
225

The Precision of Query Points as a Resource for

Learning Convex Polytopes with Membership Queries

Paul Goldberg

University of Warwick

Department of Computer Science

Email: pwg@dcs.warwick.ac.uk

Stephen Kwek

University of Texas at San Antonio

Department of Computer Science

Email: kwek@jazz.cs.utsa.edu

Abstract

We consider the problem of learning convex

polytopes frommembership queries only, where

the learner is initially provided with a sin-

gle interior point. The class of polytopes

learnable in this setting turns out to be those

whose vertices can be e�ciently enumerated

given their bounding hyperplanes. It is an

open question whether in general one can

enumerate the vertices of a given polytope in

time polynomial in the number of vertices. In

fact, we show that both problems are equiv-

alent. We also give a query-based algorithm

for the related problem of piecewise linear

function regression.

The bit complexity of the instances in our

queries and the time complexity are polyno-

mial in the bit complexity of the coe�cients

of the equations de�ning the bounding hyper-

planes. This is consistent with prior estab-

lished results showing that the weights, not

the size, of a neural network determine the

complexity of learning. As in previous posi-

tive results on learning convex polytopes, the

precision of the instances queried can have

`polynomially' high precision. Thus one can

view the precision of the input to the mem-

bership query oracle as a useful resource. This

leads us to investigate learning environments

where this precision is limited.

1 Introduction

1.1 Our Main Result

In this paper, we consider learning the concept class

of intersections of halfspaces, i.e. convex polytopes, in

d-dimensional Euclidean space. The instances in Eu-

clidean space are labeled according to some target con-

vex polytope P . Instances that lie inside P are classi�ed

positive while those lying outside P are classi�ed neg-

ative. Given an initial positive instance to start with,

the learner's task is to determine P exactly by posing

membership queries (MQs) to an oracle that returns the

classi�cations of the instances of the learner's choosing.

Clearly, if the equations de�ning the bounding hy-

perplanes are allowed to be unrestricted unit-cost real

numbers, then learning is impossible even if the instance

space is one-dimensional and the target is a half inter-

val. In this case, the learner is simply trying to identify

a real number x by asking queries of the form: \x � y?".

Regardless of how many MQs are made, the learner can-

not determine x exactly but can only identify arbitrar-

ily small intervals containing x. Thus, we assume that

the coe�cients of the bounding hyperplanes are rational

numbers. Further, we assume that the numerators and

denominators have values bounded by m. We call the

maximum number of bits, dlogme needed to encode the

numerators and denominators the bit complexity of the

target concept. The bit complexity of an instance is the

maximum number of bits needed to encode the numer-

ators and denominators of its (rational) components.

We show that this class of convex polytopes in arbi-

trary dimension can be identi�ed exactly if we may ask

membership queries on instances with bit complexity

higher than that of the target concept. Our algorithm

runs in time polynomial in the bit complexity � of the

target concept, dimension d, and number of vertices and

facets (i.e. faces of dimension d � 1). This is subject

to the target polytope belonging to any class for which

the vertex enumeration problem is solvable e�ciently.

The paper [Pro94] gives examples of such classes. An

important special case is when the target polytope is a

simplex, and we can say that the number of vertices is

just d+1. In fact, we also show in this paper that both

our learning problem and the vertex enumeration prob-

lem are essentially equivalent (See Theorem 10). Our

algorithm assumes that the bit complexity b of the tar-

get is known. In the case where � is not known, our

algorithm will produce a polytope that approximates

(in terms of its volume) the target by assuming � to be

su�ciently small.

1.2 Previous Work on Learning Convex

Polytopes

Convex polytopes have been investigated extensively in

computational learning theory. They can be viewed

as a continuous generalization of CNF Boolean formu-

226

las which are also very well-studied. By using simple

prediction-preserving reductions it can be shown that

learnability of the class of convex polytopes without

membership queries implies PAC-learnability of CNF

formulas [PW90, Lit88]. The latter problem is one of

the most challenging open problems in learning theory.

In the following, we survey some of the relevant results

on the learning of convex polytopes.

1.2.1 Learning Convex Polytopes in Arbitrary

Dimension is Hard in General

Mostly negative results have been obtained for learn-

ing in the case that the dimension is not held constant.

Long and Warmuth [LW93] showed that learning con-

vex polytopes (bounded convex polytopes) in the con-

tinuous domain, without membership queries, is as hard

as learning polynomial-size circuits, assuming that the

chosen representation (whose size dictates a parameter

in which the algorithm must be polynomial) is the list of

vertices, instead of bounding hyperplanes, of the poly-

tope. It follows that if one-way functions exist, then

learning convex polytopes is intractable.

Learning convex polytopes in arbitrary dimension

remains di�cult even if the number of halfspaces is re-

stricted to some small constant. Blum and Rivest [BR89]

showed that �nding an intersection of two halfspaces

that is consistent with a sample of labeled points from

the boolean domain, if it exists, is NP-complete. It has

been shown that in the boolean domain, exact learning

from equivalence and membership queries remains NP-

hard if the algorithm is required to �nd (as ours does)

an intersection with the same number of halfspaces k,

for any �xed k � 3 [AHHP98, PR94].

1.2.2 Learning Convex Polytopes using

Membership Queries

One way of making the learning of convex polytopes

tractable using membership queries only is to restrict

the number of halfspaces, and sometimes, also the di-

mension. Bultman and Maass [BM91] presented an al-

gorithm that learns a single halfspace in the discretized

domain Z

2

m

= (1; � � ��;m)

2

using �(logm) membership

queries in time O((logm)

O(1)

). Shevchenko [She87] in-

vestigated the learning of a single halfspace in Z

n

m

=

(1; :::;m)

n

in time polynomial in ((logm)

n

) by asking

O((logm)

(n�1)d

n

2

e+n

) membership queries.

Baum [Bau90] presented an algorithm that learns

intersections of two halfspaces from examples and mem-

bership queries, or from examples alone if the distribu-

tion obeys a symmetry condition (homogeneous). This

result has been extended by Blum et al. [BCGS95] to

learn intersections of two (not necessarily homogeneous)

halfspaces where the membership queries on points that

are distance d from the bounding hyperplanes are unre-

liable and the distribution has weight 0 within d of the

boundary.

