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Abstract

We consider on-line density estimation with a Gaus-
sian of unit variance. In each trialt the learner
predicts a mean�

t

. Then it receives an instance
x

t

chosen by the adversary and incurs loss1

2

(�

t

�

x

t

)

2. The performance of the learner is measured
by the regret defined as the total loss of the learner
minus the total loss of the best mean parameter
chosen off-line. We assume that the horizonT
of the protocol is fixed and known to both par-
ties. We give the optimal strategies for both the
learner and the adversary. The value of the game
is 1

2

X

2

(ln T � ln lnT +O(ln lnT= lnT )), where
X is an upper bound of the 2-norm of instances.
We also consider the standard algorithm that pre-
dicts with�

t

=

P

t�1

q=1

x

q

=(t � 1 + a) for a fixed
a. We show that the regret of this algorithm is
1

2

X

2

(lnT �O(1)) regardless of the choice ofa.
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1 Introduction

Consider the following simple repeated game based on Gaus-
sian density estimation. The learner plays against an adver-
sary. In each trialt the learner produces a mean�

t

. Then
the adversary provides an instance vectorx

t

and the loss of
the learner is1

2

(�

t

� x

t

)

2 (in other words we assume unit
variance). Assume thehorizon of the game (number of tri-
als) is fixed toT andT is known to both parties. Consider
the followingregret or relative loss

1

2

T

X

t=1

(�

t

� x

t

)

2

� inf

�

B

1

2

T

X

t=1

(�

B

� x

t

)

2

:

This is the total on-line loss of the learner minus the total
loss of the best mean parameter chosen off-line based on all
T instances. The goal of the learner is to minimize the regret
while the goal of the adversary is to maximize it.

For the analogous problem of density estimation over a
discrete domain w.r.t. log loss, Shtarkov gave the minimax
strategy and an implicit form of the value of the game called
the minimax regret [8]. Freund [3] gives an explicit for-
mula for the minimax regret for Bernoulli density estima-
tion: (1=2) ln(T +1)+ ln(�=2)�O(1=

p

T ). The minimax
strategy has also been computed for the universal portfolio
problem [5]. In this case the strategy is not efficiently com-
putable, but the minimax regret for the universal portfolio
problem is the same as the minimax regret for Bernoulli den-
sity estimation. Our work on the minimax regret is different
from a large body of work that has its roots in the Minimum
Description Length community [6, 7, 12, 9, 10, 13]. In short
we require the learner to choose its on-line parameters from
the same model class from which the best off-line parameter
is chosen. We will discuss the differences in Section 3.

In this paper we give the minimax strategy for Gaussian
density estimation for both the learner and the adversary.
These strategies are simple and efficient. At trial1 � t � T

the learner should intuitively choose the average of the past
t� 1 instances as its mean. However the optimal strategy of
the learner is to choose�

t

= 


t

P

t�1

q=1

x

q

where

t

is slightly
smaller than1=t: 


t

= 1=(t+lnT � ln(t+O(ln T ))). (Note
that


t

depends on the horizon.) We give a simple recurrence
for the optimal shrinkage factor


t

. If the learner plays op-
timally then the regret is1

2

P

T

t=1




t

x

2

t

. To get the minimax
regret we need to restrict the adversary to choose instances of
2-norm bounded above by some constantX (Otherwise the
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adversary can make the regret unbounded in just one trial).
Now the minimax regret of horizonT is

X

2

2

T

X

t=1




t

=

1

2

X

2

(ln T � ln lnT +O(ln lnT= lnT )): (1)

The� ln lnT term is surprising because many on-line games
were shown to haveO(ln T ) upper bounds for the minimax
regret [2, 5, 3, 11, 1, 13, 14].

There are some intriguing properties of the optimal strate-
gies of both parties. First, the learner does not need to know
the upper boundX on the 2-norm of the instances. Sec-
ond, the strategies we give for both players are still opti-
mal even when the opponent plays non-optimally in the past.
Third, the adversary can restrict its choice of instances to two
points: plus or minusX times a unit vector. Even with this
restricted choice of the instances the adversary can force a
regret at least as large as the game value. In other words the
algorithm cannot take advantage of the restricted choice of
the adversary.

