
Proceedings of Machine Learning Research vol 134:1–6, 2021 34th Annual Conference on Learning Theory

Open Problem: Are all VC-classes CPAC learnable?

Sushant Agarwal SUSHANT.AGARWAL@UWATERLOO.CA
Nivasini Ananthakrishnan NANANTHA@UWATERLOO.CA
Shai Ben-David SHAI@UWATERLOO.CA

∗

Tosca Lechner TLECHNER@UWATERLOO.CA
David R. Cheriton School of Computer Science
University of Waterloo, Waterloo, ON, Canada

Ruth Urner RUTH@EECS.YORKU.CA

Lassonde School of Engineering, EECS Department
York University, Toronto, ON, Canada

Editors: Mikhail Belkin and Samory Kpotufe

Abstract
A few years ago, it was shown that there exist basic statistical learning problems whose learnability
can not be determined within ZFC (Ben-David et al., 2017, 2019). Such independence, and the im-
plied impossibility of characterizing learnability of a class by any combinatorial parameter, stems
from the basic definitions viewing learners as arbitrary functions. That level of generality not only
results in unprovability issues but is also problematic from the perspective of modeling practical
machine learning, where learners and predictors are computable objects. In light of that, it is natural
to consider learnability by algorithms that output computable predictors (both learners and predic-
tors are then representable as finite objects). A recent study initiated a theory of such models of
learning (Agarwal et al., 2020). It proposed the notion of CPAC learnability, by adding some basic
computability requirements into a PAC learning framework. As a first step towards a characteriza-
tion of learnability in the CPAC framework, Agarwal et al. (2020) showed that CPAC learnability
of a binary hypothesis class is not implied by the finiteness of its VC-dimension anymore, as far
as proper learners are concerned. A major remaining open question is whether a similar result
holds also for improper learning. Namely, does there exist a computable concept class consisting
of computable classifiers, that has a finite VC-dimension but no computable learner can PAC learn
it (even if the learner is not restricted to output a hypothesis that is a member of the class)?
Keywords: Computability, PAC learning, VC-Dimension

1. Introduction

A few years ago, a study established the existence of basic learning problems whose learnability
(even in the sense of weak learning) cannot be determined by the common notions of mathematical
proofs, namely the set theory ZFC (Ben-David et al., 2017, 2019). A closer look reveals that the
standard notion of statistical learnability, initiatiated by Vapnik and Chervonenkis, in which (PAC)
learnability is characterized by the finiteness of the VC-dimension, refers to learners as general
functions from training samples to predictors, which also are just functions (Vapnik and Chervo-
nenkis, 1971). Had we required learners to be computable functions, there would have been a finite
representation for each learner (as the code for the program implementing it), ruling out indepen-
dence of ZFC results of the type shown in Ben-David et al. (2017, 2019).

∗ Also, faculty member at the Vector Institute, Toronto

c© 2021 S. Agarwal, N. Ananthakrishnan, S. Ben-David, T. Lechner & R. Urner.



AGARWAL ANANTHAKRISHNAN BEN-DAVID LECHNER URNER

Strengthening the definitions of learnability by allowing only computable learners, arguably
would also better reflect our intention of modeling machine learning. Valiant’s computational learn-
ing theory framework of PAC learnability combined the statistical success condition with a re-
quirement that learners are algorithms whose running time is polynomial in 1

ε , log
(
1
δ

)
and some

parameter d of the function class, for example, the Euclidean dimension of the feature space in the
case of linear classifiers (Valiant, 1984; Haussler, 1992). A recent study initiated the investigation of
an intermediate setup in the setting of binary classification: learnability with computable learners
that are required to output computable predictors, but are not otherwise restricted by any efficiency
requirements (Agarwal et al., 2020). This framework, which we formally review in the next section,
was termed computable PAC (CPAC) learnability.

Of course, restricting the set of candidate learners from general functions to computable func-
tions can only result in a decrease in the scope of learnable classes. Indeed, it was shown that there
exist classes of finite VC-dimension that cannot be learned by any proper computable learner in
the CPAC setup Agarwal et al. (2020). That is, for proper computable learners (where the learner
is required to always output a function from the hypothesis class) VC-dimension is not a sufficient
condition for CPAC learnability. However, the question of whether this is also the case for a general
learning setup, where the learner is not required to output a function from the fixed hypothesis class,
remained open:

Open Question Are there decidable classes H with finite VC-dimension that are not CPAC learn-
able in the agnostic case, even when the learner is allowed to output arbitrary computable
classifiers?