1.2.3 Learning Convex Polytopes Using

Membership Queries and Labeled

Sample

With a membership query oracle, Baum [Bau91]

presented an algorithm for solving the consistency prob-

lems for, and hence Probably Approximately Correctly

(PAC) learning, intersections of s halfspaces in n dimen-

sions in time polynomial in s and n. He assumed that

the sample labeled instances are drawn from a distri-

bution that rule out with high con�dence pathological

con�gurations with several hyperplanes arbitrarily close

to one another or large fractions of the measure right

on top of decision boundaries. Subsequently, Kwek and

Pitt [KP98] improved on his result by presenting an ef-

�cient algorithm that works for arbitrary distributions.

Their algorithm makes use of membership queries to

resolve the credit assignment problem. That is, it par-

titions the negative examples into sets where all the ex-

amples in each set can be separated by the same bound-

ing hyperplane of the target. This allows that learner

to construct a separating halfspace for each of the sets

in the partition. Our polytopes learning algorithm pre-

sented here can be viewed in some sense as an improve-

ment over these results in that it does not requires an

initial sample, but just a single positive instance, to

start with. Moreover, we require the learner to exactly

identify, instead of PAC learn, the target convex poly-

tope.

The limitations of our method presented here are

�rst, that the target polytope must allow its vertices

to be e�ciently enumerable (a su�cient condition for

this is that at most d facets should meet at any vertex).

Moreover, the time complexity and number of mem-

bership queries are polynomial not just in the number

of facets (as in these earlier algorithms) but also the

number of vertices. These two constraints are necessary

for our purely membership-query based learning setting,

since with just membership queries as our resource, ev-

ery vertex needs to be \inspected" with MQs to verify

that it has not been truncated by an additional undis-

covered halfspace. Note that for general polytopes, it

is very much an open question whether, given linear in-

equalities representing their bounding hyperplanes, it is

possible to list all their vertices in time polynomial in

the number of vertices.

Recently, Kwek [Kwe00] also presented an algorithm

for our problem of learning convex polytopes using mem-

bership queries. However, his result assumes the tar-

get is an upper convex polytope (i.e., unbounded from

above) and the number of membership queries made

is polynomial in the bit complexity and the number

of faces (which could be exponential in the number of

facets) of the target. He employed duality so that the

bounding hyperplanes are points in the dual space and

a membership query corresponds to asking whether a

hyperplane cuts through the dual of the target (upper

convex) polytope. His algorithm is essentially a 'gift-

wrapping' algorithm in the dual space that determines

the dual of the target. Our algorithm is an improvement

over Kwek's result in that the number of membership

queries and the time complexity is polynomial in the

number of vertices and number of facets. Further, we

do not need to assume that the target is unbounded

227

from above.

1.3 The Precision of the MQ Oracle

At �rst glance, our result and the positive results in

Section 1.2.3 seems to contradict the general consensus

that e�cient concept learning in arbitrary dimension

(even when the number of halfspaces is small) is a dif-

�cult task. However, these algorithms are e�cient be-

cause of the use of a powerful membership query oracle.

More speci�cally, the instances that are input to the or-

acle can have bit complexity polynomially higher than

the bit complexity of the target concept (as in our re-

sult) or the bit complexity of the initial labeled sample

(as in the PAC learnability results using membership

queries noted in Section 1.2.3). We de�ne the precision

of the membership query oracle as the bit complexity of

queried instances.

Our result is consistent with various known results

indicating that the size of the coe�cients is a more

important determinant of the complexity of the tar-

get concept than the dimension. Recently, Abbound

et. al. [AAB

+

99] showed that the number of member-

ship queries needed to learn a linear threshold function

in the Boolean domain with positive integer weights

bounded by t requires O(n

t

) membership queries. Also,

the worst case mistake bounds of Littlestone's Win-

now on-line algorithm [Lit88] and its variants [CBLW95,

KW94, HKW96] for learning linear threshold functions

are linear in the total number of bits needed to encode

the weights. Golea et. al. [GBLM98] showed that sam-

ple complexity of a neural network is determined more

by the magnitude of the weights of the network than its

size.

This suggests that the precision of the MQ oracle

should be viewed as a resource. If this precision is too

high, even if it is polynomially higher, the learning al-

gorithm may not be feasible. On the other hand, if it

is the same as the bit complexity of the initial labeled

sample, then the learning task is intractable. This is

because learning intersections of k halfspaces for any

k � 3 using eqivalence and membership queries is NP-

hard [AHHP98, PR94]. Thus, one would like to know

what can be learned if the precision of the MQ oracle is

allowed to be a few bits more than the bit complexity of

the target concept or the initial labeled sample so that

the results obtained are more feasible, and the MQ ora-

cle is powerful enough to learn a previously intractable

task.

To this end, we extend Angluin's exact learning

model [Ang88] for Boolean functions to real-valued func-

tions in a natural way. In our extension, an equivalence

query oracle returns a point x together with f(x) if the

target f di�ers from the hypothesis h of the learner at

point x in the domain. Instead of having a membership

query oracle, we have a valuation query oracle which

returns f(x) on input x. The precision of the valua-

tion query oracle is the bound on the maximum num-

ber of bits needed to represent each component of the

instances in the valuation queries. The learner's task is

to identify the target function in time, and hence with

a number of queries, that is polynomial in the represen-

tational size of the target function and the number of

variables.

In this extended exact learning model, we inves-

tigate the learnability of the function class of convex

piecewise linear functions CPLF . We can view a con-

vex k-piecewise linear function f with domain R

d

as

f(x) = maxff

1

(x); :::; f

k

(x)g

where the f

i

's are linear functions. The following ob-

servation shows that e�cient exact learnability of this

function class would imply that DNF is e�ciently learn-

able in the exact model.

Observation 1 There is a prediction-preserving trans-

formation of DNF Boolean formulas to convex piecewise

linear functions.

Proof: Here, a boolean attribute has value either -1

or +1 (instead of 0 or 1). Each term T

i

= l

i

1

:::l

i

k

i

in f

can be represented as a function

f

i

:

1

k

i

k

i

X

j=1

w

i

j

l

i

j

where w

i

j

= +1 if l

i

j

is a positive literal and �1 other-

wise. Let f

0

be the constant function (n � 1)=n. Con-

sider the convex piecewise linear functions F formed by

f

0

; :::; f

t

where t is the number of terms. It is straight-

forward to check that a boolean instance x satis�es a

term T

i

if and only if f

i

(x) = 1. Conversely, a boolean

instance x falsi�es a term T

i

if and only if f

i

(x) �

(n� 1)=n. Thus F maps all positive boolean instances

to 1 and all negative boolean instances to (n� 1)=n.

Note that the above prediction-preserving transfor-

mation is a bijection when the domain of the class of

convex piecewise linear functions is restricted to f�1;+1g

n

.

