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Abstract

We address the computational complexity of learn-
ing in the agnostic framework. For a variety of
common concept classes we prove that, unless
P=NP, there is no polynomial time approximation
scheme for finding a member in the class that ap-
proximately maximizes the agreement with a given
training sample. In particular our results apply
to the classes of monomials, axis-aligned hyper-
rectangles, closed balls and monotone monomi-
als. For each of these classes we prove the NP-
hardness of approximating maximal agreement to
within some fixed constant (independent of the
sample size and of the dimensionality of the sam-
ple space). For the class of half-spaces, we prove
that, for any� > 0, it is NP-hard to approxi-
mately maximize agreements to within a factor of
(418=415 � �), improving on the best previously
known constant for this problem, and using a sim-
pler proof.

An interesting feature of our proofs is that, for each
of the classes we discuss, we find patterns of train-
ing examples that, while being hard for approx-
imating agreement within that concept class, al-
low efficient agreement maximization within other
concept classes. These results bring up a new as-
pect of the model selection problem – they im-
ply that the choice of hypothesis class for agnostic
learning from among those considered in this pa-
per can drastically effect the computational com-
plexity of the learning process.

1 INTRODUCTION

We study the computational complexity of agnostic learning
with a variety of common hypothesis classes. The agnostic
framework [14, 19] is a very useful variant of the PAC learn-
ing model in which, informally, the learning algorithm is re-
quired to do nearly as well as is possible using hypotheses
from a given class. Haussler's work [14] (see also [21]) im-
plies that learnability in this model is, in a sense, equivalent
to the ability to come up with a member of the hypothesis
class that has highagreement rate with the training sample,

where the agreement rate is the fraction of sample points that
the hypothesis classifies correctly.

In this paper we prove that for a variety of hypoth-
esis classesH, including monomials, axis-aligned hyper-
rectangles, closed balls, and monotone monomials, there isa
constant
 > 1 for which the following problem is NP-hard:

given a set of labeled examples, find a function in
H that has agreement rate within a factor of 
 of
the best function in the class.

We also improve on the best previously known constant
 for
the class of half-spaces.

It is not hard to see that such a hardness result implies the
hardness of finding a hypothesis that has error rate below the
error rate of the best hypothesis in the class plus some fixed
� > 0 (see [4]).

The hardness of PAC style learning is a very natural
question that has been addressed from a variety of view-
points. It has been shown that, given certain cryptographic
assumptions that are stronger than P6=NP or even RP6=NP,
classes such as circuits of a constant (but unknown) depth
and polynomially many linear threshold gates [18] and
AND/OR/NOT gates [20] are hard to learn in the PAC model
using any hypotheses. However, such classes are too rich to
be considered useful for learning purposes.

Pitt and Valiant [21] showed that it is NP-hard to decide
if there is a 2-term DNF that correctly classifiesall examples
in a training sample. Blum and Rivest [6] established a sim-
ilar result for two-layer linear threshold networks with only
two hidden units, and DasGupta, Siegelmann and Sontag [8]
extended these results to apply to networks with piecewise
linear hidden units.

The earliest hardness results for agnostically learning
`simple' classes address the problem of finding a hypoth-
esis thatmaximizes the number of agreements (rather than
just approximately maximizing it). Angluin and Laird [2]
showed that maximizing agreements with monotone mono-
mials is NP-hard. Kearns and Li [17] established a similar
result for general monomials, and Höffgen, Simon and Van
Horn [16] for half-spaces.

One may argue, however, that for all practical purposes,
a learner may be considered successful if it can produce a
hypothesis with accuracy within a small constant factor of
the best possible. We are therefore led to the next level of
hardness-of-learning results, showing that guarantees ofthis
type cannot be achieved.
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Combining a reduction of Kearns and Li [17] with recent
results on the hardness of approximating set cover [10] im-
plies that, unless NP� DTIME(nlog logn), finding a mono-
mial that has a ratio of misclassifications within a factor
o(logn) of the minimum is not possible. Arora, Babai, Stern
and Sweedyk [3] showed that is NP-hard to minimize dis-
agreements using half-spaces to within any constant factor.1

Höffgen and Simon [16] established a similar result.
While the work described in the preceding paragraph

considers the minimization problem, we show the hardness
of the corresponding maximization task. Why prefer one
over the other? Note that the task of approximating the op-
timal solution to within a constant factor emphasizes good
performance on different kinds of samples in the two cases.
Minimizing disagreements to within a constant factor tends
to emphasize performance on clean data, and maximizing
agreements to within a constant factor tends to emphasize
performance on noisier data. For example, if the best hy-
pothesis in the class agrees with 99% of the sample, an al-
gorithm that minimized disagreements to within a factor of
2 would have to be correct on 98% of the data, where an al-
gorithm that maximized agreement to within a factor of1:1

would only need to be correct on 90% of the sample. On the
other hand, if the best hypothesis got only 80% right, then an
algorithm that minimized disagreements to within a factor of
2 would only need to get 60% right, where an algorithm that
maximized agreement to within a factor of 1.1 would have to
get over 72% right. Also, as mentioned above, if for all in-
puts, the maximum agreement is at least a constant fraction�

of the input size,2 our results imply that minimum disagree-
ment problem cannot be approximated in polynomial time to
within anadditive constant of�(1� 1=
).

