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Abstract The right hand side of formula (1) defines a particular trade-
off between the empirical error rat€l") and the concept size

We derive a new bound on the error rate for deci- |T'| and we can seledt so as to optimize this tradeoff.
sion trees. The bound depends both on the struc- Here we are interested in deriving bounds that are tighter
ture of the tree and the specific sample (not just the than the “naive bound” expressed in (1). Note that (1) ex-
size of the sample). This bound is tighter than tra- presses a bound arf7’) — ¢(7") than depends only on the
ditional bounds for unbalanced trees and justifies size ofS, and not on the actual examples. To improve on (1)
“compositional” algorithms for constructing deci- we construct a bound or{T") — ¢(T') that depends both on
sion trees. the concepf” and the sample.

Several approaches to the construction of tighter bounds
have been taken in the literature. The most notable example
1 Introduction is the margin bound for linear threshold functions [Vap98,
AB99]. This bound depends on the threshold function cho-
The problem of over-fitting is central to both the theory and sen and the samplg, where the margin is the “separation”
practice of machine learning. Intuitively, one over-fitsusy between positive and negative examples in the saifiple
ing too many parameters in the concept, e.g, fitting#wor- A second approach to improving (1), more closely re-
der polynomial ton data points. One under-fits by using too lated to the approach taken here, is taken by Golea et. al.
few parameters, e.g., fitting a linear curve to clearly gaidr ~ [GBLM97]. They give a bound for decision trees in terms
data. The fundamental question is how many parameters, orof the “effective number of leaves” where unbalanced trees
what concept size, should one allow for a given amount of have a smaller number of effective leaves than balancesl tree
training data. A standard theoretical approach is to prove aTheir proof techniques involve a margin analysis for decisi
bound on generalization error as a function of the training trees. While their main theorem handles well the case when
error and the concept size (or VC dimension). One can thenalmost all training data reaches a single leaf, it is far lsss
select a concept minimizing this bound, i.e., optimizing a ful when a significant fraction of the training data reaches
certain tradeoff, as expressed in the bound, betweentigaini  two or more leaves.
error and concept size. Our approach is somewhat related to the tree pruning
Bounds on generalization error that express a tradeoff be-methods developed by Kearns and Mansour [KM98]. They
tween the training error and the size of the concept are of- give an algorithm for pruning decision trees which implic-
ten called structural risk minimization (SRM) formulas. A itly uses a bound for subtrees of a given tree. The results in
variety of SRM bounds have been proved in the literature this work can be used in conjunction with the techniques of
[Vap82]. The following SRM bound was proved in [McA98] [KM98] to derive improved pruning algorithms.
and, for completeness, is proved again in Section 2. Itstate Another approach that has been taken to improving (1) is
that with probabilityl — ¢ over the sampleS we have the  to consider not only the conceptand the samplg, but also
following. the learning algorithm that is used to generate This in-
cludes Freund’s “self-bounding algorithms” [Fre98] and th

. In2)|T|+ In(1/d related bounds by Langford and Blum [LB99]. The basic
VT e(T) < €(T) ¢( : 29| Uz 1) idea in these bou)r/1ds isgto measure, at [each Lhoice point in
the learning algorithm, the number of alternatives thathrig
This formula says that, for an arbitrary concept clasgere be taken if we based the decision on a second fresh sample.
each concept’ is encoded by some bit string of length|, To motivate our new bound latr(A, 7;, 7;) denote a

we have that with probability at lea$t— J over the choice  decision tree with root predicatéand left and right subtrees

a sampleS of size|S| i.i.d. instances, all concepts have the 7T; and7, respectively. Let be a function taking a decision
property that their true error rate is no larger than theiorer  tree and a sample and returning a real number. Ultimately
rate on the training data plus a penalty that depend§on we are interested in those functiohsuch that: (7, S) is

|S], andd. A similar statement holds if we use the VC dimen- an upper bound on the error rate 6f Now consider, for
sion ofC rather than the encoding size of concepts [Vap82]. a fixed predicated, the problem of selectin@; and7, so
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as to minimizeh(IF(A, 7;, T:), S). The functionh will
be calledcompositional if this minimization can be done by
solving independent optimization problems ffrand 7...
More specificallyh is compositional if there exist functions
h; andh, such that, for a given predicateand sample, se-
lecting7; andT, so as to minimizé(IF(A, T;, T,), S)is
equivalent to selecting@; so as to minimizey (7;, S4) and
selecting?; so as to minimizé.,. (7., S.4) whereS, and
S, 4 are the subsets of satisfyingA and—A respectively.
The naive bound is not compositional — when selecfipg
and7, so as to minimize the bound we have tH&{ influ-
ences the optimal choice 6f.