As shown in Agarwal et al. (2020) major results of the usual unrestricted learning setup break
down upon restricting the learners to being computable. It is intriguing to develop a theory of
computable learning and figure out which of the other fundamental results in the PAC setup have
counterparts in the CPAC model. In particular:

Open Question Is there a combinatorial characterization of (proper and/or improper) learnability
of binary classification by computable learners?

Also, it remains intriguing whether the lack of computability requirements was the crucial com-
ponent in establishing the impossibility of characterizing general (EMAX) learnability by a combi-
natorial parameter (Ben-David et al., 2017, 2019). Namely:

Open Question Is there a combinatorial characterization of EMAX learnability by computable
learners?

In Section 2 below we review the CPAC setup and in Section 3 we provide further background
to the problem posed here.

2. Setup

2.1. General background

Computability Let Σ = {0, 1} be a binary alphabet and let Σ∗ be the set of all finite words over
Σ. Note that we can naturally identify Σ∗ with the natural numbers N or with the set of all finite
subsets of natural numbers. We will often implicitly assume that we fixed one such encoding.

2



OPEN PROBLEM: LEARNABILITY WIH COMPUTABLE LEARNERS

We further assume that we fix some programming language and thus use the existence of Turing
machines synonymously with the existence of some program or algorithm (in our fixed language).
A function f : Σ∗ → Σ∗ is said to be computable if there exists a program P that halts on every
input σ ∈ Σ∗ and we have P (σ) = f(σ) for every σ ∈ Σ∗. A subset S of Σ∗ is called recursively
enumerable (RE) if there exists a program P that takes natural numbers as input, halts on every
input and whose range is S. We call a set S ⊆ Σ∗ decidable if there exists a program P that halts
on every input σ ∈ Σ∗ and outputs 1 if σ ∈ S and outputs 0 otherwise.

Learning We let X = N denote the domain and Y = {0, 1} denote the label space. A hypothesis
is a function h : X → Y . We will often identify such binary functions h with the subset of the
domain that h maps to 1 and denote this as Xh = h−1(1). A hypothesis class H ⊆ Y X is a set
of hypotheses. As is common in learning theory, we assume that data is generated i.i.d. by some
distributionD overX×{0, 1}. We denote the error of a hypothesis hwith respect to the distribution
D by LD(h) = Prob(x,y)∼D[h(x) 6= y]. A learner is a function that takes in a finite sequence of
labeled domain points S = ((x1, y1), . . . , (xn, yn)) and outputs a hypothesis h.

The standard notion of PAC learnability reflects a guarantee for success from finite sample
sizes that holds uniformly for all functions in the hypothesis class H (and uniformly overall data-
generating distributions) (Valiant, 1984; Haussler, 1992). We next review the extension of the frame-
work to computable learners with computable outputs, namely the CPAC framework.

2.2. CPAC learnability

While the CPAC framework does not impose any (polynomial) efficiency requirements on the the
runtime of our learners, it requires the learners as well as the output hypotheses to be computable. It
is noteworthy that defining a notion of “computable class of functions ” is not straightforward (see
Remark 4 in Agarwal et al. (2020)), as computability is defined as a property of sets of finite words,
while binary classifiers are infinite objects – functions from N to {0, 1}. More rigorously, the classic
reductions from the Halting problem show that simplicity of the functions in a set of functions does
not imply that the set of programs that encode these simple functions is decidable: Even for a set
containing only one simplest function, say the constant-zero function, the set of all programs that
encode it (in any fixed given programming language) is not decidable.

Thus, the CPAC framework considers the following two computability requirements for repre-
sentations of classes of computable functions (Definitions 5 and 6 in Agarwal et al. (2020)).

Definition 1 (Decidable Representation (DR) of a Hypothesis class) We say that a class of func-
tions, H, is Decidably Representable (DR) if there exists a decidable set of programs P such that
the set of all functions computed by a program in P is equal toH.