Two previous papers that we know of have addressed the
difficulty of maximizing agreement with a sample. Bartlett
and Ben-David [4] showed that approximating the agreement
ratio of a one-hidden-layer neural network to within a (mul-
tiplicative) constant factor that depends on the number of
hidden units in the network is NP-hard. Amaldi and Kann
[1] showed that approximately maximizing agreements us-
ing half-spaces is APX-complete. Also, it is not too hard to
see that the following facts

� weak learning implies strong learning [22]

� half-spaces, balls, monomials and axis-aligned rectan-
gles are weak approximators to DNF (see [19])

together imply that afully polynomial time approximation
scheme for approximately maximizing agreements using any
of half-spaces, balls, monomials or axis-aligned rectangles
would imply the learnability of DNF.

In this paper we consider several common concept
classes – monomials and monotone monomials over the
boolean cube, and half-spaces, balls and hyper-rectanglesin
Euclidean spaces. For each of these classes, we show that
there exists some constant,
 > 1, such that approximating
the optimal agreement ratio in the class to within this con-
stant factor is NP-hard. In the case of half-spaces, we im-

1With stronger complexity theoretic assumptions, they could
prove stronger statements.

2For all the classes considered in this work� � 1=2.

prove on the constant of Amaldi and Kann, and our proof is
simpler as well.

Worst-case hardness results in learning theory are of-
ten subject to the criticism that the instances witnessing the
hardness of the problem are not representative of `real life'
instances. Consequently, such results may not reflect the
`practical' hardness of the learning task. There is no pre-
cise definition for our vague and intuitive notion of `real-
istic' instances. However, the patterns of instances upon
which our hardness proofs rely are `nicely clustered' ensem-
bles. Specifically, for each of the samples used to witness our
hardness results there is a ball (either in the Euclidean met-
ric or in theL

1

metric) that separates the positively labeled
points from the negatively labeled ones.

An interesting consequence of our constructions is that
for any of the hypothesis classes that we discuss there are
input distributions that, while being NP-hard to learn using
that class, are efficiently learnable using some of the other
hypothesis classes. In particular, there are input patterns that
are hard to approximate using rectangles but are easily fully
separable by balls, and vice versa. These results have im-
plications to the issue ofmodel selection. It is common to
discuss the model selection problem from the point of view
of information complexity – i.e. the tradeoff between the
the ability of a hypothesis in the class to explain the data
and generalization ability. Our analyses show that the choice
of model class can further influence the computational com-
plexity of finding a good hypothesis, and that a poor choice
can simultaneously hurt the algorithm both by failing to ex-
plain the data and by making it hard to find a good hypothe-
sis. (The influence of the choice of hypothesis space on the
computational complexity of learning in the PAC model was
addressed by Pitt and Valiant [21].)

There is yet another implication of our results to model
selection issues. Once a learner sees the training data, it
would be desirable to be able to choose the hypothesis class,
relative to which the learning process will proceed, so as to
maximize the fit between the class and the data. We show
that the task of estimating the agreement rate of the optimal
hypothesis in any of the above mentioned classes (to within a
constant factor) is NP-hard. It follows that the task of choos-
ing a class to work with for a given data is in itself computa-
tionally difficult.

The paper is organized as follows: after providing the ba-
sic definitions in Section 2, Section 3 lists our computational
hardness results. Sections 4 and 5 are where we prove these
hardness results. In Section 6 we discuss the implications of
our results on the computational aspects of model selection.

2 PRELIMINARIES

In this work, we consider several maximization problems. A
maximization problem� associates with any possible input
I a set of feasible solutionsC

I

. Each input and feasible so-
lution pair is associated a profit denotedq

�

(c; I) 2 R. We
denote the optimal profit of a maximization problem as fol-
lows:

opt
�

(I) = max

c2C

I

q

�

(c; I):

Definition 1 A 
-approximation algorithm A for the maxi-
mization problem � is an algorithm that on any input I out-
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puts a feasible solutionA(I) 2 C
I

such that:


q

�

(A(I); I) � opt
�

(I):

Naturally, this definition is meaningful for
 > 1.
This work concerns maximum agreement problems.

Definition 2 For a domain set D and a class C of functions
from D to f0; 1g, we define the Maximum Agreementprob-
lem C-MA as follows: The input of the problem consists
of a sampleS, which is a finite multi-set of elements from
D � f0; 1g. The first component of an example is called its
point, while the second component of the example is called
its label. The set C is the set of feasible solutions. We
say some function f 2 C agrees with an example (x; y) if
f(x) = y. The profit function q for a Maximum Agreement
problem is simply the number of examples in S with which
the solution agrees.

We will many times view the elements ofC as subsets of
D, rather than as functions fromD tof0; 1g. We say a subset
C � D agrees with an example(x; y) if its characteristic
function agrees with(x; y).

The first type of maximum agreement problems we con-
sider are problems based on boolean formulas. We shall con-
sider theC-MA problems for the following boolean classes
C:

Monomials A monomial over the variablesw
1

; : : : ; w

n

is
a conjunction of some literals defined over these vari-
ables. We will denote the Monomials-MA problem as
MMA.

