Hardness Results for General Two-Layer Neural Networks

Christian Kuhlmann*
Lehrstuhl Mathematik & Informatik
Fakultat fur Mathematik
Ruhr-Universitat Bochum
D-44780 Bochum
email: kuhlmann@lmi.ruhr-uni-bochum.de

Abstract

We deal with the problem of learning a general
class of 2-layer neural networks in polynomial
time. The considered neural networks consist of
k linear threshold units on the hidden layer and an
arbitrary binary output unit.

We show NP-completeness of the consistency
problem for classes that use an arbitrary set of bi-
nary output units containing a function which de-
pends on all input dimensions. Therehyis al-
lowed to be polynomial in the input size. Those
classes enclose a variety of multilayer neural net-
works like the class of multilayer feedforward
threshold units. We obtain an analogous result for
classes of 2-layer neural networks with any fixed
nontrivial output unit.

Further we present a hardness result for approxi-
mation. We prove that it is NP-hard to find a 2-
layer neural network of constant size with output
unit PARITY that approximately (up to a constant
factor) maximizes the fraction of correctly classi-
fied examples in the given training set. We further
develop a general tool to prove this type of hard-
ness results for neural networks.

1 Introduction

Blum and Rivest [4] consider the class of two-layer neu-
ral networks with two linear threshold units on the hidden
layer and functions like AD, OR, XOR as the output unit.
They prove that the decision problem of whether there is a
network that exactly classifies a training set is NP-coneplet
They also show a similar hardness result for a conjunction of
k linear threshold units. DasGupta, Siegelmann and Sontag
[5] extend the result of Blum and Rivest to two-layer neural
networks with piecewise linear hidden units. Schmitt [13]
examines the question whether the restriction of the sanple
such that they have a limited overlap, and a restrictionef th
weights of the neurons simplify the problems. Hammer [7]
shows hardness for the decision problem of the class of mul-
tilayer feedforward threshold units.

Amaldi and Kann [1] prove hardness of identifying fi-
nite conjunctions of a number of halfspaces, hyperplangs an
their complements which optimally classify a training set.

For the learning problem of finding a neural network that
approximately optimally classifies a training set, two main
branches were investigated. The first is represented by 'ro-
bust learning’ where, foeach ¢ > 0, an efficient learner
has to identify a hypothesis with error rate withirfrom
the error rate of an optimal classifying hypothesis, in time
polynomial in the sample size angc. Hoffgen, Simon
and Van Horn [9] show that robust learning of halfspaces
is NP-hard. The second branch is the problem of identifying
a hypothesis which classifies withinfaed error rate from
the error rate of the optimal classifying hypothesis. Find-
ing such hypotheses is generally much easier than identi-

Two-layer neural network classifiers are an important class fying hypotheses which perform optimal, and for practical

of neural networks in various fields of computer science. A
natural question in this regard is if we can efficiently com-
pute an appropriate network which performs well in the set-
ting of consideration, i.e. which separates a represeptati
set of datacorrectly, optimally or approximately optimally,
respectively.

All three cases, the problem of learning neural networks
that exactly, optimally and approximately optimally clifgs
a training set, have been studied in different ways in thie las
years. Several, mostly negative, results in this framework
arose in the recent time.

*The author likes to thank Hans Ulrich Simon, Shai Ben-David,
Jurgen Forster, Michael Schmitt and Peter Kohlmann fopfiél
hints and discussions. The author gratefully acknowletigesup-
port of the German-Israeli Foundation for Scientific Reskand
Development (grant 1-403-001.06/95).
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use often sufficient. Arora, Babai, Stern and Sweedyk [2]
show NP-hardness for the class of linear threshold funstion
if the fixed error is a constant multiple of the optimal er-
ror rate. Hoffgen, Simon and Van Horn [9] obtain similar
results. Bartlett and Ben-David [3] extend this type of re-
sults to larger hypothesis classes. They consider a 2-layer
neural network consisting df linear threshold units and a
conjunction (linear threshold function, respectively)ths
output unit and show NP-hardness to find a network with
proportion of correctly classified data withifik (c/k3, re-
spectively) from optimal. They substantiate the same tesul
for classes with an arbitrary set of output units contaitire
conjunction.

We extend the above results in the following way. First
we show NP-completeness for the consistency problem of
the class of two-layer neural networks withinear threshold



units and an arbitrary output unit that depends on at least tw

Theorem 2.2 MAX 2-CUT is NP-hard with error-rate ¢ <

inputs. This class contains the one considered by Blum and1/34.

Rivest. We also show NP-completeness for the consistency

problem of the same class admitting an arbitrary set of dutpu A SPecial class of decision problems areisiszency prob-

units that contains a function depending on all inputs.riisu

out that the class of multilayer feedforward threshold sinit W

lems. In this class, the instance spaceds= (S,)n>1,
hereS,, is the set consisting of all finite sequences=

considered by Hammer [7] is a special case of this class. For(v', li)ic1. Of labeled vectorgv’, ;) € V;, x {1, 1} called

both resultsk can even be polynomial in.

Finally, we turn towards approximation and extend the
result of Bartlett and Ben-David [3]. We show that it is NP-
hard to find a two-layer neural network withhidden linear
threshold units that maximizes the fraction of correctbsel

sified examples in the given training set, as long as the set of

output units containsARITY .

Our paper is structured as follows. After formal defi-
nitions of the discussed problems and preliminary resalts i
section 2, we describe our main results in section 3. Sedtion
introduces a general technique to prove hardness witheespe
to the consistency and approximation problem for two-layer
neural networks witlt hidden linear threshold units. Finally,

Sections 5 and 6 deal with the proofs of our main results, ap-

plying the general technique developed before. In the forme
section we show NP-completeness for the described classe
In the latter section we prove the NP-hardness result.

2 The models, definitions, and preliminary
results

In this section we will formalize the problems we are inter-
ested in.

Let X be theinstance space and, for each instance €
X, let Y, be thesolution space of x. Theprofit function Z
assigns to every € X and everyy € Y, avalueZ(z,y) €
[0,1]. LetP = (X, (Vy)rex, Z). Then thedecision prob-
lem of P is the problem of deciding whether for a given
instancex € X there exists a solutiop € ), such that
Z(xz,y) = 1. Further, for theapproximation problem of
‘P with error-rate ¢, the algorithm has to identify a solution
y € Y, fora given instance € X which satisfies

Z(z,y) > (1 = cJoptp(z)
whereopt; (z) = maxyey, (Z(z,y)). Fore = 0, we call
this problemmaximization problem.

