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Abstract

We deal with the problem of learning a general
class of 2-layer neural networks in polynomial
time. The considered neural networks consist of
k linear threshold units on the hidden layer and an
arbitrary binary output unit.

We show NP-completeness of the consistency
problem for classes that use an arbitrary set of bi-
nary output units containing a function which de-
pends on all input dimensions. Therebyk is al-
lowed to be polynomial in the input size. Those
classes enclose a variety of multilayer neural net-
works like the class of multilayer feedforward
threshold units. We obtain an analogous result for
classes of 2-layer neural networks with any fixed
nontrivial output unit.

Further we present a hardness result for approxi-
mation. We prove that it is NP-hard to find a 2-
layer neural network of constant size with output
unit PARITY that approximately (up to a constant
factor) maximizes the fraction of correctly classi-
fied examples in the given training set. We further
develop a general tool to prove this type of hard-
ness results for neural networks.

1 Introduction

Two-layer neural network classifiers are an important class
of neural networks in various fields of computer science. A
natural question in this regard is if we can efficiently com-
pute an appropriate network which performs well in the set-
ting of consideration, i.e. which separates a representative
set of datacorrectly, optimally or approximately optimally,
respectively.

All three cases, the problem of learning neural networks
that exactly, optimally and approximately optimally classify
a training set, have been studied in different ways in the last
years. Several, mostly negative, results in this framework
arose in the recent time.
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hints and discussions. The author gratefully acknowledgesthe sup-
port of the German-Israeli Foundation for Scientific Research and
Development (grant I-403-001.06/95).

Blum and Rivest [4] consider the class of two-layer neu-
ral networks with two linear threshold units on the hidden
layer and functions like AND;OR;XOR as the output unit.
They prove that the decision problem of whether there is a
network that exactly classifies a training set is NP-complete.
They also show a similar hardness result for a conjunction of
k linear threshold units. DasGupta, Siegelmann and Sontag
[5] extend the result of Blum and Rivest to two-layer neural
networks with piecewise linear hidden units. Schmitt [13]
examines the question whether the restriction of the samples,
such that they have a limited overlap, and a restriction of the
weights of the neurons simplify the problems. Hammer [7]
shows hardness for the decision problem of the class of mul-
tilayer feedforward threshold units.

Amaldi and Kann [1] prove hardness of identifying fi-
nite conjunctions of a number of halfspaces, hyperplanes and
their complements which optimally classify a training set.

For the learning problem of finding a neural network that
approximately optimally classifies a training set, two main
branches were investigated. The first is represented by ’ro-
bust learning’ where, foreach � > 0, an efficient learner
has to identify a hypothesis with error rate within� from
the error rate of an optimal classifying hypothesis, in time
polynomial in the sample size and1=�. Höffgen, Simon
and Van Horn [9] show that robust learning of halfspaces
is NP-hard. The second branch is the problem of identifying
a hypothesis which classifies within afixed error rate from
the error rate of the optimal classifying hypothesis. Find-
ing such hypotheses is generally much easier than identi-
fying hypotheses which perform optimal, and for practical
use often sufficient. Arora, Babai, Stern and Sweedyk [2]
show NP-hardness for the class of linear threshold functions
if the fixed error is a constant multiple of the optimal er-
ror rate. Höffgen, Simon and Van Horn [9] obtain similar
results. Bartlett and Ben-David [3] extend this type of re-
sults to larger hypothesis classes. They consider a 2-layer
neural network consisting ofk linear threshold units and a
conjunction (linear threshold function, respectively) asthe
output unit and show NP-hardness to find a network with
proportion of correctly classified data within
=k (
=k3, re-
spectively) from optimal. They substantiate the same result
for classes with an arbitrary set of output units containingthe
conjunction.

We extend the above results in the following way. First
we show NP-completeness for the consistency problem of
the class of two-layer neural networks withk linear threshold
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units and an arbitrary output unit that depends on at least two
inputs. This class contains the one considered by Blum and
Rivest. We also show NP-completeness for the consistency
problem of the same class admitting an arbitrary set of output
units that contains a function depending on all inputs. It turns
out that the class of multilayer feedforward threshold units
considered by Hammer [7] is a special case of this class. For
both results,k can even be polynomial inn.

Finally, we turn towards approximation and extend the
result of Bartlett and Ben-David [3]. We show that it is NP-
hard to find a two-layer neural network withk hidden linear
threshold units that maximizes the fraction of correctly clas-
sified examples in the given training set, as long as the set of
output units contains PARITY .

Our paper is structured as follows. After formal defi-
nitions of the discussed problems and preliminary results in
section 2, we describe our main results in section 3. Section4
introduces a general technique to prove hardness with respect
to the consistency and approximation problem for two-layer
neural networks withk hidden linear threshold units. Finally,
Sections 5 and 6 deal with the proofs of our main results, ap-
plying the general technique developed before. In the former
section we show NP-completeness for the described classes.
In the latter section we prove the NP-hardness result.

2 The models, definitions, and preliminary

results

In this section we will formalize the problems we are inter-
ested in.

Let X be theinstance space and, for each instancex 2
X , let Y

x

be thesolution space of x. Theprofit function Z
assigns to everyx 2 X and everyy 2 Y

x

a valueZ(x; y) 2
[0; 1℄. Let P = (X ; (Y

x

)

x2X

;Z). Then thedecision prob-
lem of P is the problem of deciding whether for a given
instancex 2 X there exists a solutiony 2 Y

x

such that
Z(x; y) = 1. Further, for theapproximation problem of
P with error-rate �, the algorithm has to identify a solution
y 2 Y

x

for a given instancex 2 X which satisfies

Z(x; y) � (1� �)opt
P

(x)

whereopt
P

(x) = max

y2Y

x

(Z(x; y)). For � = 0, we call
this problemmaximization problem.

Regarding decision problems, a well-known example is
SET-SPLITTING where the instance space is the setG of hy-
pergraphsG = (V;E) with V � N, E � 2

V . The solu-
tion space ofG contains all2-colorings � : V ! f1; 2g

that 2-colors G, and the profit functionZ outputs the frac-
tion of the number of edges which are2-colored by � , i.e.
Z(G; � ) = jfI 2 E : � (I) = f1; 2ggj=jEj.

If we restrict the instance space to the setG

2 of graphs
(jIj = 2 for all I 2 E), the corresponding approximation
problem are called MAX 2-CUT.

We will obtain our hardness results by reduction relying
on the following two basic theorems. The first concerns our
decision results and was proven by Lovàsz [6].

Theorem 2.1 SET-SPLITTING is NP-complete.

The following theorem is a corollary of a theorem proven by
Kann, Khanna, Lagergren and Panconesi [10] is the basis for
our approximation results.

Theorem 2.2 MAX 2-CUT is NP-hard with error-rate � <
1=34.

A special class of decision problems areconsistency prob-
lems. In this class, the instance space isS = (S

n

)

n�1

,
whereS

n

is the set consisting of all finite sequencesS =

(v

i

; l

i

)

i2I

S

of labeled vectors(vi; l
i

) 2 V

n

� f�1; 1g called
samples (in V

n

). V
n

is aK-Vektorspace. The solution space
of a sample inS

n

is a setF
n

of decision functionsf : V

n

!

f�1; 1g. LetF = (F

n

)

n�1

. Finally, the profit function out-
puts the fraction of points of a sampleS consistent with a
functionf , i.e.Z(S; f) = jfi : f(v

i

) = l

i

; i 2 I

S

gj=jI

S

j.
We denote the consistency problem ofF by CONS(F)

and the corresponding maximization problem and approx-
imation problem by MAX(F) and APPROX(F ; �), respec-
tively.