To give an example of a compositional expression we
firstletho(7', S) abbreviate the naive bound.

ho(T, S) = &(T) +/((In2)| 7]+ In(1/6))/(25])
Now define the functioh, (7', S) by the following equation.

[Sal [S=al
5] 5]

By construction the functioth; is compositional — opti-
mizing the choice off/; and7,. can be done by optimizing
T; andT, independently. It seems intuitively clear that if the
sample is large then error rate ‘Bfcan not be much larger
thanh, (T, S).

Our new bound is stated in terms of a “root fragment” of
thetree, i.e., a set of nodes containing the root and hakimg t
property that, for any node in the set, the parent and sibling
of that node must also be in the set. lizbe a root fragment
and letL(R) denote the leaves @t. The setL(R) defines a
cut of possibly varying depth through the tf€eFor a node
v € L(R) let T, be the subtree df rooted atv and letS,
be the subset of the sample reaching nedéhe new bound
states that, with probability at leakt- J over the choice of
the sample, we have the following for all tre&sand root
fragmentsk of 7.

hi(IF(A, Ty, T1), S) = 22 ho(T), Sa)+ ho(Ti, S-4)

(In2)|7, |
2|5y |

<y

’UEL

6( 7(5a R, 6)

ISI

The expressiony(.S, R, d) is given in section 3 and is
negligible whenRk andln(1/4) are small (as defined in sec-
tion 3). Jensen’s inequality implies that fpfv) > 0 we have

SUSul/15DVg(w) < VE(ISul/1SDg(v). This implies
thatthe above bound s never larger thdfin 2)|7|/(2]S])+
¥(S, R, §). So, whenR andIn(1/4) are small, the new
bound is not significantly larger than the old bound. How-

of m pairs(z, y) drawn independently from the distribution
D. The notatiory® S ®[S] is used as an abbreviation for the
statement that with probability at ledst d over the selection
of S we have that[S] holds. Note thatz V°S &[S, z]
does notimply?s Ve @[S, =].

Let H be a set of “base predicates” each of which maps
X to{0, 1}. LetT(#) be the set of decision trees ovkt
i.e., binary trees where each leaf is labeled with either@ or
and each non-leaf is labeled with a predicate frdmEach
decision tree also defines a predicateton

For any predicatel on X we define the (true) error rate
of A, denoted(A), to be the probability over drawing a ran-
dom pair(x, y) according toD that A(z) # y. When the
sampleS is clear from context we define the empirical er-
ror rate of A, denotedé(A) to be|{(x, y) € S : y #
A(2)}I/15)- | -

We assume a prefix-free code for the predicate® jn
i.e., each predicate is named by a code string where no code
string is proper prefix of any other code string. We|lgf be
number of bits in the code for predicale Prefix-free codes
satisfy the Kraft inequality:y"_,, 271% < 1. One can
devise a prefix-free code for the treesTi(i#) such that for
atreel” with n internal nodes labeled with branch predicates
Bi,...,B,wehavelT| =2+3n+3 " |Bil

We now letC'(#) be the set of conjunctions of the form
(By = bi)A...A(Bgq = bg) whereB; € H andb; € {0,1}.
Each elementi € C(#) is viewed as a predicate oti in
the obvious way. For any nodein 7" we defineA, to be the
predicate inC'(#) corresponding to the path from the root to
nodev. Note thatAd,(x) = 1 if and only if # reaches node
v. One can devise a prefix-free coding for the elements of
C'(H) such that if4 is the conjunction of the formiB; =
bi) A...A (B, =by)then|A| =1+ 2n+ 3" | |B;|. For
any predicated € C'(#) and samples we defineS, to be
{{z, y) € S: A(x) = 1}. We useS, as an abbreviation
for S4,. Let T, be the subtree df' consisting of all nodes
at or belowv. We definel'(#, S) to be the set of decision
treesT’ € T'(#) such that for every nodeof 7" we have that
Sy IS nonempty.

