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Abstract

We study model selection strategies based on pe-
nalized empirical loss minimization. We point out
a tight relationship between error estimation and
data-based complexity penalization: any good er-
ror estimate may be converted into a data-based
penalty function and the performance of the esti-
mate is governed by the quality of the error esti-
mate. We consider several penalty functions, in-
volving error estimates on independent test data,
empirical VC dimension, empiricalVC entropy,
and margin-based quantities. We also consider the
maximal difference between the error on the first
half of the training data and the second half, and
the expected maximal discrepancy, a closely re-
lated capacity estimate that can be calculated by
Monte Carlo integration. Maximal discrepancy
penalty functions are appealing for pattern classifi-
cation problems, since their computation is equiv-
alent to empirical risk minimization over the train-
ing data with some labels flipped.

1 INTRODUCTION

We consider the following prediction problem. Based on a
random observationX 2 X , one has to estimateY 2 Y. A
prediction rule is a measurable functionf : X ! Y, with
loss L(f) = E`(f(X); Y ), where` : Y � Y ! [0; 1℄ is a
bounded loss function. The data

D

n

= (X

1

; Y

1

); : : : ; (X

n

; Y

n

)

consist of a sequence of independent, identically distributed
samples with the same distribution as(X;Y ) andD

n

is in-
dependent of(X;Y ). The goal is to choose a prediction rule
f

n

from some restricted classF such that theloss L(f
n

) =

E[`(f

n

(X); Y )jD

n

℄ is as close as possible to the best possi-
ble loss,L� = inf

f

L(f), where the infimum is taken over
all prediction rulesf : X ! Y.

Empirical risk minimization evaluates the performance
of each prediction rulef 2 F in terms of its empirical loss
b

L

n

(f) =

1

n

P

n

i=1

`(f(X

i

); Y

i

). This provides an estimate
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whose loss is close to the optimal lossL� if the classF is
(i) sufficiently large so that the loss of the best function inF
is close toL� and (ii) is sufficiently small so that finding the
best candidate inF based on the data is still possible. These
two requirements are clearly in conflict. The trade-off is best
understood by writing

EL(f

n

) � L

�

=

�

EL(f

n

) � inf

f2F

L(f)

�

+

�

inf

f2F

L(f) � L

�

�

:

The first term is often calledestimation error, while the sec-
ond is theapproximation error. OftenF is large enough
to minimizeL(�) for all possible distributions of(X;Y ), so
thatF is too large for empirical risk minimization. In this
case it is common to fix in advance a sequence of smaller
model classesF

1

;F

2

; : : : whose union is equal toF . Given
the dataD

n

, one wishes to select a good model fromone of
these classes. This is the problem of model selection.

Denote bybf
k

a function inF
k

having minimal empirical
risk. One hopes to select a model classF

K

such that the
excess errorEL( bf

K

)� L

� is close to

min

k

EL(

b

f

k

)� L

�

=

min

k

��

EL(

b

f

k

) � inf

f2F

k

L(f)

�

+

�

inf

f2F

k

L(f) � L

�

��

:

The idea ofstructural risk minimization, (also known as
complexity regularization, is to add a complexity penalty to
each of thebL

n

(

b

f

k

)’s to compensate for the overfitting effect.
This penalty is usually closely related to a distribution-free
upper bound forsup

f2F

k

j

b

L

n

(f)�L(f)j so that the penalty
eliminates the effect of overfitting. Thus, structural riskmin-
imization finds the best trade-off between the approximation
error and a distribution-free upper bound on the estimation
error. Unfortunately, distribution-free upper bounds maybe
too conservative for specific distributions. This criticism has
led to the idea of usingdata-dependent penalties.

In the next section, we show that any approximate up-
per bound on error (including a data-dependent bound) can
be used to define a (possibly data-dependent) complexity
penaltyC

n

(k) and a model selection algorithm for which
the excess error is close to

min

k

�

EC

n

(k) +

�

inf

f2F

k

L(f) � L

�

��

:
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Section 3 reviews some concentration inequalities that are
central to our proofs. Section 4 gives several applications
of the performance bounds of Section 2: Section 4.1 con-
siders the estimates provided by an independent test sam-
ple. These have the disadvantage that they cost data. Sec-
tion 4.2, considers a distribution-free estimate based on the
VC dimension and a data-dependent estimate based on shat-
ter coefficients. Unfortunately, these are difficult to compute.
Section 4.3 briefly considers margin-based error estimates,
which can be viewed as easily computed estimates of quanti-
ties analogous to shatter coefficients. Section 4.4 looks atan
estimate provided by maximizing the discrepancy between
the error on the first half of the sample and that on the sec-
ond half. For classification, this estimate can be conveniently
computed, simply by minimizing empirical risk with half of
the labels flipped. Section 4.5 looks at a more complex es-
timate: the expected maximum discrepancy. This estimate
can be calculated by Monte Carlo integration, and can lead
to better performance bounds.