This paper deals with a special class of decision func-

tions, theclass Fk;�k = (F

k(n);�

k(n)

n

)

n�1

of two-layer neu-
ral networks with k linear classifiers and output unit �

k

,
wherek is a function inn with positive integer values, and

F

j;�

n

= fF : F (v) = �(f

1

(v); :::; f

j

(v)); f

i

2 LT

n

g;

whereLT
n

is the class oflinear threshold functions sgn(w �
v + �) with w 2 V

n

, andthreshold � 2 K. w � v denotes
the inner product of two vectors, and sgn(x) = 1, if x � 0

and sgn(x) = �1 otherwise. Moreover,� 2 B

j

whereB
j

is the class of all boolean functionsf�1; 1gj ! f�1; 1g.
For a subset� � B

j

, we defineFj;�
n

=

S

�2�

F

j;�

n

and

consequentlyFk;�k

= (F

k(n);�

k(n)

n

)

n�1

.
With respect to these classes, we ask for the complex-

ity of algorithms solving the problems CONS(Fk;�k

) and
APPROX(Fk;�k

; �):

We call a sequence(�
k(n)

)

n�1

of sets�
i

� B

i

well-
behaving, if there is a polynomialp and a representation-
scheme, i.e. a surjective mapping,R : �

�

! [

n�1

B

k(n)

with the following properties:

1. For alln � 1 and all� 2 �

k(n)

: size(�) � p(n).

2. There is an algorithm that solves the decision problem

Instance: s 2 �

�p(n)

Question: R(s) 2 �

k(n)

?

in time polynomial inn.

Hence, if(�
k(n)

)

n�1

is well-behaving, we can guess a word
in s 2 �

�p(n) and check in polynomial time, ifR(s) 2

�

k(n)

.
Further, since it is possible to replace weights and thresh-

old of a threshold unit by values of representation length
polynomial in the input size (see e.g. Raghavan [12] and
Håstad [8]), we can write down all the weights and thresh-
olds of any neural network inFk;�k in polynomial time, in
order to test the agreement with respect to the given sample.
This implies

Lemma 2.3 Let k(n) be polynomial in n and let (�
k(n)

)

n�1

be a well-behaving sequence of sets �
i

� B

i

. Then

CONS(Fk;�k

) 2 NP:
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Hence, in order to show NP-completeness for the consis-
tency problem ofFk;�k, it suffices to find a reduction from
a problem that is already known to be NP-complete.

We continue with further definitions. Thesize jSj of a
sampleS = (v

i

; l

i

)

i2I

S

is the size of the index setI
S

. Fur-
ther, S

1

t S

2

is the concatenation of two samplesS
1

and
S

2

.
For a threshold functionf , P

f

denotes theseparating
hyperplane of f , i.e.P

f

= fv : w � v + � = 0g. We say that
f separates a pair of points(v1; v2), if f(v1) = �f(v

2

). It is
easy to see that in this caseP

f

intersects the line betweenv1

andv2 at exactly one point, i.e. there is exactly one� 2 [0; 1℄

such thatw � (�v1 + (1� �)v

2

) + � = 0. We call this point
�v

1

+(1��)v

2 theseparating point of (v1; v2) with respect
to f .

Consider a boolean function� 2 B

k

and a vectorb 2
f�1; 1g

k. For an index setI � f1; : : : ; kg, b
(I)

denotes the
boolean vectorb with a negated coordinate at each position
i 2 I. Further,b

(ij1)

(b
(ij�1)

, respectively) denotes vectorb
where thei-th coordinate is set to1 (�1, respectively). We
say thatb is critical (for �) with respect to i, if

�(b) = ��(b

(i)

):

We say that� depends on all dimensions, if for eachi there
is a vectorbi which is critical fori. We call the set of such
vectors(b1; :::; bk) a witness set of �. The following lemma
is an implication of a result1 shown by Simon [14].

Lemma 2.4 Let � depend on all dimensions. Then there ex-
ists a vector beff, which is critical for at least two different
coordinates.

A vectorbeff with the above property is calledeffective for �.
In order to simplify our reduction, we introduce the follow-
ing relation on subsets ofB

k

. For�;	 � B

k

we write� �

	, iff there exist boolean values�
0

; : : : ; �

k

2 f�1;+1g

such that
	 = f�

0

(� Æ �) : � 2 �g;

where�(x
1

; : : : ; x

k

) = (�

1

x

1

; : : : ; �

k

x

k

). Obviously� is
an equivalence relation. For�;  2 B

k

with f�g � f g

we simply write� �  . Finally, [�℄ denotes the equivalence
class off�g with respect to�.

For instance, if a function� 2 B
2

depends on all dimen-
sions, and ifbeff is an effective vector of�, then, with (b) =
�(b

eff
)�(b

eff
1

b

1

; b

eff
2

b

2

), obviously� �  and1 =  (1; 1) =

� (�1; 1) = � (1;�1), i.e.  2 fAND;�XORg. Since
XOR� �XOR, it follows

Lemma 2.5 If � 2 B
2

depends on all dimensions, then � 2
[AND℄[ [XOR℄. �

In the following lemma we see, that NP-completeness of
CONS(Fk;�k

) is preserved for the whole equivalence class
of �.

Lemma 2.6 If CONS(Fk;�k

) is NP-complete and �
k

� 	

k

,
then CONS(Fk;	k

) is NP-complete.

1Simon [14] even shows the significantly better lower bound
log k for the number of coordinates for which there exists a critical
vector

Proof We reduce CONS(Fk;�k

) to CONS(Fk;	k

). Since
�

k

� 	

k

, there exist�
0

; : : : ; �

k

2 f+1;�1g such that
	

k

= f�

0

(� Æ �); � 2 �

k

g. Define function� that maps
S = (v

i

; l

i

)

i2I

S

to the sample~S = (v

i

; �

0

l

i

)

i2I

S

. Let
�(f

1

; : : : ; f

k

) be a solution forS. Since the size ofS is
finite, we can assume thatjwl � vi + �j > 0 for all l =

1; : : : ; k and i 2 I

S

. This implies that with the functions
~

f

l

(v

i

) = sgn(�
l

w

l

�v

i

+�

l

�

l

) 2 LT

n

, l = 1; : : : ; k, we have
�

l

f

l

(v

i

) =

~

f

l

(v

i

), which yields�(f
1

(v

i

); : : : ; f

k

(v

i

)) =

�

0

 (�

1

f

1

(v

i

); : : : ; �

k

f

k

(v

i

)) = �

0

 (

~

f

1

(v

i

); : : : ;

~

f

k

(v

i

)):

Hence, 2 	

k

and ( ~f
1

; : : : ;

~

f

k

) is a solution for~S. The
converse direction is analogous. �

3 Main results

We present our main results in this paper. The first two
theorems are NP-completeness results for the class of two-
layer neural networks with linear threshold units and arbi-
trary nontrivial output units.

Theorem 3.1 Assume that for sufficiently large n, 2 � k(n)

�

n�3

2

and �
k(n)

2 B

k(n)

depends on at least two dimen-

sions. Then CONS(Fk;�k) is NP-complete.

The following result similar except that it admits a class of
output units.

Theorem 3.2 Assume that for sufficiently large n, 2 � k(n)

�

n�3

2

and �

k(n)

� B

k(n)

, where �
k(n)

contains a function

� depending on all dimensions. Then CONS(Fk;�k

) is NP-
hard.

If, in addition, �
k

is well-behaving, then CONS(Fk;�k

)

is NP-complete.

The last theorem is an NP-hardness result of approximation
concerning two-layer neural networks with linear threshold
units and a class of output units containing PARITY 2.

Theorem 3.3 Let k � 2 be constant and � � B

k

with
PARITY 2 �. Then APPROX(Fk;�; �) is NP-hard for

� =

1

384+128k

:

4 General technique

In this section we develope a general tool to show hardness
results of the consistency and approximation problem of two
layer neural networks with linear classifiers. We first intro-
duce a reduction� from SET-SPLITTING to CONS(F2;XOR

)

proposed by Blum and Rivest [4] and show that this reduc-
tion is also a valid reduction for the broader classF

2;�, if �
contains a function depending on all dimensions.

In theorem 4.3 we present conditions to show NP-com-
pleteness of CONS(Fk;�k

) from the properties ofF2;�.
Theorem 4.4 is the counterpart for NP-hardness in approx-
imation.

