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Abstract

Motivated by results in information-theory, we de-
scribe a modification of the popular boosting algo-
rithm AdaBoost and assess its performance both
theoretically and empirically. We provide theo-
retical and empirical evidence that the proposed
boosting scheme will have lower training and test-
ing error than the original (non- confidence-rated)
version of AdaBoost. Our modified boosting al-
gorithm and its analysis also suggests an explana-
tion for why boosting with confidence-rated pre-
dictions often markedly outperforms boosting with-
out confidence-rated predictions. Finally, our mo-
tivations and analyses provide further impetus for
the study of boosting in an information-theoretic,
as opposed to decision-theoretic, light.

1 Introduction

Boosting is a mechanism fortraining a sequence of “weak”
learners andcombining the hypotheses generated by these
weak learners so as to obtain an aggregate hypothesis which
is highly accurate. One of the most popular and widely stud-
ied [11, 5, 4, 9, 10, 1, 2, 3, 7, 8] boosting algorithms isAd-
aBoost, first proposed by Freund and Schapire [5]. AdaBoost
proceeds in rounds; in each round, a weak learner istrained,
the performance of its output hypothesis isassessed to ob-
tain a relativeweight for its predictions in the output com-
bination, and the distribution ismodified for the next boost-
ing round according to this weight. AdaBoost essentially
assesses the performance of weak hypotheses by measuring
the overallerror of the hypothesis.

In this paper, we argue that while predictive error is most
often used to assess the overall performance of learning algo-
rithms, it is not necessarily the best measure of performance
for weak hypotheses in a boosting scenario. We argue that
the true performance of a weak hypothesis iscaptured by
the joint distribution of its predictions with the correct la-
bels, and that this performance is bestmeasured for the pur-
poses of boosting by theodds of making a correct predic-
tion given a particular output label or by such information-
theoretic measures as mutual information or conditional en-
tropy.

�This work partially supported by NSF Grant EIA-98-02068.

Based on these ideas, we propose a modification of the
AdaBoost algorithm and analyze its performance both theo-
retically and empirically. We derive bounds on the training
error of the proposed boosting algorithm and give evidence
that its training error is lower than that of AdaBoost. Our
analysis yields a criterion for determining the best weak hy-
pothesis to use in any round of boosting in order to minimize
training error.

For the case of non- confidence-rated hypotheses, we
demonstrate that AdaBoost does not generally make good
use of the best weak hypotheses as dictated by information-
theory, while our proposed modified boostingalgorithm does.
For the case of confidence-rated hypotheses, there is a strong
connection between our proposed modified boosting algo-
rithm and techniques suggested by Schapire and Singer [11].
Our analysis suggests an information-theoretic explanation
for why boosting with confidence-rated predictions markedly
outperforms boosting without confidence-rated predictions
in many cases. Together with other recent analyses (for ex-
ample, Kivinen and Warmuth [6]), this provides further im-
petus for the study of boosting in an information-theoretic,
as opposed to decision-theoretic, light.

Finally, we describe a number of experiments using UCI
and TREC data sets.

2 Motivation

Consider the version of AdaBoost proposed by Schapire and
Singer [11] as shown in Figure 1. Here, the sequence(x

1

; y

1

),
(x

2

; y

2

), . . . aretraining examples where eachx
i

is an ele-
ment of a knowninstance space X (e.g., f0; 1gn, Rn, etc.)
and eachy

i

is an element of a knownlabel space Y (e.g.,
f0; 1g, f1; : : : ; kg, etc.). The version of AdaBoost given
in Figure 1 is concerned with thebinary classification prob-
lem and for mathematical convenience uses af�1;+1g label
space.

