning is hard [1], but the converse is
unknown to hold, namely it is unknown whether the hardness of PAC learning implies that one-way
circuits exists (and in fact, it was shown in [29] that this converse cannot be proven by relativizing



techniques). However, the converse does hold if we consider circuit agnostic learning: if PAC learning
is hard, then the circuit agnostic learning problem is hard (see Lemma 3.2). This is the second main
ingredient that we use in the proof of Theorem 1.1.

Proof idea behind Theorem 1.1. Combining the above two tools, the proof idea for Theorem 1.1
is to use a LTC algorithm to solve PAC learning with respect to efficiently samplable distributions
as follows. First, obtain a set of labelled examples, and use the LTC algorithm on this set of labelled
examples to obtain a circuit C that samples the distribution from which these labelled examples
were drawn. Note that such a circuit exists because we are promised that the PAC learning instance
is on an input distribution that is efficiently samplable. This effectively transforms the original PAC
learning problem into an instance of the circuit agnostic learning problem. Next, combining our
two theorems about one-way circuits (Corollary 2.11) and circuit agnostic learning (Lemma 3.2), it
is possible to use the LTC algorithm to solve this circuit agnostic learning problem, which in turn
solves the original PAC learning problem as well.

1.2.2 Understanding Theorem 1.3

Oracle separations. Theorems such as Theorem 1.3 are called oracle separations, and have long
been used in theoretical computer science to “separate” various classes. Baker et al. [2] showed an
oracle separation between P and NP and Impagliazzo and Rudich [14] showed an oracle separation
between one-way permutations and the intuitively harder task of key exchange. More recently, such
oracle separations were also used in learning theory to separate PAC learning from the hardness of
zero knowledge [29].

The motivation behind such oracle separations is as follows. There are very few unconditional
separations in theoretical computer science (and almost non-existent when going beyond weak com-
plexity classes such as AC0). On the other hand, many if not most complexity results are proved
using relativizing techniques (for example black-box reductions and diagonalization). Therefore by
proving an oracle separation between classes A and B, one shows that in order to prove A re-
duces to B, one would need to come up with a non-relativizing technique. This arguably attests
to the difficulty of the task.3 In this spirit, we interpret Theorem 1.3 to mean that strengthen-
ing Theorem 1.1 to encompass PAC learning even with respect to unsamplable distributions would
require new non-relativizing techniques.

2 Preliminaries

2.1 Notation and basic lemmas

If X is a probability distribution, then let supp(X) denote the support of X , i.e. the values that
X takes on with positive probability. For two distributions X1, X2, the total variation distance (or
statistical distance) is defined as ∆(X1, X2) = 1

2

∑

x |Pr[X1 = x] − Pr[X2 = x]|, where the sum is
taken over all x in the supports of X1, X2. We let Un denote the uniform distribution {0, 1}n. For
finite sets S, we will sometimes abuse notation and let S also stand for the uniform distribution over
S. For a circuit C : {0, 1}m → {0, 1}n, we say that C samples a distribution X if C(Um) = X . We let

SIZE(q(n)) denote the set of (functions computable by) circuits of size q(n), and we let SIZE
O(q(n))

denote the same where the circuits are allowed oracle gates O at unit cost.
We will use the following lemma of Borel-Cantelli, which says that if a countable sequence of

events each have small probability of occuring, then the probability that an infinite number of them
occurs is 0.

Theorem 2.1 (Borel-Cantelli lemma). Let {En}n∈N be a sequence of events. Suppose
∑∞

n=1 Pr[En]
exists and is finite. Then Pr[∃I ⊆ N, |I| =∞, ∀n ∈ I, En occurs] = 0.

2.2 PAC learning (or learning to appreciate)

Define the learning error of a function f : {0, 1}n → {0, 1} with respect to a distribution (X, Y ) over
{0, 1}n+1 to be err((X, Y ), f) = PrX,Y [f(X) 6= Y ]. For a class of functions F , define err((X, Y ),F) =
minf∈F err((X, Y ), f).

Definition 2.2 (PAC Learning). An algorithm A PAC learns the concept class F if the following
holds for every n ∈ N, ε > 0, f ∈ F , and every distribution X over {0, 1}n. Given access to an
example oracle that generates labelled examples according to (X, f(X)), A produces with success
probability≥ 1−2−n an ε-good hypothesis h (represented as a circuit), namely err((X, f(X)), h) ≤ ε.
Furthermore, A runs in time poly(n, 1/ε).

3Of course, such a result does not imply that the task is impossible. Indeed, many of the most surprising
results bypass oracle separations or other notions of separation (for example [19, 24, 3]).