Let G = (V;E) be a hypergraph andI 2 E. We define
the sampleHI

G

consisting of(�ei;�1), (eI ; 1) and (

�

0; 1)

for all i 2 I whereei denotes thei-th unit vector andeI =
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Figure 1: The sampleHfi;jg

G

P

i2I

e

i. Figure 1 illustrates this sample for an edgefi; jg.
Further letH

G

consist of all points that appear inHI

G

for all
I 2 E. Then� is the function that mapsG toH

G

.

Lemma 4.1 Let  (f
1

; f

2

) 2 F

2; 

n

for an arbitrary boolean
function  . If f

1

is constant on fei : i 2 Ig, then  (f
1

; f

2

)

is not consistent withHI

G

.

Proof Let h
j

(v) = w

j

� v + �

j

andf
j

(v) = sgn(h
j

(v)),
j = 1; 2. Without loss of generality3 we can assume that
�

1

; �

2

� 0. This implies in particular (1; 1) = 1.
Suppose now that (f

1

; f

2

) is consistent withHI

G

. Since
�

0 andei have different labels for alli 2 I andf
1

is constant
onfei : i 2 Ig, eitherf

1

� �1 or f
2

� �1 onfei : i 2 Ig.
Let f

1

� �1 on fei : i 2 Ig (the other case is treated
similarly). Since�

1

� 0, 0 > h

1

(e

i

) = w

1

i

+ �

1

> w

1

i

for all i. This impliesh
1

(e

I

) =

P

j2I

w

1

j

+ �

1

< 0 and
h

1

(�e

i

) = �w

1

i

+ �

1

� 0. Hence,

f

1

(e

I

) = f

1

(e

i

) = �f

1

(

�

0) = �f

1

(�e

i

)

for all i. Since�0 and�ei have different labels andf
1

(

�

0) =

f

1

(�e

i

), f
2

(�e

i

) = �f

2

(

�

0) = �1 for all i. Together with
�

2

� 0 we obtain0 > h

2

(�e

i

) = �w

2

i

+ �

2

> �w

2

i

. This
gives ush

2

(e

i

) = w

2

i

+ �

2

� 0 andh
2

(e

I

) =

P

j2I

w

2

j

+

�

2

� 0. This impliesf
2

(e

i

) = f

2

(e

I

) and, finally,

 (f

1

(e

i

); f

2

(e

i

)) =  (f

1

(e

I

); f

2

(e

I

))

which is a contradiction to the alternately labeledei andeI .
�

Theorem 4.2 Let � � B

2

be a set which contains a func-
tion depending on all dimensions. Then CONS(F2;�

) is NP-
complete.

Proof
We use the reduction� to show hardness for class� of

output units. Due to Lemma 2.5 and 2.6, without loss of
2PARITY denotes the function that outputs1, if the number of

positive arguments is odd, and�1 otherwise
3Otherwise let�

j

= sgn(�
j

) for j = 1; 2. SinceHI

G

is fi-
nite, we can assume thatj ^f

j

(v)j > 0. With the transformation
�(b

1

; b

2

)! �(�

1

b

1

; �

2

b

2

) and ^

f

j

! �

j

^

f

j

for j = 1; 2 we obtain

the function~�( ~f
1

;

~

f

2

) 2 C

2;

~

�

n

with ~

�

1

;

~

�

2

� 0, that has the same
behaviour onHI

G

as�(f
1

; f

2

).

generality we can assume that� contains AND or �XOR.
Assume first that� 2-colorsG, V = f1; : : : ; ng. Define
f

i

(v) = sgn(wi � v + 1=2) with

w

1

j

=

�

�1; if � (j) = 1

n; if � (j) = 2

and w2

j

=

�

�1; if � (j) = 2

n; if � (j) = 1

Obviouslyf
1

(

�

0) = f

2

(

�

0) = 1 andf
1

(�e

i

) = �f

2

(�e

i

).
SinceG is 2-colored, alsof

1

(�e

I

) = �f

2

(�e

I

) = 1 for
all I 2 E. Therefore, AND(f

1

; f

2

) and�XOR(f
1

; f

2

) are
consistent with�(G).

Let conversely (f
1

; f

2

) be a solutionF2;� on �(G).
Define the mapping� as follows:� (i) = 1, if f

1

(e

i

) = 1,
and� (i) = 2, otherwise. Suppose that� is not a solution,
i.e. that an edgeI 2 E has a monochromatic coloring, say
� (I) = f1g. According to the definition of� , f

1

(e

i

) = 1

for all i 2 I. Then according to Lemma 4.1, (f
1

; f

2

) is not
consistent withHI

G

. Hence, (f
1

; f

2

) is not a solution for
CONS(F2; 

). �

Consider two samplesH and ~

H in V
n

. We say that~H em-
ploysFk;�k forH, iff for all �(f

1

; : : : ; f

k

) 2 F

k;�

k consis-
tent withH t

~

H at leastk � 2 functions off
1

; : : : ; f

k

are
constant onH.

Theorem 4.3 Let m be constant. If there are polynomial-
time computable functions �; � mapping a hypergraph G

with jV j = n to a sample in V
n+m

such that the following
holds

� For each 2-colorable G 2 G, there exists F 2 F

k;�

k

consistent with �(G) t �(G)

� �(G) employs Fk;�k for �(G),

then the consistency problem CONS(Fk;�k

) is NP-complete.

Proof We show that% : G 7! �(G) t �(G) is a reduction
from SET-SPLITTING to CONS(Fk;�k

). First, assume that
G is 2-colorable. Because of the first condition, there exists
F 2 F

k;�

k consistent with�(G) t �(G) .
The converse direction relies on the second condition:

Assume that there exists a functionF = �(f

1

; :::; f

k

) con-
sistent with�(G) t �(G). Sincek � 2 functionsf

i

are con-
stant on�(G), there is a function 2 B

2

and two functions
of f

1

; :::; f

k

, sayf
1

; f

2

, with �(f
1

; :::; f

k

) =  (f

1

; f

2

) on
�(G). Together with Lemma 4.1 and Theorem 4.2 we obtain
a solution for SET-SPLITTING . �

Theorem 4.4 Let m; k be constant, and let � be a polyno-
mial-time computable function that maps a graph G with
jV j = n to a sample in V

n+m

. Assume that for each G 2 G

2

the following holds:

� For all 2-colorings � : V ! f1; 2g there exists F 2

F

k;� such that for all 2-colored edges I and all vertices

i 2 V , F is consistent withH
fig

G

, HI

G

and �(G).

� There exist samples �
G

(I) with �(G) = t

I2E

�

G

(I)

such that �
G

(I) employs Fk;� for HI

G

, for all I 2 E.

Then APPROX(Fk;�; �) is NP-hard for � = 1=(384+128z),
where z = max

G;I2E

j�

G

(I)j.

For the detailed proof we refer to the appendix (A).



279

5 NP-completeness

In this section we will prove the first two main theorems 3.1
and 3.2.

Proof of Theorem 3.2 We will use Theorem 4.3 to show this
theorem, i.e. we will construct the functions�; � and verify
the required conditions.

Consider an arbitrary fixedn and letk = k(n). Fork =

2, we can apply Theorem 4.2. Assume now thatk � 3.
Let � be an arbitrary subset ofB

k

containing the function�
which depends on each dimension. Due to Lemma 2.6, we
can w.l.o.g. assume thatbeff

= (1; : : : ; 1), �(beff
) = 1, and

that coordinates 1 and 2 are critical forbeff. Let (b1; : : : ; bk)
be a witness set for�.

In order to construct� and�, we require a polynomial-
time algorithm V-SYSTEM which with inputn outputs a sys-
temU

n

= (u

ij

) i=3;:::;k

j=1;:::;kn

of vectorsuij 2 V

n

with the fol-

lowing properties:

(U1) Everyn vectors ofU
n

are in general position.