Monotone Monomials A monotone monomial is simply
a monomial that includes only positive literals. We
will denote the MonotoneMonomials-MA problem as
MMMA.

Anti-Monotone Monomial An anti-monotone monomial is
a monomial that includes only negative literals. We will
denote the AntiMonotoneMonomials-MA problem as
AMMA.

The second type of maximum agreement problems we
consider are problems where the definition of the classC is
based on geometric concepts. We shall consider theC-MA
problems for the following geometric classesC:

Closed Balls A ballG inRn is represented by~w 2 R

n and
� 2 R such thatG = f~x : d(~w; ~x) � �g. We will
denote the Balls-MA problem as BMA.

Half-spaces A half-spaceH in Rn is represented by~w 2

R

n and� 2 R and defined to be:H = f~x : ~w �~x � �g.
We will denote the Half-Space-MA problem as HMA.

Hyper Rectangles An Axis Aligned Hyper-rectangleR is
represented by~r;~s 2 Rn whereR =

Q

n

i=1

[r

i

; s

i

]. We
will denote the Hyper-Rectangle-MA problem as RMA.

Our basic hardness results will use reductions from
MAX-E2-SAT. MAX-E2-SAT is defined as follows: Given
as input a set of2-clauses (each clause is a disjunction of two
literals) over a set ofn variablesw

1

; : : : ; w

n

, find an assign-
ment~x 2 f0; 1g

n such that the number of clauses that are

satisfied is maximized. We will denote the profit function
for MAX-E2-SAT by q

ME2S

. The following theorem, due to
Håstad [13], shows that approximating the optimal solution
to MAX-E2-SAT is hard.

Theorem 3 Assuming P6=NP, there is no polynomial time
(22=21� �)-approximation algorithm for MAX-E2-SAT, for
any � > 0.

3 MAIN RESULTS

To show the hardness of the various maximum agreement
problems presented above, we use two basic reductions from
MAX-E2-SAT: One to Monomial Maximum Agreement,
and the other to Ball Maximum Agreement. These two re-
ductions, along with Theorem 3, allow us to prove the fol-
lowing two theorems:

Theorem 4 If NP6=P, then for any � > 0 there is no polyno-
mial time (770=767��)-approximation algorithm for Mono-
mial Maximum Agreement.

Theorem 5 If NP6=P, then for any � > 0 there is no polyno-
mial time (418=415 � �)-approximation algorithm for Ball
Maximum Agreement.

Since the set of restrictions of indicator functions for
axis-aligned rectangles tof0; 1gn are exactly the indicator
functions for monomials, Theorem 4 directly implies the fol-
lowing.

Theorem 6 If NP6=P, then for any � > 0 there is no polyno-
mial time (770=767� �)-approximation algorithm for Axis-
Aligned Rectangle Maximum Agreement.

Finally, we also show how the construction used in the
proof of Theorem 4 may also be used to prove the following:

Theorem 7 If NP6=P, then for any � > 0 there is no polyno-
mial time (770=767��)-approximation algorithm for Mono-
tone Monomial Maximum Agreement.

A variation of the reduction used for the Balls Maximum
Agreement problem (utilizing the same gadget construction)
is used to prove the theorem on hardness of the Half-space
Maximum Agreement problem. This problem was shown to
be impossible to approximate in polynomial time to within
462=461 � � by Amaldi and Kann [1]. We improve upon
their hardness result by proving the following:

Theorem 8 If NP6=P, then for any � > 0 there is no polyno-
mial time (418=415� �)-approximation algorithm for Half-
space Maximum Agreement.

In Section 6 we provide some further initial results on
the influence model selection has on the computational com-
plexity of learning.

4 MONOMIALS AND AXIS-ALIGNED

HYPER-RECTANGLES

In this section, we establish the hardness results for Mono-
mials and Axis-Aligned Hyper-rectangles.
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4.1 GADGET CONSTRUCTION FOR MONOMIALS

In the instance transformation, for each of the2n possible
literals in an instanceI of MAX-E2-SAT, there will be a
variable in the instancef(I) of MMA. For each literal̀ over
a variable inI, letw

`

be the corresponding variable inf(I).
For each clauseC, if `

1

and`
2

are the literals inC, define
�(C) to consist of five examples as follows:

� The first two examples are labeled1 and each of their
points sets exactly one variable to be true. The first of
these examples sets onlyw

`

1

to be true, and the second
sets onlyw

`

2

to be true.

� The next two examples are labeled0, and their points
set exactly two variables to be true. The first of these
examples sets onlyw

`

1

andw
�

`

1

to be true, and the sec-
ond sets onlyw

`

2

andw
�

`

2

to be true.

� The last example is also labeled0, and its point also sets
exactly two variables to be true:w

`

1

andw
`

2

.

For some instanceI of MAX-E2-SAT with m clauses,
f(I) consists of all examples in any�(C) for a clauseC in
I, together with5m copies of an example labeled1 whose
point does not set any variable to true.

For the solution transformationg, given some monomial
M the assignmentg(M ) is defined as follows: each variable
v

i

is set to “true” if and only if�w
v

i

does not appear inM .