Definition 2.3. We say that A learns F w.r.t. efficient distributions if the PAC learning guarantee
is only required to hold for all X = C(Um), where m = poly(n) and C is a polynomial-size circuit.

Worst possible error is 1/2: we will assume that A always outputs a hypothesis h such that
err((X, f(X)), h) ≤ 1/2. One can assure that this occurs with probability ≥ 1 − 2−n by checking
whether the majority of labels output by h agrees with the majority on the examples drawn from
the oracle, and if they disagree outputting 1− h instead of h.

A word on padding: In this paper we use SIZE(n2), the class of functions computable by size n2

circuits, as a complete concept class. This class is complete for functions computable by polynomial-
size circuits because of a padding argument. For example, in order to learn circuits of size nc, it

suffices to pad an example x of length n to x0nc/2−n which has length n′ = nc/2, and then running
the learner for SIZE(n2). This same kind of padding works for the LTC setting defined below.

Agnostic learning: we will also work with an even more demanding notion of learning, called
agnostic learning, defined in Kearns et al. [17], where the examples may not be labelled according
to any fixed function. Here, the goal is to obtain a hypothesis that performs (almost) as well as the
best hypothesis in a concept class.

Definition 2.4 (Agnostic Learning). A procedure A agnostically learns the concept class F if the
following holds for every n ∈ N, ε > 0, and every distribution (X, Y ) over {0, 1}n+1. Given access
to an example oracle that generates labelled examples according to (X, Y ), A produces with success
probability ≥ 1 − 2−n an ε-good hypothesis h (represented as a circuit), namely err((X, Y ), h) ≤
err((X, Y ),F) + ε. Furthermore, A runs in time poly(n, 1/ε).

Definition 2.5. We say that A agnostically learns F w.r.t. efficient distributions if the agnostic
learning guarantee holds for all (X, Y ) = C(Um), where m = poly(n) and C is a polynomial-size
circuit.

2.3 Learning to create

Definition 2.6 (LTC). A procedure A solves LTC for the concept class F if the following holds
for every n ∈ N, ε > 0, and f ∈ F , where f : {0, 1}m → {0, 1}n. Given access to an oracle
that generates samples according to f(Um), A outputs with probability 1− ε an ε-close hypothesis

h : {0, 1}m
′

→ {0, 1}n (represented as a circuit), namely ∆(f(Um), h(Um′)) ≤ ε. 4 Furthermore, A
runs in time poly(n, 1/ε).

The accuracy of the hypotheses: our definition of PAC learning requires a strong notion of
accuracy: for an example oracle (X, Y ), we require the hypothesis h to satisfy err((X, Y ), h) ≤
1/poly(n). In the PAC model we know one may apply Boosting [23, 7, 8] to show that “strong PAC
learning” is equivalent to “weak PAC learning”, where the hypothesis is only required to satisfy
err((X, Y ), h) ≤ 1

2 − 1/poly(n). In contrast, there is no known equivalent boosting technique for the
LTC problem, so we must acknowledge that our definition that ∆(f(Um), h(Um′)) ≤ 1/poly(n) is
indeed a strong requirement, and this is necessary for our results.

2.4 Cryptography using circuits

We assume the reader is familiar with the standard notions of one-way functions and pseudorandom
functions/permutations, and refer to [9] for further details.

Definition 2.7. Pseudorandom circuits (PRC) exist if for every efficient uniform algorithm D, there
exists an infinite collection W of functions where for every f ∈ W , f : {0, 1}n × {0, 1}n → {0, 1}, f
is computable by a circuit of size s(n) = poly(n) and it holds that

∣

∣

∣

∣

∣

Pr
D,k

R
←Un

[Dfk(f, 1s) = 1]− Pr
D,φ

[Dφ(f, 1s) = 1]

∣

∣

∣

∣

∣

≤ s−ω(1) (2.1)

where f is passed to D as a circuit, fk = f(k, ·) and φ is a truly random function from {0, 1}n →
{0, 1}.

f is a (uniform) pseudorandom permutation (PRP) if f : {0, 1}n × {0, 1}n → {0, 1}n, fk is a
permutation for all k, f is computable by a uniform Turing Machine, and Equation 2.1 holds for all
efficient D.

4Kearns et al. [16] defined closeness using KL divergence. We use statistical distance as this is sufficient
in most applications and simplifies our presentation. All of our results also hold for KL divergence with
appropriate (but qualitatively equivalent) scaling of parameters.