(U2) uij
i

= 0 for all i; j

(U3) sgn(uij
l

) = b

i

l

for all i; l = 1; : : : ; k; j = 1; : : : ; kn,
i 6= l.

(U4) size(u

ij

i

) � �(n) = poly(n) for i 6= l (size(x) corre-
sponds to the binary representation ofx).

Such a polynomial-time algorithm exists. It obtains the vec-
tor system by generating vectors from a system of appro-
priate linear independent polynomials. For the explicit con-
struction of V-SYSTEM we refer to the appendix (B). Then
we define� that maps a hypergraphG = (V;E), V =

f3; : : : ; ng to the sample in^H
G

in V

n

consisting of(t �
e

i

;�1); (t+ e

I

;+1) and(t; 1) for all i 2 I, I 2 E, where

t = (0; 0; 2; : : : ; 2):

^

H

G

is the same construction asH
G

(see section 4), up to a
translation of the examples by vectort. Further,� mapsG to
the sampleG

n

=

F

i=3;:::;k

G

i

n

with

G

i

n

=

G

j=1;:::;kn

�

(u

ij

+ �e

i

; �(b

i

(ij1)

)) t (u

ij

� �e

i

; �(b

i

(ij�1)

))

�

and� = 2

�50n

4

�. Given an algorithm V-SYSTEM fulfilling
the above conditions,� and� are obviously polynomial-time
computable. We call the pairs of points(t; t+ e

i

), (t; t� ei)
and(t+ ei; t+ eI) for i = 3; : : : ; n, I 2 E pairs in ^

H

G

, and
(u

ij

+ �e

i

; u

ij

� �e

i

) for i = 3; : : : ; n pairs in Gi
n

. Figure 2
illustrates the samplesG

n

and ^

H

G

.
Now we prove the first condition in Theorem 4.3. As-

sume that� 2-colorsG. We definef = (f

1

; : : : ; f

k

), where
f

i

(v) = sgn(wiv + �

i

) with

w

1

= (r; 0; �

1

; : : : ; �

n�2

) �

1

= �w

1

t + 1=2

w

2

= (0; r; �

1

; : : : ; �

n�2

) �

2

= �w

2

t + 1=2

w

i

= e

i

�

i

= 0; i = 3; : : : ; k;

�

i

=

�

�1; if � (i) = 1

n; if � (i) = 2

and �
i

=

�

�1; if � (i) = 2

n; if � (i) = 1

-

-

-

-

-

--

G

P
j

P2

P1

+
i

-

-
2ε

+

-

+

- -

+

-

+
P

H
V,E

+

+

+

+

+

+

pair in Gn

n

Figure 2: The examples ofGi
n

; G

j

n

andHfi;jg

G

projected to
V

2

. The pairs inG
n

‘employ’ k � 2 hyperplanes such that
they are not able to separate the pairs inH

G

.

and r = n

2

2

2�

:

The following calculation will show that�(f) is consistent
on ^

H

G

t G

n

. Consider first an arbitrary pair(uij � �e

i

) in
G

n

. Then with (U3)

f

1

((u

i;j

� �e

i

) = sgn(w1

u

i;j

� �w

1

e

i

+ �

1

)

= sgn
�

ru

i;j

1

|{z}

A

+

P

l�3

�

l�2

(u

i;j

l

� 2) + ��

i�2

+ 1=2

| {z }

B

�

:

ForA we obtain

jru

i;j

1

j = 4(n�)

2

ju

i;j

1

j � 4(n�)

2

�

�1

= 4n

2

�:

On the other hand, the amount ofB is bounded from above
by 2n

2

�, sincej�
l

j � n and jui;j
l

j < �. Hence,f
1

(u

i;j

�

�e

i

) = sgn(ui;j
1

) = b

i

1

and, similarly,f
2

(u

ij

� �e

i

) = b

i

2

.
Further,f

l

(u

ij

��e

i

) = sgn(wluij��wlei) = sgn(uij
l

) = b

i

l

for all l � 3 with l 6= i, andf
i

(u

ij

� �e

i

) = sgn(wiuij �
�w

i

e

i

) = sgn(�wiei) = �1. This implies

�(f(u

ij

� �e

i

)) = �(b

i

(ij�1)

);

i.e. �(f) is consistent onG
n

.
Let us turn towards the points in^H

G

. First, f
1

(t) =

sgn(w1

t + �

1

) = sgn(w1

t � w

1

t + 1=2) = 1 and, like-
wise,f

2

(t) = 1. Also, f
l

(t) = sgn(t
l

) = sgn(2) = 1 for
l = 3; : : : ; n. Further, the definition of�

i

; �

i

yieldsf
1

(t +

e

I

) = sgn(w1

e

I

+1=2) = sgn(
P

i2I

�

i�2

+1=2) = 1, since
I is 2-colored. Similarly,f

2

(t+ e

I

) = 1. Also,f
l

(t+ e

I

) =

sgn(2 + Æ

l

I

) = 1 for all i = 3; : : : ; n. Finally, from the defi-
nition of�

i

; �

i

we obtainf
1

(t� e

i

) = sgn(�w1

e

i

+1=2) =

sgn(��
i�2

+ 1=2) = �sgn(��
i�2

+ 1=2) = �f

2

(t � e

i

)

for i = 3; : : : ; n. Further,f
l

(t � e

i

) = sgn(2 + Æ

l

i

) = 1

for l = 3; : : : ; n. Hence,�(f(t � e

i

) = �(�1; 1; : : : ; 1) or
= �(1;�1; 1; : : :; 1), which is�1. Consequently, all points
in ^

H

G

are correctly classified by�(f).
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Now we show that the second condition in Theorem 4.3
holds. Because of condition U4,juij

l

j < 2

�, which yields
thatjjuijjj < n2

�. Since for(v; l) 2 ^

H

G

, jv
l

j < 3n for all l,
we conclude that

^

H

G

tG

n

� B

0

(n2

�

) = fv 2 V

n

: jjvjj < n2

�

g:

The following lemma formally states that for the� chosen in
our construction, a hyperplane separating at leastn pairs in
G

i

n

is ‘close’ to the hyperplane spanned byU i = (u

ij

)

j

.

Lemma 5.1 Let f separate n pairs in Gi
n

for i � 3. Then
for each v 2 P

f

\B

0

(n2

�

), jv
i

j < 2

��.

For the proof of this lemma we refer to appendix (B). Since
for each pair in ^

H

G

andGi
0

n

for i0 6= i, and each of their
separating pointsv, jv

i

j > 2

��, we immediately obtain the
following

Corollary 5.2 Let f separate at least n pairs inGi
n

. Then f
does not separate any pair neither inGj

n

for all i 6= j nor in
^

H

G

.

Let �(f) be consistent on^H
G

tG

n

. Since each pair in^H
G

andG
n

has alternate labels,P
f

1

; : : : ; P

f

k

separate each pair
in ^

H

G

tG

n

. LetP
f

1

; P

f

2

separate points in^H
G

. Then, due
to Corollary 5.2,P

f

1

; P

f

2

separate at mostn�1 pairs in each
G

i

n

. SinceGi
n

haskn pairs, there is a hyperplaneP
f

l

sep-
arating at leastn pairs inGi

n

. But, again, owing to Lemma
5.2,P

f

l

separates no pair ofGi
0

n

for eachi0 6= i. Hence, each
hyperplane ofP

f

3

; : : : ; P

f

k

separates at leastn pairs of one
of G3

n

; : : : ; G

k

n

. I.e., P
f

3

; : : : ; P

f

k

do not separate pairs in
^

H

G

. �

Proof of Theorem 3.1 Let � 2 B
k

be a function depending
onk0 dimensionsi

1

; : : : ; i

k

0 , 2 � k

0

� k. Then there exists
�

0

2 B

k

0 depending on all dimensions, such that�(b) =

�

0

(b

i

1

; : : : ; b

i

k

0

) for all b. This implies thatFk;� = F

k

0

;�

0

.
Since CONS(Fk

0

;�

0

) is NP-complete (due to Theorem 3.2),
also CONS(Fk;�) is NP-complete. �

We consider amultilayer feedforward perceptron (MLP)
(n; h; n

1

; : : : ; n

h

) which is a neural network of linear thresh-
old units, withh hidden layers withn

i

units on thei-th layer,
n

1

input units receiving data fromV
n

and one output unit.
Each unit receives input from all units on the ancestral layer
(see also [7]). One can consider an MLP as a two-layer neu-
ral network withn