Regarding decision problems, a well-known example is
SET-SPLITTING where the instance space is theGedf hy-
pergraphs? = (V, E) with V. C N, £ C 2V. The solu-
tion space of contains all2-colorings 7 : V. — {1,2}
that 2-colors (G, and the profit functiorZ outputs the frac-
tion of the number of edges which akecolored by 7, i.e.
Z(G,r)= {1 € E (1) = {1,2}}/|E].

If we restrict the instance space to the §étof graphs
(| = 2 for all I € E), the corresponding approximation
problem are called Mx 2-CuT.

We will obtain our hardness results by reduction relying
on the following two basic theorems. The first concerns our
decision results and was proven by Lovasz [6].

Theorem 2.1 SET-SPLITTING is NP-complete.

The following theorem is a corollary of a theorem proven by

Kann, Khanna, Lagergren and Panconesi [10] is the basis for

our approximation results.
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samples (in V,,). V,, is a K -Vektorspace. The solution space
of a sample ir§,, is a setF,, of decision functiong : V,, —
{=1,1}. Let F = (F,)n>1. Finally, the profit function out-
puts the fraction of points of a sampig consistent with a
functionf, i.e. Z(S, f) = {i: f(v') =, i € Is}|/|1s].

We denote the consistency problem®fby CoNs(F)
and the corresponding maximization problem and approx-
imation problem by Mx(F) and APPROXF,¢), respec-
tively.

This paper deals with a special class of decision func-
tions, theclass F**» = (.Ts(n)’(z)k("))nx of two-layer neu-
ral networks with k linear classifiers and output unit ¢y,
wherek is a function inn with positive integer values, and

FpP = {F: F(v) = 6(Fi(v), oo, [5(0), i € LTo ),

SwhereLT,, is the class ofinear threshold functions sgnw -

v+ ) with w € V,,, andthreshold § € K. w - v denotes
the inner product of two vectors, and g = 1, if z > 0
and sgifz) = —1 otherwise. Moreoverp € B; whereB;
is the class of all boolean functiofs-1,1}/ — {—1,1}.

For a subset® C B;, we defineF}® = (J, 4 F* and

consequentlyF?:®x = (]—"ff(”)’%("))nx.

With respect to these classes, we ask for the complex-
ity of algorithms solving the problems@ls(F* ®*) and
APPROXF*®x ¢).

We call a sequencedy(,))n>1 of sets®; C B; well-
behaving, if there is a polynomiap and a representation-
scheme, i.e. a surjective mappin@, : X* — Un>1Bk(n)
with the following properties:

1. Foralln > 1and allp € @,y size(¢) < p(n).

2. There is an algorithm that solves the decision problem

Instance: s € L,<P(1)
Question: R(s) € ®p(n)?

in time polynomial inn.

Hence, if(q)k(n))nZI is well-behaving, we can guess a word
in s € ©<r(") and check in polynomial time, iR(s) €
@k(n).

Further, since itis possible to replace weights and thresh-
old of a threshold unit by values of representation length
polynomial in the input size (see e.g. Raghavan [12] and
Hastad [8]), we can write down all the weights and thresh-
olds of any neural network iff*>®* in polynomial time, in
order to test the agreement with respect to the given sample.
This implies

Lemma 2.3 Let k(n) be polynomial in n and let (P (n))n>1
be a well-behaving sequence of sets ®; C B;. Then

CONS(F*®*) € NP.



Hence, in order to show NP-completeness for the consis-

tency problem ofF*:®x it suffices to find a reduction from
a problem that is already known to be NP-complete.

We continue with further definitions. Theze |S| of a
sampleS = (v*,1;);e1 is the size of the index sét;. Fur-
ther, S; LI S» is the concatenation of two sampl&s and
Ss.

For a threshold functiorf, P; denotes theeparating
hyperplane of f,i.e. Py = {v: w-v+ 6 =0} We say that
[ separates a pair of pointgv!, v?), if f(v!) = —f(v?). Itis
easy to see that in this cagg intersects the line betweer
andv? at exactly one point, i.e. there is exactly one [0, 1]
such thatw - (Av! + (1 — A)v?) + 6 = 0. We call this point
vt + (1= A)v? theseparating point of (v*, v?) with respect
to f.

Consider a boolean functioft € B; and a vectob ¢
{—1,1}*. Foran index sef C {1,...,k}, by denotes the
boolean vectob with a negated coordinate at each position
i € I. Furtherbg;1) (bi|-1), respectively) denotes vector
where thei-th coordinate is set td (—1, respectively). We
say thab is critical (for ¢) with respect to i, if

¢(b) = —o(beiy)-

We say that depends on all dimensions, if for each: there
is a vectorb® which is critical fori. We call the set of such
vectors(b, ..., b%) a witness set of ¢. The following lemma
is an implication of a resultshown by Simon [14].

Lemma 2.4 Let ¢ depend on all dimensions. Then there ex-
ists a vector b¥, which is critical for at least two different
coordinates.

A vectort® with the above property is callegfective for ¢.
In order to simplify our reduction, we introduce the follow-
ing relation on subsets &f;. For®, ¥ C B, we writed ~

¥, iff there exist boolean valuesy,...,op € {—1,+1}
such that

¥ = {og(¢gooc):¢ed}
whereo(z1,...,2;) = (o121, ..., 0r2;). Obviously~ is

an equivalence relation. Far,vy € By with {¢} ~ {¢}
we simply writeg ~ . Finally, [¢] denotes the equivalence
class of{ ¢} with respect to~.

For instance, if a function € 53, depends on all dimen-
sions, and ib®™ is an effective vector ab, then, withy:(b) =
o (b6, bSTb,), obviouslyg ~ ¢ and1 = v (1,1) =
—¢(=1,1) = =¢(1,-1), i.e. ¢ € {AND,—XOR}. Since
XOR ~ —XOR, it follows

Lemma 2.5 If ¢ € By depends on all dimensions, then ¢ €
[AND] U [XOR]. .

In the following lemma we see, that NP-completeness of
CoNs(F*®x) is preserved for the whole equivalence class
of ®.

Lemma 2.6 If CONS(F*:®*) is NP-complete and ®;, ~ W,
then CONS(F*¥*) is NP-complete.