That is, the instances of our membership queries and

valuation queries are in the same domain. Therefore,

the existence of an e�cient exact learning algorithm

for convex piecewise linear functions using equivalence

queries and/or valuation queries would imply DNFs are

learnable using (improper) equivalence queries and/or

membership queries. However, the observation does not

apply when the domain of the target convex piecewise

linear functions is the real domain and a valuation query

oracle is available. In this case, there is no instance

in boolean domain of the DNF learning problem that

corresponds to an instance in the real domain of the

function learning problem.

We show that convex k-piecewise linear functions

can be learned with both equivalence queries and valu-

ation queries in time polynomial in the dimension and

k. The precision of the valuation query oracle is one

bit more than the bit complexity of the counterexam-

ples returned by the equivalence query oracle. Here,

we assume that the attribute values of the counterex-

amples returned by the equivalence query oracle have a

decimal representation. If a rational representation is

used, then the bit precision may need to be twice the

228

bit complexity of the counterexamples. When the di-

mension is �xed, we show that (improper) equivalence

queries alone can ensure e�cient learning. The last re-

sult assumes that the approximating function need not

be a convex piecewise linear function.

2 Some Lemmas Needed to Establish

Our Main Result

For the sake of simplicity, we assume that the coe�-

cients of the equations de�ning the target concept are

integers

1

with absolute values bounded by �. The fol-

lowing lemma by Maass and Turan states that the ver-

tices are rational points of polynomially bounded bit

complexity.

Lemma 2 [MT94]

2

Suppose the coe�cients of the

equations de�ning the target concept are integers with

absolute values bounded by �, then the vertices are in

Q

d

(8d�)

3d

where Q

(8d�)

3d = f

a

b

: 0 � jaj; jbj < (8d�)

3d

g.

In our algorithm, we often need to determine where

a line segment with rational endpoints intersects a lin-

ear hyperplane with bit complexity �. Note that, the

bit complexity of this point of intersection is again a ra-

tional point, and the problem is reduced to determining

a number (i.e., the intersection point) on the rational

line. The next lemma states that this problem can be

solved using binary search.

Lemma 3 Let x be an arbitrary number in Q

m

=

�

a

b

: a; b 2 f0; � � �;mg

	

. Suppose we are given an or-

acle that takes a rational input y 2 Q and answers

whether \x � y". Then we can identify the number

x in O (log(m)) time by making 3dlog(m)e queries to

the oracle.

Proof: See Appendix A.

Let H denote the set of bounding hyperplanes form-

ing our target polytope. Without loss of generality, let

us assume that the initial positive instance is the ori-

gin o. The next two lemmas allow us to �nd a point

lying on an unidenti�ed hyperplane. With this point,

Lemma 7 states that the unidenti�ed hyperplane can

be constructed.

Lemma 4 Let H denote the set of bounding hyper-

planes forming our target polytope. Suppose that the

boundary of our current hypothesis is a proper subset H

0

of H such that the polytope P

0

formed is not bounded.

Then we can determine an instance p lying on some

bounding hyperplane in H nH

0

.

1

We can do so since any linear equation with rational co-

e�cients can be expressed using integer coe�cients by mul-

tiplying all the coe�cients by the least common multiple of

the denominators of the coe�cients.

2

The original statement of this lemma is di�erent from

our version. The original lemma states that if the instances

space is [0; � � �;m]

d

then any linear halfspace is equivalent

to one with coe�cients in [0; � � �; (8dm)

3d

]. Our version is a

dual of the original lemma.

Proof: We begin by �nding a semi-in�nite ray with

one end at the origin which is contained in the (un-

bounded) polytope. Such a ray can be expressed as

the set of points of the form �(�

1

; �

2

; : : : ; �

d

) where �

ranges over the non-negative real numbers. Suppose a

linear threshold function f that de�nes a facet of P

0

is

given by

1

x

1

+

2

x

2

+ : : : +

d

x

d

� � (where the x

i

's

are coordinates and the

i

's are the parameters of f).

Then f imposes the following linear constraint on the

parameters of the ray: �

1

1

+ �

2

2

+ : : : + �

d

d

� � .

Hence �nding an unbounded ray contained in P

0

can be

solved by linear programming.

Given a suitable ray R, there should exist a point

p on R which is on the border of the target polytope

P (since P is assumed to be bounded) and necessarily

lying on a facet (i.e. a (d� 1)-face) of P which is given

by a linear threshold function other than the ones that

de�ne the facets of P

0

.

We can �nd p by binary search using membership

queries, and p may be found to whatever precision we

are allowed with the membership queries. The origin is

already known to lie in the interior of P , and we may

identify a point onR that is exterior to P { starting from

an initial guess of � = 1, we keep doubling our guess

until the point �h�

1

; � � �; �

d

i is outside the polytope.

By Lemma 2, the number of guesses is polynomially

bounded.

Lemma 5 Suppose our current hypothesis is an inter-

section of a proper subset H

0

of H such that the poly-

tope formed is bounded (convex polytope) P

0

. Suppose

that each vertex of P is in the intersection of exactly d

facets of P . Then we can determine an instance p lying

on some bounding hyperplane in H nH

0

.

Proof: Let P be the target polytope, P

0

the current

hypothesis (formed from a subset of P 's bounding hy-

perplanes), so that P � P

0

. The general idea is to try

to enumerate the vertices of P

0

, checking that each one

is a vertex of P . Starting from a vertex v of P

0

, where v

is the intersection of d of the halfspaces de�ning P

0

; call

this set S

v

= fH

1

; : : : ; H

d

g. A vertex v

0

adjacent to v

will be de�ned by halfspaces S

v

0

= S

v

[fH

0

g n fH

i

g for

some H

i

2 S

v

, H

0

62 S

v

. For each appropriate H

i

; H

0

we can

1. see if v

0

is a new vertex

2. see if v

0

is a vertex of P .

If v

0

is not a vertex of P , we will �nd a new hyperplane

of P cutting the line segment between the origin and v

0

.

(We then use Lemma 7 to identify the new hyperplane

and �nd a vertex that it contains.) If v

0

is a vertex of P ,

add it to our collection and subsequently test neighbours

of v

0

.

The above lemma makes the assumption that each

vertex is the intersection of exactly d of the faces (and

no more). This holds for simplices and hypercubes for

example (although in the latter case there are expo-

nentially many vertices). The assumption is needed

229

since the algorithm necessarily performs vertex enumer-

ation, which as noted previously is an open problem in

the general case. A solution would allow the algorithm

presented here to apply in general (in time polynomial

in the number of vertices together with the number of

facets).