Definition 2.8. Distributional one-way circuits (DOWC) exist if for every efficient algorithm I,
there exists a polynomial p(s) and an infinite collection W of functions where for every f ∈ W ,
f : {0, 1}n → {0, 1}m, f is computable by a circuit of size s(n) = poly(n) and it holds that

∆((x, f(x)), (I(f, y), y | y = f(x))) > 1/p(s)

over random choice of x←R Un and the random coins of I, and f is given to I as a circuit.

Our definition is based on [21] (although we require the inverter to distributionally invert the
circuit, i.e. it must output a nearly-uniform preimage rather than an arbitrary preimage). One-
wayness and pseudorandom functions are known to be equivalent for the uniform case [11, 10, 13],
and the reductions establishing this extend immediately to the non-uniform case.

Theorem 2.9 ([11, 10, 13]). DOWC exist if and only if PRC exist.

2.5 Solving LTC implies inverting circuits

It was shown in Kearns et al. [16] that one can use an algorithm solving LTC in order to distinguish
PRP from truly random functions. By looking at their proof, we observe that it also applies to PRC.

Theorem 2.10 (Kearns et al. [16]). If LTC is efficiently solvable for the class SIZE(n2), then PRC
do not exist, i.e. there is a polynomial-time algorithm that distinguishes any efficient circuit from a
truly random function.

Corollary 2.11 (Follows from Theorem 2.10 and Theorem 2.9). If LTC is efficiently solvable for the
class SIZE(n2), then no family of circuits is distributionally one-way, i.e. there is a polynomial-time
algorithm that distributionally inverts any polynomial-size circuit.

3 Solving LTC implies solving agnostic learning w.r.t. efficient

distributions

The idea of our proof of Theorem 1.1 is that we can use an LTC solver to learn the circuit that
samples the distribution of labelled examples. This makes the PAC learning problem easier because
we now have a circuit generating labelled examples (rather than just a set of labelled examples),
and we show that the LTC solver can also be used to solve this relaxed PAC learning problem.

3.1 Circuit agnostic learning

To prove Theorem 1.1, we use a tool called “circuit agnostic learning”. In standard notions of
learning, the learning algorithm is given access only to examples drawn from the distribution (X, Y ).
One can also ask what happens when the learning algorithm gets access to a circuit that samples from
the distribution (X, Y ). For the setting of agnostic learning, we call this relaxed (and potentially
easier) problem circuit agnostic learning:

Definition 3.1. A procedure A circuit-agnostic-learns a concept class F if on input circuit C of
size s sampling a distribution (X, Y ) over {0, 1}n+1, A outputs a hypothesis h such that

err((X, Y ), h) ≤ err((X, Y ),F) + ε

and A runs in time poly(s, 1/ε).

At first glance it might seem that this model is trivially easy because the learning algorithm
has access to C, which allows the learning algorithm to generate labelled examples by himself and
may allow the learning algorithm to create a good hypothesis. However the problem remains non-
trivial because C generates an example and its label simultaneously, while the problem the learning
algorithm must solve is to compute the label on an example given as input.5

The following lemma implicitly was proved in [1] and explicitly appears in Xiao [30]

Lemma 3.2 ([1] (see also [30], Lemma 3.5.1)). If there is an efficient algorithm that distributionally
inverts all polynomial-size circuits, then there is an algorithm running in time poly(n, 1/ε) that
circuit-agnostically-learns SIZE(n2).

5To see a concrete example of a class for which circuit-agnostic learning is hard, consider the concept class
in Section 4.2. For this concept class the standard PAC learning problem and the circuit agnostic learning
problem are equivalent, since after O(log n) samples in the standard PAC model one can obtain the modulus
N , which using Algorithm 4.8 allows one to construct a circuit sampling the input distribution (Un, fN (Un)).
This means that the Quadratic Residuosity assumption implies that the circuit agnostic learning problem
for this concept class is hard.



3.2 Proof of Theorem 1.1

Theorem 3.3 (Theorem 1.1, formal). If there exists a polynomial-time algorithm ALTC that solves
LTC for the class SIZE(n2), then there exists a polynomial-time algorithm AAgn that solves agnostic
learning with respect to the concept class SIZE(n2) and with respect to all distributions samplable by
SIZE(n2) circuits.

Proof of Theorem 3.3. By hypothesis there exists a polynomial-time algorithm ALTC that solves LTC
for the class SIZE(n2). By Corollary 2.11 it follows that there is a polynomial-time algorithm I that
distributionally inverts all circuits. By Lemma 3.2 there is a polynomial-time algorithm ACircLearn

that circuit-agnostically-learns SIZE(n2).