Simon [14] even shows the significantly better lower bound

log k for the number of coordinates for which there exists a @itic
vector
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Proof We reduce ©NS(F*®*) to Cons(F*¥*). Since
&y ~ Wy, there existoy,...,0, € {+1,—1} such that
V), = {0o(¢ 0 7),¢ € Oy} Define functionp that maps
S = (v',1;)ic1. to the sampleS = (v’ ool;)icr. Let
é(f1,..., fr) be a solution forS. Since the size of is
finite, we can assume thaw! - v + 6| > 0 forall | =
1,...,kandi € Ig. This implies that with the functions
fi(v?) = sgnoyw! vt +o10,) € LT, 1 =1,..., k, we have
cufi(v) = fiv'), which yieldsé(fi (), ..., fi(v}))
oop(orfi(vh), ..., O'kka(vZ)) = oop(fL(v'), ..., f;i(vl))
Hence,y € ¥, andy(f,..., fi) is a solution forS. The
converse direction is analogous.

3 Main results

We present our main results in this paper. The first two
theorems are NP-completeness results for the class of two-
layer neural networks with linear threshold units and arbi-
trary nontrivial output units.

Theorem 3.1 Assume that for sufficiently large n, 2 < k(n)
< 223 and Pk(n) € Br(n) depends on at least two dimen-

2
sions. Then CONS(F*:®*) is NP-complete.

The following result similar except that it admits a class of
output units.

Theorem 3.2 Assume that for sufficiently large n, 2 < k(n)
< % and ) C Bk(n), where @y, contains a function
¢ depending on all dimensions. Then CONS(F*®*) is NP-
hard.

If; in addition, ®y, is well-behaving, then CONS(}"’“’%)
is NP-complete.

The last theorem is an NP-hardness result of approximation
concerning two-layer neural networks with linear threshol
units and a class of output units containirgrPry 2.

Theorem 3.3 Let k > 2 be constant and ® C By with
PARITY € ®. Then APPROXF*® €) is NP-hard for

€ — 1
T 3844128k

4 General technique

In this section we develope a general tool to show hardness
results of the consistency and approximation problem of two
layer neural networks with linear classifiers. We first intro
duce a reductiop from SET-SPLITTING to CONS(F2X°R)
proposed by Blum and Rivest [4] and show that this reduc-
tion is also a valid reduction for the broader cla&s?, if ®
contains a function depending on all dimensions.

In theorem 4.3 we present conditions to show NP-com-
pleteness of ONS(F*®+) from the properties otF?®.
Theorem 4.4 is the counterpart for NP-hardness in approx-
imation.

Let G = (V, F') be a hypergraph anl€ E. We define
the samplelf . consisting of(+e’, —1), (¢!, 1) and (0, 1)
for all i € I wheree’ denotes thé-th unit vector anct! =



-el

Figure 1: The samplélg’j}

> ier €' Figure 1illustrates this sample for an edge;}.

Further letH ; consist of all points that appear i, for all
1 € E. Thenp is the function that map&' to Hs.

Lemmad4.1 Let ¢(f1, f2) € fﬁ’lﬁfor an arbitrary boolean
Sfunction . If f1 is constant on {e' : i € I}, then ¢(f1, f2)
is not consistent with Hé.

Proof Let h;(v) = wl v+ 6; and f;(v) = sgn(h;(v)),
j = 1,2. Without loss of generalifywe can assume that
61,0, > 0. This implies in particulagy(1,1) = 1.

Suppose now that( f1, f») is consistent with7 ... Since
0 ande? have different labels for afl € I and f; is constant
on{e' :i¢c I}, eitherfy = —lorfo = —lon{e :iel}.
Let ff = —1 on{e’ : i € I} (the other case is treated
similarly). Sincef; > 0,0 > hi(e') = w} + 61 > w}
for all i. This impliesh,(¢') = Y7, wj + 61 < 0 and
hi(—e') = —w} +6; > 0. Hence,

file) = file') = =1 (0) = = fi(=¢)
for all i. Since0 and—¢’ have different labels anf (0) =
Ji(—=e*), fa(—€') = —f2(0) = —1 for all i. Together with
g, > 0 we obtain0 > ha(—¢') = —w? + 0, > —w?. This
gives ushs(¢') = wf + 02 > 0 andha(e’) = 32, ; w? +
0> > 0. This impliesfa(e’) = f2(e!) and, finally,

G(fr(eh), f2(eD)) = w(fi(el), fo(eh))

which is a contradiction to the alternately labetédande?.
[ J

Theorem 4.2 Let & C B be a set which contains a func-
tion depending on all dimensions. Then CONS(F2®) is NP-
complete.

Proof
We use the reductiop to show hardness for clags of
output units. Due to Lemma 2.5 and 2.6, without loss of

2PARITY denotes the function that outputsif the number of
positive arguments is odd, ardl otherwise

30therwise letr; = sgn(4,) for j = 1,2. Since H is fi-
nite, we can assume thif;(v)| > 0. With the transformation
¢(b1,b2) — ¢(a1b1, 02b2) andf; — o f; for j = 1,2 we obtain
the functiong(f1, f2) € €2% with 6,,6, > 0, that has the same
behaviour oni7%, as¢(f1, f2).
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generality we can assume thhtcontains AND or —XOR.
Assume first that- 2-colorsG;, V' = {1,...,n}. Define
fi(v) = sgnw’ - v 4 1/2) with

{—1, if 7(j) =1 =1, if 7(j)
n, if 7(j)=2 n, it 7(j)

Obviously f1(0) = f2(0) = 1 and fi(£e') = —fo(+e?).
SinceG is 2-colored, alsgf; (£e!) = —fao(del) = 1 for
all I € E. Therefore, AD(f1, f2) and—XOR(f1, f2) are
consistent withp(G).

Let converselyy(f1, f2) be a solutionF2?® on p((¥).
Define the mapping as follows: (i) = 1, if fi(e) = 1,
andr (i) = 2, otherwise. Suppose thatis not a solution,
i.e. that an edgé € £ has a monochromatic coloring, say
7(I) = {1}. According to the definition of, fi(¢') = 1
forall ¢ € I. Then according to Lemma 4.&( f1, f2) is not
consistent withf/ .. Hence,y(f1, f2) is not a solution for
CONS(F2¥).