Lemma 6 Suppose p is the point found in Lemma 4

or Lemma 5, and has bit complexity b. That is, the de-

nominator of each component is at most 2

b

. (1) If p

does not lie on a bounding hyperplane h then the dis-

tance from p to h is at least r = 1=2

b

d�

2

. (2) Further

the ball B(p; r) with center p and radius r lies entirely

inside the current hypothesis.

Proof: Suppose h :

P

d

i=1

c

i

x

i

= c

d+1

is a bounding

hyperplane that does not contain p. Then the shortest

distance between p and h is

c � (p�

c

d+1

c

i

u

i

)

jjcjj

where c

i

is a coe�cient that is non-zero and u

i

is the ith

unit vector. This distance is at least 1=2

b

�

p

d�

2

which

is larger than 1=2

b

d�

2

.

To prove the second statement, it su�ces to show

that the point p does not lie on the boundary of the

current hypothesis. This is clearly true for the case of

Lemma 4. The same can be shown to hold for the point

p in Lemma 5 as follows. Suppose on the contrary that

p lies on the boundary of our hypothesis. Consider an

arbitrary two-dimensional space S containing the line ov

where v is the vertex of P

0

that contains p (see the proof

of Lemma 5). The intersection of the target and S is a

convex polygon with p and v lying on the boundary, and

o in the interior. This is impossible since p lies between

o and v!

Lemma 7 Given the point p constructed from Lemma

4 or 5, the learner can construct a bounding hyperplane

de�ning h that is not in our hypothesis.

Proof: For simplicity, let us assume the following.

Assumption 1: p does not lie on a facet of dimension

smaller than d�2. That is, p lies in the interior of a

face f of the target that has not been determined.

Assumption 2: p does not lie on an axis.

We will remove these two assumptions later in our proof.

With these two assumptions, we can �nd d mutually

independent points q

1

; :::; q

d

that lie on some face f as

follows.

Let S

i

be the two-dimensional subspace that con-

tains o and the line l

i

= p + tu

i

where t 2 R and u

i

is

the ith unit vector(see Figure 1). Note that S

i

would

have been a one-dimensional if p lies on the ith-axis

(i.e., Assumption 2 is not true). The intersection of the

target with S

i

is a convex polygon P

i

since S

i

contains

an interior point o and a boundary point p. Further

there is a face f such that f \S

i

is an edge which p lies

on. Denote this edge by e

i

. Consider the two points

p

�

i

= p� ru

i

and p

+

i

= p+ ru

i

, which are on the sphere

B(p; r). If both points are in the target concept, then

by convexity and the fact that p lies on the edge e

i

,

both points must lie on e

i

and hence f . Thus, we can

arbitrarily set q

i

to either of these points.

Next, suppose one of these two points, call it p

i

, is

outside the target. Let s be the point p� r

0

� ~po where

r

0

= max

�

r;

�

r

jjpojj

�

2

�

. Clearly, s is in the ball B(p; r)

centered at p with radius r. Since s lies between the two

positive points o and p, it is also in the target polytope.

Further by statement 1 of Lemma 6, no vertex of P

i

is

inside B(p; r). Therefore the point of intersection q

i

, of

the line p

i

s

i

and P

i

is on the edge e

i

and hence on f .

This point can be determined by the binary search of

Lemma 3.

Now, if Assumption 1 is not true, the points q

1

; � � �; q

d

produced by the above procedure may not lie on the

same face. To circumvent this di�culty, instead of pick-

ing p deterministically, we randomly pick a point p

0

to

replace p in a similar fashion as selecting q

i

as follows.

We randomly pick a vector u that has polynomial bit

complexity and have Euclidean norm smaller than r.

We let p

+

= p + u and p

�

= p � u. If both points are

inside the target concept, then we select another u until

we have one of p

+

and p

�

outside the target. Note that

since the measure of the boundary of a face is zero (rel-

ative to the face), we are almost certain that the desired

p

+

and p

�

can be determined in the �rst trial. In the

worst case, we can try another u with almost certainty

of succeeding. Say p

+

is outside the target. Replacing p

i

by p

+

in the procedure for determining q

i

, we can deter-

mine another point p

0

that is on e and hence also on the

boundary. Again, since the measure of the boundary of

a face is zero, p

0

is very likely to fall on the interior of an

undermined face. Using Lemma 8, we can verify that

the points q

1

; � � �; q

d

obtained is in the interior of a face

with almost certainty. In the worst case, we can repeat

the process until we get the desired p

0

. Replacing p by

p

0

, we can determine the desired points q

1

; :::; q

k

. Note

that with the new p, we need to recalculate r base on

the bit complexity of p

0

(which is still polynomial).

Finally, suppose Assumption 2 is not true and p is

on the ith-axis. In this case, the above algorithm can

still determine the d � 1 points q

1

; :::; q

i�1

; q

i+1

; :::; q

d

which together with p gives us a collection of d mutually

independent points that lie on the same face.

Lemma 8 Suppose we are given the set of points Q =

fq

1

; � � �; q

d

g constructed in Lemma 7. By posing at most

d membership queries, we can determine if all the points

in Q lie on the same face.

Proof: Let q

i

and q

j

be two arbitrary points in Q.

Consider the two dimensional subspace S containing p,

q

i

and q

j

(see Figure 2). If q

i

does not lie on a face

f

j

that q

j

(and p) lie, then q

0

i

= p + ~q

i

p lies on the

opposite side of pq

j

and hence h

j

. Therefore q

0

i

is outside

230

p

e

p

q
s

o

B(p,r)
i

i

i

li

Pi

Figure 1: The point q

i

is obtained by performing a binary search to �nd a boundary point between p

i

= p + ru

i

and

s = p� r

0

~op.

the target concept. On the other hand, if the faces

which q

i

and q

j

lie are the same, then by Lemma 6, the

ball B(p; r) intersects S in a circle with center at p and

radius r. Hence q

0

i

, which is inside this circle, is inside

the target. Therefore, all the points in Q lie on the same

face if and only if all the q

0

i

's are also inside the target.

p

q

q

qi j

i

fj

B(p,r)

Figure 2: All the q

i

's are lie on the same face if and only

if all the q

0

i

's are inside the target polytope.

3 Learning Convex Polytopes with

Membership Queries

With the lemmas obtained in the previous section, it is

straightforward to design an algorithm that learns con-

vex polytopes using membership queries (see Figure 3.