Defining the agnostic learning algorithm: the algorithm AAgn that learns agnostically w.r.t.
efficiently samplable distributions does the following. By padding, we may assume that the in-
put distribution X, Y is sampled by a circuit of size n2. First, AAgn obtains enough samples
(x1, y1), . . . , (xt(n), yt(n)) from the example oracle to run ALTC with error parameter ε/2. Let C
be its output. Run ACircLearn on C with error ε/2, and let h be the output of ACircLearn. Output h.

Analyzing AAgn: since ALTC solves LTC for the concept class SIZE(n2), we get with probability
1 − 2−n a hypothesis C : {0, 1}m → {0, 1}n such that ∆(C(Um), (X, Y )) ≤ ε/2. Letting (X ′, Y ′)
be the distribution samples by C, this implies that ∆((X ′, Y ′), (X, Y )) ≤ ε/2. Since ACircLearn

solves CircLearn
SIZE(n2), it follows that with probability 1 − 2−n, the output hypothesis h satisfies

err((X ′, Y ′), h) ≤ ε/2. Together, it follows that err((X, Y ), h) ≤ ε.

Remark 3.4. All of the ingredients used in the proof of Theorem 3.3 relativize, and therefore the
statement of Theorem 3.3 also relativizes. Namely, relative to any oracle O, if solving LTC for the
class SIZE

O(n2) is easy, then PAC learning SIZE
O(n2) with respect to input distributions samplable

by SIZE
O(poly(n)) circuits is easy.

4 LTC and PAC learning for concrete classes

In this section we show that, in contrast to Theorem 1.1, if one studies concrete concept classes that
are not complete, then it is possible that PAC learning is harder than LTC.

Because PAC learning deals with single-bit output function while LTC deals with multi-bit
output functions, in order to compare the two models for concrete concept classes we use two
different ways to obtain both single- and multi-bit output functions from a single concept class:

1. Direct products: let F be a class of single-bit output functions. Then we compare PAC learning
the class F to solving LTC for the class Fℓ where each function f ∈ Fℓ maps {0, 1}n → {0, 1}ℓ

and can be decomposed as f(x) = (f1(x), . . . , fℓ(x)) where each fi ∈ F . Here, the number of
copies ℓ(n) satisfies ω(log n) ≤ ℓ(n) ≤ poly(n).

2. Generating labelled examples: let F be a class of single-bit output functions and let D be a
class of distributions that are efficiently samplable. Then we compare PAC learning F with
respect to input distributions in D to solving LTC for the class of distributions of the form
(X, f(X)) where X ∈ D and f ∈ F .

To motivate the above notions, the direct product notion is natural when thinking of F as being
a syntactic complexity class, such as DNF formulas or AC0 circuits. Thus, in the PAC model the
function to be learned has complexity F , and similarly in the LTC problem each bit of output in
the output distribution has complexity F .

The “generating labelled examples” notion is motivated by the proof of Theorem 1.1. In the
proof of Theorem 1.1, the first step is to apply the LTC algorithm to produce a circuit that generates
(approximately) the distribution of labelled examples. By considering this notion, we will see that
the proof of Theorem 1.1 does not immediately generalize to hold for concrete concept classes.

Since we have no unconditional lower bounds for polynomial-time computation (which would be
necessary to show that polynomial-time algorithms cannot solve PAC or LTC), all of the following
results are conditional, i.e. they assume that some (standard) computational problem is hard.



4.1 Direct product

Proposition 4.1. Assuming one-way functions exist, then there exists a concept class F that is
hard to learn in the PAC model but such that solving LTC for the class Fℓ is easy.

Proof. Since we assume one-way functions exist, therefore [11, 10, 18] implies that there exists a
(uniform) pseudorandom permutation of the form f : {0, 1}n× {0, 1}n → {0, 1}n (we use the short-
hand fk(x) = f(k, x)) such that fk is a permutation, and for all efficient distinguishers D,

| Pr
φ,D

[Dφ(1n) = 1]− Pr
k,D

[Dfk(1n) = 1]| ≤ ε(n)

where the distinguishing advantage ε(n) = n−ω(1) is negligible. We make the following claim, which
says that there exists an infinite collection of keys K such that fk is hard-to-compute for all k ∈ K:

Lemma 4.2. Let {fk}k∈{0,1}∗ be a collection of pseudorandom permutations with distinguishing
advantage ε(n). Then there exists an infinite set K = {kn}n∈N such that ∀k ∈ K, n = |k|, it holds
for all efficient algorithms A that for large enough n,

Pr
A

[Afkn = h and err((Un, fkn(Un)), h) ≤ 1/2− 2
√

ε(n)] ≤ n2
√

ε(n)

We will prove this lemma shortly, first we use it to define F and prove Proposition 4.1.