1 _

2
2 _
andwj_{ 1

Consider two sample§ and H in V,,. We say that em-
ploys F*® for H, iffforall ¢(f1,..., fr) € F*®* consis-
tent with H LI H at leastk — 2 functions off{, ..., f; are
constant on .

Theorem 4.3 Let m be constant. If there are polynomial-
time computable functions p,n mapping a hypergraph G
with |V| = n to a sample in V,, 4, such that the following
holds

o For each 2-colorable G € G, there exists F € FF*®x
consistent with p(G) U n(G)

o 7(G) employs F*®+ for p(G),
then the consistency problem CONS(F* ®+) is NP-complete.

Proof We show thaty : G — p(G) L n(G) is a reduction
from SET-SPLITTING to CONS(F*®+). First, assume that
(i is 2-colorable. Because of the first condition, there exists
F € Fk®x consistent withp(G) U n(G) .

The converse direction relies on the second condition:
Assume that there exists a functidh= ¢(f1, ..., fz) con-
sistent withp(G) LI (G). Sincek — 2 functionsf; are con-
stant onp(G), there is a functiors € B, and two functions
of fla ceey fk! Sayfla f2! with ¢(f1a ceey fk) = 1/)(f1a fZ) on
p(G). Together with Lemma 4.1 and Theorem 4.2 we obtain
a solution for &T-SPLITTING. .

Theorem 4.4 Let m, k be constant, and let 1) be a polyno-
mial-time computable function that maps a graph G with
|V| = n to a sample in Vi, 4, Assume that for each G € G*
the following holds:

e For all 2-colorings 7 : 'V — {1,2} there exists F €
FF® such that for all 2-colored edges I and all vertices
1 €V, F is consistent with H{Z}, Hé and n(G).

e There exist samples ng(I) with n(G) = Uregng(I)
such that n(I) employs F*® for HL, forall I € E.

Then APPROXF*® ¢) is NP-hard for ¢ = 1/(384 4+ 1282),
where z = maxa rer |na(I)].

For the detailed proof we refer to the appendix (A).



5 NP-completeness

In this section we will prove the first two main theorems 3.1

and 3.2.

Proof of Theorem 3.2 We will use Theorem 4.3 to show this T

theorem, i.e. we will construct the functiopsn and verify +*

the required conditions. ‘
Consider an arbitrary fixed and letk = k(n). Fork = G, yole.

2, we can apply Theorem 4.2. Assume now that> 3.
Let ® be an arbitrary subset &, containing the functiog
which depends on each dimension. Due to Lemma 2.6, we

can w.l.o.g. assume thaf™ = (1,...,1), ¢(¢*") = 1, and - +: +: P R T
that coordinates 1 and 2 are critical #6. Let (b1, ..., b") P, pairin G

be a witness set faf.

In order to construcp andn, we require a polynomial-
time algorithm V-& sTEM which with inputn outputs a sys-
temU, = (u"¥) i=s,..» of vectorsu’/ € V,, with the fol-

i=1,...,kn

lowing properties:

(Ul1) Everyn vectors ofU,, are in general position. Figure 2: The examples @i’ , G and Hg’j} projected to
i o V2. The pairs inG,, ‘employ’ & — 2 hyperplanes such that
(U2) w;’ =0foralli,; they are not able to separate the pairgfin.
(U3) sgr{w;’) = bi foralli,l =1,....kj=1,... kn,
i £ L and r=n?2%°
(U4) size(u'’) < a(n) = poly(n) fori # I (size(x) corre- The following calculation will show tha(f) is consistent
sponds to the binary representation:f on Hg U G,,. Consider first an arbitrary paje’? + ee') in

I . . ) G,,. Then with (U3)
Such a polynomial-time algorithm exists. It obtains the-vec

tor system by generating vectors from a system of appro- f1((ui’j + eei) = sgnw!ut + ew'el + ;)
priate linear independent polynomials. For the explicii-co _ ( i ij ' )
struction of V-SrsTEM we refer to the appendix (B). Then =sgn{ ruy” +3 5 2w —2) +eaia+ 1/2).
we definep that maps a hypergrapif = (V,E), V = A B

{3,...,n} to the sample inf{ in V,, consisting of(¢ + For A we obtain

e',—1),(t+el,+1)and(t, 1) foralli € I, I € E, where

t=1(0,0,2,...,2).

[rul?| = 4(na)?|ul?| > 4(na)’a~" = 4n’a.

L ] ) On the other hand, the amount Bfis bounded from above
Hg is the same construction @ (see section 4), upto a by 2n2a, since|o| < n and|u;”| < . Hence,f; (u'/ +
tansiaon of e amples by VeCloFUer MARS1O ) — i) = 1, and,simlat 0+ <) =
n =8,k Further,f; (v +ee') = sgnw'u'’ ;I;Gwlel') = Sgr(u;]') = b;
i ij i i ij i i forall! > 3 with! # ¢, and f;(u" + ee’) = sgnw'u’ +
G = I—I ((u T e, (b)) U (u —ce ’(/)(b(“—l)))) ew'e’) = sgnxw'e’) = 1. ngis implies) "

ande = 2-%%""_ Given an algorithm V-8sTEM fulfilling O(f(u? £ ec)) = 3(bjy21)),

the above conditiong,andn are obvipusly polynomial-time  je. 6(f) is consistent of,,.

computable. We call the pairs of poiritst +¢'), (¢, —¢') Let us turn towards the points ifg. First, fi(t) =

anq(t—i—ef,t'—@-ef) fori =3,...,n,I € E pairsin Hg, and sgnw't + 6;) = sgnw't — w't + 1/2) = 1 and, like-

(u'/ +ee',u'l —ce') fori =3, ..., n pairs in G,. Figure 2 wise, f»(t) = 1. Also, f(t) = sgnt;) = sgn2) = 1 for

illustrates the samples,, and H;. ! = 3,...,n. Further, the definition of;, 3; yields f, (¢ +
Now we prove the first condition in Theorem 4.3. As- /) = sgnw'e’ +1/2) = sgn}",; ai—2+1/2) = 1, since

sume that- 2-colorsG. We definef = (f1,..., fi), where [ s 2-colored. Similarly/,(t +e!) = 1. Also, f;(t +¢!) =

j=1,.. kn

fi(v) = sgn(w'v + 6;) with sgn2 + %) = 1foralli = 3,... n. Finally, from the defi-
. . i 1.
wh = (10,01, ..., an_s) 0 = —w't+1/2 nition of a;, #; we obtainf; (t £ e') = sgntw e’ +1/2) =
w? = EO B, ... ﬁn_z)) 0y = —w?t +1/2 sgntai—s + 1/2) = —sgn(+fi_s + 1/2) = —fa(t £ ')
wi—ei 7 0 =0 i—3 i fori = 3,... n. Further,fi(t £ ¢') = sgn2 +d¢) = 1

forl = 3,...,n. Hence,g(f(t £ ¢') = ¢(—1,1,...,1) or
9 =¢(1,—-1,1,...,1), which is—1. Consequently, all points
1