Like most boosting algorithms, AdaBoost proceeds in
rounds. In each roundt, a weak learner is trained using a
local distributionD

t

(initially uniform) over the training ex-
amples, and a weak hypothesish

t

is returned. Note thath
t

is assumed to have rangeR; thesign of h
t

is interpreted as
the desiredlabel, and themagnitude of h

t

is interpreted as
a confidence in this label assessment. Such hypotheses are
referred to as havingconfidence-rated predictions. When
hypotheses are restricted to have rangef�1;+1g, then this
version of AdaBoost is identical to Freund and Schapire’s
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Given: (x
1

; y

1

); : : : ; (x

m

; y

m

);x

i

2 X ; y

i

2 f�1;+1g

InitializeD
1

(i) = 1=m:

For t = 1; : : : ; T :

1. Train weak learner using distributionD
t

.

2. Get weak hypothesish
t

: X ! R.

3. Choose�
t

2 R.

4. Update:

D

t+1

(i) =

D

t

(i) exp(��

t

y

i

h

t

(x

i

))

Z

t

whereZ
t

is a normalization factor (chosen
so thatD

t+1

will be a distribution).

Output the final hypothesis:

H(x) = sign

 

T

X

t=1

�

t

h

t

(x)

!

:

Figure 1: Schapire and Singer’s AdaBoost [11]

original version [5].
Next, the performance ofh

t

with respect to the training
distribution is assessed, and this performance is used in de-
termining the�

t

parameter used in the distribution update
rule; the “better” the performance ofh

t

, the “larger” a value
of �

t

will be chosen. The update rule then modifies the dis-
tribution for training in the next round: correctly classified
examples are decreased in weight and incorrectly classified
examples are increased in weight. The larger�

t

, and hence
the better the performance ofh

t

, the more the distribution is
“skewed.” Finally, the output hypothesis is a linear combina-
tion of the outputs of the respective weak hypotheses where
the weight associated with a weak hypothesis is its perfor-
mance assessment�

t

.
For the purposes of motivating our proposed algorithm

for boosting, let us restrict ourselves for the moment to hy-
potheses withf�1;+1g range. Consider drawing examples
(x

i

; y

i

) at random from the training set according to the dis-
tribution D, and letY andH be random variables corre-
sponding to the labels,y

i

, and predictions,h(x
i

), respec-
tively. We may then consider thejoint distributionp

D

(Y;H)

wherep
D

(Y = y;H = h) is the probability of drawing an
example(x

i

; y

i

) according toD wherey
i

= y andh(x
i

) =

h; we denote this as follows

p

D

(Y = y;H = h) = Pr

i�D

t

[y

i

= y; h(x

i

) = h℄:

Note that the four probabilities

p

D

(Y = �1;H = �1);

p

D

(Y = �1;H = +1);

p

D

(Y = +1;H = �1); and
p

D

(Y = +1;H = +1)

are simply the weight of true negative, false positive, false
negative and true positive predictions. Finally, note thatthe

h
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=
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=
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=
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=
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Figure 2: Joint distributionsp
D

(Y;H

1

) and p

D

(Y;H

2

).
Rows correspond to correct labels and columns correspond
to predictions.

error of a hypothesis is simply the sum of the false positive
and false negative weights;i.e.,

error

D

(h) =

p

D

(Y = �1;H = +1) + p

D

(Y = +1;H = �1):

Schapire and Singer [11] have shown that the perfor-
mance of AdaBoost is optimized when�

t

is set as follows.
Let �

t

= error

D

t

(h

t

), then�
t

=

1

2

ln

1��

t

�

t

. Thus, the
“quality” of the predictorh

t

is (one-half) the log-odds of
h

t

making a correct prediction. For this setting of�

t

, the
distribution update rule has the effect of uniformly scaling
correctly classified examples by a

p

�

t

=(1� �

t

) factor; sim-
ilarly, incorrectly classified examples are uniformly scaled
by a

p

(1� �

t

)=�

t

factor. The net effect of this scaling en-
sures thaterror

D

t+1

(h

t

) = 1=2; in other words,Y andH
t

are “uncorrelated” with respect to error for the distribution
D

t+1

.
The motivation for our proposed boosting algorithm is

the fact that the qualitative and quantitative performanceof
a predictorh is not entirely captured by error. The perfor-
manceis captured by the joint distributionp