Defining F : let K = {kn}n∈N be the set of hard keys defined by Lemma 4.2. Let fkn(x)i denote
the i’th bit of fkn(x). We define

F =
⋃

n∈N

{gi : {0, 1}n → {0, 1}, gi(x) = fkn(x)i | i ∈ [n]}

Claim 4.3. PAC learning F is hard.

This follows from Lemma 4.2: if there were an algorithm that PAC learns F , then it could in
particular be used to compute fkn for all n: given oracle access to fkn , one can simulate example
oracles (Un, gi(Un)) for all i ∈ [n], and using the PAC learning algorithm for F with error 1/n2

one could obtain with high probability hypotheses hi such that Pr[hi(Un) = gi(Un)] ≥ 1 − 1/n2.
Letting h = (h1, . . . , hn), we see that err((Un, fkn(Un)), h) ≤ 1/n, which contradicts Lemma 4.2

since 1/n≪ 1/2− 2
√

ε(n).

Claim 4.4. Solving LTC for the class Fℓ is easy.

Fix any function (gi1 , . . . , giℓ
) ∈ Fℓ. Since fkn is a permutation, fkn(Un) is uniform. Therefore,

gip(Un) and giq(Un) are independent uniform bits if ip 6= iq, and they are always equal if ip = iq.

We now describe an algorithm that solves LTC for the class Fℓ. Let D be the distribution to
be learned, D = (gi1(r), . . . , giq (r) | r ←R Un).

1. Initialize a graph G on n vertices to be the complete graph, where the vertices are labelled
1, . . . , n.

2. Repeat the following t = n log
(

n
2

)

times. Sample x ←R D, and for every pair u, v ∈ [n] such
that xu 6= xv, remove the edge (u, v) from G.

3. The output hypothesis h does the following: for each connected component of G, sample a
random bit. Output x where xu equals the bit of the connected component containing u.

We claim that with all but probably 2−n, the distribution sampled by h will be exactly the
distribution generated by (gi1 , . . . , giℓ

). The only time that this hypothesis will be different is if
there is some pair u, v such that iu 6= iv and yet, for all examples x that the algorithm draws, it
holds that xiu = xiv . Since for each sample this happens independently with probably 1/2, and
since there are t = n log

(

n
2

)

samples, by a union bound over all edges this happens with probably

at most
(

n
2

)

2−n log (n
2
) ≤ 2−n.

Proof of Lemma 4.2. For an algorithm A and a key k of length n, let

pA,k = Pr
A

[Afk = h and err((Un, fk(Un)), h) ≤ 1/2− 2
√

ε(n)]

where the probability is only over the random coins of A. It must hold that:

Claim 4.5. For all sufficiently large n, Prk←R{0,1}n [pA,k > n2
√

ε(n)] ≤ 1/n2



This claim holds because otherwise one could use A to break the pseudorandomness of f by the
following distinguisher D. First D runs A to obtain h. Then, D queries its oracle on a new uniform
x ←R Un; let b be the oracle’s response. D accepts if b = h(x) and rejects otherwise. It is easy to
compute Prφ,D[Dφ(1n) = 1] ≤ 1

2 +p(n)2−n where p(n) = poly(n) is the maximum number of queries

made by A. On the other hand, if Claim 4.5 does not hold, then Prk,D[Dfk(1n) = 1] ≥ 1
2 + 2ε(n).

We can assume w.l.o.g. that ε ≥ 2−n/2 (Lemma 4.2 only gets weaker if we increase ε), therefore this
gives a distinguishing probability 2ε− p(n)2−n ≫ ε(n), contradicting the pseudorandomness of fk.

Define pA = Prk1,k2,...[For inifinitely many n, pA,kn > n2
√

ε(n)] where kn ←R {0, 1}n. Since
the series

∑∞
n=1 1/n2 < ∞, applying Theorem 2.1 and Claim 4.5 implies that pA = 0. Since there

is a countable number of algorithms A, this implies

Pr
k1,k2,...

[∃A, For infinitely many n, pA,kn > n2
√

ε(n)] ≤
∑

A

pA = 0

Therefore, a random choice of K will satisfy the conclusion of Lemma 4.2 with probability 1.