Perhaps the most natural algorithm for Gaussian density
estimation is to start with an initial instancex

0

and predict

with �

t

=

ax

0

+

P

t�1

q=1

x

q

a+t�1

. Herea � 0 is the multiplicity of
the initial instance. The initial instance is chosen to be zero
for Gaussian density estimation. This prediction algorithm
is the forward algorithm of [1]. The same algorithm was
investigated in parallel work by Gordon [4]. The forward al-
gorithm was inspired by a similar related algorithm of Vovk
for linear regression [11].

We show that the regret of the forward algorithm is larger
than 1

2

X

2

(lnT � O(1)) regardless of the choice ofa. This
holds even if the constanta is allowed to depend on the hori-
zonT . On the other hand, for the fixed choice ofa = 1 the
forward algorithm works without knowingT and the regret
is at most1

2

X

2

(1 + lnT ) [1]. So, for the forward algorithm
there is no significant gap between the cases when the hori-
zon is known or unknown to the learner.

We conjecture that if the horizon is not known then an
adversary can always force any learner to have regret at least
1

2

X

2

(lnT � O(1)). All lower bound techniques that we
know of [13, 11] are of the form1

2

X

2

lnT (1 � o(1)).
Thus these lower bounds do not lie above the value of the
game given in (1), which can be expressed as
1

2

X

2

lnT (1�O(ln lnT= lnT )). This means that the known
techniques are not strong enough to bring out the difference
between the cases when the horizon is known or unknown.

Besides resolving the above conjecture this work raises a
number of open problems. Are there other cases where the
minimax strategies are simple and efficient? In particular, we
don’t know the minimax strategy for linear regression and for
Gaussian density estimation with an arbitrary variance.

2 On-line density estimation with a Gaussian

We first give a formal framework of the on-line density es-
timation problem with Gaussian densities. For a vectorx,
x

0 denotes the transposition ofx andx2 is shorthand for the
realx0x. An n dimensional GaussianN(�;�) has density
function

1

(2�)

n=2

j�j

1=2

exp

�

�

1

2

(x� �)

0

�

�1

(x� �)

�

:

In this paper we assume that the variance-covariance matrix
� is fixed and known. In this case we can construct from� a
linear transformationA that maps an instancex to z = Ax

so thatz is subject to the GaussianN(�; I), where� = A�

andI is the unit matrix. So without loss of generality we can
assume that the parameter space consists of mean vectors.
Namely a mean� represents the density function

p(xj�) =

1

(2�)

n=2

exp

�

�

1

2

(x� �)

2

�

:

For � and an instancex we define the loss as the negative
log-likelihood� ln p(xj�) =

1

2

(x � �)

2

+ 
, where
 is a
constant independent ofx and�. Since the constant term
does not matter in our analysis, we define the loss forx and
� simply as 1

2

(x � �)

2. We restrict the instance spaceX
to the set of vectors with 2-norm at mostX for some real
X > 0. That is, we letX = fx 2 R

n

j kxk � Xg, where
kxk =

p

x

2 denotes the 2-norm ofx.
An on-line algorithm called the learner is a function^� :

X

�

! R

n that is used to choose a parameter based on the
past instance sequence. The protocol proceeds in trials. In
each trialt = 1; 2; : : : ; T the learner chooses a parameter
�

t

=

^

�(x

t�1

), wherext�1 = (x

1

; : : : ;x

t�1

) is the in-
stance sequence observed so far. Then the learner receives
an instancex

t

2 X and suffers loss1
2

(�

t

� x

t

)

2. The total

loss of the learner is1
2

P

T

t=1

(�

t

� x

t

)

2. Let �
B

be the best
parameter in hindsight (off-line setting). Namely,

�

B

= arg inf

�

1

2

T

X

t=1

(� � x

t

)

2

=

x

1::T

T

;

wherex
r::s

is shorthand for
P

s

q=r

x

q

. We measure the per-

formance of the learner^� for a particular instance sequence
x

T by theregret, or therelative loss, defined as

R

T

(

^

�;x

T

) =

1

2

T

X

t=1

(�

t

� x

t

)

2

� inf

�

B

1

2

T

X

t=1

(�

B

� x

t

)

2

:

The goal of the learner is to make the regret as small as pos-
sible. In this paper we are concerned with the worst-case
regret and so we do not make any (probabilistic) assumption
on how the instance sequence is generated. In other words,
the preceding protocol can be viewed as a game between the
learner and the adversary, where the regret is the payoff func-
tion. The learner tries to minimize the regret, while the ad-
versary tries to maximize it.