D

(Y;H), and
various measures of performance can be calculated from this
joint distribution, where error is but one such measure. Con-
sider, for example, two predictorsh

1

andh
2

and their re-
spective joint distributions,p

D

(Y;H

1

) and p

D

(Y;H

2

), as
shown in Figure 2. Whileh

1

andh
2

have the same error,
25%, they are quite different qualitatively. The hypothe-
sis h

1

has a lower false negative rate at the expense of a
higher false positive rate. From an information-theoreticper-
spective, more information about the correct label is gained
whenh

1

predicts�1 than whenh
1

predicts+1. In fact,
this information gain can bequantified; in bits, it is the en-
tropy of Y minus the conditional entropy ofY given h

1

,
H

2

(Y )�H

2

(Y jH

1

= h

1

). In fact, the expected information
gained about the correct label given a prediction is precisely
the mutual information ofY andH

1

, I(Y;H
1

); we strongly
believe that weak hypothesis should be optimized with re-
spect to this measure, and experiments with our proposed
boosting algorithm bear out the belief.

Now consider theodds of a correct predictiongiven the
actual prediction made. Whenh

1

predicts�1, its odds of
being correct are 5:1; whenh

1

predicts+1, its odds of being
correct are 7:3. Forh

2

, both odds are 3:1, and this corre-
sponds to the overall odds of being correct for both hypothe-
ses as well. Thus, negative predictions byh

1

are more trust-
worthy than positive predictions, and we canassess this rela-
tive trustworthiness using the joint distribution. We propose
that such knowledge should be used by the boosting algo-
rithm itself: whereas AdaBoost assigns anoverall weight�

t



202

Given: (x
1

; y

1

); : : : ; (x

m

; y

m

);x

i

2 X ; y

i

2 f�1;+1g

InitializeD
1

(i) = 1=m:

For t = 1; : : : ; T :

1. Train weak learner using distributionD
t

.

2. Get weak hypothesish
t

: X ! R.

3. Choose�
t

[�1℄ 2 R and �

t

[+1℄ 2 R;

let �
t

(z) =

�

�

t

[�1℄ if z < 0,
�

t

[+1℄ if z � 0.

4. Update:

D

t+1

(i) =

D

t

(i) exp(��

t

(h

t

(x

i

))y

i

h

t

(x

i

))

Z

t

whereZ
t

is a normalization factor (chosen
so thatD

t+1

will be a distribution).

Output the final hypothesis:

H(x) = sign

 

T

X

t=1

�

t

(h

t

(x))h

t

(x)

!

:

Figure 3: InfoBoost

to the predictions of any given weak hypothesish

t

, our pro-
posed boosting algorithm assignsindividual weights to each
of the possible labels predicted byh

t

.
When hypothesis predictions are restricted to the range

f�1;+1g, the weight assigned toh
t

by AdaBoost is propor-
tional to the log-odds thath

t

will make a correct prediction.
In the proposed modification to AdaBoost, we derive the op-
timal weights that should be assigned individually to positive
and negative predictions, and we provide evidence, both the-
oretical and empirical, that the proposed algorithm will have
lower training and testing error.

When hypothesis predictions are allowed to be confidence-
rated, our techniques provide an alternate derivation of the
weights Schapire and Singer [11] assign to 2-block domain-
partitioning hypotheses. Our analysis further suggests an
information-theoretic explanation for why these weights are
good and hence why the use of confidence-rated hypotheses
may out-perform the use of non- confidence-rated hypothe-
ses.