The additive Chernoff bound can be expressed as follows.

Lemmal Let X4, ...
ables, and p = Pr[X; =

X be i.i.d. random Boolean vari-

1].

6—2m'y2

r[(l/m)ZXi <p+1] <

ever, the new bound can be smaller by the slack in Jensen’s

inequality. Section 3 shows under that, under conditions ex
pected to hold in practice, the new bound @ff") — ¢(7")
will not be smaller thar{ln 2)|77/(2]S|). In summary, the

new bound is compositional near the root of the tree and

can potentially improve the penalty for the sizeloffrom

(In2)|T(/(2]S]) to (In2)|T"|/(2]S]). For a fixed treel’,
section 5 gives an efficient algorithm for exactly computing
the root fragmenf2 minimizing the new bound.

2 Model and Preliminaries

Let X' be a set of “instances”. We assume some fixed but tree violates the lemma s no larger thah.. . 5,

unknown distributionD on X x {0, 1}. Let.S be a sample
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The naive error bound can be expressed as follows.

Lemma 2

(In2)|7] + In(1/6)
2|5]

YOS YT € T(H) e(T) < &(T) + ¢

Proof: Consider a fixed tre€'. It follows from the Cher-
noff bound (Lemma 1) that the probability over the choice
of S that the particular treg’ violates the above lemma is at

mosté2~!7l. By the union bound the probability that some
52171 <
J. |



3 Main Theorem Fory > 0, a root fragment? and will be calledy-small if
|L(R)| < ~|T| and for allv € L(R) we that havgA,| <
v|Ty|. For ~-small R and reasonably prunefl , and as-
suming that(In 2)|7°|/(2].S]) is no larger than 1, the above
inequality implies the following.

We now consider an arbitrary division of the nodes of a given
treeT" into shallow and deep nodes. We febe an arbitrary
set of “shallow” nodes satisfying the condition thaforms

a subtree of" containing the root and such that all nodes in
R are either leaves af or have both their children iR. We 1
denote byL(R) the set of leaves of the subtr& Our main

theorem is the following. HT, S R 6 < +2( g + fié) (1n2|2;||T|
Theorem 3
2v1n(2/3) |, 2vIn(2/3)
VS YT € T(H, S) €(T) < ¢(T) +min f(7, 5, R, 4) +2 (v me ot e )
where N We say that a tree igasonably pruned if for every node
% v in T we have(ln 2)|T,|/(2|Sy]) < 1. Intuitively this
condition would hold due to properties of the learning al-
AT | 1A gorithm that constructed the tree. For example if each leaf
F(T, 5, R, 9) Z |5| +2 ( B ISUI) has a minimal number of examples reaching it, 3ayhen
eL(r the tree would be reasonable pruned. Our third observa-
+2 ( 1n|(52/|6) + lnlﬁg/lé)) tion is that, for reasonably pruned trees, the new penalty is

never smaller thaifln 2)|7'|/(2|S]). Note that the quantity

Before giving the proof in section 4, we try to clarify the  (In 2)|7'|/(2|S|) can be much smaller thayf(In 2)|T'|/(2]5]).
bound by noting that it satisfies four rather simple progstti Forz € [0, 1] we have\/z > x so for T reasonably

First, for a fixed root fragmenk the bound is compositional : P
Lp P ; pruned we have the following where the third line follows
with respect to optimizing subtrees rooteddinIn particular from the fact thatln 2)/2 < 1.

we have the following equation whet€r,,, S, ) is the error
rate of 7, on the sample5, androot(7,) denotes the root l