For clarity, we include in Table 1 notation that we use
throughout the paper.

For work on complexity regularization, see [1, 2, 3, 4, 5,
8, 9, 11, 12, 14, 16, 17, 20, 21, 22, 24, 23, 25, 29, 30, 31, 33,
34, 35, 38, 42, 46, 47]. Data-dependent penalties are studied
in [22, 6, 15, 34].

2 PENALIZATION BY ERROR

ESTIMATES

For each classF
k

, let bf
k

denote the prediction rule that is
selected fromF

k

based on the data. Our goal is to select,
among these rules, one which has approximately minimal
loss. The key assumption for our analysis is that the true loss
of bf

k

can be estimated for allk.

Assumption 1 There are positive numbers 
 and m such

that for each k an estimateR
n;k

on L( bf
k

) is available which
satisfies

P

h

L(

b

f

k

) > R

n;k

+ �

i

� 
e

�2m�

2

(1)

for all �.

Now define the data-based complexity penalty by

C

n

(k) = R

n;k

�

b

L

n

(

b

f

k

) +

r

logk

m

:

The last term is required because of technical reasons that
will become apparent shortly. It is typically small. The dif-
ferenceR

n;k

�

b

L

n

(

b

f

k

) is simply an estimate of the ‘right’
amount of penalizationL( bf

k

) �

b

L

n

(

b

f

k

). Finally, define the
prediction rule:

f

n

= argmin

k=1;2;:::

~

L

n

(

b

f

k

);

where

~

L

n

(

b

f

k

) =

b

L

n

(

b

f

k

) + C

n

(k) = R

n;k

+

r

log k

m

:

The following theorem summarizes the main performance
bound forf

n

.

Theorem 1 Assume that the error estimates R
n;k

satisfy (1)
for some positive constants 
 and m. Then for all � > 0,

P

h

L(f

n

)�

~

L

n

(f

n

) > �

i

� 2
e

�2m�

2

:

Moreover, if for all k, bf
k

minimizes the empirical loss in the
model class F

k

, then

EL(f

n

)� L

�

� min

k

�

EC

n

(k) +

�

inf

f2F

k

L(f) � L

�

��

+

r

log(
e)

2m

:

The second part of Theorem 1 shows that the predic-
tion rule minimizing the penalized empirical loss achieves
an almost optimal trade-off between the approximation error
and the expected complexity, provided that the estimateR

n;k

on which the complexity is based is an approximate upper
bound on the loss. In particular, if we knew in advance which
of the classesF

k

contained the optimal prediction rule, we
could use the error estimatesR

n;k

to obtain an upper bound
onEL( bf

k

) � L

�, and this upper bound would not improve

on the bound of Theorem 1 by more thanO
�

p

log k=m

�

.

If the range of the loss functioǹ is an infinite set, the
infimum of the empirical loss might not be achieved. In
this case, we could definebf

k

as a suitably good approxi-
mation to the infimum. However, for convenience, we as-
sume throughout that the minimum always exists. It suffices
for this, and for various proofs, to assume that for alln and
(x

1

; y

1

); : : : ; (x

n

; y

n

), the set

f(`(f(x

1

); y

1

); : : : ; `(f(x

1

); y

1

)) : f 2 F

k

g

is closed. This is certainly satisfied for pattern classification.