Brie
y, with the lemmas in Section 2, we can simply use

Lemma 5 to �nd a suitable point lying on the interior

of an unknown face. Using Lemma 7, we can construct

the bounding hyperplane that contains this face. We

keep doing this until the hypothesis becomes bounded.

We then repeat the same process with Lemma 5 until

all the vertices in the hypothesis are also vertices in the

target, and output the hypothesis.

LearnPolytope

1. V = ; fV will be vertex set of target polytopeg

2. F = ; fF will be set of bounding hyperplanesg

3. while R = findray(F) succeeds (i.e. �nds a ray)

4. p = threshold(R; 2b)

5. f = facet(p)

6. F = F [ffg

7. end while f by now, F de�nes a bounded polytopeg

8. repeat

9. let v be a vertex of polytope(F) not in V

10. if v 2 P (satis�es MQ) then V = V [fvg

11. else p = threshold(origin; v)

12. f = facet(p)

13. F = F [ffg

14. until no new vertices v are found.

Figure 3: An algorithm for learning convex polytopes

containing the origin with MQs

The algorithm uses procedures threshold(R; a) which

�nds (to a given precision a) a threshold between pos-

itive and negative classi�cation for points along a given

ray R (using lemma 5). Procedure findray(F) �nds a

semi-in�nite ray from the origin that is contained in a

convex polytope (using lemma 4). It succeeds provided

that the polytope bounded by set F of hyperplanes is

231

unbounded. facet(p) �nds a bounding halfspace con-

taining threshold point p (using lemma 7.)

The bound on the bit complexity of the instances

used in our algorithm is polynomially bounded. How-

ever, the expression for a reasonable bound based on

the basic parameters - dimension, � and the number

of faces in our target concept, is quite complex. Fur-

ther, the main intention of this paper is simply to illus-

trate that convex polytopes can be learned in polyno-

mial time which was previously not known. Giving a

detailed analysis of the algorithm will obscure the main

idea behind our work. Hence, instead of deriving an

expression for the bound, we derive a bound that is

polynomial in terms of other polynomial functions and

simply give its closed from without giving the details of

the derivation.

The bit complexity of the point p in Lemma 4 is

some polynomial poly

LP

(k; d; �) where poly

LP

(k; d; �)

is the bit complexity of the output produced by solving a

linear equation with k constraints, d unknowns and the

coe�cients in the linear program have bit complexity

�. By Lemma 2, the bit complexity of a vertex in P

is 3d log(8md). The bit complexity of the point p in

Lemma 5 is

poly

intersect

(d�1; �;max(poly

LP

(k; d; �); 3d log(8md)); 0)

where poly

intersect

(d� 1; �; a; b) is the bit complexity of

the point of intersection of a d� 1-dimension linear hy-

perplane with a line segment with one endpoint having

bit complexity a and the other having bit complexity b.

It is easy to show that poly

intersect

(d; �; a; b) � 2d�(a+

b). Let bit(a) denote the bit complexity of a point a. In

the proof of Lemma 7, the bit complexity of the point

p

+

is bit(p)+bit(u) where u is the o�set of p

+

from p and

it has polynomial bit complexity. Since p

0

is the inter-

section of a bounding hyperplane with the line segment

op

+

, bit(p

0

) = poly

intersect

(d; �; bit(p

+

); 0). Now, s =

(1�r)

~

op

0

and p

i

= p+ru

i

, and hence both have bit com-

plexity� log r+bit(p

0

). Finally, q

i

is the intersection of a

bounding hyperplane with the line segment sp

i

. There-

fore bit(q

i

) = poly

intersect

(d; �; bit(s); bit(p

i

)). Thus, all

the points considered here have polynomial bit com-

plexity. Using the fact that poly

intersect

(d; �; a; b) �

2d�(a+ b), one can bound their bit complexity by

B = O

�

d

3

�

3

max(poly

LP

(k; d; �); 3d log(8�d))

�

:

The binary search is always performed on a line seg-

ment where the endpoints and the desired intersection

points have bit complexity bounded by B. Therefore,

by Lemma 3, the number of membership queries in our

binary search is bounded by 3B. Further, the number

of binary searches performed is bounded by O(kd + v)

where k is the number of faces and v is the number

of vertices in out target polytope. Therefore, the total

number of membership queries is O(B(kd+ v)).

The time complexity of our algorithm is dominated

by the time to perform the binary search and solving

at most k linear programming problems with d vari-

ables and d constraints. Thus, the time complexity is

O ((B(kd+ v) + k) + kLP(k; d)) , where LP(k; d) is the

time complexity for solving a linear programming prob-

lems with k constraints and d variables.

Theorem 9 Suppose the target concept comes from a

class of convex k-polytopes in R

d

where the vertex enu-

meration problem can be solved e�ciently. Further, sup-

pose it has bit complexity � and v vertices. Then the

target can be determined by asking

O(B(kd+ v))

membership queries on instances that have bit complex-

ity bounded by

B = O

�

d

3

�

3

max(poly

LP

(k; d; �); 3d log(8�d))

�

in time

O ((B(kd+ v) + k) + kLP(k; d)) :

Here, poly

LP

(k; d; �) is the bit complexity of the out-

put produced by solving a linear equation with k con-

straints, d unknowns and the coe�cients in the linear

program have bit complexity �. LP(k; d) is the time

complexity for solving a linear programming problems

with k constraints and d variables.

In fact, we show in the next theorem that the con-

verse of Theorem 9 is true.

Theorem 10 The problem of learning convex poly-

topes using membership queries and the vertex enumer-

ation problem are equivalent.

Proof: In the dual space, the vertices and bounding

hyperplanes of a polytope P correspond to the bounding

hyperplanes and vertices in the dualD(P) of P . Thus, if

we can determine all the bounding hyperplanes in D(P)

then we have solved the vertex enumeration problem.

Further, a point p is inside D(P) if and only if p is a

convex combination of the vertices in D(P). Since these

vertices corresponds to the hyperplanes of P which are

known, we can determine if p is in D(P).

4 Learning Convex Piecewise Linear

Functions

Theorem 11 In domain R

d

, CPLF can be learned

using at most k(d+1) equivalence queries and k

2

(d+1)

valuation queries. Here, k is the number of linear func-

tions in the target. The time complexity of the algorithm

is

O (k(d+ 1)LP (k(d+ 1); d+ 1))

where LP (m;n) is the time complexity for solving a lin-

ear program with m constraints and n variables. If the

counterexamples returned have decimal representation,

then the precision of the valuation query oracle is one bit

more than the bit complexity of the instances returned

by the equivalence query oracle. If the counterexamples

returned are in Q

m

= f

p

q

: 0 � p; q � mg, then the

precision of the valuation query oracle needed is at most

4 dlogme+ 2.