3 InfoBoost

In this section, we describe and analyze our proposed mod-
ification of AdaBoost, as motivated in the previous section.
Our descriptions and analyses are modeled closely on those
used by Schapire and Singer [11]. Consider the proposed
boosting algorithm shown in Figure 3; for purposes of dis-
tinction, we refer to this boosting algorithm asInfoBoost.
InfoBoost is mechanically quite similar to AdaBoost except
in three important regards. First, in each roundt of boost-
ing, two performance parameters are calculated or chosen:

�

t

[�1℄ and�
t

[+1℄. As motivated in the previous section,
�

t

[�1℄ is a function of the quality of a negative prediction,
and�

t

[+1℄ is a function of the quality of a positive predic-
tion. Second, the distribution update rule effectively recog-
nizesfour classes of examples (false positive, false negative,
true positive, and true negative), and the update rule scales
the weight of any example according to its class. Third, the
final hypothesis weights the outputs of the individual weak
hypotheses differently, depending on their actual prediction
values.

3.1 Analysis

We now analyze the performance of InfoBoost and derive
optimal settings for the�

t

[�℄ parameters; again, our analy-
sis is closely modeled on that of Schapire and Singer [11].
We first calculate the final distribution over the examples by
unfolding the distribution update recurrence

D

T+1

(i) =

D

T

(i) exp(��

t

(h

t

(x

i

))y

i

h

t

(x

i

))

Z

t

=

exp(�

P

t

�

t

(h

t

(x

i

))y

i

h

t

(x

i

))

m

Q

t

Z

t

:

Note that the exponent in the numerator of this quantity is
quite similar to the final hypothesis itself. Lettingf(x) =

P

t

�

t

(h

t

(x))h

t

(x), we haveH(x) = sign(f(x)) and

D

T+1

(i) =

exp(�y

i

f(x

i

))

m

Q

t

Z

t

: (1)

Let [�℄ be an indicator variable which is 1 if the predicate�
is true and 0 otherwise. We then have the following sequence
of implications.

H(x

i

) 6= y

i

) y

i

f(x

i

) � 0

) exp(�y

i

f(x

i

)) � 1

) [H(x

i

) 6= y

i

℄ � exp(�y

i

f(x

i

)); and

H(x

i

) = y

i

) y

i

f(x

i

) � 0

) exp(�y

i

f(x

i

)) � 0

) [H(x

i

) 6= y

i

℄ � exp(�y

i

f(x

i

)):

Thus, in all cases we have[H(x

i

) 6= y

i

℄ � exp(�y

i

f(x

i

)).
To bound the weight of misclassified examples, we need
only sum our indicator variable over all examples and divide
by m, as the initial distribution was uniform. Applying the
above fact and Equation 1, we have the following.

1

m

X

i

[H(x

i

) 6= y

i

℄ �

1

m

X

i

exp(�y

i

f(x

i

))

=

1

m

X

i

 

mD

T+1

(i)

Y

t

Z

t

!

=

Y

t

Z

t

We thus have the following result analagous to AdaBoost.

Theorem 1 The training error of InfoBoost is at most

error

D

(H(x)) �

T

Y

t=1

Z

t

:
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3.2 Optimizing �[�1℄ and �[+1℄

Now, in order to optimize the performance of InfoBoost, we
must ensure thatZ

t

is as small as possible in each round of
boosting. In roundt, we have

Z

t

=

m

X

i=1

D

t

(i) exp(��

t

(h

t

(x

i

))y

i

h

t

(x

i

)):

Following Schapire and Singer [11], let us fixt and setu
i

=

y

i

h

t

(x

i

). We will allow confidence-rated predictions, though
restrict their range to[�1;+1℄. We then have

Z =

X

i:h(x

i

)<0

D(i)e

��[�1℄�u

i

+

X

i:h(x

i

)�0

D(i)e

��[+1℄�u

i

�

X

i:h(x

i

)<0

�

1 + u

i

2

e

��[�1℄

+

1� u

i

2

e

�[�1℄

�

+

X

i:h(x

i

)�0

�

1 + u

i

2

e

��[+1℄

+

1� u

i

2

e

�[+1℄

�

: (2)