Proof. For brevity, introduce the notation

L

�

k

= inf

f2F

k

L(f):

Then for any� > 0,

P

h

L(f

n

)�

~

L

n

(f

n

) > �

i

� P

�

sup

j=1;2;:::

�

L(

b

f

j

)�

~

L

n

(

b

f

j

)

�

> �

�

�

1

X

j=1

P

h

L(

b

f

j

)�

~

L

n

(

b

f

j

) > �

i

(by the union bound)

=

1

X

j=1

P

"

L(

b

f

j

)� R

n;j

> �+

r

log j

m

#

(by definition)

�

1

X

j=1


e

�2m

�

�+

p

log j

m

�

2

(by Assumption 1)

�

1

X

j=1


e

�2m

(

�

2

+

log j

m

)

< 2
e

�2m�

2

(since
P

1

j=1

j

�2

< 2):
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f prediction rule,f : X ! Y

F

1

;F

2

; : : : sets of prediction rules (model classes)

F union of model classesF
k

f

�

k

element ofF
k

with minimal loss
b

f

k

element ofF
k

minimizing empirical loss

f

n

prediction rule fromF minimizing ~

L

n

(

b

f

k

)

` loss function,̀ : Y � Y ! [0; 1℄

L loss,L(f) = E`(f(X); Y )

L

�

k

minimal loss of functions inF
k

, L�
k

= inf

f2F

k

L(f)

b

L

n

empirical loss

R

n;k

estimate (high confidence upper bound) of lossL(

b

f

k

)

C

n

(k) complexity penalty for classF
k

~

L

n

complexity penalized loss estimate,~

L

n

(

b

f

k

) =

b

L

n

(

b

f

k

) +C

n

(k)

L

� loss of optimal prediction rule

Table 1: Notation.

To prove the second inequality, for eachk, we decompose
L(f

n

) � L

�

k

as

L(f

n

)� L

�

k

=

�

L(f

n

)� inf

j

~

L

n

(

b

f

j

)

�

+

�

inf

j

~

L

n

(

b

f

j

) � L

�

k

�

:

The first term may be bounded, by standard integration of
the tail inequality shown above (see, e.g., [14, page 208]),

asE
h

L(f

n

) � inf

j

~

L

n

(

b

f

j

)

i

�

p

log(
e)=(2m). Choosing

f

�

k

such thatL(f�
k

) = L

�

k

, the second term may be bounded
directly by

E inf

j

~

L

n

(

b

f

j

)� L

�

k

� E

~

L

n

(

b

f

k

) � L

�

k

= E

b

L

n

(

b

f

k

) � L

�

k

+ EC

n

(k)

(by the definition of~L
n

(

b

f

k

))

� E

b

L

n

(f

�

k

)� L(f

�

k

) + EC

n

(k)

(since bf
k

minimizes the empirical loss onF
k

)

= EC

n

(k);

where the last step follows from the fact thatEbL
n

(f

�

k

) =

L(f

�

k

). Summing the obtained bounds for both terms yields
that for eachk,

EL(f

n

) � EC

n

(k) + L

�

k

+

p

log(
e)=(2m);

which implies the second statement of the theorem.

Sometimes bounds tighter than Assumption 1 are avail-
able, as in Assumption 2 below. Such bounds may be ex-
ploited to decrease the term

p

logk=m in the definition of
the complexity penalty.

Assumption 2 There are positive numbers 
 and m such

that for each k an estimateR
n;k

of L( bf
k

) is available which
satisfies

P

h

L(

b

f

k

) > R

n;k

+ �

i

� 
e

�m� (2)

for all �.

Define the modified penalty by

C

n

(k) = R

n;k

�

b

L

n

(

b

f

k

) +

2 logk

m

and define the prediction rule

f

n

= argmin

k=1;2;:::

L

n

(

b

f

k

);

where

L

n

(

b

f

k

) =

b

L

n

(

b

f

k

) + C

n

(k) = R

n;k

+

2 logk

m

:

Then by a trivial modification of the proof of Theorem 1 we
obtain the following result.

Theorem 2 Assume that the error estimatesR
n;k

satisfy As-
sumption 2 for some positive constants 
 andm. Then for all
� > 0,

P

�

L(f

n

) � L

n

(f

n

) > �

�

� 2
e

�m�

:

Moreover, if for all k, bf
k

minimizes the empirical loss in the
model class F

k

, then

EL(f

n

) � L

�

� min

k

�

EC

n

(k) +

�

inf

f2F

k

L(f) � L

�

��

+

log(2e
)

m

:
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3 CONCENTRATION INEQUALITIES

Concentration-of-measure results are central to our analysis.
These inequalities guarantee that certain functions of inde-
pendent random variables are close to their mean. Here we
recall three such inequalities.