1

linear classifiers realizing a collection�
of boolean functions inB

n

1

. Clearly, each MLP can compute
the AND function (if every unit onn

2

; : : : ; n

h

and the output
unit compute the AND) which depends on all dimensions.
Furthermore, it is easy to see, that� is a well-behaving set.
This gives us

Corollary 5.3 Let h � 1; 2 � n

1

�

n�3

2

; n

2

; : : : ; n

h

be
polynomial in n. Then the consistency problem of the MLP
(n; h; n

1

; : : : ; n

h

) is NP-complete.
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Figure 3: The examples and pairs onHi

[G

i

6 The approximation problem

Proof of Theorem 3.3 We apply Theorem 4.4 by construct-
ing mappings(�

G

) and(�
G

) and verifying the two required
properties. First, we address the construction of the map-
pings. For this purpose we consider a 2-graphG = (V;E),
V = f1; : : : ; n � 1g. �

G

maps an edgeI = fi; jg 2 E to
H

i;j

= H

I

G

(see section 4). Moreover, letHi consist of the
labeled examples(ei;�1), (�ei;�1) and(�0; 1) of Hi;j that
lie on thei-axis.

For �
G

, consider the pointsg
i;r;�

= (�

r

e

n

+ �e

i

) for
i = 1; : : : ; n and r = 1; : : : ; k , where�

1

= 2=3 and

�

r

=

2

3

�

2 +

r�2

k�2

�

for r � 2. We define the samples

G

i

=

F

r=1;:::;k

G

i

r

onV
n

where

G

i

r

= (g

i;r;�

; l

r

)

�2f�1;�

1

3

;

1

3

;1g

;

and define the labels byl
r

= 1 for all evenr andr = 1, and
l

r

= �1 otherwise. Finally,�
G

maps the edgefi; jg 2 E

to Gi;j = G

i

t G

j. Figure 3 (p. 6) illustrates the position
of the examples in(�0;�ei) t Gi. For all i = 1; : : : ; n, r =

2; : : : ; k � 1, and� 2 f�1;�1

3

g, we call(g
i;r;�

; g

i;r+1;�

) a
pair in Gi. We call(�ei; �0) pairs in Hi and(�ei; g

i;1;�1

)

pairs between H

i and Gi. Note that all pairs are labeled
alternately and, therefore, have to be separated by at least
one function off

1

; : : : ; f

k

for �(f
1

; : : : ; f

k

) consistent with
H

i

tG

i.
We prove the first condition of Theorem 4.4: Let an ar-

bitrary function� : f1; : : : ; n� 1g ! f1; 2g be given. The-
orem 4.2 implies that there exist functionsf

1

(v) = sgn(w1

�

v + �

1

); f

2

(v) = sgn(w2

� v + �

2

) such that�XOR(f
1

; f

2

)

is consistent withHi;j for all edgesfi; jg 2 E that are 2-
colored by� (by simply removing the edges which are col-
ored monochromatically). In this setting,w1

n

; w

2

n

can be ar-
bitrary, since for all examples inHi;j then-th component is
0. Set

w

1

n

= �w

2

n

= 4 max

�̂=1;2;r=1;:::;n�1

(jw

�̂

r

j+ j�

�̂

j):

Then forj�j � 1,w1

(

2

3

e

n

+�e

i

)+�

1

� (

2

3

�

1

2

)w

1

n

> 0 and
w

2

(

2

3

e

n

+ �e

i

) + �

2

� (�

2

3

+

1

2

)w

1

n

< 0. In other words,
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f

1

(v) = �f

2

(v) = 1 for all examplesv in G

i;j. For the
remaininĝ� = 3; : : : ; k we definew�̂ = e

n and�
�̂

= �

1

3

(2+

�̂�3=2

k�2

). Obviously, if�̂ � 3, f
�̂

(v) = �1 for all (v; l) 2 Hi;j

andf
�̂

(g

i;r;�

) = 1 iff �̂ � i. Hence, PARITY(f
1

; : : : ; f

k

) is
consistent withHi;j

tG

i;j.
Now we will show that for eachi 6= j, �

G

employsFk;�
n

for �
G

. For this purpose, we need the following geometric
observations, which can be easily verified (we refer to ap-
pendix (C)): For each threshold functionf ,

(a) f separates at most one pair inHi and at most four pairs
in Gi.

(b) if f separates a pair inHi, it separates at most one pair
in Gi or betweenHi andGi.

(c) If f separates 4 pairs inGi, thenf does not separate
pairs inHi and betweenHi andGi. If f additionally
separates pairs inHj, thenf does not separate pairs be-
tweenHj andGj.

(d) If f separates 8 pairs inGi;j, then it does not separate
pairs inHi;j.

Let F = �(f

1

; : : : ; f

k

) 2 F

k;�

n

be consistent withHi;j

t

G

i;j. Assume that~k functions off
1

; : : : ; f

k

separateHi

t

H

j.
If ~k = 2, due to (a), both functions separate pairs inH

i

andHj , since four pairs have to be separated. Due to (b), the
functions separate at most 4 pairs inGi;j or betweenHi;j

andGi;j. Since the number of pairs inGi;j or betweenHi;j

andGi;j is 8(k � 2) + 4, together with (a), this implies that
the remainingk � 2 functions separate exactly 8 pairs each.
(d) yields that non of thek � 2 functions separates pairs in
H

i;j.
If ~

k = 3, at least one functionf
1

separates pairs inHi

and Hj . Due to (b), this function separates at most 2 pairs
in Gi;j or betweenHi;j andGi;j. The other two functions
f

2

; f

3

separate at most 5 pairs. Hence, at most 12 pairs are
separated by the three functions altogether. Therefore, at
least8(k�2)�8 = 8(k�3) pairs inGi;j or betweenHi;j and
G

i;j must be separated byk�3 functions, i.e., with (a), each
of thek� 3 functions separates exactly 8 pairs. This implies
that f

1

andf
2

; f

3

separate exactly 2 and 5 pairs onGi, re-
spectively. (b), (c) imply that at most two pairs betweenH

i;j

andGi;j are separated, which contradicts the consistency.
If ~

k > 3, then each function which separates pairs in
H

i

tH

j, separates at most 5 pairs inGi;j or betweenHi;j

andGi;j. Consequently, at least8(k�2)+4�5

~

k pairs have
to be separated byk � ~

k functions. For~k = 4, 8(k � 2) +

4 � 5

~

k = 8(k � 4), hence, exactly 8 pairs are separated by
each of thek � ~

k functions while the four functions which
separate pairs inHi

tH

j , separates exactly 5 pairs inGi;j

or betweenHi;j andGi;j. But due to (c), this implies that no
pair betweenHi;j andGi;j is separated, in contradiction to
our assumption. If~k > 4, then8(k�2)+4�5

~

k > 8(k�

~

k),
which implies that thek � ~

k functions cannot separate all
remaining pairs, which is again a contradiction to the consis-
tency.

Hence, at leastk � 2 functions are constant onHi;j.
Therefore, the assumptions of Theorem 4.4 are satisfied and,
consequently, the proof completed. �
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A Appendix to Section 4

Proof of Theorem 4.4

We define two mappings%; � and show that%; � is an L-
reduction from APPROX(2-CUT) to APPROX(Fk;�k

). For
the L-reduction (see e.g. [11]) we have to show the following
two required conditions for constant� and�

L1 opt
F

k;�

(%(G)) � �opt2-CUT(G)

L2 opt2-CUT(G)� Z((G); �

S

G

(F ))

� �(opt
F

k;�

(%(G)) �Z(%(G); F ))

With Theorem 2.2 and functions satisfying L1 and L2, we
obtain that APPROX(Fk;�; �) is NP-hard for� < 1=(64��).