Solving the equations�Z=��[�1℄ = 0 and�Z=��[+1℄ =

0, we find thatZ is minimized when

�[�1℄ =

1

2

ln

�

1 + r[�1℄

1� r[�1℄

�

�[+1℄ =

1

2

ln

�

1 + r[+1℄

1� r[+1℄

�

and where

r[�1℄ =

P

i:h(x

i

)<0

D(i)u

i

P

i:h(x

i

)<0

D(i)

r[+1℄ =

P

i:h(x

i

)�0

D(i)u

i

P

i:h(x

i

)�0

D(i)

:

Plugging these optimal values of�[�℄ into Equation 2, we
have

Z � Pr

D

[h < 0℄ �

p

1� r[�1℄

2

+

Pr

D

[h � 0℄ �

p

1� r[+1℄

2 (3)

where

Pr

D

[h < 0℄ =

X

i:h(x

i

)<0

D(i); and

Pr

D

[h � 0℄ =

X

i:h(x

i

)�0

D(i):

Theorem 2 For weak hypotheses whose range is [�1;+1℄,
the training error of InfoBoost is at most

error

D

(H(x)) �

T

Y

t=1

�

Pr

D

t

[h

t

< 0℄ �

p

1� r

t

[�1℄

2

+

Pr

D

t

[h

t

� 0℄ �

p

1� r

t

[+1℄

2

�

:

Finally, for confidence-rated hypotheses whose range is
outside[�1;+1℄, we note that the optimal settings for�

t

[�℄

can be determined numerically, in a manner similar to that
suggested by Schapire and Singer [11].

3.3 Comparison to AdaBoost

These results compare favorably to results obtained for Ad-
aBoost. Schapire and Singer [11] show that for AdaBoost,

� error

D

(H

0

(x)) �

Q

T

t=1

Z

0

t

and

� Z

0

�

p

1� r

2 wherer =

P

i

D

0

(i)u

i

.

Now consider fixing a local distributionD and running one
boosting round of both AdaBoost and InfoBoost with the
same weak learner; leth be the hypothesis returned by the
weak learner. We note thatr = Pr

D

[h < 0℄ � r[�1℄ +

Pr

D

[h � 0℄�r[+1℄. Furthermore, since
p

1� x

2 is a concave
down function, by a simple convexity argument we have

p

1� r

2

� Pr

D

[h < 0℄ �

p

1� r[�1℄

2

+

Pr

D

[h � 0℄ �

p

1� r[+1℄

2

: (4)

The inequality above is strict, unlessr[�1℄ = r[+1℄ or ei-
ther Pr

D

[h < 0℄ or Pr

D

[h � 0℄ is zero. Thus, we may
conclude that the upper bound onZ for InfoBoost is at most
the upper bound onZ for AdaBoost forany weak hypoth-
esis, even those optimized for AdaBoost. Of course, users
of AdaBoost would reasonably seek weak learners that op-
timize

p

1� r

2, while users of InfoBoost would reasonably
seek weak learners that optimize the expression on the right-
hand side of Equation 3. In this case, the difference in these
bounds would likely be even greater. We note, however, that
it is difficult to fairly compare the performance of AdaBoost
and InfoBoost since, in the above discussion, we are com-
paringupper bounds, and in general, the distributions used
by these boosters in any roundt will in all likelihood be dif-
ferent.

Finally, the effect seen in Equation 4 is particularly easy
to interpret when using hypotheses restricted to the range
f�1;+1g (i.e., hypotheses without confidence ratings). In
this case, we have

p

1� r

2

= 2

p

�(1� �)

p

1� r[�1℄

2

= 2

p

�[�1℄(1� �[�1℄)

p

1� r[+1℄

2

= 2

p

�[+1℄(1� �[+1℄)

where� is the error of the weak hypothesis,�[�1℄ is the
conditional error of the hypothesis given the prediction�1,
and �[+1℄ is theconditional error of the hypothesis given
the prediction+1. Thus, the bound onZ for AdaBoost is
2

p

�(1� �), and the bound onZ for InfoBoost is

Pr

D

[h < 0℄ � 2

p

�[�1℄(1� �[�1℄) +

Pr

D

[h � 0℄ � 2

p

�[+1℄(1� �[+1℄):

The plot in Figure 4 illustrates the difference in these bounds.