Theorem 3 (MCDIARMID [28]). Let X
1

; : : : ; X

n

be in-
dependent random variables taking values in a set A, and
assume that f : A

n

! R satisfies

sup

x

1

;:::;x

n

;

x

0

i

2A

�

�

�

f(x

1

; : : : ; x

n

)

� f(x

1

; : : : ; x

i�1

; x

0

i

; x

i+1

; : : : ; x

n

)

�

�

�

� 


i

for 1 � i � n. Then for all t > 0

P ff(X

1

; : : : ; X

n

) � Ef(X

1

; : : : ; X

n

) + tg

� e

�2t

2

Æ

P

n

i=1




2

i

and

P ff(X

1

; : : : ; X

n

) � Ef(X

1

; : : : ; X

n

)� tg

� e

�2t

2

Æ

P

n

i=1




2

i

:

McDiarmid’s inequality is convenient whenf() has vari-
ance�(

P

n

i=1




2

i

). In other situations when the variance of
f is much smaller, the following inequality might be more
appropriate.

Theorem 4 (BOUCHERON, LUGOSI, AND MASSART [10])
Suppose thatX

1

; : : : ; X

n

are independent random variables
taking values in a set A, and that f : A

n

! R is such
that there exists a function g : A

n�1

! R such that for all
x

1

; : : : ; x

n

2 A

(1) f(x
1

; : : : ; x

n

) � 0;

(2) 0 � f(x

1

; : : : ; x

n

)� g(x

1

; : : : ; x

i�1

; x

i+1

; : : : ; x

n

)

� 1 for all i = 1; : : : ; n;

(3)
P

n

i=1

[f(x

1

; : : : ; x

n

)� g(x

1

; : : : ; x

i�1

; x

i+1

; : : : ; x

n

)℄

� f(x

1

; : : : ; x

n

).

Then for any t > 0,

P [f(X

1

; : : : ; X

n

) � Ef(X

1

; : : : ; X

n

) + t℄

� exp

�

�

t

2

2Ef(X

1

; : : : ; X

n

) + 2t=3

�

;

and

P [f(X

1

; : : : ; X

n

) � Ef(X

1

; : : : ; X

n

)� t℄

� exp

�

�

t

2

2Ef(X

1

; : : : ; X

n

)

�

;

moreover,

Ef(X

1

; : : : ; X

n

)

� log

2

E

h

2

f(X

1

;:::;X

n

)

i

�

1

log 2

Ef(X

1

; : : : ; X

n

):

Finally, we recall a concentration inequality of van der
Vaart and Wellner [44], obtained from one of Talagrand’s
isoperimetric inequalities [37].

Theorem 5 (VAN DER VAART AND WELLNER [44]). Let
A be a set, and let f

n

: A

n

! [0; n℄ be a permutation sym-
metric function satisfying the monotonicity and subadditive
properties

f

n

(x) � f

n+m

(x; y)

and

f

n+m

(x; y) � f

n

(x) + f

m

(y)

for all x 2 A

n and y 2 A

m. Then if X
1

; : : : ; X

n

are i.i.d.
random variables taking values in A, then for any t > 0,

P[f

n

(X

1

; : : : ; X

n

) > t℄ � exp

�

�

t

2

log

�

t

8Ef

n

+ 4

��

:

4 APPLICATIONS

4.1 INDEPENDENT TEST SAMPLE

Assume thatm independent sample pairs

(X

0

1

; Y

0

1

); : : : ; (X

0

m

; Y

0

m

)

are available. We can simply removem samples from the
training data. Of course, this is not very attractive, butmmay
be small relative ton. In this case we can estimateL( bf

k

) by

R

n;k

=

1

m

m

X

i=1

`(

b

f

k

(X

0

i

); Y

0

i

): (3)

We apply Hoeffding’s inequality to show that Assumption 1
is satisfied with
 = 1, notice thatE [R

n;k

jD

n

℄ = L(

b

f

k

),
and apply Theorem 1 to give the following result.

Corollary 1 Assume that the model selection algorithm of
Section 2 is performed with the hold-out error estimate (3).
Then

EL(f

n

)� L

�

� min

k

"

E

h

L(

b

f

k

)�

b

L

n

(

b

f

k

)

i

+

�

inf

f2F

k

L(f) � L

�

�

+

r

log k

m

#

+

1

p

2m

:

In other words, the estimate achieves a nearly optimal bal-
ance between the approximation error, and the quantity

E

h

L(

b

f

k

)�

b

L

n

(

b

f

k

)

i

;

which may be regarded as the amount of overfitting.
With this inequality we recover the main result of Lugosi

and Nobel [22], but now with a much simpler estimate. In
fact, the bound of the corollary may substantially improve
the main result of [22].