=1, if 7(4) )
in H¢ are correctly classified by/( f).

n, if (%)

| 1L G
o andp; :{ n if :8

Q; =

—
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Now we show that the second condition in Theorem 4.3
holds. Because of condition Udy,’| < 2%, which yields
that||u*|| < n2°. Since for(v,1) € Hg, |v| < 3n foralll,
we conclude that

He UG, C Bo(n2%) = {v eV, :||v|| < n2%}.

The following lemma formally states that for taehosen in
our construction, a hyperplane separating at legsirs in
G, is ‘close’ to the hyperplane spanned By = (u*?);.

Lemma 5.1 Let f separate n pairs in G for i > 3. Then
foreach v € Py N By(n2%), |v;| < 27%

For the proof of this lemma we refer to appendix (B). Since
for each pair inf g and Gjl' for i/ # 4, and each of their
separating points, |v;| > 2%, we immediately obtain the
following

Corollary 5.2 Let f separate at least n pairs in Gt Then f
does not separate any pair neither in G, for all i # j nor in

Heg.

Let ¢(f) be consistent ol LI G,,. Since each pair it ;
and(, has alternate label$y,, ..., P;, separate each pair
in HeUG,. Let Py, , Py, separate points il . Then, due
to Corollary 5.2,,, Py, separate at most— 1 pairs in each
G, Since(G!, haskn pairs, there is a hyperplani®, sep-
arating at least pairs inG%,. But, again, owing to Lemma
5.2, P;, separates no pair ¥’ for eachi’ # i. Hence, each

hyperplane o, , .. ., Py, separates at leastpairs of one
of G3,...,GF. le., Py,, ..., P;, do not separate pairs in
He. .

Proof of Theorem 3.1 Let ¢ € B, be a function depending
onk’ dimensiongy, ..., ix, 2 < k' < k. Then there exists
¢' € By depending on all dimensions, such thgt) =
¢'(biy, ..., b;,,) forall b. This implies thatF*¢ = Tk
Since @NS(F*"*') is NP-complete (due to Theorem 3.2),
also GONS(F*?) is NP-complete. .

We consider auultilayer feedforward perceptron (MLP)
(n, h,ny,...,ny) whichis a neural network of linear thresh-
old units, withh hidden layers withe; units on the-th layer,
n1 input units receiving data fron¥,, and one output unit.
Each unit receives input from all units on the ancestraldaye

(see also [7]). One can consider an MLP as a two-layer neu-

ral network withn, linear classifiers realizing a collectidn
of boolean functions i, . Clearly, each MLP can compute
the AND function (if every unit om,, . . ., n; and the output
unit compute the AD) which depends on all dimensions.
Furthermore, it is easy to see, thais a well-behaving set.
This gives us

Corollary 5.3 Let h > 1,2 < n; < %,nz,...,nh be

polynomial in n. Then the consistency problem of the MLP
(n,h,ny, ..., np) is NP-complete.
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6 The approximation problem

Proof of Theorem 3.3 We apply Theorem 4.4 by construct-
ing mappinggp¢) and(ng) and verifying the two required
properties. First, we address the construction of the map-
pings. For this purpose we consider a 2-grépk- (V, E),
V ={1,...,n—1}. pc maps an edgé = {i,j} € F to
H" = HL (see section 4). Moreover, |&t' consist of the
labeled example&’, —1), (—e’, —1) and(0, 1) of H*7 that
lie on thei-axis.

For n¢, consider the pointg; , , = (Are” + pei) for
i=1,...,.nandr = 1,...,k, whereA; = 2/3 and
A = 2 (2—1— ,::é) for » > 2. We define the samples

G'=l,—, G} onV, where

Gf« = (gi,r,ualr)ue{—L—l 1

3137

1}

and define the labels by = 1 for all evenr andr» = 1, and

[, = —1 otherwise. Finallyy maps the edg¢i, j} € E

to G = G LU GY. Figure 3 (p. 6) illustrates the position

of the examples if0, +¢') U G*. Foralli = 1,...,n,r =
2,...,k—1,andu € {£1,+1}, we call(gi ., gir41,) @
pairin G°. We call (£’ 0) pairs in H* and(£e’, g; 1 +1)

pairs between H' and G*. Note that all pairs are labeled
alternately and, therefore, have to be separated by at least
one function offy, .. ., fs for ¢(f1, ..., fx) consistent with
HiUGE.

We prove the first condition of Theorem 4.4: Let an ar-
bitrary functionr : {1,...,n — 1} — {1, 2} be given. The-
orem 4.2 implies that there exist functiofigv) = sgnw! -
v+ 91), fz(v) = Sgl’(wz v+ 92) such that—XOR(fl, fz)
is consistent withi/ "/ for all edges{i, j} € F that are 2-
colored byr (by simply removing the edges which are col-
ored monochromatically). In this setting;. , w2 can be ar-
bitrary, since for all examples iff*# then-th component is
0. Set
=4

= —w max

2
" i=1,2,r=1,...,n—1

n (Jwr] + 10:)-
Thenfor[A] < 1,w!(2e" +Ae’)+6; > (2—1)w) > 0and
w?(2e™ + Ae') + 0, < (=2 + L)wl < 0. In other words,



fi(v) = —f2(v) = 1 for all examplesy in G/, For the Hence, at least — 2 functions are constant o */.

remaining = 3, ..., k we definew’ = ¢” andf; = —%(2—1— Therefore, the assumptions of Theorem 4.4 are satisfied and,
523/22)_ Obviously, ifi > 3, f:(v) = —1 forall (v, 1) € H consequently, the proof completed. .

and f;(gir,) = 1iff £ < i. Hence, RRITY(f1,..., fx) IS
consistent withi/ -7 LI G,

Now we will show that for each # j, 56 employsF*-®
for pe;. For this purpose, we need the following geometric
observations, which can be easily verified (we refer to ap- References
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A Appendix to Section 4

Proof of Theorem 4.4

We define two mappingg, £ and show thap, ¢ is an L-
reduction from A°PROX2-CUT) to APPROX(F*®+). For
the L-reduction (see e.g. [11]) we have to show the following
two required conditions for constantand g

L1 optri.a(0(G)) < aopty (G

)
L2 opty.cyr(G) — Z((G), €56 (F))
< Bloptgr.e(0(G)) — Z(e(G), F))

With Theorem 2.2 and functions satisfying L1 and L2, we
obtain that APROXF*® ¢} is NP-hard fore < 1/(64a0).