Assume that the horizon (the number of trialsT ) of the
game is fixed and known to both the learner and the adver-
sary. In this case the game value called theminimax regret is
well-defined and given by

R

T

= inf

^

�

sup

x

T

2X

T

R

T

(

^

�;x

T

):

Alternatively we can define the minimax regret as

R

T

= inf

�

1

sup

x

1

2X

� � � inf

�

T

sup

x

T

2X

 

1

2

T

X

t=1

(�

t

� x

t

)

2

� inf

�

B

1

2

T

X

t=1

(�

B

� x

t

)

2

!

:

The minimax regretR
T

is achieved when both the learner
and the adversary play optimally.
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3 Difference from Rissanen’s stochastic

complexity model

There is a large body of work on proving regret bounds that
has its roots in the Minimum Description Length commu-
nity [7, 12, 9, 10, 13]. In their model, the learner is in-
terpreted as a coding scheme for the set of sequences of
lengthT . The coding scheme is specified by a probabil-
ity mass functionq(xT

). (Note thatq is not necessarily
i.i.d.) In each trialt, the learner (coding scheme)q first pro-
vides the conditionalq(�jxt�1

) based on the past sequence
x

t�1. The conditional defines the coding for the next in-
stance. The learner then observes the instancex

t

and incurs
loss� ln q(x

t

jx

t�1

) which is the code length ofx
t

. Thus,
the total loss

T

X

t=1

� ln q(x

t

jx

t�1

) = � ln q(x

T

)

is the code length of the sequencexT . The regret of the
learnerq forxT relative to a family of probability mass func-
tionsfp(�j�) j � 2 �g is defined as

R

0

T

(q;x

T

) = � ln q(x

T

) + ln p(x

T

j�

B

(x

T

));

where
�

B

(x

T

) = arg inf

�2�

� ln p(x

T

j�)

is the maximum likelihood estimator ofxT in �. That is,
the regretR0

T

(q;x

T

) is the code length ofxT based onq
minus the code length based on the ideal coding scheme for
the parameter space�. So the regret can be thought of as the
redundancy of the coding schemeq for xT relative to�. Let
W

T

be a set of sequences of lengthT . Then the minimax
regret for the setW

T

relative to� is defined as

R

0

T

= inf

q

sup

x

T

2W

T

R

0

T

(q;x

T

):

Let q� be the optimal coding scheme that attains the minimax
regret. Rissanen called the code length� ln q

�

(x

T

) of xT

the stochastic complexity of xT with respect toW
T

and�.
In particular, Rissanen [7] showed under some condition on
� that if W

T

= fx

T

j �

B

(x

T

) 2 Kg for some compact
subsetK � �, then

R

0

T

=

n

2

ln

T

2�

+ ln

Z

K

p

jI(�)j d� + o(1); (2)

where� � R

n is of dimensionn and

I(�) = (E

�

(��

2

ln p(�j�)=��

i

��

j

))

i;j

denotes the Fisher information matrix of�. In the case of
Gaussian density with unit variance, the parameter space�

isRn and the Fisher information matrix is the unit matrix.
The minimax regret defined above is different from ours

in the following two points.

1. The coding schemeq is arbitrary. In particularq does
not need to be in the model classfp(�j�) j � 2 �g. The
model class is used just as the reference set to measure
the performance of the learner. On the other hand, in
our setting we require the predictions of the learner to
be “proper” in the sense that they must lie in the same

underlying model class that is used to define the loss of
the best off-line parameter. That is, for Gaussian den-
sity estimation, the predictions of the learner must be
Gaussian as well.