The square roots in the bound of Corollary 1 can be re-
moved by increasing the penalty term by a small constant
factor and using Bernstein’s inequality in place of Hoeffd-
ing’s. We omit the details.
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4.2 ESTIMATED COMPLEXITY

In the remaining examples we consider error estimatesR

n;k

which avoid splitting the data.
For simplicity, we concentrate in this section on the case

of classification (Y = f0; 1g and the0-1 loss, defined by
`(0; 0) = `(1; 1) = 0 and`(0; 1) = `(1; 0) = 1), although
similar arguments may be carried out for the general case as
well.

Recall the basic Vapnik-Chervonenkis inequality [41],
[39],

P

"

sup

f2F

k

�

L(f) �

b

L

n

(f)

�

> �

#

� 4ES

k

(X

2n

1

)e

�n�

2

;

(4)
whereS

k

(X

n

1

) is theempirical shatter coefficient ofF
k

, that
is, the number of different ways then pointsX

1

; : : : ; X

n

can
be classified by elements ofF

k

. It is easy to show that this
inequality implies that the estimate

R

n;k

=

b

L

n

(

b

f

k

) +

r

logES

k

(X

2n

1

) + log 4

n

satisfies Assumption 1 withm = n=2. We need to estimate
the quantitylogES

k

(X

2n

1

). The simplest way is to use the
fact thatES

k

(X

2n

1

) � (2en=V

k

)

V

k , whereV
k

is theVC di-
mension ofF

k

. Substituting this into Theorem 1 gives

EL(f

n

)� L

�

� min

k

"

r

V

k

log(2n) + log 4

n

+

�

inf

f2F

k

L(f) � L

�

�

+

r

2 log k

n

#

+

r

1

n

: (5)

This is the type of distribution-free result we mentioned in
the introduction. A more interesting result involves estimat-
ingES

k

(X

2n

1

) by S
k

(X

n

1

).

Theorem 6 Assume that the model selection algorithm of
Section 2 is used with

R

n;k

=

b

L

n

(

b

f

k

) +

r

12 logS

k

(X

n

1

) + log4

n

and m = n=80. Then

EL(f

n

) � L

�

� min

k

"

r

12E logS

k

(X

n

1

) + log 4

n

+

�

inf

f2F

k

L(f) � L

�

�

+ 8:95

r

logk

n

#

+

8:23

p

n

:

The key ingredient of the proof is a concentration in-
equality from [10] for therandom VC entropy, log

2

S

k

(X

n

1

).

Proof. We need to check the validity of Assumption 1. It
is shown in [10] thatf(x

1

; : : : ; x

n

) = log

2

S

k

(x

n

1

) satisfies
the conditions of Theorem 4.

First note thatES
k

(X

2n

1

) � E

2

S
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n

1

), and therefore

logES
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< 3E logS
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)

by the last inequality of Theorem 4. Therefore,
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;

where we used the Vapnik-Chervonenkis inequality (4). It
follows that
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The last term may be bounded using Theorem 4 as follows:
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Summarizing, we have that

P

h

L(

b

f

k

) > R

n;k
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i

� e

�n�

2

=16

+ e

�9n�
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=512 log 2

< 2e

�n�

2

=40

:

Therefore, Assumption 1 is satisfied with
 = 2 andm =

n=80. Applying Theorem 1 finishes the proof.

4.3 EFFECTIVE VC DIMENSION AND MARGIN

In practice it may be difficult to compute the value of the
random shatter coefficientsS

k

(X

n

1

). An alternative way to
assign complexities may be easily obtained by observing that
S

k

(X

n

1

) � (n+1)

D

k , whereD
k

is theempirical VC dimen-
sion of classF

k

, that is, theVC dimension restricted to the
pointsX

1

; : : : ; X

n

. Now it is immediate that the estimate

R

n;k

=

b

L

n

(

b

f

k

) +

r

12D

k

log(n + 1) + log4

n

;

satisfies Assumption 1 in the same way as the estimate of
Theorem 6. (In fact, with a more careful analysis it is possi-
ble to get rid of thelogn factor at the price of an increased
constant.)