(In2)|T,| | |4l
2|5y | |50 ]

fragment of7}, consisting of just the root node @f,. AT, S R, &) > Z 1Sy |
(T, S, 3 3 3 jl
§T)+ f(T, S, R, 6) = Z ESRI ) vEL(R) 5]
ISU | +£(T0, Su, root(T,), 6)
o Syl [(In2)|T,] | |4
So to select the tre€g, to minimize¢(T) + f(T, S, R, 9) Z +

we can optimize each subtrég independently. veL(R) 5] 215y | |5 ]
We will call the bound or(T") — ¢(7") given in formula

vEL(R)

v

(1) the naive penalty and we will cathing f(7, S, R, J) > In2 Z (ITUI + |Ay))
the new penalty. Our second observation is that the new = 218 veL(R
penalty it is not significantly larger than the naive penalty
By settingR to be the tree consisting only of the root node (In2)|T]
we get the following. = 2|5
(In 2)|7| .
15| Finally we note that even for reasonably pruriédve
can havef(T, S, R, d) arbitrarily close to(ln 2)|7'|/(2|S5]).
min f(T, 5, R,0) < | +2 ( e+ ﬁ) TakeT to beIF(A, 1;, T,) and takeR to consist of the

root plus its two children. Leb; and S, be the subsets of
the sample reachin@ and7, respectively. By makingS]|,
+2 ( % + %) |T:| and|T.| sufficiently large we can arrange that| and
In cases wher¢!l'| is large compared to both 1 aha(1/5), In(1/4) are both small compared {8;| a”‘?' bothy/|4]/15]
a common occurrence in practice, both the above expres-andy/In(1/6)/]5;| are small compared witty | 7;|/|.5;|, and
sion and the naive penalty will be approximately equal to Similarly for 7;.. Under these condition&(7’, S, R,é) can
W 2)[T]/2]5)). be written as follows.

Itis also possible to show that the new penalty is not sig-

nificantly smaller than the naive penalty for any “small” too ~ 191 (In2)|Ti] n |5r] [ (In2)|7; |

fragmentR. By Jensen’s inequality we have the following. AT, S, R, 9) |5| 215/ S| 215,
(In 2)|7|
2191 We now formulate all other quantities to be proportional to
|S| so that we can scale the size of the sample to be arbitrarily
Dvenim Al D enim Y large. We fix a small number > 0. We take|S;| = ¢|S|
S8, R6) < | +2 ( =TT + =T and|T;| = (2/(In2))e]S]. Note that this allowsl” to be

reasonably pruned. In particuldtn 2)|7;|/(2]5;]) = 1. We
now take|7,| to bee*|S|. This implies|T| ~ |T;| ande =
) |511/15] = (n2)|71]/(215]) ~ (In2)|T]/(2]S]). Up to first

LCUIRG/A) | Lt/
+2 ( [ I A
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order terms ire we have the following.

(In2)[1] (n2)|7;]
T,S,R ) = e/—F—+(1—¢)4y/—=—
f ) a5 TN ]

In2

~ 2 _—

~ c¢+¢ 9

(In2)[7]

N o —L

2|9

4 Proof of Main Theorem

To prove the main theorem we start with a couple prelimi-
nary lemmas. Throughout this section wertebe|S|. Note
that we taken to be given before we selest Now for any
A € C(H) we definep, to bePr<x’ y>ND[A(x) =1]. For

any A € C(H) andT € T(H) we define the error rate of
T on the distribution induced by, denotede4(T), to be
Pr<x’ y>ND(T(x) =y | A(z) = 1). For a given sample
S we define the empirical error rate @f on the distribu-
tion induced byA, denotedt 4 (T'), to be|{(z, y) € Sa
T(x) # y}|/|Sa|. We now have the following lemma. (A
similar lemma appears in [KM98].)

Lemmad V°S VA € C(H) VT € T(H)

(|A[+]7]) In2 +In(1/4)
2[Sal

ea(T) < 64(T)+-V/

Proof: Consider a particular fixed predicakein C'()
and treeT" in T'(#). We can bound the probability over the
selection ofS that the particular predicates and’l” violate
the lemma as follows.

Pr[ea(T) > a(T) + /TAIL 2 401/5)

Al

Pr[|Sa| = n]

E Pr[|Sa| = n]s2~ 41217
n=0

52141517

oo

2

n=0

€a(T) 2 éa(T) +

2n

(AILIT]) 1n 241n(173) ]

| 154l =n

IA

By the union bound the probability that some choicelof
andT violates the lemma is now bounded by the following.