4.2 ANALYZING THE REDUCTION

Fix an algorithmB for maximizing agreements using mono-
mials, and an arbitrary instanceI of MAX-E2-SAT. Let n
be the number of variables andm be the number of clauses
in I. Let M be the monomial output byB on inputf(I).
Let opt

MMA

(f(I)) be the maximum number of examples
in f(I) that any monomial agrees with. Assume that
 2

(0; 3=7) satisfies

q

MMA

(M; f(I)) � (1� 
)opt

MMA

(f(I)):

Let a = g(M ) be the assignment output byA.

Lemma 9 opt

MMA

(f(I)) � opt

ME2S

(I) + 8m.

Proof: Let a� be an optimal assignment forI. DefineM� to
be^

`

�w

`

, where` ranges over those literals not satisfied by
a

�.
First, sinceM� has only negated literals, it is satisfied by

the assignment that sets all variables to false, and therefore
correctly classifies the5m examples where this point is la-
beled1. Second, since for each literal` using a variable inI,
either �w

`

or �w

�

`

is included inM�, all of the points in which
these two components are both set to true do not satisfyM

�,
and therefore are classified correctly.

Choose a clauseC, and let̀
1

and`
2

be the literals inC.
Suppose thata� satisfies exactly one of the literals inC,

and assume without loss of generality that it is`
1

. Then the
point in�(C) that sets onlyw

`

1

to true satisfiesM�, and the
point that setsw

`

1

andw
`

2

to true does not satisfyM�, so
both of these examples of�(C) are classified correctly by
M

�.

If both literals inC are satisfied bya�, then both points in
�(C)which set the single variablesw

`

1

andw
`

2

respectively
to true satisfyM�, and they are both classified correctly.

If a� doesn' t satisfy a clauseC, thenM� does not contain
the point in�(C) that sets exactlyw

`

1

andw
`

2

to true, and
therefore classifies this point correctly.

So if a� satisfiesC, 4 of the examples in�(C) are classi-
fied correctly byM�, otherwise3 are. Adding the5m copies
of the assignment that sets all variables to false completesthe
proof.

Lemma 10 M does not contain any unnegated literals.

Proof: We have

q

MMA

(M; f(I)) � (1� 
)opt

MMA

(f(I))

� (1� 
)(opt

ME2S

(I) + 8m)

(by Lemma 9)
� (1� 
)(3=4m + 8m)

> 5m

since
 < 3=7. Therefore, since there are a total of10m

examples inf(I), M must agree with the5m examples in
which the assignment which sets all variables to false is la-
beled with1, completing the proof.

Lemma 11 For any clause C in I, if a does not satisfy C,
thenM agrees with at most 3 of the examples in �(C).

Proof: Choose one of the literals inC, and leti be its vari-
able. If v

i

2 C, then �w

v

i

is included inM , and soM dis-
agrees with the example in which the assignment which only
setsw

v

i

to true is labeled1. If �v

i

2 C, then �w

v

i

is not in-
cluded inM , and so

� if �w

�v

i

is not included inM thenM disagrees with the
example in which the point which only setsw

v

i

andw
�v

i

to true is labeled0, and

� if �w

�v

i

is included inM , thenM disagrees with the ex-
ample in which the point which only setsw

�v

i

to true is
labeled1.

SoM disagrees with at least one example for each of the
literals inC, completing the proof.

Lemma 12 For any clause C in I, M agrees with at most 4
of the examples in �(C).

Proof: If M agrees with both of the examples that are la-
beled1, then it must disagree with the example in which the
point where both variables corresponding to literals inC are
set to true is labeled0.

Now we are ready to sum up the analysis of this reduc-
tion.

Lemma 13

q

ME2S

(a; I) � (1� 35
=3)opt

ME2S

(I):
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Proof: We have

q

ME2S

(a; I) � q

MMA

(M; f(I)) � 8m

(by Lemmas 11 and 12)
� (1� 
)opt

MMA

(f(I)) � 8m

(by assumption)
� (1� 
)(opt

ME2S

(I) + 8m) � 8m

(by Lemma 9)
= (1� 
)opt

ME2S

(I) � 8
m

� (1� 
)opt

ME2S

(I) � (32=3)
 opt

ME2S

(I)

(sinceopt
ME2S

(I) � (3=4)m)
= (1� 35
=3)opt

ME2S

(I);

completing the proof.
This, combined with Theorem 3, immediately proves

Theorem 4.

4.3 A HARDNESS RESULT FOR MONOTONE
MONOMIALS

Since, by Lemma 10, the optimal solution (as well as any ap-
proximate solution with cost not less than4=7 of the optimal)
contains only negated literals, the same hardness result ap-
plies to classification by anti-monotone monomials (mono-
mials with all literals negated). We thus have the following:

Lemma 14 Assume B is a polynomial time 
-
approximation algorithm for MMMA. Then AMMA can be

-approximated in polynomial time.

Proof: Given an instanceI of AMMA, run B with input I
whereI is constructed fromI by flipping every component
in every sample point between1 and0. Given the monotone
monomialM = B(I), output the monomialM 0 which is
constructed fromM by negating every literal. It is immedi-
ate that the profitM 0 achieves onI is the same as the profit
M achieves onI, and thatM 0 is indeed anti-monotone. Ad-
ditionally, the optimal solution to AMMA with inputI has
the same profit as the optimal solution to MMMA with input
I .