Let n be arbitrary and = {1,...,n}. W.lo.g. let
Ina(I)| = = forall (G) and alll € E (by adding copies of

labeled instances, if necessary). With respect to a 2-graph

(G) we define the sample
Se = Urer (H Una(I))

Obviously, the length of the sample|iS¢| = (6 + 22)|E|.
So we define
0:(G)— Sq.
Letés, = £(Sq, ) be the function that maps € F* ¢«
to the solutiorgs,, (¥) of (G). ForF = ¢(f1,..., fx) we
define

£50(F)(i) = { 2, if F(¢') = F(~') = fi,(¢)) = 1

1, otherwise

bl

wherel; is the smallest index, for whicfi, (') # fi, (—¢’).
Now we will show that the inequalities L1 and L2 are
satisfied and, thereforg, £ is an L-reduction.
Properties of ¢ and &5,

o Let [ = {il,iz} € E. IfgSGgF)(Zl) = gSG(F)(iZ),
then F' is not consistent with Hz, Ung(I). Inparticular,
(5 + 22)|El + |E|Z2((G), €56 (F))

Z(Sa, F) <
o)< Sal

1)
Certainly, every pair of examples with alternating la-

bels must be separated by at least one of the functions Z(G, s, (F))

fi,..., fr. Since every line that contains such a pair
contains exactly one separating poitit,0 and—e*, 0
cannot be separated by the same function, far. all

Assume that;, # [;,. W.l.o.g. letl;, < [;,. Then
Ji, (e") = fi, (—e'), since otherwisé;, < [;,. In
other owrds, there existg different fromi,, i, such
that i, (¢") = fi,,(—e'*). Hence, there are at least
three functions that are constant &if,. This leads to
a contradiction of the assumption that(7) employs
Fk®for HE.

We consider the cadg, = {;, =: [ and assume that
is consistent withi7L. l.e. F(e'i) = F(—e'i) = —1
for j = 1,2. Sincets,, (F)(i1) = &s, (F)(iz), the def-
inition of 5, yields f;(e*) = fi(e’2). The assumption
thatne (1) employsF* ¢ for H. gives us that at least
k — 2 functions offy, . . ., fx are constant o/ .
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Consequently, there exidfs# I and a function) € Bs
with ' = ¥(fi, fir). Sincef(el1) = f(e'2), Lemma
4.1 gives us that’ is not consistent o/ %, in condra-
diction to the assumption.

We have therefore shown that for every edge F
colored monochromatically bds,., at least on example
of F'is not classified correctly. Hence, also inequality 1
is proven.

e For all colorings T there exists a function I satisfying

5+ 22)|E] + |BIZ((G), 7)
|Sc|

2(Sa F) > @)

This inequality is a consequence of the first condition,
i.e. there exists a functiof' such that? is consistent
with ng(E) (2z|FE| examples), WithHg} forall ¢ €

V (5|E| examples) and with7’, for all edges! that
are 2-colored by (additionally at leastE|Z((G), )
examples).

With the above inequalities 1 and 2 we obtain

(4 + 22)|E| + |E|0pt2—CUT(G)
|Sc|

optrs»(Sc) = (3)

Sinceopt,.c,(G) > 1/2, this yields

2(4+422)| Elopty.cyr(G)+| Elopty.cyr(G)

optrre(Sg) < (6+22)1E]
= LB opty cnl G)
= 2 (1 — %) opty.cyr(G)
< 2 OptZ-CUT(G)

Hence, inequality L1 is satisfied far = 2. By simple trans-
formation of 1 and 3 we inparticularly obtain

[Scloptrea(Se) — a — |E|(4 + 22)
|E]
|Sq|Z(Sa, F)—a — |E|(4+ 22)
|E]

OptZ-CUT(G)

v

Therefore,
OptZ-CUT(G) - Z(G, gSG (F))

1Sl
< 75 (optree(Sa) = 2(5a, 1)),

which satisfies the equality L2 fo¥ = % = 6+ 2z.

Since Max 2-Cut is NP-hard with error-rate < 1/64,
MAX (F*®) is NP-hard with error-rate

1 1

€< /oh) = GaGT22) ~ 38ag 1oss




B Appendix to Section 5

The algorithm V-SYSTEM Basically the algorithm has to
computek polynomials of degreec 2% + 2 and evaluate
them at a number of points.

Letv(z) = (pi(x),...,pu(2))T, wherepy, ..., p, are
linear independent polynomials (i.8.; Aipi = 0 = A; =
0, Vi) of degree< n — 1.

Lemma B.1 For arbitrary z+, ..., z, € K pairwise differ-
ent, v(x1),...,v(x,) are linearly independent.

Proof Consider the matriXv(z1), ..., v(x,)) and its row-
vectorsy; = (pi(z1),...,pi(an)), i = 1,...,n. Assume
thatd>~, A\io; = 0, i.e. Y. Aipi(x;) = OVj =1,.
Slncez AiDi |sapolynom|al of degreg€ n—1, Zi /\sz =
0 and sincepl, ..., pn are linearly independend; = 0V:.
Hence, the matrixv(z1), ..., v(x,)) has rank: and, there-
fore, the vectors are linearly independent. .

We will constructl/ with a system using polynomials which
we will represent as products of the linear factorgxr) =
xz—r. Obviouslyr, (z) < 0,iff 2 < r, mp(2) >0, iff x > r
andrm,(z) =0 2 =7r.