Unfortunately, computingD
k

in general is still very diffi-
cult. A lot of effort has been devoted to obtain upper bounds
for D

k

which are simple to compute. These bounds are
handy in our framework, since any upper bound may imme-
diately be converted into a complexity penalty. In particular,
the margins-based upper bounds on misclassification proba-
bility for neural networks [6], support vector machines [34,
7, 40, 13], and convex combinations of classifiers [32, 26]
immediately give complexity penalties and, through Theo-
rem 1, performance bounds.

We recall here some facts which are at the basis of the
theory ofsupport vector machines, see Bartlett and Shawe-
Taylor [7], Cristianini and Shawe-Taylor [13], Vapnik [40]
and the references therein.

A model classF is called a class of (generalized) linear
classifiers if there exists a function : X ! R

p such thatF
is the class of linear classifiers inRp, that is, the class of all
prediction rules of the form

f(x) =

�

1 if  (x)Tw � 0

0 otherwise;

wherew 2 R

p is a weight vector satisfyingkwk = 1.
Much of the theory of support vector machines builds on

the fact that the “effective”VC dimension of those general-
ized linear classifiers for which the minimal distance of the
correctly classified data points to the separating hyperplane

is larger than a certain “margin” may be bounded, indepen-
dently of the linear dimensionp, by a function of the margin.
If for some constant
 > 0, (2Y

i

� 1) (X

i

)

T

w � 
 then
we say that the linear classifiercorrectly classifies X

i

with
margin 
. We recall the following result:

Lemma 1 (BARTLETT AND SHAWE-TAYLOR [7]). Let f
n

be an arbitrary (possibly data dependent) linear classifier of
the form

f

n

(x) =

�

1 if  (x)Tw
n

� 0

0 otherwise;

where w
n

2 R

p is a weight vector satisfying kw
n

k = 1.
Let R; 
 > 0 be positive random variables and let K �

n be a positive integer valued random variable such that
k (X

i

)k � R for all i = 1; : : : ; n and f
n

correctly clas-
sifies all but K of the n data points X

i

with margin 
, then
for all Æ > 0,
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K

n

+ 27:18
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2
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4

Æ
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#

� Æ:

Assume now thatbf minimizes the empirical loss in a
classF of generalized linear classifiers, such that it cor-
rectly classifies at leastn�K data points with margin
 and
k (X

i

)k � R for all i = 1; : : : ; n. Choosingm = n log 2=8

andÆ = 4e

�2m�

2

, an application of the lemma shows that if
we take

R

n

=

K

n

+ 27:18

s
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n

�
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2
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(log
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n+ 84)

�

;

then we obtain
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+ 27:18
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(log
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4

Æ

�

#

(using the inequality
p

x+ y �

p

x+

p

y)

� Æ = 4e

�2m�

2

:

This inequality shows that if all model classesF
k

are classes
of generalized linear classifiers and for all classes the error
estimateR

n;k

is defined as above, then condition (1) is satis-
fied and Theorem 1 may be used. As a result, we obtain the
following performance bound:



292

Theorem 7

EL(f

n

)� L

�

� min

k

"

E

"

K

k

n

+ 27:18

s
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#

+
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f2F
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L(f) � L

�

�

+ 3:4

r

logk

n

#

+

3:72

p

n

;

where K
k

; 


k

, andR
k

are the random variables K; 
;R de-
fined above, corresponding to the class F

k

.

The importance of this result lies in the fact that it gives
a computationally feasible way of assigning data-dependent
penalties to linear classifiers. On the other hand, the esti-
matesR

n;k

may be much inferior to the estimates studied in
the previous section.

4.4 PENALIZATION BY MAXIMAL
DISCREPANCY

In this section we propose an alternative way of computing
the penalties with improved performance guarantees. The
new penalties may be still difficult to compute efficiently, but
there is a better chance to obtain good approximate quantities
as they are defined as solutions of an optimization problem.

Assume, for simplicity, thatn is even, divide the data
into two equal halves, and define, for each predictorf , the
empirical loss on the two parts by

b

L

(1)

n

(f) =

2

n

n=2

X

i=1

`(f(X

i

); Y

i

)

and

b

L

(2)

n

(f) =

2

n

n

X

i=n=2+1

`(f(X

i

); Y

i

):

Using the notation of Section 2, define the error estimate
R

n;k

by

R

n;k

=

b

L

n

(

b

f

k

) + max

f2F

k

�

b

L

(1)

n

(f) �

b

L

(2)

n

(f)

�

: (6)