This last Lemma, along with Lemma 10 and Theorem 4
immediately prove Theorem 7.

5 BALLS AND HALF-SPACES

Next, we turn to the problems of Ball Maximum Agreement
and Half-space Maximum Agreement. The reductions for
both these problems rely on the same basic construction, de-
tailed below.

5.1 GADGET CONSTRUCTION FOR BALLS AND
HALF-SPACES

Choose an algorithmB for the problem of maximizing
agreements using balls. We will useB to construct an algo-
rithmA for MAX-E2-SAT using a reduction. That is, given
an instanceI of MAX-E2-SAT, A will construct a sample
f(I), and pass it to algorithmB. After B outputs a ballG,
A will construct an assignmentg(G), and output it.

In the instance transformationf , corresponding to each
variable in the instanceI of MAX-E2-SAT, there will be one

++

+

-

-

-

-

Figure 1: One possible value of the examples in�(C) of the
gadget used for Balls and Half-spaces: only the components
with nonzero values, i.e. those that correspond to variables
in C, are shown. Examples whose label is1 are plotted with
a “+”, and those whose label is0 are plotted with a “-”.

component of the points in the examples of the samplef(I).
Let us suppose there are a total ofm clauses inI, which use a
total ofn variables, and suppose the variables arev

1

; :::; v

n

.
Associated with each clauseC in I, there will be a collec-
tion�(C) of examples inf(I). All of the points in examples
in �(C) will have nonzero entries only in components that
correspond to variables appearing inC. In Figure 1, the pro-
jections of the examples in one possible value of�(C) onto
the two components corresponding to the variables inC are
plotted. The “missing +” is in the position corresponding to
the assignment to the two variables inC that fails to satisfy
C.

Now, let us specify� formally. For each clauseC and
each variablev

j

from I, define

 

j

(C) =

(

1 if v
j

2 C

�1 if v
j

2 C

0 otherwise.

Then�(C) consists of

� An example consisting of the point~u
C

=

( 

1

(C); :::;  

n

(C)) and the label1.

� Two more examples whose label is1, and each of whose
points is obtained by negating one of the nonzero com-
ponents of~u

C

.

� Two examples whose label is0, and each of whose
points is obtained by zeroing out one of the nonzero
components of~u

C

.

� Two more examples whose label is0, and whose points
are obtained by negating the single nonzero components
of the two0-labeled examples described in the previous
bullet point.

If � is defined this way, thenf(I) is the multi-set con-
sisting of all examples in�(C) for all clausesC in I.

Now we turn to the solution transformationg. Choose
some ballG, specified by a center point~w and a radius�.
Then letg(G) be the assignment in which theith variable is
set to “true” if and only ifw

i

is nonnegative.
We use the exact same construction to show the reduc-

tion to Half-space Maximum Agreement. The only part that
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changes is the solution transformationg. Given a half-space
H, specified by a vector~w 2 R

n, and a threshold� 2 R.
g(H) will then be the assignment in which the variablev

i

is
set to “true” if and only ifw

i

is nonnegative.

5.2 ANALYSIS OF THE BALLS REDUCTION

Fix an arbitrary instanceI of MAX-E2-SAT. Let n be the
number of variables andm be the number of clauses. LetG
be the ball output by an algorithmB on inputf(I), and let
~x 2 R

n and� 2 Q be its representation. Leta = g(G) be
the assignment output byA.

Lemma 15 For any clause C in I, if a does not satisfy C,
then G agrees with at most 4 of the examples in �(C).

Proof: Assume without loss of generality that the first two
variables appear inC, and suppose thatC = fv

1

; v

2

g (the
other cases can be handled similarly). Sincea does not sat-
isfy C, the definition ofg implies that the first and second
coordinates of~w, the center ofG, are non-positive. We claim
the following hold:

(a) If (1;�1; 0; :::; 0) 2 G, then(0;�1; 0; :::;0) 2 G (re-
call that the first of those is labeled1 in �(C), and the
second is labeled0).

(b) If (�1; 1; 0; :::; 0) 2 G, then(�1; 0; 0; :::; 0) 2 G.

(c) If (1; 1; 0; :::; 0) 2 G, then both(1; 0; 0; :::;0) and
(0; 1; 0; :::; 0) are inG.

To see that this is indeed the case, simply check that
d((1;�1; 0; :::; 0); ~w) > d((0;�1; 0; :::; 0); ~w) for any point
~w whose first two coordinates are non-positive. Hence, any
ball centered in such a point that contains(1;�1; 0; :::; 0)

must contain(0;�1; 0; :::; 0) as well. The same can be eas-
ily verified for (b) and (c).

Lemma 16 For any clause C in I, G agrees with at most 5
of the examples in �(C).