2. The individual instancesx
t

does not need to be bounded.
For Gaussian density estimation, a natural choice would
beK = X = fx j kxk � Xg. In this case, the con-
dition xT

2 W

T

meansx
1::T

=T 2 X , which is much
weaker than the condition thatx

t

2 X for all t that we
use.

In comparison with the setting in this paper, it is obvious
that difference 1 gives more choices to the learner while dif-
ference 2 gives more choices to the adversary. In fact, for
Gaussian density estimation,R0

T

is incomparable withR
T

.
More precisely, for Gaussian density estimation, the mini-
max regret of (2) withK = fx j kxk � Xg is

R

0

T

=

n

2

ln

T

2�

+ ln(volume of the ball of radiusX) + o(1):

=

n

2

(1 + lnT ) + n lnX �

n+ 1

2

lnn�

1

2

ln� + o(1):

The second term of the first equality comes from the fact
that Fisher information matrix is the unit matrix. The second
equality is derived from the fact that the volume of the ball
of radiusX is Xn

�

n=2

=�(n=2 + 1). On the other hand, we
will show that the minimax regret in our setting is

R

T

=

1

2

X

2

(ln T � ln lnT ) + o(1):

It is interesting to see thatR0

T

depends on the dimensionn
while R

T

does not. Moreover, inR 0

T

the boundX of the
instance space appears in a term independent ofT while in
R

T

it appears in the leading term.

4 Minimax regret for Gaussian density

estimation

We first define a sequence of shrinkage factors that will be
used to define the optimal predictions of the learner.

Definition 1 Let f

t

g

t=0;:::;T

be the sequence recursively de-
fined as




T

= 1=T;




t�1

= 


t

+ 


2

t

(1 � t � T ):

Suppose in trialt that, based on the past sequencex

t�1, the
learner chooses a parameter�

t

=

^

�(x

t�1

). Now we rep-
resent the parameter by�

t

= �

t

� 


t

x

1::t�1

and in what
follows we sometimes use�

t

to denote the choice of the
learner. (Recall thatx

1::t�1

is shorthand for
P

t�1

q=1

x

q

.) The
vector�

t

is the offset from

t

x

1::t�1

and the latter will be
shown to be the optimal choice of the learner.
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Lemma 1 For any learner ^� and any instance sequencexT

2

(R

n

)

T ,

R

T

(

^

�;x

T

) =

1

2

T

X

t=1




t

x

2

t

+

T

X

t=1

(


t

x

1::t�1

� x

t

)

0

�

t

+

1

2

T

X

t=1

�

2

t

: (3)

Proof. For a Gaussian the best parameter is�

B

= x

1::T

=T .
So by definition the regret is

R

T

(

^

�;x

T

) =

1

2

T

X

t=1

(x

t

� �

t

)

2

�

1

2

T

X

t=1

(x

t

� x

1::T

=T )

2

=

1

2

T

X

t=1

�

2

t

�

T

X

t=1

x

0

t

�

t

+

(x

1::T

)

2

2T

:

Plugging�
t

= 


t

x

1::t�1

+ �

t

into the above formula, we
have

R

T

(

^

�;x

T

)

=

1

2

T

X

t=1

(


t

x

1::t�1

+�

t

)

2

�

T

X

t=1

x

0

t

(


t

x

1::t�1

+�

t

) +

1

2




T

(x

1::T

)

2

=

1

2

T

X

t=1




2

t

(x

1::t�1

)

2

+

1

2

T

X

t=1

�

2

t

+

T

X

t=1




t

x

0

1::t�1

�

t

�

T

X

t=1

x

0

t

(


t

x

1::t�1

+�

t

) +

1

2




T

(x

1::T

)

2

: (4)

Since

t�1

= 


t

+ 


2

t

the first sum is
T

X

t=1




2

t

(x

1::t�1

)

2

=

T

X

t=1

(


t�1

� 


t

)(x

1::t�1

)

2

=

T

X

t=1

�




t�1

(x

1::t�1

)

2

� 


t

(x

1::t

)

2

+


t

(x

1::t

)

2

� 


t

(x

1::t�1

)

2

�

= �


T

(x

1::T

)

2

+

T

X

t=1




t

�

2x

0

t

x

1::t�1

+ x

2

t

�

:

Plugging this into (4) we have the lemma. 2

Note that in the lemma we do not need to bound the instance
space.