If Y = f0; 1g and the loss function is the 0-1 loss (i.e.,
`(0; 0) = `(1; 1) = 0 and`(0; 1) = `(1; 0) = 1) then the

maximum discrepancymax

f2F

k

�

b

L

(1)

n

(f) �

b

L

(2)

n

(f)

�

may

be computed using the following simple trick: first flip the
labels of the first half of the data, thus obtaining the modi-
fied data setD0

n

= (X

0

1

; Y

0

1

); : : : ; (X

0

n

; Y

0

n

) with (X

0

i

; Y

0

i

) =

(X

i

; 1 � Y

i

) for i � n=2 and(X 0

i

; Y

0

i

) = (X

i

; Y

i

) for i >
n=2. Next findf�

k

2 F

k

which minimizes the empirical loss
based onD0

n

,

1

n

n

X
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`(f(X
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)

=

1
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`(f(X
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) +
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i=n=2+1

`(f(X
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=

1�
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L

(1)

n

(f) +
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L

(2)

n

(f)
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:

Clearly, the functionf�
k

maximizes the discrepancy. There-
fore, the same algorithm that is used to compute the empiri-
cal loss minimizerbf

k

may be used to findf�
k

and compute
the penalty based on maximum discrepancy. This is appeal-
ing: although empirical loss minimization is often compu-
tationally difficult, the same approximate optimization algo-
rithm can be used for both finding prediction rules and esti-
mating appropriate penalties. In particular, if the algorithm
only approximately minimizes empirical loss over the class
F

k

because it minimizes over some proper subset ofF

k

, the
theorem is still applicable.

Vapnik et al. [43] considered a similar quantity for the
case of pattern classification. Motivated by bounds (similar
to (5)) onEL(f

n

) �

b

L

n

(f), they defined aneffective VC
dimension, which is obtained by choosing a value of the VC
dimension that gives the best fit of the bound to experimental
estimates ofEL(f

n

) �

b

L

n

(f). They showed that for linear
classifiers in a fixed dimension with a variety of probability
distributions, the fit was good. This suggests a model se-
lection strategy that estimatesEL(f

n

) using these bounds.
The following theorem justifies a more direct approach (us-
ing discrepancy on the training data directly, rather than us-
ing discrepancy over a range of sample sizes to estimate ef-
fective VC dimension), and shows that an independent test
sample is not necessary.

A similar estimate was considered in [45], although the
error bound presented in [45, Theorem 3.4] can only be non-
trivial when the maximum discrepancy is negative.

Theorem 8 If the penalties are defined using the maximum-
discrepancy error estimates (6), and m = n=21, then
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Proof. Once again, we check Assumption 1 and apply The-
orem 1. Introduce the ghost sample(X0

1

; Y

0

1

); : : : ; (X

0

n

; Y

0

n

),
which is independent of the data and has the same distri-
bution. Denote the empirical loss based on this sample by
L

0

n

(f) =

1

n

P

n
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`(f(X
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i

); Y

0

i

). The proof is based on the
simple observation that for eachk,
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McDiarmid’s inequality (Theorem 3) implies
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and so for eachk,
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Thus, Assumption 1 is satisfied withm = n=21 and
 = 3

and the proof is finished.

4.5 A RANDOMIZED COMPLEXITY ESTIMATOR

In this section we introduce an alternative way of estimat-

ingEmax

f2F

k

�

L(f) �

b

L

n

(f)

�

which may serve as an ef-

fective estimate of the complexity of a model classF . The
maximum discrepancy estimate of the previous section does
this by splitting the data into two halves. Here we offer an
alternative which allows us to derive improved performance
bounds: we consider the expectation, over a random split of
the data into two sets, of the maximal discrepancy.

Let �
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be a sequence of i.i.d. random variables
such thatPf�
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independent of the dataD
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We useM
n;k

to measure the amount of overfitting in class
F

k

. Note thatM
n;k

is not known, but it may be computed
with arbitrary precision by Monte-Carlo simulation. In the
case of pattern classification, each computation in the inte-
gration involves minimizing empirical loss on a sample with
randomly flipped labels. We offer two different ways of us-
ing these estimates for model selection. The first is based
on Theorem 1 and the second, with a slight modification, on
Theorem 2. We start with the simpler version:

Theorem 9 Let m = n=9, and define the error estimates
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Proof. Introduce a ghost sample as in the proof of Theo-
rem 8, and recall that by a symmetrization trick of Giné and
Zinn [18],
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The rest of the proof of Assumption 1 follows easily from
concentration inequalities: for eachk,
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� 2e

�2n�

2

=9

;

where at the last step we used McDiarmid’s inequality. (It

is easy to verify thatM
n;k

andsup
�

L(f) �

b

L

n

(f)

�

satisfy

the condition of Theorem 3 with

i

= 2=n and

i

= 1=n,
respectively.) Thus, Assumption 1 holds with
 = 2 and
m = n=9. Theorem 1 implies the result.