Definition 2 (Recursively Enumerable Representation (RER) of a Hypothesis class) We say that
a class of functions H is Recursively Enumerably Representable (RER) if there exists a recursively
enumerable set of programs P such that the set of all functions computed by a program in P is
equal toH.

A minimal reasonable requirement on the output of a CPAC learner is that it uses a represen-
tation that allows for evaluating the output hypothesis on every input of the domain. For example,
for a class of functions that have constant output except on a finite subset of their domain, one may
also represent the functions by a list of input/output pairs on their effective domain (and one entry

3



AGARWAL ANANTHAKRISHNAN BEN-DAVID LECHNER URNER

of the output on the rest of the domain), and a learner may output that list. Note that classes that are
encodable in this way are not necessarily DR or RER however.

Computable PAC learnability, or CPAC learnability for short, is defined as follow (Definition 7
in Agarwal et al. (2020)).

Definition 3 (CPAC learnability) We say that a class H is (agnostic) CPAC learnable, if there is
a computable (agnostic) PAC learner for H that uses a representation for the predictors it outputs,
which allows for evaluating the outputted function on each domain point. If the learner always
outputs a (representation of) a hypothesis in classH, we call it a proper CPAC learner and the class
proper CPAC learnable.

In addition, one may require that the CPAC learner uses representations according to the defini-
tions of DR and RER classes.

3. Open Questions

We will now give a brief summary of the results in Agarwal et al. (2020) and detail the questions
that still remain as open questions from this work. In Agarwal et al. (2020) proper CPAC learning
was analysed. It was shown there are classes with finite VC dimension that cannot be properly
CPAC learned in the realizable case. When requiring the hypothesis class to be recursively enumer-
able, however, we get a distinction between the agnostic and the realizable case: Any recursively
enumerable class of finite VC dimension is proper CPAC learnable in the realizable case, but there
exist decidable hypothesis classes of finite VC dimension that are not proper agnostically CPAC
learnable. Whether hypothesis classes of finite VC dimension exist which are not improperly CPAC
learnable in the agnostic case remains an open question. The following tables summarize the results
from Agarwal et al. (2020) for proper learning and how they transfer to the improper case, serving
as an illustration of the remaining open cases. All Theorem numbers refer to Theorems therein.

Proper Learning
Any class RE class DR class

Realizable
PAC ; CPAC

Theorem 9
PAC⇒ CPAC
Theorem 10

PAC⇒ CPAC
implied by Theorem 10

Agnostic
PAC ; CPAC

implied Theorem 11
PAC ; CPAC

implied by Theorem 11
PAC ; CPAC
Theorem 11

Improper Learning
Any class RE class DR class

Realizable open
PAC⇒ CPAC

implied by Theorem 10
PAC⇒ CPAC

implied by Theorem 10
Agnostic open open open

3.1. Some initial steps and conjectures from Agarwal et al. (2020)

We here review some insights and conjectures about improper learning from Agarwal et al. (2020).
In the next subsection we then provide a description of a candidate hypothesis which is decidable
and has finite VC dimension and which we conjecture to not be improperly CPAC learnable in the
agnostic case.

4



OPEN PROBLEM: LEARNABILITY WIH COMPUTABLE LEARNERS

To understand the implications of CPAC-learnability in the more general setup of non-proper
learners, it may be useful to consider the following reduction inspired by a reduction in Daniely et al.
(2014). For a hypothesis class H and a sequence S = ((x1, y1), (x2, y2), . . . (xm, ym)) of labeled
domain points, we say that S has a realizable labeling if there is an h ∈ H such that yi = h(xi) of
all pairs (xi, yi) ∈ S. We say that S has a random labeling if each yi was the result of a random
coin flip where Prob(yi = 1) = Prob(yi = 0) = 1

2 . The following task description uses this
terminology:

Definition 4 (The Distinguishing Problem) Given a hypothesis class H, we say that a (poten-
tially randomized) function A :

⋃
n∈N(X × {0, 1})n → {”realizable”,”unrealizable”} solves

the distinguishing problem if for any δ > 0, there is an M ∈ N such that for any sequence
S = (x1, . . . , xM ) ∈ XM , we have

• for T - a realizable labeling of S, Pr(A(T ) = ”realizable”) ≥ 1− δ,

• for T - a random labeling of S, Pr(A(T ) = ”unrealizable”) ≥ 1− δ,

where the probability is taken over the randomization of A and the random coin flips that generated
the labels in the latter case.