4.2 Generating labelled examples

Our result for this model is based on the hardness of quadratic residuosity over Blum integers. We
say that N = pq is a Blum integer of length n if p, q are prime, ⌈log N⌉ = n, n − ⌈log p⌉ ≤ 2,
n − ⌈log q⌉ ≤ 2 and p ≡ q ≡ 3 (mod 4). We say that x is a quadratic residue mod a if ∃y ∈ ZN

such that x = y2 mod a for a ∈ N. The Legendre symbol (x
p ) is equal to 0 if x = 0 mod p, it is

equal to 1 if x is a quadratic residue mod p and −1 if x is a quadratic non-residue mod p. The
Jacobi symbol is defined ( x

N ) = (x
p )(x

q ). It is possible to efficiently compute the Jacobi symbol using

Euclid’s algorithm. It is known that for a Blum integer N , (−1
N ) = 1 but −1 is not a quadratic

residue mod N .
Let QR(N, x) = 1 if x = y2 mod N and 0 otherwise, and write QRN (x) = QR(N, x). The

hardness of quadratic residuosity over Blum integers says that there is no polynomial time algorithm
that evaluates QRN (x) given a Blum integer N and x ∈ ZN .6 7

Proposition 4.6. Assuming that Quadratic Residuosity is hard over Blum integers, there is a
concept class F for which PAC learning with respect to the uniform distribution is hard while solving
LTC for distributions (Un, f(Un)) where f ∈ F is easy.

Proof. Define the functions fN : ZN × [⌈log N⌉]× {0, 1} → {0, 1} where

fN (x, i, b) =

{

QRN (x) b = 0

Ni b = 1

where Ni denotes the i’th bit of N . Let n the input length of fN and letF = {fN | N is a Blum integer}.

Claim 4.7. PAC learning F is hard for the uniform distribution.

Suppose we have a PAC learning algorithm A for F (it even suffices if A only works for uniformly
distributed inputs). Given N , one can simulate an example oracle for (Un, fN (Un)) as follows:

Algorithm 4.8 (Sampling from (Un, fN (Un)):).

1. Pick x′ ←R ZN , i←R [⌈log N⌉], b←R {0, 1}.

2. If b = 1 then output ((x′, i, b), Ni), otherwise compute the Jacobi symbol (x′

N ).

3. If (x′

N ) 6= 1, then output ((x′, i, b), 0).

4. If (x′

N ) = 1, then sample r ←R ZN , a←R {−1, 1}, and output ((ar2, i, b), 1+a
2 ).

This simulated example oracle is identical to a true example oracle for fN .

6Here, the fact that the factorization N is unknown to the algorithm is necessary to ensure hardness.
Indeed, it is possible to compute QR

N
(x) using an efficient circuit that has the factorization p, q as advice.

This is, for instance, why the class F defined in Proposition 4.6 is efficiently computable.
7This example can also be phrased in terms of the generic assumption that trapdoor permutations exist,

but the presentation using Quadratic Residuosity is simpler.



Using a PAC learner to define an algorithm A′ solving quadratic residuosity: on input
(x, N), A′ first checks if ( x

N ) 6= 1, and if so outputs 0. Otherwise, use Algorithm 4.8 to simulate
an example oracle for (Un, fN(Un)), then run A on this example oracle to obtain a hypothesis h.
Finally, A′ picks a random r ←R ZN , i←R [n] and outputs h(xr2, i, 0).

We claim that A′ solves quadratic residuosity. Let S1 be the set of quadratic residues in ZN ,
and let S−1 be the set of quadratic non-residues y ∈ ZN with Jacobi symbol ( y

N ) = 1. Observe that
Pry←RZN [y ∈ S1] = Pry←RZN [y ∈ S−1] = 1/4 + o(1). Therefore, for all a ∈ {−1, 1}, it holds over
uniform i that

err(((Sa, i, 0), fN(Sa, i, 0)), h) ≤ (8 + o(1))err((Un, fN (Un)), h) ≤ 9ε

for large enough n. Since for a ∈ {−1, 1} and every x ∈ Sa, the variable xr2 mod N for random
r is distributed uniformly in Sa, this implies that A′ outputs QRN (x) correctly with probability
1− 9ε− 2−n.

Claim 4.9. Solving LTC for (Un, fN (Un)) for fN ∈ F is easy.

After seeing O((log N)2) = poly(n) samples, with all but negligible probability, N is revealed.
Given N , one can sample from (Un, fN(Un)) using Algorithm 4.8.

5 PAC learning unsamplable distributions

Our construction of O will be randomized: we will select R from a distribution of oracles and
show that with high probability that the oracle O = (R,PSPACE) satisfies Theorem 1.3. The
distribution will be as follows:

Definition 5.1. On input length n, let R : {0, 1}n × {0, 1}n → {0, 1} be chosen as follows: select
z ←R {0, 1}n. Pick the set Sz from the following distribution: for each x ∈ {0, 1}n, put x into Sz

with probability 2−n/2. Then, for each x ∈ Sz, let Rz(x) = R(z, x) = 1 with probability 1/2 and 0
otherwise. For all z′ 6= z, let Rz′(x) = 0 for all x ∈ {0, 1}n.