Now we show that�
t

= 0 (i.e., �
t

= 


t

x

1::t�1

) gives
the optimal choice of the learner. The next theorem follows
immediately from Lemma 1.

Theorem 1 Let ^� be the learner that chooses �
t

= 0 for all
t. Then for any instance sequence xT

2 X

T ,

R

T

(

^

�;x

T

) =

1

2

T

X

t=1




t

x

2

t

�

1

2




1::T

X

2

:

It is interesting to see that the first equality in the above
theorem holds even when the instance space is unbounded.
Moreover we can see that whenever all instances are of the
same norm (i.e.,kx

t

k = X) the regret is1
2




1::T

X

2.
Next we give a strategy for the adversary that chooses

instances: For each trialt if the learner chooses�
t

, then the
adversary chooses

x

t

= �X�

t

=k�

t

k: (5)

Here we use a convention that0=k0k denotes the unit vector
(1; 0; : : : ; 0). Note thatx2

t

= X

2. We will use the following
lemma.

Lemma 2 For any 1 � t � T and any instance sequence
x

t�1

2 X

t�1, k

t

x

1::t�1

k < X:

Proof. An easy induction shows that

t

� 1=t. By the
triangular inequality we have

k


t

x

1::t�1

k � 


t

t�1

X

q=1

kx

q

k � (t� 1)X=t < X:

2

Theorem 2 Let ^� be any learner. Let xT be the sequence in
which each instance is given by (5). Then,

R

T

(

^

�;x

T

) �

1

2




1::T

X

2

+

1

2

T

X

t=1

�

2

t

:

Proof. Lemma 1 withx
t

= �X�

t

=k�

t

k gives

R

T

(

^

�;x

T

) =

1

2




1::T

X

2

+

T

X

t=1

(


t

x

1::t�1

�

t

+Xk�

t

k)

+

1

2

T

X

t=1

�

2

t

:

Using Lemma 2 we have




t

x

1::t�1

�

t

� �k


t

x

1::t�1

kk�

t

k � �Xk�

t

k:

This completes the theorem. 2

Surprisingly the adversary can restrict its choice of in-
stances to two pointsX = f�Xe; Xeg, wheree is an arbi-
trary unit vector, say,e = (1; 0; : : : ; 0). Even with this re-
stricted choice of the instances, we claim that the adversary
can force a regret at least as large as the game value. Now
the adversary choosesx

t

= �X(e

0

�

t

)e=je

0

�

t

j. Namely,

x

t

=

�

�Xe if e0�
t

� 0,
Xe if e0�

t

< 0.

For this choice, it is not hard to see that the summand in the
second term of (3) is still positive:




t

x

0

1::t�1

�

t

� x

0

t

�

t

� �k


t

x

1::t�1

kje

0

�

t

j+X je

0

�

t

j

> 0:

So the claim holds.
By Theorem 1 and Theorem 2 we can conclude that the

optimal strategy of the learner is to choose�
t

= 


t

x

1::t�1

and the minimax regret is1
2




1::T

X

2. It is surprising that the
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optimal choice of the learner does not depend onX . This
implies that the learner does not need to know the bound of
the instance space. Unfortunately the coefficients


t

(see the
recurrence of Definition 1) depend on the horizonT and do
not have a closed form. However we can show tight bounds
for 


t

and

1::T

.

Lemma 3 For any 1 � t � T

1

t+ ln(T + 1)� ln(t+ 1)

� 


t

�

1

t+ ln(T + 1)� ln(t+ 2 + ln(T + 1))

and




1::T

= lnT � ln lnT +O

�

ln lnT

lnT

�

:

We will give a proof in the appendix. We summarize the
results of this section in the next corollary.

Corollary 1 For Gaussian density estimation the minimax
regret is

R

T

= inf

^

�

sup

x

T

R

T

(

^

�;x

T

) =

1

2




1::T

X

2

=

1

2

X

2

�

lnT � ln lnT +O

�

ln lnT

lnT

��

and the infimum is attained by the learner ^

� given by

^

�(x

t�1

) = 


t

x

1::t�1

:

5 Optimal play against non-optimal player

We showed that the learner’s strategy�

t

= 


t

x

1::t�1

is op-
timal in the sense that it gives the minimum regret assuming
that the adversary plays optimally. However this might not
be true when the adversary plays non-optimally. Surpris-
ingly we can show that�

t

= 


t

x

1::t�1

is still optimal even if
the adversary plays non-optimally. Similarly the adversary’s
choicex

t

= �X�

t

=k�

t

k turns out to be optimal even if
the learner plays non-optimally.