3.4 An Information-Theoretic Perspective

As motivated earlier, we believe that weak learners which
maximize mutual information (equivalently,minimize con-
ditional entropy) should be used in learning and boosting
— by maximizing mutual information, the uncertainty (en-
tropy) of the correct label is reduced as much as possible, in
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Figure 4: This is a plot of the function2
p

x(1� x). On the
x-axis,e is the error of a hypothesis, whilee[�1℄ ande[+1℄

are the respective conditional errors given the predictions�1

and+1, respectively. On they-axis,f(e) = 2

p

e(1� e) is
the bound onZ for AdaBoost, andy is the bound onZ for
InfoBoost.

an information-theoretic sense. In this section, we argue that
InfoBoost can make good use of such weak learners, while
the non- confidence-rated version of AdaBoost, in general,
can not. Our experimental results given in the next section
bear this out as well.

Consider hypotheses which are not confidence-rated;i.e.,
h : X ) f�1;+1g. As discussed in Section 2, the ef-
fect of AdaBoost’s update rule is to create anew distribution
D

t+1

such that the predictions of theprevious hypothesis
are uncorrelated with the correct labels using the error mea-
sure; i.e., error

D

t+1

(h

t

) = 1=2. However, we believe that
there are much better measures of correlation than error. Us-
ing the notation described in Section 2, consider the joint
distributionp

D

t+1

(Y;H

t

). We propose using either proba-
bilistic or information-theoretic measures of correlation. In
fact, when considering complete independence, these mea-
sures are equivalent: two random variables are probabilisti-
cally independent, and their mutual information is zero, pre-
cisely when their joint distribution is a product of marginal
distributions. The AdaBoost update rule doesnot guarantee
independence, while the InfoBoost update ruledoes guaran-
tee the probabilistic and information-theoretic independence
of Y andH

t

with respect toD
t+1

. We argue the former by
example in Figure 5; we argue the latter as follows. For hy-
potheses which are not confidence-rated, the optimal settings
for �[�1℄ and�[+1℄ are as follows

�[�1℄ =

1

2

ln

�

1� �[�1℄

�[�1℄

�

(5)

�[+1℄ =

1

2

ln

�

1� �[+1℄

�[+1℄

�

: (6)

Thus,�[�1℄ is one-half the log odds of being correct when
predicting�1, and�[+1℄ is one-half the log odds of being

h

t

�1 +1

�1

5

=

16

3

=

16

+1

1

=

16

7

=

16

h

t

�1 +1

�1

5

=

24

3

=

8

+1

1

=

8

7

=

24

h

t

�1 +1

�1

p

5=2

p

5+

p

21

p

21=2

p

5+

p

21

+1

p

5=2

p

5+

p

21

p

21=2

p

5+

p

21

Figure 5: From top to bottom, joint distributions
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) for the AdaBoost update rule, and
p
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t

) for the InfoBoost update rule. Rows corre-
spond to correct labels and columns correspond to predic-
tions. Note that the joint distribution produced by the Ada-
Boost update rule is not a product distribution; thus,H

t

and
Y are not independent with respect toD

t+1

. The joint dis-
tribution produced by the InfoBoost update rule is a product
distribution, however.

correct when predicting+1. The effect of the InfoBoost up-
date rule is to ensure that these odds are 1:1;i.e., the In-
foBoost update rule ensures that the weights of true nega-
tive and false negative examples are identical and that the
weights of true positive and false positive examples are iden-
tical. One can easily show that any joint distribution satisfy-
ing these requirements must be a product of its marginals and
that the error associated with such a joint distribution is 1/2.
Thus, the InfoBoost update rule guarantees that with respect
toD

t+1

, the predictions ofh
t

are uncorrelated with the cor-
rect labels in a probabilistic, information-theoreticanderror-
based sense.