232

Proof: First, suppose we have an oracle O that on

input x

1

and x

2

, answers whether there exits an i such

that f(x

1

) = f

i

(x

1

) and f

i

(x

2

) = f(x

2

). That is, the or-

acle tells the learner whether the points hx

1

; f(x

1

)i and

hx

2

; f(x

2

)i fall on the same linear surface of the target

function. Using O, the learner can separate the labeled

counterexamples returned by the equivalence query or-

acle into bags P

1

; :::; P

j

; j � k such that all the points in

the same bag lie on the same linear surface of f . Note

that a point may appear in more than one bag if it lies

on a facet. The hypothesis produced by the learner is a

convex j-piecewise linear function

h(x) = max (h

1

(x); :::; h

j

(x))

such that if x 2 P

i

then h(x) = h

i

(x). The individual

h

i

can be constructed by using linear programming to

�nd a linear function that �ts the points in P

i

but lies

below all the points in [

j 6=i

P

j

. The resulting algorithm

is shown in Figure 4.

We can simulate the oracle O by using valuation or-

acle as follows. Given two labeled points hx

1

; f(x

1

)i and

hx

2

; f(x

2

)i as input to O, we use the valuation oracle to

determine f(x

0

) where x

0

is the average of x

1

and x

2

. If

hx

1

; f(x

1

)i, hx

2

; f(x

2

)i and hx

0

; f(x

0

)i are collinear then

we return YES, otherwise we return NO. The bit com-

plexity of x

0

is at most one bit more than that of x

1

and x

2

when decimal representation is adopted. If the

representation is Q

m

then it is at most 4 dlogme+2. To

see the latter, consider the (worst) case where x

1

=

a

b

and x

2

=

c

d

such that are a, b, c and d are mutually

relatively prime. Say a = m� 1, b = m� 2, c = m� 3

and d = m� 4. Then x

0

= (ad+ bc)=2bd which has bit

complexity at most 4 dlogme+ 2.

Clearly, once P

i

contains d + 1 (mutually indepen-

dent) points, the learner can exactly determine the lin-

ear function that de�nes the values of the points in

P

i

. Thus, the number of counterexamples seen by the

learner is bounded by k(d+1). The number of valuation

queries needed is at most k for each counterexample.

Thus, the total number of valuation queries needed is

at most k

2

(d + 1). The time complexity in each while

loop is dominated by the complexity for solving a linear

program in Line 9 and 13. Thus, the time complexity of

the entire algorithm is O (k(d+ 1)LP (k(d+ 1); d+ 1)).

LearnCPLF-1 in Theorem 11 uses valuation query

oracle to separate a set of counterexamples C accord-

ing to which hyperplanes they lie on. However, if the

dimension is constant then we do not need a valuation

query oracle to learn CPLF . Figure 5 describe an ef-

�cient algorithm that learns CPLF using only equiva-

lence queries. The learner maintains a collection of sets

of labeled instances A = fP

1

; :::; P

j

g. Each of these sets

has size at most d+1. InitiallyA is empty. Let P

0

i

denote

the set of instances obtained by ignoring the labels of the

instances in P

i

. To make a prediction on x, the learner

�rst determines those sets P

0

i

s which x is linearly depen-

dent on. We call these sets relevant and the others irrel-

evant. If there is no relevant set then the learner simply

makes a random guess. Otherwise, for each relevant set

P

0

i

= fx

i

1

; :::; x

i

k

i

g, say x =

P

k

i

j=1

a

k

j

x

k

j

, the learner let

P

i

(x) =

P

k

j

j=1

a

k

j

f(x

k

j

). (Note that the values f(x

k

j

)'s

can be obtained from P

i

.) The learner then guesses f(x)

to be P

i

�

(x) where i

�

= argmax

i:P

0

i

is relevant

P

i

(x).

When the prediction is a mistake, the learner receives a

counterexample hx; f(x)i. The learner then updates A

and the hypothesis h according to the following types

of error.

Type 1: The relevant set is not empty and our predic-

tion P

i

�

(x) is greater than f(x). Here, the learner

eliminates from A all the relevant sets P

i

such that

P

i

(x) > f(x).

Type 2: The relevant set is empty or P

i

�

(x) < f(x).

In this case, for each irrelevant set P

i

in A, we

introduce a new set P

i

[fhx; f(x)ig into A.

LearnCPLF-2

1. A ;

2. while our hypothesis is not the same as the target

3. get the counterexample hx; f(x)i

4. if 9 some relevant sets P

i

such that P

i

(x) > f(x)

5. remove from A all such sets

6. else

7. for each irrelevant set P

i

in A

8. A A [fP

i

[fhx; f(x)igg

Figure 5: An algorithm for learning convex piecewise

linear functions in �xed dimension that uses only equiv-

alence queries.

Claim 12 Suppose C

�

is the set of counterexamples

seen during Type 1 mistakes. Let B(C

�

) denotes the

collection of bags obtained in LearnCPLF-1 using O.

After each update of A, B(C

�

) � A.

Proof: Initially both A and C

�

are both empty and

therefore the claim is true to begin with. First, consider

the updates due to type 1 mistakes. A set P

i

that is

being removed from A must be relevant and hence x is

a linear combination of P

i

. Say x =

P

k

i

j=1

a

k

j

x

k

j

. By

de�nition of B(C

�

), the values of the points in P

i

are

de�ned by the same linear function f

l

and hence f

l

(x) =

P

k

i

j=1

a

k

j

f

l

(x

k

j

). Therefore P

i

(x) = f

l

(x) � f(x) and P

i

is not removed. Next, consider type 2 updates. Before

the update, the bag P

i

in B(C

�

) that contains x must

be irrelevant. For otherwise, x is a linear combination

of P

i

and the above analysis implies that P

i

(x) � f(x).

However f(x) 6= P

i

(x) since our prediction is less than

f(x). In other words, the points in P

i

lie on a di�erent

linear surface than x. Thus, P

i

[fxg is not in B(C

�

).

Hence, all the bags in B(C

�

) that contain x must be in

the new sets that are added to A.

233

LearnCPLF-1

1. h = ;

2. j 0

3. while EQ(h; f) 6= Y ES

4. get the counterexample hx; f(x)i

5. if 9i : 8hx

0

; f(x

0

)i 2 P

i

;O(hx

0

; f(x

0

)i; hx; f(x)i) = Y ES

6. for each such i

7. remove h

i

from h

8. P

i

 P

i

[fhx; f(x)ig

9. h h [the hyperplane h

i

containing P

i

but lie below [

j 6=i

P

j

.