Intuitively, for each input length we first pick a “hard instance” z, then we pick a “hard set” Sz

that is a sparse random subset of {0, 1}n of size roughly 2n/2. We then define Rz to be a random
function on Sz and 0 elsewhere, and also Rz′ is identically zero for all z′ 6= z. We remark that the
definition of this oracle was also proposed by Impagliazzo [12], but as an alternative oracle for the
main result of [29]. It was not studied with respect to the question of this paper, and the analyses
we provide below are new.

Proof of Theorem 1.3. We will show that with overwhelming probability over choice of such R,
solving LTC relative toO = (R,PSPACE) is easy, but PAC learning relative toO = (R,PSPACE)
with respect to unsamplable distributions is hard.

Lemma 5.2 (PAC learning unsamplable distribution is hard). With probability 1 over R, for all
efficient algorithms A with oracle access to O = (R,PSPACE), and for all but finitely many n, let
z ∈ {0, 1}n be the hard instance on length n, then

Pr
A

[AO given access to (Sz ,Rz(Sz)) outputs h s.t. err((Sz,Rz(Sz)), h) ≤ 1
2 − n− log n] ≤ n− log n

The proof of this deferred to the full version. The intuition is that Rz(x) looks like a random
bit: the only way an algorithm could predict Rz(x) is either if x was one of the examples it was
given in the set of labelled examples, or if the learning algorithm finds the value z so that it can
query the oracle at Rz(x). The first case is unlikely because |Sz| ≈ 2n/2, while the second is unlikely
because z is chosen uniformly at random and therefore hard for the learning algorithm to find.

On the other hand, the following also holds:

Lemma 5.3 (Solving LTC easy). There is an efficient AO such that with probability 1 over the

choice of R where O = (R,PSPACE), AO solves LTC for the concept class SIZE
O(n2).

We sketch the proof of this lemma shortly. Together, these two lemmas imply Theorem 1.3.
Notice that we did not need to prove separately that Sz is unsamplable; this follows immediately since
learning w.r.t. Sz is hard while learning w.r.t efficiently samplable distributions is easy: Remark 3.4
and Lemma 5.3 imply that there is an efficient algorithm that solves PAC learning for the concept
class SIZE

O(n2) with respect to efficiently samplable distributions.



Proof of Lemma 5.3. The maximum likelihood approach: We will use a maximum likelihood
approach to solve LTC. The maximum likelihood algorithm says that, given a sample T = (x1, . . . , xt)
that was obtained from one distribution out of a class of distributions D, it suffices to pick the D ∈ D
such that Pr[Dt = T ] is maximized.

More formally, let MLD(x1, . . . , xt) = argmaxD∈D{Pr[Dt = (x1, . . . , xt)]}. The following holds:

Claim 5.4 (Folklore). Fix D of size |D| ≤ 2poly(n) and such that for every D ∈ D and every
x ∈ supp(D), Pr[D = x] ≥ 2−poly(n). Then for t = poly(n, 1/ε) and for any D ∈ D, it holds that:

Pr
x1,...,xt←RD

[MLD(x1, . . . , xt) = D′ ∧∆(D′, D) > ε] ≤ 2−n

We defer a proof to the full version.

Let DO be the class of distributions sampled by circuits in SIZE
O(n2). To solve LTC for

SIZE
O(n2), we would like to run the maximum likelihood approach over DO. However, in order

to calculate or even roughly approximate Pr[(DO)t = (x1, . . . , xt)] for distributions DO that might
be sampled by circuits including O gates, one would need to know how O = (R,PSPACE) behaves
everywhere, and this requires querying R exponentially many times.

Our approach is to still use the maximum likelihood approach, but rather than applying the
approach using DO as the class of distributions, we apply it to a related class D′q = {D′q,n}n∈N for
which having a PSPACE oracle is sufficient to calculate the maximum likelihood hypothesis.