Consider the following: polynomialsp, ..., p, on the
interval[0, ..., 2(k + 1)]
P = Ty (H e, 7T2r+1) A=A for g = 1,...k
po=mhhl forl=+k+1,...,2k+3
plZﬂ'é_l forl=2k+4,...,n
with .J; C {1,...,k}, where
(rg {l—1,1} and b = —b;t")
rejl@{or (r=10-1 and b =b?).

The abovebf“rl = 1 for all I. Obviously, the polynomials
eFtforl = k+1,...,2k+3, 2" forl =2k+4,...,n
andp, ..., pr aren polynomials with pairwise different de-
gree< n — 1 and are, therefore linearly independent.
LemmaB.2 p;(xy) = 0and sgn(pi(z) —ps(x)) = bffor all
|z — 2| < 1(2k + 1)~ (FFD) [ £,

Proof It is easy to see that our construction yieldgz,) =
1, and sgfp; (i) — pi(x;)) = bi for [ # i. Observe that

pi(e) =1 < (2k+ 1P |e — 2]
lp(x) =1 > min(|z = si_a], [z — si])
for |« — ;] < 1 and! # i. Hence,
lpi(z) = 1] < 1/2
lpe(z) — 1] > 1/2
for |z — z;| = 3(2k + 1)~ (2**+2), Therefore, sgfp;(z) —
pi(z)) = b} for |z — z;| < £(2k + 1)~ (2k+2), .
Let zij = 2i — 5:(2k + 1)~ for i = 1,...,k and
j =1,...,knwhich obviously satisfie;; —z;| < 1(2k+
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1)~(2#+2) for all 4, j. Due to Lemma B.2, property (U3) is
satisfied. Finally, we obtain the vectors

utl = pi(0)v(wi;) — pi(wij)v(0) = v(xs )

Consequentlyy;’ = p;(zi;) — pi(zi;) = 0 and sgifw,’) =
sgn(pi(z:;) — pi(xi;)) = bi which gives us properties (U1)
and (U2). To show property (U4), consider the representa-
tionz;; = 7 with integersm; = 4ij(2k + 1)2k+1 — 1 and

My = 2j(2k—|—122’“+1. Obviously,n; < m, and2kms < m

for 4n(2k + 1)#*** < n3" =: m. Then

— pz(l‘”)i

o) FFz )k+l+2 {(m” — 2In; ;)

(e, (mij = (20 + Lng 5)
pi(zij) = m; j)FHF- |Jl|} foril=1,....k

%forz_kﬂ L2k +3

(mei) = for | = 2k +4,.

(nz )l 1

Obviously, numerator and denominator of the above repre-
sentation are integers boundedy”, i.e. size(pr(xi;)) <

1+ 2[3n?logn]. Hence,size(p;(zi;) — pi(zij)) < 6 +
12n2[logn] =: a(n) = O(nlogn) = poly(n).

First, V-SYSTEM computey, . . ., px Where each poly-
nomial need$) (k) comparisons. Then the algorithm evalu-
atesp; atz;; forall [, ¢, j. Sincez;; has a polynomial binary
representation length, the algorithm is polynomiakiand
n.

Preliminaries for Lemma 5.1 Note that forz with binary
representation lengthize(x), we obtain the boundg:| <
29z(@) and, ifx # 0, x| > 2792 According to prop-
erty (U4), size(y;’) < o. We will use the standard deter-
minantdet andV (v! v') = det(v' - v!); j=1 . ; Which

is the square of the standard volume form. Consider an ar-
bitrary set of vectora:®, ... «*~! of U. Since the vec-
tors are in general position, — «’,..., v’ — «° are lin-
early independent. A straight forward calculation shoved th

size(u! — u?) < 3a and size((u' — u®) - (v — u?)) <
6na for all 4, j. Further,size(V (u! — u® ... u’ — %)) <
27n%a = poly(n). Sinceu®;...,u"~! are in general posi-
tion, 2727 < V(u! — w0, ... ul —u¥) < 227",
LemmaB.3 Let vl ... v" w!, ... w" € V, with |[v}] <

§ and |wi| < A\ Then |det(v' + w ... o™ + w™)| >
|det(v!, ... o) — §22n7

Proof Straightforward analysis.

A systemlU = (u');; is callede-close, iff for eachi, j,
ij = uij + dije’, [6y;] < e

LemmaB.4 Let U e-close to U with ¢ = 2_50”40‘, and let
@’ ... u" " vectors of U. Then V(' —a" ... a"~1 —

)
~ _ 4 . . ~ ~
uo) > 927 28nta gy particular, uo, S
position.

"=1 are in general



Proof

(@ —a% - (@ — ") = (u' —u®) - (uwf —u) + /\3
with
/\3 = (5i(ei — uo) . (uj — uo) + (50(17 — 60) . (uj — uo)

+ 0t —a%) - (e —ul)+do(at —a°) - (@ — )
This implies|/\§| < 46297, With Lemma B.3 we obtain

. 1
>Viut —u®, o u —u?) - 52—2771404 >0
if 4e2970 < 1g=%n%na — lo—45n'e je inparticular if
€ S 2—50n4oc S 2—45n4oc—9noc—2_ °

Proof of Lemma 5.1 Let [ intersect pairgu’ + ee'), ...,
(u"=t £ ee’), whereu, ... u"~1 € U’. Then

P = {v = At N

vj:ﬂj—ﬂo,/\jEK,j:l,...n—l}

whered/ are separating points of the pairg + ce?), j =
0,...,n— L. Assumingv € Pf N By(n2*), we have

20% > Aot 4 X T 2 N ) ] (8)

where(v/)’ is the orthogonal projection of vectof on the
hyperplandv!, ..., v/=1 »/*1 . v"~1]+. From Lemma
B.4 an the preliminaries we obtain the bourtdg®" ' <
Vvt v ()it ) < 22T for § =
1, 2. Since

V(vl, oy v"_l) :V(vl, R A L v"_1)||(vj)/||2,
we havel|(v7)']| > 228" > (. Applying this bound to 4,
we obtain . .

|/\]| S 2n2a+28n o S 230n oc.