10. else

11. j j + 1

12. P

j

 fhx; f(x)ig

13. h h [the hyperplane h

j

containing P

j

but lie below [

l6=j

P

l

.

Figure 4: An algorithm for learning convex piecewise linear functions in arbitrary dimension.

The same argument in the above proof together

with the fact that the points in each bag in A are mutu-

ally independent suggests that once all the sets in B(C

�

)

have d+1 instances and jB(C

�

)j = k then Type 2 mis-

take ceases to occur. Therefore, the number of Type

2 mistakes is at most k(d + 1). The number of sets

introduced by Type 2 mistakes is at most the number

of possible subsets of k(d + 1) points that have size at

most (d+1). Further, each Type 1 mistakes eliminates

at least one set from A and hence there are at most

O

�

(k(d+ 1))

d+1

�

type 1 mistakes. Therefore, the total

number of equivalence queries is at most O

�

(k(d+ 1))

d+1

�

.

The time complexity for checking whether there is a rel-

evant set in each iteration is O

�

(k(d+ 1))

d+1

d

2

�

which

gives rise to the total time complexity.

Theorem 13 The class of convex k-piecewise linear func-

tions in domain R

d

, d is constant, can be learned us-

ing at most O

�

(k(d+ 1))

d+1

�

(improper) equivalence

queries in time O

�

(k(d+ 1))

2(d+1)

d

2

�

:

Note that the LearnCPLF-1 uses an improper equiva-

lence query oracle where the hypothesis is not in CPLF .

A straightforward attempt to convert it to an algorithm

that uses proper equivalence query oracle would be to

maintain a hypothesis h = max(h

1

; :::; h

j

) where h

i

is

the linear function that �ts P

i

but lies below [

j 6=i

P

j

.

However, it is not clear how the learner should update

A and the hypothesis when the prediction h(x) is higher

than f(x) (i.e., type 1 error). We can no longer simply

discard P

i

when h

i

(x) > f(x). We might have to mod-

ify h

i

to lie below x instead and only discard P

i

when

we cannot construct h

i

that �ts P

i

but lies below all the

other points. However, the number of counterexamples

seen before we can discard P

i

may be very large.

References

[AAB

+

99] Elias Abboud, Nader Agha, Nader H. Bshouty,

Nizar Radwan, and Fathi Saleh. Learning

threshold functions with small weights using

membership queries. In Proc. 12th Annu. Conf.

on Comput. Learning Theory, pages 318{322.

ACM Press, New York, NY, 1999.

[AHHP98] H. Aizenstein, T. Hegedus, L. Hellerstein, and

L. Pitt. Complexity theoretic hardness results

for query learning. Computational Complexity,

7:19{53, 1998.

[Ang88] D. Angluin. Queries and concept learning. Ma-

chine Learning, 2(4):319{342, April 1988.

[Bau90] E. Baum. A polynomial time algorithm that

learns two hidden net units. Neural Computa-

tion, 2:510{522, 1990.

[Bau91] E. Baum. Neural net algorithms that learn

in polynomial time from examples and queries.

IEEE Transactions on Neural Networks, 2:5{19,

1991.

[BCGS95] Avrim Blum, Prasad Chalasani, Sally A. Gold-

man, and Donna K. Slonim. Learning with un-

reliable boundary queries. In Proc. 8th Annu.

Conf. on Comput. Learning Theory, pages 98{

107. ACM Press, New York, NY, 1995.

[BM91] W. J. Bultman andW. Maass. Fast identi�cation

of geometric objects with membership queries. In

Proc. 4th Annu. Workshop on Comput. Learning

Theory, pages 337{353, San Mateo, CA, 1991.

Morgan Kaufmann.

[BR89] A. Blum and R. L. Rivest. Training a 3-node

neural net is NP-Complete. In Advances in Neu-

ral Information Processing Systems I, pages 494{

501. Morgan Kaufmann, 1989.

[CBLW95] N. Cesa-Bianchi, P. Long, and M. K. Warmuth.

Worst-case quadratic loss bounds for on-line pre-

diction of linear functions by gradient descent.

IEEE Transactions on Neural Networks, 1995.

To appear. An extended abstract appeared in

COLT '93.

[GBLM98] Mostefa Golea, Peter Bartlett, Wee Sun Lee, and

Llew Mason. Generalization in decision trees and

DNF: Does size matter? In Michael I. Jordan,

Michael J. Kearns, and Sara A. Solla, editors,

Advances in Neural Information Processing Sys-

234

tems, volume 10. The MIT Press, 1998.

[HKW96] D. P. Helmbold, J. Kivinen, and M. K. Warmuth.

Worst-case loss bounds for sigmoided linear neu-

rons. In Proc. 1996 Neural Information Process-

ing Conference, 1996. To appear.

[KP98] Stephen Kwek and Leonard Pitt. PAC learn-

ing intersections of halfspaces with membership

queries. Algorithmica: Special Issue on Compu-

tational Learning Theory, pages 53{75, 1998.

[KW94] J. Kivinen and M. K. Warmuth. Exponenti-

ated gradient versus gradient descent for linear

predictors. Technical Report UCSC-CRL-94-16,

University of California, Santa Cruz, Computer

Research Laboratory, June 1994. Revised De-

cember 7, 1995. An extended abstract to ap-

peared in the STOC 95, pp. 209-218.

[Kwe00] Stephen Kwek. An e�cient algorithm for learn-

ing upper convex polyhedra using membership

queries. In Proc. International Symposium of Ar-

ti�cial Intelligence nd Mathematics, 2000.

[Lit88] N. Littlestone. Learning when irrelevant at-

tributes abound: A new linear-threshold algo-

rithm. Machine Learning, 2:285{318, 1988.

[LW93] P. M. Long and M. K. Warmuth. Composite ge-

ometric concepts and polynomial predictability.

Inform. Comput., 1993. To appear.

[MT94] Wolgang Maass and Gy�orgy Tur�an. How fast can

a threshold gate learn?, chapter 13, pages 381{

414. MIT Press, 1994. Earlier versions appeared

in FOCS89 and FOCS90.

[PR94] K. Pillaipakkamnatt and V. Raghavan. On the

limits of proper learnability of subclasses of DNF

formulas. In Proc. 7th Annu. ACM Workshop on

Comput. Learning Theory, pages 118{129. ACM

Press, New York, NY, 1994.

[Pro94] J.S. Provan. E�cient enumeration of the ver-

tices of polyhedra associated with network lp's.