Let n be arbitrary andV = f1; : : : ; ng. W.l.o.g. let
j�

G

(I)j = z for all (G) and allI 2 E (by adding copies of
labeled instances, if necessary). With respect to a 2-graph
(G) we define the sample

S

G

= t

I2E

�

H

I

G

t �

G

(I)

�

Obviously, the length of the sample isjS
G

j = (6 + 2z)jEj.
So we define

% : (G) 7! S

G

:

Let �
S

G

= �(S

G

; �) be the function that mapsF 2 F

k;�

k

to the solution�
S

G

(F ) of (G). ForF = �(f

1

; : : : ; f

k

) we
define

�

S

G

(F )(i) =

�

2; if F (ei) = F (�e

i

) = f

l

i

(e

i

) = �1

1; otherwise

wherel
i

is the smallest index, for whichf
l

i

(e

i

) 6= f

l

i

(�e

i

).
Now we will show that the inequalities L1 and L2 are

satisfied and, therefore,%; � is an L-reduction.
Properties of % and �

S

G

� Let I = fi

1

; i

2

g 2 E. If �
S

G

(F )(i

1

) = �

S

G

(F )(i

2

),
then F is not consistent withHI

G

t �

G

(I). Inparticular,

Z(S

G

; F ) �

(5 + 2z)jEj+ jEjZ((G); �

S

G

(F ))

jS

G

j

:

(1)
Certainly, every pair of examples with alternating la-

bels must be separated by at least one of the functions
f

1

; : : : ; f

k

. Since every line that contains such a pair
contains exactly one separating point,e

i

;

�

0 and�ei; �0
cannot be separated by the same function, for alli.

Assume thatl
i

1

6= l

i

2

. W.l.o.g. let l
i

1

< l

i

2

. Then
f

l

i

2

(e

i

1

) = f

l

i

2

(�e

i

1

), since otherwisel
i

2

� l

i

1

. In
other owrds, there existsi

3

different from i

1

; i

2

, such
that f

l

i

3

(e

i

1

) = f

l

i

3

(�e

i

1

). Hence, there are at least
three functions that are constant onHI

G

. This leads to
a contradiction of the assumption that�

G

(I) employs
F

k;� for HI

G

.

We consider the casel
i

1

= l

i

2

=: l and assume thatF
is consistent withHI

G

. I.e. F (eij ) = F (�e

i

j

) = �1

for j = 1; 2. Since�
S

G

(F )(i

1

) = �

S

G

(F )(i

2

), the def-
inition of �

S

G

yieldsf
l

(e

i

1

) = f

l

(e

i

2

). The assumption
that�

G

(I) employsFk;� for HI

G

gives us that at least
k � 2 functions off

1

; : : : ; f

k

are constant onHI

G

.

Consequently, there existsl0 6= l and a function 2 B
2

with F �  (f

l

; f

l

0

). Sincef(ei1 ) = f(e

i

2

), Lemma
4.1 gives us thatF is not consistent onHI

G

, in condra-
diction to the assumption.

We have therefore shown that for every edgeI 2 E

colored monochromatically by�
S

G

, at least on example
of F is not classified correctly. Hence, also inequality 1
is proven.

� For all colorings � there exists a function F satisfying

Z(S

G

; F ) �

(5 + 2z)jEj+ jEjZ((G); � )

jS

G

j

(2)

This inequality is a consequence of the first condition,
i.e. there exists a functionF such thatF is consistent
with �

G

(E) (2zjEj examples), withHfig

G

for all i 2
V (5jEj examples) and withHI

G

for all edgesI that
are 2-colored by� (additionally at leastjEjZ((G); � )
examples).

With the above inequalities 1 and 2 we obtain

opt
F

k;�

(S

G

) =

(4 + 2z)jEj+ jEjopt2-CUT(G)

jS

G

j

(3)

Sinceopt2-CUT(G) � 1=2, this yields

opt
F

k;�

(S

G

) �

2(4+2z)jEjopt2-CUT(G)+jEjopt2-CUT(G)

(6+2z)jEj

= 2

(6+2z)jEj�jEj=2

(6+2z)jEj

opt2-CUT(G)

= 2

�

1�

jEj

2jS

G

j

�

opt2-CUT(G)

� 2 opt2-CUT(G)

Hence, inequality L1 is satisfied for� = 2. By simple trans-
formation of 1 and 3 we inparticularly obtain

opt2-CUT(G) =

jS

G

jopt
F

k;�

(S

G

)� a � jEj(4 + 2z)

jEj

Z(G; �

S

G

(F )) �

jS

G

jZ(S

G

; F )� a � jEj(4 + 2z)

jEj

Therefore,

opt2-CUT(G)�Z(G; �SG (F ))

�

jS

G

j

jEj

�

opt
F

k;�

(S

G

)� Z(S

G

; F )

�

;

which satisfies the equality L2 for� =

jS

G

j

jEj

= 6 + 2z.
Since MAX 2-CUT is NP-hard with error-rate� � 1=64,
MAX(Fk;�) is NP-hard with error-rate

~� � �=(��) =

1

64(6 + 2z)

=

1

384 + 128z

:

�
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B Appendix to Section 5

The algorithm V-SYSTEM Basically the algorithm has to
computek polynomials of degree� 2k + 2 and evaluate
them at a number of points.

Let v(x) = (p

1

(x); : : : ; p

n

(x))

T

; wherep
1

; : : : ; p

n

are
linear independent polynomials (i.e.

P

i

�

i

p

i

� 0 ) �

i

=

0, 8i) of degree� n� 1.

Lemma B.1 For arbitrary x
1

; : : : ; x

n

2 K pairwise differ-
ent, v(x

1

); : : : ; v(x

n

) are linearly independent.

Proof Consider the matrix(v(x
1

); : : : ; v(x

n

)) and its row-
vectors~v

i

= (p

i

(x

1

); : : : ; p

i

(x

n

)), i = 1; : : : ; n. Assume
that

P

i

�

i

~v

i

= 0, i.e.
P

i

�

i

p

i

(x

j

) = 08j = 1; : : : ; n.
Since

P

i

�

i

p

i

is a polynomial of degree� n�1,
P

i

�

i

p

i

�

0 and sincep
1

; : : : ; p

n

are linearly independent,�
i

= 08i.
Hence, the matrix(v(x

1

); : : : ; v(x

n

)) has rankn and, there-
fore, the vectors are linearly independent. �

We will constructU with a system using polynomials which
we will represent as products of the linear factors�

r

(x) =

x�r. Obviously,�
r

(x) < 0, iff x < r, �
r

(x) > 0, iff x > r

and�
r

(x) = 0, x = r .
Consider the followingn polynomialsp

1

; : : : ; p

n

on the
interval[0; : : : ; 2(k + 1)℄

p

l

= �

2l

�

Q

r2J

l

�

2r+1

�

�

k+l+1�jJ

l

j

0

for l = 1; : : : ; k

p

l

= �

l�k�1

0

for l = k + 1; : : : ; 2k+ 3

p

l

= �

l�1

0

for l = 2k + 4; : : : ; n

with J
l

� f1; : : : ; kg, where

r 2 J

l

,

�

(r 62 fl � 1; lg and b

r

l

= �b

r+1

l

)

or (r = l � 1 and b

r

l

= b

r+2

l

):

The abovebk+1
l

= 1 for all l. Obviously, the polynomials
x

l�k�1 for l = k+1; : : : ; 2k+3, xl�1 for l = 2k+4; : : : ; n

andp
1

; : : : ; p

k

aren polynomials with pairwise different de-
gree� n� 1 and are, therefore linearly independent.

Lemma B.2 p

l

(x

0

) = 0 and sgn(p
l

(x)�p

i

(x)) = b

i

l

for all

jx� x

i

j �

1

2

(2k + 1)

�(2k+2), l 6= i.