Theorem 5 (Theorem 22 from Agarwal et al. (2020)) If there is an (agnostic) CPAC learner of
a class H whose range is a class of finite VC-dimension, we can solve the distinguishing problem
forH with a computable distinguisher.

It is noteworthy that the classes Hhalting and HLT that established the impossibility results
for proper CPAC learning in Agarwal et al. (2020), are actually improperly CPAC learnable. All
functions in these classes map at most two domain-points to 1 and the rest of the domain to 0. They
are thus both subclasses of H2, the class of all hypotheses h that map at most 2 domain points to
label 1. This larger class is actually properly CPAC learnable, which implies that both subclasses
Hhalting andHLT are improperly CPAC learnable. This motivates the first conjecture:

Conjecture 6 If a class H is (improperly) CPAC learnable, then there is a superclass H′ ⊇ H
such thatH′ is proper CPAC learnable.

Theorem 5, along with Conjecture 6 leads to the following corollary.

Corollary 7 IfH is (improper) CPAC learnable, thenH is computably distinguishable.

We also conjecture the following:

Conjecture 8 There is a classH consisting of computable hypotheses, and with finite VC-dimension,
such thatH is not computably distinguishable.

Corollary 7, along with Conjecture 8 would imply the existence of a class H of finite VC-
Dimension that is not (improperly) CPAC learnable.

5



AGARWAL ANANTHAKRISHNAN BEN-DAVID LECHNER URNER

3.2. Candidate hypothesis class

We will now present a candidate hypothesis, which we conjecture not to be CPAC learnable. Let
the domain set X be the set of natural numbers, N. Fix a proof system for first order logic over a
rich enough vocabulary that is sound and complete (i.e., every first order formula of that language
has a proof if and only if it is a logical truth). By “rich enough vocabulary” we mean a finite set
of functions symbols and relation symbols so that the set of all its logical truths is undecidable,
for example a language for the natural numbers with the ordering, addition, and multiplication.
Enumerate all proofs and logical statements of the proof system. We can now define an order ≺
over theorems (i.e., statements with a proof), by i ≺ j if and only if the proof of i has lower number
in the enumeration of proofs than the proof of j. Let

hi(x) =

{
1 if the logical statement with number x is a theorem and x ≺ i
0 otherwise

.

We can now define the classHinit = {hi : i ∈ N}. It is easy to see that the classHinit is decidable
and has VC-dimension 1.

Conjecture 9 The classHinit is not improperly CPAC learnable.

References

Sushant Agarwal, Nivasini Ananthakrishnan, Shai Ben-David, Tosca Lechner, and Ruth Urner. On
learnability wih computable learners. In Algorithmic Learning Theory, ALT, pages 48–60, 2020.

Shai Ben-David, Pavel Hrubes, Shay Moran, Amir Shpilka, and Amir Yehudayoff. A learning
problem that is independent of the set theory ZFC axioms. CoRR, abs/1711.05195, 2017. URL
http://arxiv.org/abs/1711.05195.

Shai Ben-David, Pavel Hrubes, Shay Moran, Amir Shpilka, and Amir Yehudayoff. Learnability can
be undecidable. Nature Machine Intelligence, 1:44–48, 2019.

Amit Daniely, Nati Linial, and Shai Shalev-Shwartz. From average case complexity to improper
learning complexity. In Symposium on Theory of Computing, STOC, pages 441–448, 2014.

David Haussler. Decision theoretic generalizations of the PAC model for neural net and other
learning applications. Inf. Comput., 100(1):78–150, 1992.

Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984.

V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies of
events to their probabilities. Theory of Probability & Its Applications, 16(2):264–280, 1971.

6

http://arxiv.org/abs/1711.05195

	Introduction
	Setup
	General background
	CPAC learnability

	Open Questions
	Some initial steps and conjectures from alt/AgarwalABLU20
	Candidate hypothesis class