Proof: Clearly, if G is to agree with more than4 points
from �(C), it must include at least one point that is labeled
positive. Assume again, w.l.o.g., thatC = fv

1

; v

2

g. If both
the points(1;�1; 0; : : : ; 0) and(1; 1; 0; : : : ; 0) are inG, then
(1; 0; 0; : : :; 0) must also be inG, asG is convex. Also,
if both (�1; 1; 0; : : : ; 0) and (1; 1; 0; : : : ; 0) are inG, then
(0; 1; 0; : : :; 0) must also be inG. Thus, ifG includes two
positive points, it must include at least one negative point.
Finally, note that if it includes all3 positive points, it must
include at least two negative points. Thus, no more than5

points are correctly classified.
Let opt

ME2S

(I) be the maximum number of clauses in
I than can be satisfied by any truth assignment, and let
opt

BMA

(f(I)) be the maximum number of examples inf(I)
that any ball agrees with.

Lemma 17 opt

BMA

(f(I)) � opt

ME2S

(I) + 4m

Proof: Let a� be the optimal assignment forI. Define ~w�

by

w

�

i

=

�

1 if a�(v
i

) = true
�1 if a�(v

i

) = false.

Let �� =
p

n� 2,G� = f~x : d(~x; ~w

�

) � �

�

g, andC be
some clause. Since each point~u 2 �(C) that is labeled0 has
exactly one non-zero coordinate, and all the coordinates of
~w

� are either1 or�1, we haved(~u; ~w�) �
p

n� 1. There-
fore, G� agrees with all0 labeled points in�(C). On the
other hand, ifC is satisfied bya�, then the point~u that has
two coordinates set to the same sign and value as in~w

� is
labeled1 in �(C). Hence, we haved(~u; ~w�) =

p

n� 2 and
u 2 G

�.
Thus, for each clauseC that is satisfied bya�,H� agrees

with at least5 examples in�(C), and for each clauseC that
is not satisfied bya�,H� agrees with at least4 of the exam-
ples in�(C). This completes the proof.

Now we are ready to sum up the analysis of our reduction

Lemma 18 If

q

BMA

(G; f(I)) � (1 � 
)opt

BMA

(f(I))

then
q

ME2S

(a; I) � (1� 19
=3)opt

ME2S

(I):

Proof: We have

q(a; I) � q(G; f(I)) � 4m

(by Lemmas 15 and 16)
� (1� 
)opt

BMA

(f(I)) � 4m

(by assumption)
� (1� 
)(opt

ME2S

(I) + 4m) � 4m

(by Lemma 17)
= (1� 
)opt

ME2S

(I) � 4
m

� (1� 
)opt

ME2S

(I) � (16=3)
 opt

ME2S

(I)

(sinceopt
ME2S

(I) � (3=4)m)
= (1� 19
=3)opt

ME2S

(I);

completing the proof.
Using this last Lemma, and Theorem 3, and doing some

calculations proves Theorem 5.

5.3 ANALYSIS OF THE HALF-SPACE REDUCTION

The analysis of the reduction for the HMA problem is very
similar to that of the BMA problem.

Fix I, n andm as for the analysis of the balls reduction.
Let H be the half-space output byB on inputf(I), and let
~w 2 R

n and� be its representation, i.e.H = f~x : ~w � ~x �

�g. Let a = g(H) be the assignment output byA.

Lemma 19 For any clause C in I, if a does not satisfy C,
thenH agrees with at most 4 of the examples in �(C).

Proof: Assume without loss of generality that the first two
variables appear inC, and suppose thatC = fv

1

; v

2

g (the
other cases can be handled similarly). We claim that the fol-
lowing hold:

(a) If (1;�1; 0; :::;0) 2 H, then(0;�1; 0; :::; 0) 2 H (re-
call that the first of those is labeled1 in �(C), and the
second is labeled0).

(b) If (�1; 1; 0; :::;0) 2 H, then(�1; 0; 0; :::;0) 2 H.
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(c) If (1; 1; 0; :::;0) 2 H, then both(1; 0; 0; :::; 0) and
(0; 1; 0; :::; 0) are inH.

Taking (a), (b), and (c) together, at least as many points
that are labeled0 in �(C) as are labeled1 are contained inH.
Since overall�(C) has one more point labeled0 than labeled
1, this implies that the number of points labeled0 that are not
inH is at most one more than the number of points labeled1

that are not inH. Therefore, overall,H agrees with at most
one more point than it disagrees with, which implies thatH

agrees with at most4 points in�(C). So if we can prove (a),
(b), and (c), we are done.

Sincea doesn' t satisfyC, it must setv
1

andv
2

to “false”,
which impliesw

1

andw
2

are negative.
To prove (a), note that ifH contains(1;�1; 0; :::;0), then

w

1

� w

2

� �. But sincew
1

< 0, this implies�w
2

�

�, which means(0;�1; 0; :::; 0) 2 H. One can prove (b)
similarly.

If (1; 1; 0; :::;0) 2 H, thenw
1

+ w

2

� �, but sincew
1

andw
2

are negative, thenw
1

� � andw
2

� �, proving (c)
and completing the proof.

A nearly identical proof, which is omitted, establishes the
following. (This lemma can alternatively be verified with a
trivial case analysis.)

Lemma 20 For any clause C in I, H agrees with at most 5
of the examples in �(C).

Let opt
ME2S

(I) be the maximum number of clauses in
I than can be satisfied by any truth assignment, and let
opt

HMA

(f(I)) be the maximum number of examples in
f(I) that any half-space agrees with.