Finally,

il =@ + M@ — @)+ Ao (@ - )
< gl lad — @[+ A@ T = |
< e+ 2e(|A]+ -+ Aot
< 6n2230n4oc€< 230n4oc—50n4oc
< 279

C Appendix to Section 6

We proof the claims used in section 6. For a vekidet
[v] = {Av : A € K} be theline that contains Observe that
the pairs inf* lie on the ling[¢’], and the pairs ii:* lie on
the four linesue’ + [e"], p = £1,+1. Foralinev + [u]:

Lemma C.1 Let f(v) = sgn(w-v+0). Either w-(v+[u]) is
constant, or there is a unique A € K withw-(v+Au)+6 = 0.
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Proof Assume there exist; # s withw - (v 4+ Au)+ 6 =
w - (v+ A2u) + 0 = 0. Thenw - (A2 — A1)u) = 0, which
impliesw - ([u]) = 0 and, henceyw - (v + [u]) is constants

We call two pointsvy, v, of a setS neighboured, if there
is no pointvy € S on the line between them, i.6.N {v =
Avi+(1—XA)vg : 0 < A < 1} = (). Note that all pairs defined
on H and( are neighboured. Then we have the following

Corollary C.2 At most one pair of a collection of neigh-
boured pairs lying on one line can be separated by a linear
threshold function f. °

Now we are ready to show the following claims: Lgt
be a threshold function ovi,. Then

(@) fi separates at most one pair in H' and at most four
pairsin G*.
Since all pairs lie on one and four lines, respectively,
Corollary C.2 proves this claim.

(b) fi which separates a pair in HZ',' separates at most one
pairin G* or between H' and G*.
Assume thatf separates a pair ifti’, i.e. f(e') =
—f(—€"). Without loss of generality lef(e’) = 1, i.e.

woe+0 > 0 (5)
w-(—e')+6 < 0. (6)

1. Assume further thaf separates two pairs ifi’, i.e.
for py # po with |pif, o] < 1, f(ue’ + 3¢7) =
—f(ue"+2e™),1 = 1,2. We will obtain a contradiction.

Case: f(pue' +2e")=1,1=1,2,i.e.

w~(ulei—|—26")—|—9:plwi—|—2wn+9 > 0(7)
w- (e’ + 5e™) + 0= pw + Fw, +6 < 0(8)

Then 5 and 8 yield

%wn < (1 = p)w;. (9)

The difference of 7 and 8 give us
lpo — pa|wi < Zwy. (10)

Letwlog gz > p1. 9 and 10 imply(pz — p1) < 2(1 —
p2). Since for differenyu;, s — 11 > 2, we haveZ <
+(1 — p2) which is equivalent tai, < —+. Since—1 <
p1 < pz < —%, pe — py < £, which is a contradiction.

Case: f(p e +2e") = —1,1 = 1,2, is analogous to the
previous case.

Case: f(uie® +2¢) = 1 and f(pge’ + 2¢") = —1,
i.e. pyw; + 2w, + 0 > 0, prw; + %wn +6 <0,and
pow; + 2wy, + 0 < 0, pow; + %wn +6 > 0. The
difference of the first and third inequality yields; —
u2)w; > 0, and the difference of the second and fourth
inequality implies(y; — p2)w; < 0 which is obviously
a contradiction.

Case: f(pre® +2em) = —1 andf(uiet + 2¢%) = 1is,
again, analogous to the previous case.



(©)

(d)

2. Assume now thaf separates a pair betweéH and
G*. Note that 5 and 6 implies; > 0 andw; > |6].

Case: [ separates a paife’, e’ + 2¢"), i.e. f(e! +
2e") = —1 which givesw; +60 > 0 andw; + 2w, +0 <

0. Thenw,, < 0 andpw; + Aw, < 0 forall —1 <p< 1
andX > 2/3. Butthis |mpI|es thayf does not separate a
pair of the form(pw; + wn,uwl + 2w,) and, in par-
ticular, pairs inG".

Case: f(—e' + 2¢™) = 1is analogous to the previous
case.

If fi separates 4 pairs in G, then f; does not separate
pairsin H' or between H' and G If f; additionally sep-
arates pairs in HY, then f; does not separate pairs be-
tween H7 and GV .

Assume thaff separates four pairs ii‘. Then

fle+35e") = —f(e' +2¢") (11)

f(—€ 4+ 2em) = —f(=e" +2eM). (12)

Case: If f(e' + %e”) = —f(—e" + %e”), thenf(e! +
2¢") = —f(—e' + 2¢"), and we obtainy; > 0 and

w; < 0 from the first and second equation, respectively,
which is a contradiction.

Case: f(e' + %e”) = f(—e' + %e”) = —1. Then

wi+ 2w, +0 < 0 (13)

—wi + 3w, +6 < 0 (14)

wi+ 2w, +60 > 0 (15)

—w; + 2w, +6 > 0. (16)

(15) — (13) impliesw,, > 0. (16) —(13) and(15) — (14)
imply |w;| < (1/3)wn. (14) — (13) impliesf < —3w

Hence, for—1 < pu < 1, A < 2/3,

uwi+/\wn—|—9<wn—éwn<0.

Consequentlyf does not separate pairs ' or be-
tweenH'® andG".

Case: f(e' + 2e™) = f(—¢' + 2e™) = 1 is analogous
to the previous case.

Assume now thaf additionally separates a pair it .
Case: If f(e' + 2e™) = —f(—€’ + 2¢"), we obtain a
contradiction (see the first case in (c)).

Case: f(e'+ %e™) = f(—¢' + 2e™) = —1. Then for all
=1 < p <1, fpe' + 3e") = —f(pe' +2¢") = —1,
in particular, fory = 0. Then the proof of (b) yields the
claim.

If fi separates 8 pairs in G, then it does not separate
pairs in H"J.

Due to (c)f does not separate pairs i#¥ and /7. We
still have to check the pairg?, et7)) and (e’ et?7}),
which are inH*/ and not in* U H7. Assume thaff
separates 8 pairs ifi*7.

Case: f(e' + %e”) = —f(—e + %e”) = —1forl €
{i,j} leads to a contradiction analogous to the proof of

(©).
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Case: f(e' + %e”) = f(—€ + %e”) =-1,1=1j.
Then inequalities 13-16 are valid férand j. Again,
(15) — (13) impliesw,, > 0. (16) — (13) and(15) — (14)
imply |wl| < (1/3)wp, L = 4,j. (14) — (13) implies
g < ——wn

Hence, for arbitrary-1 < py, pa < 1,
piw; + pow; + 0 < 2w, — dw, = —2w, <0,

i.e. f(v) = —1 for all pointsinH". Therefore, no pair

in H*J is separated.

The other cases are similar.