Defining D′q using truncated oracles: D′q,n will be the following class of distributions. For

z ∈ {0, 1}n, S ⊆ {0, 1}n, define the function Rz,S
n : {0, 1}n × {0, 1}n → {0, 1} to be Rz,S

n (z, x) = 1 if
x ∈ S and zero elsewhere. Note that Rz,S

n can be concisely represented if |S| = poly(n). The class
of q(n)-truncated oracles on length n is the following:

Rq,n =
{

R = (Rz1,S1

1 , . . . , Rzn,Sn
n ) | ∀i ∈ [n], zi ∈ {0, 1}i, Si ⊆ {0, 1}i, |Si| ≤ q(n)

}

A distribution D is in D′q,n if there exists an R ∈ Rq,n2 and oracle circuit of size n2 that has (in
addition to AND, OR, and NOT gates) PSPACE gates and R gates. Note that the circuit is
allowed oracle gates only for a single R ∈ Rq,n2 , or in other words it cannot have two different kind
of oracle gates evaluating two different R 6= R′ ∈ Rε,n2 . Also note that because we can explicitly

represent Si, each of these circuits is contained in SIZE
PSPACE(n3(1 + q)).

The following straightforward claim says that, with a PSPACE oracle, it is possible to efficiently
evaluate the probability that D ∈ D′q,n generates a particular sample:

Claim 5.5. There exists an algorithm using a PSPACE oracle that runs in time poly(n, 1/ε) and
computes MLD′

q,n
.

This follows from the simple fact that calculating Pr[D = x] for a distribution D that is sam-

plable by a SIZE
PSPACE(poly(n)) circuit can be efficiently done with a PSPACE oracle. Since, as

remarked above, D′q,n can be sampled by SIZE
PSPACE(n3(1 + q)) circuits, this suffices to build the

algorithm in Claim 5.5.
It therefore remains to prove that, with high probability over the choice of funtion R, the class

D′q,n is a good approximation for the class DO = {DOn }n∈N sampled by circuits in SIZE
O(n2). We say

that DOn is ε-approximable by D′ if for every D ∈ DOn , there exists D′ ∈ D′ such that ∆(D, D′) ≤ ε.

Lemma 5.6. For all n, ε, let q = 16n9/ε3, then PrR[DOn is ε-approximable by D′q,n] > 1− 2−n.

We defer the proof of this lemma to the full version. We briefly sketch the intuition here: let
C ∈ SIZE

O(n2) be the circuit sampling D. Following an idea of [29], we prove that it is only necessary
to know the queries that C makes to R that are “heavy”, i.e. that occur with large probability.
Then we can simply replace R gates by a truth table that includes values for all the heavy queries.
This modified circuit is a circuit in D′q, and we show that this modification does not change the
behavior of the output distribution by much.

Next use Lemma 5.6 to prove the theorem.



The learning algorithm ALTC. We now combine our claims to obtain the following algorithm:

Algorithm 5.7.
Algorithm ALTC: input size n, error parameter ε.

1. Let t = poly(n, 2/ε) be the appropriate polynomial to apply Claim 5.4 with error ε/2. ALTC

draws t examples x1, . . . , xt from D.

2. Using the algorithm of Claim 5.5, set q = 16n9(2t/ε)3 and compute D′ = MLD′

q,n
(x1, . . . , xt).

Output D′.

Proof of correctness: We prove that ALTC indeed solves the LTC problem for SIZE
O(n2). By

Theorem 2.1, it suffices to show that for all n, with probability 1−2−n over the choice of R, it holds
for all D ∈ DOn that

Pr
x1,...,xt←RD

[ALTC(x1, . . . , xt) = D′ ∧ ∆(D′, D) > ε] ≤ ε (5.1)

(This error can be reduced to 2−n by repeating ALTC and taking the best hypothesis it output.)
For q = 16n9(2t/ε)3, Lemma 5.6 implies that with probability 1− 2−n over the choice of R, DOn is
(ε/2t)-approximable by D′q,n. In this case, for every D ∈ DOn , there exists D′ ∈ D′q,n such that by

the triangle inequality it holds that ∆(Dt, (D′)t) ≤ ε/2. Therefore

Pr
x1,...,xt←RD

[ALTC = D′ ∧∆(D′, D) > ε] ≤ Pr
x1,...,xt←RD′

[ALTC = D′′ ∧∆(D′′, D) > ε] + ε/2

≤ Pr
x1,...,xt←RD′

[ALTC = D′′ ∧∆(D′′, D′) > ε− ε/(2t)] + ε/2

≤ 2−n + ε/2 ≤ ε

where penultimate inequality follows from Claim 5.4, since D′ ∈ D′q,n and ALTC evaluates MLD′

q,n

(the conditions of the hypothesis are satisfied because D is samplable by a polynomial-size oracle
circuit). This proves Equation 5.1. Furthermore, observe that Claim 5.5 implies that ALTC runs in
polynomial time using a (R,PSPACE) oracle.
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