The effect of these facts in practice is as follows. It
is possible that the weak hypothesis which maximizes mu-
tual information has an error rate of 1/2. In this situation,
AdaBoost will cease to improve: the AdaBoost update rule
will not modify the distribution over examples, and the same
weak hypothesis will be chosen in subsequent rounds. In our
experiments detailed in the following section, we see this ef-
fect with AdaBoost regularly and quite early, typically by the
50th boosting round in our experiments. However, this can-
not happen when using InfoBoost since the previous hypoth-
esis always has a mutual information of zero with respect to
the current distribution. In fact, InfoBoost most often per-
forms best in practice with a weak learner which maximizes
mutual information; these results are given in the next sec-
tion.

Finally, we note that when confidence-rated hypotheses
are allowed, the�[�℄ weights derived in Equations 5 and 6
are identical to theconfidences assigned by Schapire and
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Singer [11] to an analogous 2-block domain-partitioning hy-
pothesis. Thus, one probable explanation for why such con-
fidence-rated predictions can markedly outperform non- con-
fidence-rated predictions is that these confidence ratings,to-
gether with their use in the distribution update rule, guaran-
tee that, with respect to thesubsequent distribution, thecur-
rent (weak) hypothesis will be uncorrelated with the correct
labels in the strongest possible (information-theoretic)sense.
Note that simply being uncorrelated in an error-based sense
is a much weaker condition.

4 Experiments

As we were initially motivated in this work by the TREC
(Text Retrieval Conference) batch filtering task, we conducted
a number of experiments using TREC data, and they are
presented in the next section. Experiments comparing Ad-
aBoost and InfoBoost using the UCI machine learning datasets
are currently being conducted; preliminary results for the
Monk data sets are presented in a subsequent section.

4.1 TREC Experiments

In the TREC filtering task, a large collection oftext docu-
ments are provided, together with a collection oftopics and
relevance judgments. Each topic is a specification of inter-
est (e.g., “The downfall of communism in Eastern Europe”),
and for each topic, relevance assessments for a subset of the
given documents are provided.

We ran our experiments using data from TREC7. In this
competition, the document collection was the entire set of
AP newswire articles from 1988, 1989 and 1990; relevance
judgments were provided for 50 topics. Many of the topics in
this competition were anomalous; for example, a number of
topics had only a handful, or even just one, judged relevant
document. We eliminated those topics which had fewer than
150 judged relevant documents and conducted our experi-
ments for each of the remaining 18 topics using only those
documents for which relevance assessments were provided.
As the learning curves were similar across topics, we report
average prediction errors over all topics.

We created weak hypotheses from words as follows. For
any word in the collection, a weak hypothesis correspond-
ing to this word predicts+1 if the word appears in a given
document and�1 otherwise. We also considered anti-word
predictors which are identical to their corresponding word
predictors except in the signs of their predictions.1 We then
devised three weak learners:

1. Error: Returns the weak hypothesis which minimizes
the usual prediction error with respect to the given dis-
tribution. This weak learner is optimized for AdaBoost
in the sense described in Section 3.3.

2. Opt: Returns the weak hypothesis which minimizes,
with respect to the given distribution, the expression
given in the right-hand side of Equation 3. This weak
learner is optimized for InfoBoost in the sense described
in Section 3.3.

1Strictly speaking, anti-words are unnecessary, since bothAd-
aBoost and InfoBoost can make use of predictors which are anti-
correlated.

3. Mutual Information:Returns the weak hypothesis which
maximizes mutual information with respect to the given
distribution.