Proof It is easy to see that our construction yieldsp
l

(x

0

) =

1, and sgn(p
l

(x

i

)� p

i

(x

i

)) = b

i

l

for l 6= i. Observe that

jp

i

(x)� 1j � (2k + 1)

2k+2

jx� x

i

j

jp

l

(x)� 1j � min(jx� s

i�1

j; jx� s

i

j)

for jx� x

i

j � 1 andl 6= i. Hence,

jp

i

(x)� 1j � 1=2

jp

l

(x)� 1j > 1=2

for jx � x

i

j =

1

2

(2k + 1)

�(2k+2). Therefore, sgn(p
l

(x) �

p

i

(x)) = b

i

l

for jx� x

i

j �

1

2

(2k + 1)

�(2k+2). �

Let x
ij

= 2i �

1

2j

(2k + 1)

�(2k+2) for i = 1; : : : ; k and

j = 1; : : : ; kn which obviously satisfiesjx
ij

�x

i

j <

1

2

(2k+

1)

�(2k+2) for all i; j. Due to Lemma B.2, property (U3) is
satisfied. Finally, we obtain the vectors

u

ij

= p

i

(0)v(x

ij

)� p

i

(x

ij

)v(0) = v(x

ij

) � p

i

(x

ij

)

�

1:

Consequently,uij
i

= p

i

(x

ij

) � p

i

(x

ij

) = 0 and sgn(uij
l

) =

sgn(p
l

(x

ij

) � p

i

(x

ij

)) = b

i

l

which gives us properties (U1)
and (U2). To show property (U4), consider the representa-
tionx

ij

=

m

1

m

2

with integersm
1

= 4ij(2k+ 1)

2k+1

� 1 and

m

2

= 2j(2k+1)

2k+1. Obviously,m
1

� m, and2km
2

� m

for 4n(2k + 1)

2k+4

< n

3n

=: m. Then

p

l

(x

i;j

) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

1

(n

i;j

)

k+l+2

h

(m

i;j

� 2ln

i;j

)

�

Q

r2J

r

(m

i;j

� (2r + 1)n

i;j

)

�

(m

i;j

)

k+l+1�jJ

l

j

i

for l = 1; : : : ; k

(m

i;j

)

k�l�1

(n

i;j

)

k�l�1

for l = k + 1; : : : ; 2k + 3

(m

i;j

)

l�1

(n

i;j

)

l�1

for l = 2k + 4; : : : ; n:

Obviously, numerator and denominator of the above repre-
sentation are integers bounded byn3n

2

, i.e. size(p
l

(x

ij

)) �

1 + 2d3n

2

logne. Hence,size(p
l

(x

ij

) � p

i

(x

ij

)) � 6 +

12n

2

dlogne =: �(n) = O(n logn) = poly(n).
First, V-SYSTEM computesp

1

; : : : ; p

k

where each poly-
nomial needsO(k) comparisons. Then the algorithm evalu-
atesp

l

atx
ij

for all l; i; j. Sincex
ij

has a polynomial binary
representation length, the algorithm is polynomial ink and
n.

Preliminaries for Lemma 5.1 Note that forx with binary
representation lengthsize(x), we obtain the boundsjxj �
2

size(x) and, if x 6= 0, jxj � 2

�size(x) According to prop-
erty (U4), size(uij

l

) � �. We will use the standard deter-
minantdet andV (v1; : : : ; vi) = det(v

i

� v

j

)

i;j=1 :::;i

which
is the square of the standard volume form. Consider an ar-
bitrary set of vectorsu0; : : : ; un�1 of U . Since the vec-
tors are in general position,u1 � u

0

; : : : ; u

i

� u

0 are lin-
early independent. A straight forward calculation shows that
size(u

i

l

� u

0

l

) � 3� and size((u

i

� u

0

) � (u

j

� u

0

)) �

6n� for all i; j. Further,size(V (u

1

� u

0

; : : : ; u

i

� u

0

)) �

27n

4

� = poly(n). Sinceu0; : : : ; un�1 are in general posi-
tion,2�27n

4

�

� V (u

1

� u

0

; : : : ; u

i

� u

0

) � 2

27n

4

�.

Lemma B.3 Let v1; : : : ; vn; w1

; : : : ; w

n

2 V

n

with jvi
l

j �

Æ and jwi
l

j � �. Then j det(v

1

+ w

1

; : : : ; v

n

+ w

n

)j �

j det(v

1

; : : : ; v

n

)j � Æ2

2n

2

�

Proof Straightforward analysis. �

A system~

U = (~u

ij

)

ij

is called�-close, iff for eachi; j,
~u

ij

= u

ij

+ Æ

ij

e

i, jÆ
ij

j � �.

Lemma B.4 Let ~

U �-close to U with � = 2

�50n

4

�, and let
~u

0

; : : : ; ~u

n�1 vectors of ~

U . Then V (~u

1

� ~u

0

; : : : ; ~u

n�1

�

~u

0

) > 2

�28n

4

�, in particular, ~u0; : : : ; ~un�1 are in general
position.
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Proof

(~u

i

� ~u

0

) � (~u

j

� ~u

0

) = (u

i

� u

0

) � (u

j

� u

0

) + �

i

j

with

�

i

j

= Æ

i

(e

i

� u

0

) � (u

j

� u

0

) + Æ

0

(~u

i

� e

0

) � (u

j

� u

0

)

+ Æ

i

(~u

i

� ~u

0

) � (e

j

� u

0

) + Æ

0

(~u

i

� ~u

0

) � (~u

j

� e

0

)

This impliesj�i
j

j � 4�2

9n�. With Lemma B.3 we obtain

V (~u

1

� ~u

0

; : : : ; ~u

n�1

� ~u

0

)

� V (u

1

� u

0

; : : : ; u

i

� u

0

)�

1

2

2

�27n

4

�

> 0

if 4�2

9n�

�

1

2

2

�5n

3

9n�

=

1

2

2

�45n

4

�, i.e. inparticular if

� � 2

�50n

4

�

� 2

�45n

4

��9n��2. �

Proof of Lemma 5.1 Let f intersect pairs(u0 � �e

i

); : : : ;

(u

n�1

� �e

i

), whereu0; : : : ; un�1 2 U i. Then

P

f

=

n

v = ~u

0

+ �

1

v

1

+ � � �+ �

n�1

v

n�1

:

v

j

= ~u

j

� ~u

0

; �

j

2 K; j = 1; : : :n� 1

o

where~uj are separating points of the pairs(uj � �e

i

), j =

0; : : : ; n� 1. Assumingv 2 P
f

\B

0

(n2

�

), we have

2n

�

> jj�

1

v

1

+ � � �+ �

n�1

v

n�1

jj � �

j

jj(v

j

)

0

jj; (4)

where(vj )0 is the orthogonal projection of vectorvj on the
hyperplane[v1; : : : ; vj�1; vj+1; : : : ; vn�1℄?. From Lemma
B.4 an the preliminaries we obtain the bounds2

�28n

4

�

�

V (v

1

; : : : ; v

j�1

; (v

j

; )v

j+1

; : : : ; v

n�1

) � 2

27n

4

� for i =

1; 2. Since

V (v

1

; :::; v

n�1

)=V (v

1

; :::; v

j�1

;v

j+1

; :::; v

n�1

)jj(v

j

)

0

jj

2

;

we havejj(vj)0jj � 2

�28n

4

�

> 0: Applying this bound to 4,
we obtain

j�

j

j � 2n2

�+28n

4

�

� 2

30n

4

�

:

Finally,

jv

i

j = j~u

0

i

+ �

1

(~u

1

i

� ~u

0

i

) + � � �+ �

n�1

(~u

n�1

i

� ~u

0

i

)j

� j~u

0

i

j+ �

1

j~u

1

i

� ~u

0

i

j+ � � �+ �

n�1

j~u

n�1

i

� ~u

0

i

j

� �+ 2�(j�

1

j+ � � �+ j�

n�1

j)

< 6n

2

2

30n

4

�

� < 2

30n

4

��50n

4

�

< 2

��

:

�

C Appendix to Section 6

We proof the claims used in section 6. For a vektorv let
[v℄ = f�v : � 2 Kg be the line that containsv. Observe that
the pairs inHi lie on the line[ei℄, and the pairs inGi lie on
the four lines�ei + [e

n

℄, � = �1;�

1

3

. For a linev + [u℄:

Lemma C.1 Let f(v) = sgn(w �v+�). Eitherw �(v+[u℄) is
constant, or there is a unique� 2 K withw�(v+�u)+� = 0.