Mathematical Programming, 63:47{64, 1994.

[PW90] L. Pitt and M. K. Warmuth. Prediction pre-

serving reducibility. J. of Comput. Syst. Sci.,

41(3):430{467, December 1990. Special issue of

the for the Third Annual Conference of Structure

in Complexity Theory (Washington, DC., June

88).

[She87] V. Shevchenko. On deciphering a threshold func-

tion of many-values logic. Grokii State Univer-

sity, pages 155{163, 1987.

Appendix A: Binary Search on a

Rational Line

Let x be an arbitrary number inQ

m

=

�

a

b

: a; b 2 f0; � � �;mg

	

.

By querying whether x � m, we can determine if the

denominator of x is 0. Thus, without loss of generality,

we assume that this is not the case.

Note that x can be expressed as bxc+

a

b

where a and

b are relatively prime and a < b. Using binary search,

we can determine bxc by making dlog(m)e + 1 queries.

To exactly determine the fractional part, we perform a

binary search on the unit interval [bxc; bxc+ 1] so that

we know

�

m

2

�

a

b

�

�+1

m

2

. This can be done by asking

2dlog(m)e - 1 queries.

Lemma 14 Suppose

a

b

;

c

d

2 Q

m

and

a

b

;

c

d

2 [

�

m

2

;

�+1

m

2

].

Then

a

b

=

c

d

.

Proof: By way of contradiction, suppose

a

b

6=

c

d

, and

say

a

b

>

c

d

. Then

0 �

a

b

�

c

d

�

1

m

2

) 0 <

ad� bc

bd

<

1

m

2

) 0 < ad�bc < 1:

The last inequality is true since bd � m

2

and if

bd = m

2

then ad�bc � m. This inequality is impossible

since a; b; c; d are integers and

a

b

6=

c

d

.

Suppose we know the desired

a

b

is in I = [

�

m

2

;

�+1

m

2

]

as in Lemma 14. Clearly, since

a

b

is the only fraction in

Q

m

that is also in I , all fractions in I that is not equal

to

a

b

must have denominator greater than b. Thus, it

su�ces to �nd the fraction that has the smallest de-

nominator in I . The next lemma states that such a

fraction can be determined in time O (log(m)) without

asking any further queries. Thus Lemma 15 completes

the proof of Lemma 3.

Lemma 15 Given an interval I = [

�

�

;

�

], there exists

a fraction

a

min

(I)

b

min

(I)

in I =

h

�

�

;

�

i

such that for all

a

b

2 I,

a

min

(I) � a; b

min

(I) � b. Further, we can determine

this fraction in time O (log(max(�; �;
; �))).

Proof: We prove the existence of a

min

(I) and b

min

(I)

by constructing it using a recursive algorithm. Our al-

gorithm has the same
avor as Euclid's algorithm for

�nding the greatest common divisor of two integers. Let

a

b

be an arbitrary fraction in I . We consider the follow-

ing two cases.

Case 1: the interval I does not contain any integer.

In this case, we have

�

�

�

a

b

�

�

and

�

�

�

�

=

j

a

b

k

=

j

�

k

:

We can express a as

a =

�

�

�

�

b+ (a mod b) (1)

Let a

0

= a mod b, �

0

= � mod � and

0

=
 mod �.

Then, we also have the following inequality.

�

0

�

b

a

0

�

�

�

0

:

That is,

b

a

0

2 I

0

where I

0

=

h

�

0

;

�

�

0

i

. Notice that if

there exists

^

b;

^

a

0

2 I

0

such that for all

b

a

0

2 I

0

; b �

^

b

and a

0

�

^

a

0

, then substituting

^

b for b and

^

a

0

for a

0

in Equation (1) gives us the smallest a among all

feasible b and a

0

such that

b

a

0

2 I . That is, to prove

the existence of a

min

(I) and b

min

(I), it su�ces to

prove the existence of a

min

(I

0

) and b

min

(I

0

). Simi-

larly, to determine a

min

(I)=b

min

(I), it is su�cient

to solve the problem with the interval I

0

.

235

If I

0

contains an integer, then the problem instance

is reduced to Case 2. Thus, suppose I

0

does not

contain an integer. Notice that

0

�
 and �

0

� �.

Suppose
 =

0

and �

0

= �, then by repeating the

above argument, we have

�

0

�

0

�

a

0

b

0

�

0

�

0

where b

0

= b mod a

0

, �

0

= � mod �

0

and �

0

=

� mod

0

. That is, the problem is reduced to �nd-

ing a

min

(I

00

) and b

min

(I

00

) where I

00

= [

�

0

�

0

;

0

�

0

].

Further, since

0

< � and �

0

< �, we have �

0

< �

and

0

<
.

In other words, by reducing the problem instance

(i.e. an interval) in this manner, we are sure that

�

0

+ �

0

+

0

+ �

0

< �+ � +
 + �. Eventually the

problem instance must contain an integer and the

algorithm terminates (see Case 2). In the worst

case, we stop when the interval being considered

is [

1

1

;

1

1

].

Case 2: the interval I contains an integer. Suppose

I contains the integers z

1

< � � � < z

k

. We claim

that 8

a

b

2 I; a � z

1

. This is clearly true if z

1

= 1

or b = 1 or

a

b

� z

1

. Thus, suppose z

1

�1 <

a

b

< z

1

and b 6= 1 and z

1

6= 1. Then a > y(z

1

� 1) which

implies a � z

1

. Hence we have a

min

(I) = z

1

and

b

min

(I) = 1.

findFraction(�; �;
; �) : a; b

if

�

�

�

�

=

�

�

�

and

�

�

62 Z (Case 1)

b; a

0

 findFraction(�;
 mod �; �; � mod �)

a =

�

�

�

�

b+ a

0

(Equation 1)

return a, b

else (Case 2)

return a = d

�

�

e, b = 1

Figure 6: An algorithm for �nding a fraction

a

min

(I)

b

min

(I)

2

I =

h

�

�

;

�

i

such that for all

x

y

2 I , x � a

min

(I); y �

b

min

(I).

Figure 1 shows an algorithm for determining a

min

(I)

and b

min

(I). The method we used to reduce the de-

nominator and numerator of the endpoints of I is the

same as Euclid's algorithm for �nding the greatest com-

mon divisor of two numbers x < y. The time com-

plexity for Euclid's algorithm is O(F

�1

(max(x; y))) =

O(log(max(x; y))) where F

�1

(�) to be the largest k

such that � is less than the kth Fibonacci number.

Thus, we have the desired time complexity.