In the TREC7 competition, training occurred over the
1989 AP collection, and testing occurred over the 1988 and
1990 collections. We conducted five boosting experiments
over each of the 18 topics:

1. AdaBoost with the Error weak learner.

2. AdaBoost with the Mutual Information weak learner.

3. InfoBoost with the Error weak learner.

4. InfoBoost with the Opt weak learner.

5. InfoBoost with the Mutual Information weak learner.

Our results are given in Figure 6. With respect totrain-
ing error, we note that after about 50 rounds of boosting,
AdaBoost with the Mutual Information weak learner ceases
to make any progress. This in all likelihood is due to the
reasons outlined in Section 3.3. Of the remaining four com-
binations, AdaBoost with the Error weak learner performed
worst, followed by InfoBoost with the Error weak learner,
InfoBoost with the Mutual Information weak learner, and In-
foBoost with the Opt weak learner which performedbest.

With respect totesting error, AdaBoost with the Mu-
tual Information weak learner again ceased to improve after
roughly 50 rounds of boosting; its performance was much
worse than the others, leveling off at about 28% error.2 Of
the remaining four combinations, AdaBoost with the Error
weak learner performedworst, followed by InfoBoost with
the Error weak learner. InfoBoost with the Opt weak learner
and InfoBoost with the Mutual Information weak learner per-
formedbest; their performance was virtually indistinguish-
able after 300 rounds of boosting.

4.2 UCI Experiments

The Monk data sets, available at the University of Califor-
nia at Irvine’s machine learning repository,3 are particularly
simple with which to experiment (test sets are provided, all
attributes are discrete, and all labels are binary). We present
preliminary results for these data sets in Figures 7, 8 and 9
below. (Note that the performance of InfoBoost with the
Opt weak learner and InfoBoost with the Mutual Information
weak learner were essentially identical; their learning curves
are quite often superimposed.) Particularly interesting are
the results from the Monk 3 data set, wherein 5% classifica-
tion noise was deliberately added to the training set. On this
noisy data set, InfoBoost’s test error was substantially lower
than AdaBoost’s.

2We note that the trivial hypothesis which always predicts�1
had an average training and testing error of 29%; thus, the combi-
nation of AdaBoost with the Mutual Information weak learnerhad
negligible performance.

3http://www.ics.uci.edu/˜mlearn/MLRepository.html
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Figure 6: Average training and testing errors of five combination systems on TREC filtering data. The left plot is trainingerror,
and the right plot is testing error. Thex-axis corresponds to boosting round, and they-axis corresponds to average error over
18 topics.
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Figure 7: Average training and testing errors of five combination systems on the Monk 1 data set. The left plot is training error,
and the right plot is testing error. Thex-axis corresponds to boosting round, and they-axis corresponds to prediction error.
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Figure 8: Average training and testing errors of five combination systems on the Monk 2 data set. The left plot is training error,
and the right plot is testing error. Thex-axis corresponds to boosting round, and they-axis corresponds to prediction error.
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Figure 9: Average training and testing errors of five combination systems on the Monk 3 data set. The left plot is training error,
and the right plot is testing error. Thex-axis corresponds to boosting round, and they-axis corresponds to prediction error.

5 Conclusions

We have described a modification of AdaBoost and assessed
its performance, both theoretically and empirically. We have
provided theoretical and empirical evidence that the proposed
boosting scheme will have lower training and testing error
than the original (non- confidence-rated) version of AdaBoost.
Our modified boosting algorithm and its analysis also sug-
gests aninformation-theoretic explanation for why boost-
ing with confidence-rated predictions often markedly out-
performs boosting without confidence-rated predictions. We
strongly feel that weak hypotheses should be chosen based
on information-theoreticcriteria and that boosting algorithms
themselves should be designed around information-theoretic
principles. Together with other recent results suggestingthat
AdaBoost can be analyzed information-theoretically [6], we
hope to provide further impetus for the study of boosting in
an information-theoretic, as opposed to decision-theoretic,
light.
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