5 9-14] Z 9—I7| <4
AEC(H) TET(H)
O

Our second preliminary lemma is a form of the relative
Chernoff bound that is particularly well suited to machine
learning applications. The relative Chernoff bound is ligua
stated as follows.
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Lemmas5 Let X4, ..., X,, be i.i.d. random Boolean vari-
ables and p = Pr[X; = 1]. Fory € [0, 1] we have the
following.

Pr[ZXZ' < (1 =5)pm] < e=mPY /2
i=1

By settingy equal to 21n(1/9) we can rephrase the rel-
pm
ative Chernoff bound as follows,

_ [2pIn(1/5)
5 < P
V'S p<p+ —

wherep = (1/m) 37", X;. This bound orp is not directly
useful in machine learning applications because the bound
uses the unknown quantipy We need a bound that is purely

a function of the observed quantity Such a bound is pro-
vided by the following lemma.

Lemma 6
[2pIn(1/6 2In(1/6
m m

Proof: By the relative Chernoff bound (Lemma 5) we
have the following with probability at leadt— ¢ over the
choice of the sample.

R 2pIn(1/6
pop<i (1/6)

m
This implies the following.

m(p —p)* < 2pIn(1/4)
or alternatively,
mp? — (2mp + 21In(1/3))p + mp* < 0.
This gives us a restrictions on the possible valueg,of
therefore,

(2mp + 2In(1/8)) + /(2mp + 2In(1/3))? — 4m?p?

p

- 2m

_ i)_i_ln(;/é) +\/8mﬁln(1/i)m—|;4ln2(l/6)
. ln(;/é) N fﬁlnn(j/a) N 111275112/5)

. ﬁ+21n7(;/5)+ 2;311177(11/5)

O
Lemma 6 can now be used to prove the following. (Re-
call thatS 4 is the subset of the sample satisfying the predi-
cateA.)

Corollary 7 For any predicate A we have
(Sa=0)
Vs
21n(1/9)
[Sal

21n(1/5)
[Sal

_|_

/)

v(p-p<p|
where p = |S4|/|S|.



Proof: It follows from Lemma 6 that with probability at
leastl — J we have the following.

e /zmnn(j/a) .\ QIHS/(S).

We simply show that this implies the desired resultSlf| =

0 then by definition the lemma holds, so we can assume ©

that|S4| > 0. Under this assumption, and recalling that
p = |Sal/|S], we have that,

21n(1/5)
|Sal

p—p<p

21n(1/5)
* 1S4l ]

O

The following Corollary generalizes the result to a set of
predicates” ().

Corollary 8 V°S VA € C(H)
Sa=10

2(|A|ln|2+l|n(1/6))
Sa
Vpa —pa <pa

| 20400 241n(1/9))

[Sal
Proof: Consider a fixed predicaté. Corollary 7 implies

that the probability that! violates the lemma is bounded by
§2~141. The union bound then implies that the probability
that there exists d € C'(H) violating the lemma is no larger
thangd. O

Now we are ready to prove our main theorem.

Proof of Theorem 3: By Lemma 4 we have that with
probability at least — 4 /2 we have the following.

VAe C(H) YT € T(H)

(4] + [T 1n2 + In(2/6)
2[Sal

ea(T) < ea(T) + ¢ (@)

By Corollary 8 we have that with probability at ledst- 6 /2
we have the following.

VA e C(H)
2(JA]In 241In(2/§
. . [Sal
pa—Pa < pa Q)

2(|A|In 24+1In(2/46
+2Al T
By the union bound, with probability at leakt— § both of
these conditions hold simultaneously. Legtbe the proba-
bility of reaching nodes andyp, be|S,|/|S|. Letq, be the
error probability at node, i.e. ¢4, (T, ), andg, beéa, (Ty).
We now rewrite the error bound as follows.

(-1 = 3 )= Y. bl
’UEL(R) ’UEL(R)
= Z [(pv—ﬁv)qv +ﬁv(Qv_(jv)]
veEL(R)
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The desired result now follows by bounding the first term in
the sum with formula (3) and the second formula in the sum
with formula (2). This gives the following.