Lemma 21 opt

HMA

(f(I)) � opt

ME2S

(I) + 4m

Proof: Let a� be the optimal assignment forI. Define~w� by

w

�

i

=

�

1 if a�(v
i

) = true
�1 if a�(v

i

) = false.

Let �� = 2, H�

= f~x : ~w

�

� ~x � �

�

g andC be some
clause. Since each point in�(C) that is labeled0 has a single
nonzero component inf�1; 1g, it cannot be inH�. There-
fore H� agrees with all the examples in�(C) that are la-
beled0. Since each point~u that is labeled1 in �(C) has two
nonzero components, and they are inf�1; 1g, ~w� � ~u � 2

if and only if both of these have the same sign as the cor-
responding components of~w�. If a� satisfiesC, then the
definition of�(C) implies that one such point is labeled1 in
�(C).

Thus, for each clauseC that is satisfied bya�,H� agrees
with at least5 examples in�(C), and for each clauseC that
is not satisfied bya�,H� agrees with at least4 of the exam-
ples in�(C). This completes the proof.

Now we are ready to sum up the analysis of our reduction

Lemma 22 If

q

HMA

(H; f(I)) � (1 � 
)opt

HMA

(f(I))

then

q

ME2S

(a; I) � (1� 19
=3)opt

ME2S

(I):

Proof: We have

q(a; I) � q(H; f(I)) � 4m

(by Lemmas 19 and 20)
� (1� 
)opt

HMA

(f(I)) � 4m

(by assumption)

� (1� 
)(opt

ME2S

(I) + 4m) � 4m

(by Lemma 21)
= (1� 
)opt

ME2S

(I) � 4
m

� (1� 
)opt

ME2S

(I) � (16=3)
 opt

ME2S

(I)

(sinceopt
ME2S

(I) � (3=4)m)
= (1� 19
=3)opt

ME2S

(I);

completing the proof.
Using this last Lemma, and Theorem 3, and doing some

calculations proves Theorem 8.

6 COMPUTATIONAL ASPECTS OF

MODEL SELECTION

The constructions we used for our reductions illustrate an
aspect of model selection related to the computational com-
plexity of learning: While our constructions yield data sets
that are computationaly hard to learn using one concept
classes, they are easy to learn using other concept classes.
More generally, there exists, for each of the concept classes
we considered above, a subset of its legal inputs for which
the maximum agreement problem can be solved in polyno-
mial time. On the other hand, these subsets, of “easy” inputs
for one concept class, include inputs for which maximizing
agreements using the other concept classes we consider is
NP-hard. Therefore, when considering the problem of model
selection, one must take into account not only the approxi-
mation error of a class, but also the computational complex-
ity of using that class with the data at hand3.

We now turn to listing the conditions under which the
various Maximum Agreement problems we consider become
easy to solve:

Claim 23 ([7]) The RMA problem may be solved in poly-
nomial time for inputs that are separable by an axis-aligned
rectangle.

Claim 24 The BMA problem for inputs that satisfy:

1. There exists a ball of radius 1 that contains all the pos-
itive points and none of the negative points of the input.

2. All negative points are at distance at least 1 + c (for
some constant c) from the center of all balls of radius 1
that captures all positive points.

is solvable in polynomial time.

3In the examples we show here, the two considerations, namely
approximation error and computational complexity, happento co-
incide: exact fitting goes hand in hand with low computational
complexity. The question remains whether this is true in general,
though.



273

In the proof of this claim, we use the following result of
Ben-David et al. [5]:

Theorem 25 [5, Theorem 5.1] There exists a family
(A

k

)

k�1

of polynomial time algorithms such that the fol-
lowing holds: For all n � 2 and k � 1, A

k

on input
S � <

n outputs a point y 2 <

n such that the closed ball
�

B(y; 1 +

p

1=k) contains not less points of S than the opti-
mal closed ball of radius 1.

We are now ready to sketch the proof of Claim 24:
Proof Sketch: We show an algorithm to solve the Ball Max-
imum Agreement problem for such inputs, based on the un-
supervised learning algorithm for balls of [5]. We use this
algorithm in the following way: We strip the original input
of all the negative points, and pass as input to the algorithm
of Ben-David et al. all the positive points. We receive as out-
put a ball of radius1+

p

1=k, which we use as the output to
the Maximum Agreement problem.

It is easy to see that, on the kinds of inputs we consider,
if we pick k so that

p

1=k � c=2, the resulting ball will in-
clude all positive points and none of the negative ones, hence
solving the Maximum Agreement problem exactly.

Corollary 26 For the set of labeled inputs that are separable
by an axis-aligned hyper-rectangle, the Axis-Aligned Hyper-
Rectangle Maximum Agreement problem may be solved in
polynomial time, yet the Ball Maximum Agreement prob-
lem cannot be approximated for these inputs, to within
418=415 � �, in polynomial time (for any � > 0), unless
P=NP.

Proof: Recall the construction of sample points used in Sec-
tion 5.1. It can be easily verified that, by slightly increasing
the non-zero component of the0-labeled points (from1 to,
say

p

2), the reduction remains valid by modifying the proof
of Lemma 15. The resulting construction is clearly separa-
ble by rectangles, since the rectangle defined by the inter-
val [�1; 1] in all coordinates would include only1-labeled
points. Therefore, by Claim 23, a separating rectangle may
be found in polynomial time.