Proof Assume there exist�
1

6= �

2

with w � (v+�
1

u)+ � =

w � (v + �

2

u) + � = 0. Thenw � ((�
2

� �

1

)u) = 0, which
impliesw � ([u℄) = 0 and, hence,w � (v + [u℄) is constant.�

We call two pointsv
1

; v

2

of a setS neighboured, if there
is no pointv

0

2 S on the line between them, i.e.S \ fv =

�v

1

+(1��)v

2

: 0 < � < 1g = ;. Note that all pairs defined
onH andG are neighboured. Then we have the following

Corollary C.2 At most one pair of a collection of neigh-
boured pairs lying on one line can be separated by a linear
threshold function f . �

Now we are ready to show the following claims: Letf
be a threshold function onV

n

. Then

(a) f
l

separates at most one pair in Hi and at most four
pairs in Gi.

Since all pairs lie on one and four lines, respectively,
Corollary C.2 proves this claim.

(b) f
l

which separates a pair in Hi, separates at most one
pair in Gi or between Hi andGi.

Assume thatf separates a pair inHi, i.e. f(e

i

) =

�f(�e

i

). Without loss of generality letf(ei) = 1, i.e.

w � e

i

+ � > 0 (5)

w � (�e

i

) + � � 0: (6)

1. Assume further thatf separates two pairs inGi, i.e.
for �

1

6= �

2

with j�

1

j; j�

2

j � 1, f(�
l

e

i

+

4

3

e

n

) =

�f(�

l

e

i

+2e

n

); l = 1; 2. We will obtain a contradiction.

Case: f(�
l

e

i

+ 2e

n

) = 1; l = 1; 2, i.e.

w � (�

l

e

i

+ 2e

n

) + � = �

l

w

i

+ 2w

n

+ � > 0(7)

w � (�

l

e

i

+

4

3

e

n

) + � = �

l

w

i

+

4

3

w

n

+ � � 0(8)

Then 5 and 8 yield

4

3

w

n

< (1� �

l

)w

i

: (9)

The difference of 7 and 8 give us

j�

2

� �

1

jw

i

<

2

3

w

n

: (10)

Let wlog�
2

> �

1

. 9 and 10 imply(�
2

� �

1

) <

1

2

(1 �

�

2

). Since for different�
l

, �
2

� �

1

�

2

3

, we have2
3

<

1

2

(1� �

2

) which is equivalent to�
2

< �

1

3

. Since�1 �
�

1

< �

2

< �

1

3

, �
2

� �

1

<

2

3

, which is a contradiction.

Case: f(�
l

e

i

+ 2e

n

) = �1; l = 1; 2, is analogous to the
previous case.

Case: f(�
1

e

i

+ 2e

n

) = 1 andf(�
2

e

i

+ 2e

n

) = �1,
i.e. �

1

w

i

+ 2w

n

+ � > 0, �
1

w

i

+

4

3

w

n

+ � � 0, and
�

2

w

i

+ 2w

n

+ � � 0, �
2

w

i

+

4

3

w

n

+ � > 0. The
difference of the first and third inequality yields(�

1

�

�

2

)w

i

> 0, and the difference of the second and fourth
inequality implies(�

1

� �

2

)w

i

< 0 which is obviously
a contradiction.

Case: f(�
1

e

i

+ 2e

n

) = �1 andf(�
1

e

i

+ 2e

n

) = 1 is,
again, analogous to the previous case.
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2. Assume now thatf separates a pair betweenHi and
G

i. Note that 5 and 6 impliesw
i

> 0 andw
i

� j�j.

Case: f separates a pair(ei; ei + 2

3

e

n

), i.e. f(e

i

+

2

3

e

n

) = �1 which givesw
i

+� > 0 andw
i

+

2

3

w

n

+� �

0. Thenw
n

< 0 and�w
i

+�w

n

� 0 for all�1 � � � 1

and� > 2=3. But this implies thatf does not separate a
pair of the form(�w

i

+

4

3

w

n

; �w

i

+ 2w

n

) and, in par-
ticular, pairs inGi.

Case: f(�ei + 2

3

e

n

) = 1 is analogous to the previous
case.

(c) If f
l

separates 4 pairs in Gi, then f
l

does not separate
pairs inHi or betweenHi andGi.If f

l

additionally sep-
arates pairs in Hj, then f

l

does not separate pairs be-
tween Hj and Gj.

Assume thatf separates four pairs inGi. Then

f(e

i

+

4

3

e

n

) = �f(e

i

+ 2e

n

) (11)

f(�e

i

+

4

3

e

n

) = �f(�e

i

+ 2e

n

): (12)

Case: If f(ei + 4

3

e

n

) = �f(�e

i

+

4

3

e

n

), thenf(ei +
2e

n

) = �f(�e

i

+ 2e

n

), and we obtainw
i

> 0 and
w

i

< 0 from the first and second equation, respectively,
which is a contradiction.

Case: f(ei + 4

3

e

n

) = f(�e

i

+

4

3

e

n

) = �1. Then

w

i

+

4

3

w

n

+ � � 0 (13)

�w

i

+

4

3

w

n

+ � � 0 (14)

w

i

+ 2w

n

+ � > 0 (15)

�w

i

+ 2w

n

+ � > 0: (16)

(15)�(13) impliesw
n

> 0. (16)�(13) and(15)�(14)

imply jw
i

j � (1=3)w

n

. (14)� (13) implies� � �

4

3

w

n

.

Hence, for�1 � � � 1, � � 2=3,

�w

i

+ �w

n

+ � � w

n

�

4

3

w

n

< 0:

Consequently,f does not separate pairs inHi or be-
tweenHi andGi.

Case: f(ei + 4

3

e

n

) = f(�e

i

+

4

3

e

n

) = 1 is analogous
to the previous case.

Assume now thatf additionally separates a pair inHj.

Case: If f(ei + 4

3

e

n

) = �f(�e

i

+

4

3

e

n

), we obtain a
contradiction (see the first case in (c)).

Case: f(ei+ 4

3

e

n

) = f(�e

i

+

4

3

e

n

) = �1. Then for all
�1 � � � 1, f(�ei + 4

3

e

n

) = �f(�e

i

+ 2e

n

) = �1,
in particular, for� = 0. Then the proof of (b) yields the
claim.

(d) If f
l

separates 8 pairs in Gi;j, then it does not separate
pairs in Hi;j.

Due to (c)f does not separate pairs inHi andHj. We
still have to check the pairs(ei; efi;jg) and(ej ; efi;jg),
which are inHi;j and not inHi

[ H

j. Assume thatf
separates 8 pairs inGi;j.

Case: f(el + 4

3

e

n

) = �f(�e

l

+

4

3

e

n

) = �1 for l 2
fi; jg leads to a contradiction analogous to the proof of
(c).

Case: f(el + 4

3

e

n

) = f(�e

l

+

4

3

e

n

) = �1, l = i; j.
Then inequalities 13-16 are valid fori and j. Again,
(15)�(13) impliesw

n

> 0. (16)�(13) and(15)�(14)

imply jw
l

j � (1=3)w

n

, l = i; j. (14) � (13) implies
� � �

4

3

w

n

.

Hence, for arbitrary�1 � �

1

; �

2

� 1,

�

1

w

i

+ �

2

w

j

+ � �

2

3

w

n

�

4

3

w

n

= �

2

3

w

n

< 0;

i.e. f(v) = �1 for all points inHi;j. Therefore, no pair
inHi;j is separated.

The other cases are similar.