The following theorem shows that we can get rid of the
square root signs at the expense of slightly increasing the
complexity penalty. This improvement is important when
the classF

k

hasEM
n;k

much smaller thann�1=2. The key
difference in the proof is the use of the refined concentration
inequalities from [10] instead of McDiarmid’s inequality.

Introduce the modified error estimate

R

n;k

=

b

L

n

(

b

f

k

) +M

n;k

;

where

M
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= E

"

sup
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k
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i
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D
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#

: (12)

Note thatM
n;k

is basically a constant factor timesM
n;k

.
(The constants have not been optimized.)

Theorem 10 Let m = n=4096, and choose f
n

by minimiz-
ing the penalized error estimates

L
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(

b

f

k

) =

b

L

n

(

b

f

k

) +C

n

(k) = R
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2 log k

m

:

Then

EL(f

n

)� L
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� min

k
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+

8192 logk
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�

+

13096

n

:

In the proof we use some auxiliary results. The first is
called Khinchine’s inequality:

Lemma 2 (SZAREK [36]) Suppose �
1

; : : : ; �

n

are symmet-
ric i.i.d. sign variables, and let a

1

; : : : ; a

n

be real numbers.
Then
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:

The next lemma concerns a simple property of[0; 1℄-
valued random variables:

Lemma 3 For n i.i.d. random variables X
i

2 [0; 1℄ with
EX

i

= p � 4=(n+ 4), the sum Z =

P

n
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X
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E
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:

Proof.

E

p

Z = E

�

p

Z �

p

np

�

+

p

np

�

p

np� E

�

�

�

p

Z �

p

np

�

�

�

�

p

np�

E jZ � npj

p

np

(usingj
p

a �

p

bj � ja� bj=

p

a)

�

p

np�

p

Var(Z)

p

np

(by Cauchy-Schwarz)
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p
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=

p
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p

1� p;

and the result follows.

Next we need a classical symmetrization inequality from
empirical process theory:

Lemma 4 (GINÉ AND ZINN [18]). LetF be a class of real-
valued functions defined on a set A, let X

1

; : : : ; X

n

be i.i.d.
random variables taking their value inA, and let �
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; : : : ; �
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Finally, we show that the penalty term is sharply concen-
trated around its mean.

Lemma 5 Consider the following function Q

n;k

: (X �

Y)

n

! [0; n℄:

Q
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def
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:

Then Q
n;k

satisfies the conditions of Theorem 4.

Proof. Clearly,Q
n;k

is nonnegative. To check condition (2)
of Theorem 4, for everyi � n introduce
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Clearly,
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Proof of Theorem 10. We check Assumption 2 and apply
Theorem 2. We have

P

h

L(

b

f

k

) > R

n;k

+ �

i

� P

"

sup

f2F

k

�

�

�

L(f) �

b

L

n

(f)

�

�

�

> M

n;k

+ �

#

� P

"

sup

f2F

k

�

�

�

L(f) �

b

L

n

(f)

�

�

�

>

1

2

EM

n;k

+ 2�=3

#

+ P

�

1

2

EM

n;k

> M

n;k

+ �=3

�

def

= I + II:

To boundI, we note that by Lemma 4,
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Thus, we need to obtain a suitable upper bound for the prob-
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ability on the right-hand side of (16). To this end, write
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We boundIII by applying Theorem 5 to the random vari-
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fixed. This function is easily seen
to satisfy the conditions of Theorem 5, and therefore we ob-
tain
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whenever� � 96=n. Finally, we need to bound the probabil-
ities II andIV . But this may be done by a straightforward
application of Lemma 5 and Theorem 4. We obtain
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:

Collecting bounds, we obtain that for all� � 96=n,

P

h
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f

k
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+ �

i

� 9e
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:

It is easy to modify the proof of Theorem 2 to accommo-
date this restriction for� (provided96=n � log(2
)=m), and
straightforward calculation yields the result.
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