Furthermore, by making a slight modification to the con-
struction, we can show the following:

Corollary 27 For the set of labeled inputs satisfying the
conditions of Claim 24, the Closed Ball Maximum Agree-
ment problem may be solved in polynomial time, yet the
Open Half-space Maximum Agreement problem4 cannot be
approximated for these inputs, to within418=415��, in poly-
nomial time (for any � > 0), unless P=NP.

Proof: We consider the construction given in Section 5.1,
but with the labeling reversed. Now, all positive points are
at a distance of1 from the origin, while all negative points
are at a distance of

p

2 from the origin. This input clearly
satisfies the conditions of Claim 24 withc =

p

2 � 1, and
hence a separating ball may be found in polynomial time. On
the other hand, the complement of a closed half-space is an
open half-space. Therefore, it is immediate to see that this

4By open half-space we mean that the half-space is defined as
H = f~x : ~w � ~x > �g.

new gadget is hard to approximate to within418=415 � �

using open half-spaces.
On the other hand, we can also show a construction that

is easy for balls to classify, and hard for rectangles to approx-
imate. The construction we used for Monotone Monomials
(which is thus also hard for rectangles to classify correctly)
is very easy for balls: Note that all points labeled1 have at
most one coordinate that is set to1, while all0 labeled points
have at least two coordinates set to1. By adding a single pos-
itive point of the form(�1; 0; : : : ; 0), the input would satisfy
the conditions of Claim 24 withc =

p

2� 1, making it easy
to separate with a ball. On the other hand, it is easy to see
that the hardness result for hyper-rectangles remain essen-
tially unchanged. Hence we have:

Corollary 28 For the set of labeled inputs satisfying the
conditions of Claim 24, the Closed Ball Maximum Agree-
ment problem may be solved in polynomial time, yet the Axis
Aligned Rectangle Maximum Agreement problem cannot be
approximated for these inputs, to within770=767��, in poly-
nomial time (for any � > 0), unless P=NP.

We therefore see that the same sample may be computa-
tionally easy to learn using one hypotheses class, while be-
ing NP-hard to learn using a different class. Furthermore,
these is no clear hierarchy in the power of these hypothe-
ses classes: While balls are superior to rectangles on some
inputs, rectangles are superior to balls on other inputs.

While our proofs, as they appear above, show the hard-
ness of actuallyfinding a solution to the approximation prob-
lem, we also claim that approximating the optimalagreement
rate for these problems is as hard as finding the optimal solu-
tion. Clearly, finding a solution is at least as hard as finding
its profit. To see that the converse is also true, note that all
the reductions we used in our construction would work just
the same if all we wanted was to estimate the profit of the
optimal solution. By examining Håstad's proof for the hard-
ness of approximating MAX-E2-SAT, one can verify that the
result still holds even if all that is required is to approximate
the number of clauses that may be satisfied. Thus, we have
the following results:

Corollary 29 It is NP-hard to approximate the optimal
agreement rate for the Monomial Maximum Agreement prob-
lem, to within a factor of (770=767� �), for any � > 0..

Corollary 30 It is NP-hard to approximate the optimal
agreement rate for the Ball Maximum agreement problem,
to within a factor of (418=415� �) for any � > 0.

Corollary 31 It is NP-hard to approximate the optimal
agreement rate for the Axis-Aligned Rectangle Maximum
Agreement problem, to within a factor of (770=767� �), for
any � > 0.

Corollary 32 It is NP-hard to approximate the optimal
agreement rate for the Monotone Monomial Maximum
Agreement problem, to within a factor of (770=767� �), for
any � > 0.

Corollary 33 It is NP-hard to approximate the optimal
agreement rate for the Half-space Maximum agreement
problem, to within a factor of (418=415� �) for any � > 0.



274

7 CONCLUSION

In this paper, we have established the hardness of approxi-
mately maximizing agreement with a sample using a variety
of simple hypothesis classes, and discussed consequences of
our proofs concerning the problem of model selection.

We do not know of any nontrivial approximation algo-
rithms for the problems addressed in this paper; the emphasis
of this critereon on performance on dirty samples suggests
that this framework may be useful for evaluating algorithms
for learning using simple hypotheses. Such algorithms could
then potentially be applied in practice in conjunction with
boosting [12, 11]. Ben-David, Eiron and Simon [5] consider
a different notion of approximation for densest region detec-
tion. Their results may be used to construct efficient algo-
rithms for the maximum agreement problem for some of the
classes we consider. Given a margin parameter�, these al-
gorithms output, for every input sample, a member ofH that
classifies correctly as many sample points as any member
of H can classifywith margin > � (where the margin of a
point relative to a hypothesis is the radius of the largest ball
around the point that does not intersect the boundary of the
hypothesis).

Approximation algorithms for the corresponding mini-
mization problems in the cases of half-spaces, monomials
and axis-aligned rectangles follow from the work of Kearns
and Li [17] (see [15, 19]). An efficient algorithm for max-
imizing agreement with a sample using axis-aligned rectan-
gles in the case of a constant number of attributes was de-
scribed by Dobkin, Gunopulos and Maass [9].
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