2(JAy|In 24In(2/4

|SU|

~ v |1n n 1
WEEGESY + 2l A2/
vEL(R)

Y \/(|AU [+17 |) In 2+41n(1/8)+1n 2

2|SU|

Sinceq, < 1, and using/z +y < / + ,/y, we get the
following.

In 2)|Ty |

2|SU|

|AU|
|SU|

+ {\/er n 2)/2}

|AU|
|SU|

+[21n 2]

In(2/6)
2T

In(2/5)

+ {1 + (mz)/z} 24

This implies the theorem. |

5 Computing the optimal bound

Theorem 3 gives a bound which is a function of the best root
fragment that can be found. In this section we show how,
given atre¢” and a samplé, one can compute the best root
fragmentR in an efficient way. The basic idea behind the
algorithm is to use the compositional property of the bound
we derive.

The main observation is that given a tfEethe best root
fragmentR is either the best root fragment of the right sub-
tree combined with the best root fragment of the left subtree
or simply includes only the root. This observation will give
us a simple bottom-up procedure to compute the optimal root
fragment.

We define a procedureompute_R(7y, S, |A,[,d) that
computes the best root segment of a subffgeWe define
a simple procedureval(7,, Sy, |A,|, d) that evaluates the
penalty of terminating the root fragment at the root/bés
follows.

In 2)|7T|
375
_ d d
eval(T,5,d,0) = | +2(\/i4+ &)
In2/§
)

We now definecompute R(T, S, d, §) with the follow-
ing equations.

In2/§

+2 51

_|_

compute R(1,5,d,§) = eval(l,S,d,d)
compute R(0,5,d,§) = eval(0,S,d,J)



compute R(IF(B,T;,T;),S,d,0)

6 Conclusions

We have derive a new bound on the error rate for decision

eval(IF(B,7;,T.),5,d,9d),

trees. The bounds depends both on the structure of the tree

and the specific sample (and not only on the size of the sam-

= min %compute_R(Tl,SB,d—i— |B| +2,9)

—|—|S|§]|3| compute R(7,,S.p,d+ |B|+2,9)

Assuming that each predicatellihcan be evaluated on a
given instance in unit time, a direct implementation of thes
equations as a recursive procedure runs in time propoftiona [AB99]
to the sum over all nodes of the number of instances in the
sample reaching that node.

[Fre98]
Theorem 9 For any subtree T, of T' we have
compute R(7y, Sy, |Ay], ) = H}%iﬂf(v, R) [GBLM97]
where R ranges over root fragments of T, and f(v, R) is
defined as follows.
[KM98]
(In 2)| T |
2| Sl
Sl Al | Al
fo, By =3 2\ s T T
werir 15! ( ) [LB99]
In(2/5) |, In(2/%)
+2 ( ERERERET )
Proof: Let root(7,) denote the root fragment &f, [McA98]
containing only. For the root fragment we have the follow-
ing.
J [Vap82]
f(v, root(Ty)) = eval(Ty, Sy, |Av], 9) 4)
Let {1, R} be any root fragment of,, consisting of the  [vap9g]

root plus non-empty left and right subtreBs and R,.. For
root fragments of this form we have the following.

S s,
f(va {RlaRr}) = ||Sl|| ||S ||

f(la Rl) + f(ra Rr) (5)
Given equations 4 and 5 the proof is straightforward induc-
tion on the size of, . If v is a leaf ofT" then the only choice
for R is the root fragment containing ontyand the result
follows from equation 4. Now assunfg is 1F(B, T;, T;)
wherel andr denote the left and right children efrespec-
tively and where the result holds f@§ and7,.. Equation 5
and the induction hypothesis implies that the minimum over
all trees of the forr{ ;, R, } of f(T,,, { R, R.}) equals the
second argument of thain expression in the definition of
compute_R. Equation 4 implies that the first argument of
the min expression handles the possibility that the minimum
is just the root fragment, and the result follows. a

The above theorem immediately implies the following
wheref is defined as in section 3.

compute R(T, S, 1, §) = H}%inf(T, S, R, )

The algorithm for computingompute_R can easily be con-
verted to an algorithm for computing the optimal subtiee
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ple). This bound is tighter than traditional bounds for un-
balanced trees and justifies “compositional” algorithms fo
constructing decision trees.
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