To be more precise we extend the notion of regret in the
situation where initial choices of the both players are given.
Let ht�1 = (�

1

;x

1

; : : : ;�

t�1

;x

t�1

) be any history of play
up to trial t � 1. Note that the choices in the history are
not necessarily optimal. Now we define the minimax regret
givenht�1 as

R

T

j

h

t�1
= inf

�

t

sup

x

t

2X

inf

�

t+1

sup

x

t+1

2X

� � � inf

�

T

sup

x

T

2X

 

1

2

T

X

q=1

(x

q

� �

q

)

2

�

1

2

T

X

q=1

(x

q

� x

1::T

=T )

2

!

:

Similarly for historyht�1Æ�
t

, i.e., ht�1 followed by some
�

t

, we define the minimax regret givenht�1Æ�
t

as

R

T

j

h

t�1

Æ�

t

= sup

x

t

2X

inf

�

t+1

sup

x

t+1

2X

� � � inf

�

T

sup

x

T

2X

 

1

2

T

X

q=1

(x

q

� �

q

)

2

�

1

2

T

X

q=1

(x

q

� x

1::T

=T )

2

!

:

Clearly, for the empty historyh = �, R
T

j

h

gives the mini-
max regret which was shown to beR

T

=

1

2




1::T

X

2 in Corol-
lary 1.

The arguments of the previous section combined with an
easy induction can be used to show the next theorem.

Theorem 3 Let ht�1 = (�

1

;x

1

; : : :�

t�1

;x

t�1

) be any his-
tory of play. Then

R

T

j

h

t�1
= inf

�

t

R

T

j

h

t�1

Æ�

t

=

1

2

t�1

X

q=1




q

x

2

q

+

t�1

X

q=1

(


q

x

1::q�1

� x

q

)

0

�

q

+

1

2

t�1

X

q=1

�

2

q

+

1

2




t::T

X

2

and the infimum over �
t

is attained at 

t

x

1::t�1

. Moreover
for any �

t

R

T

j

h

t�1

Æ�

t

= sup

x

t

2X

R

T

j

h

t�1

Æ�

t

Æx

t

� R

T

j

h

t�1
+�

2

t

and the supremum over x
t

is attained at �X�

t

=k�

t

k.

6 A Lower bound for the forward algorithm

By Lemma 3 the optimal shrinkage factor

t

is roughly1=(t+
lnT � ln t). A good approximation to


t

might be to use
shrinkage factors of the form1=(t�1+a), for some universal
constanta � 0. This learner is called theforward algorithm.
The constanta parameterizes a prior [1, 4]. In particular,
Azoury and Warmuth [1] showed that the forward algorithm
with a = 1 has the worst case regret of1

2

X

2

(1 + lnT ).
More precisely the forward algorithm is the Bayes-optimal

algorithm that minimizes the expected regret under the fol-
lowing probabilistic setup: The adversary first choosesp 2

[0; 1℄ according to(a=2; a=2)-beta prior and then in each trial
generatesx

t

= X with probabilityp andx
t

= �X with 1�

p. (Heren = 1.) In this probabilistic setup the expected re-
gret of the forward algorithm is shown to be a

2(a+1)

X

2

lnT+

O(1) [11]. Whena is large then the optimal algorithm has
expected regret at least1��

2

X

2

lnT . Thus this probabilis-
tic argument [11] gives a lower bound of1��

2

X

2

lnT for
the (worst-case) regret of any algorithm. Note that this lower
bound lies below the minimax regret of1

2

X

2

(lnT�ln lnT+

o(1)) proven in this paper.
In this section we show that a particular adversary can

force the forward algorithm to have regret at least1

2

X

2

(ln T�

O(1)). The sequence produced by the adversary is decid-
edly not i.i.d. For the sake of simplicity we assumeX =

1, n = 1 and we shifta by one. Thus the forward algo-
rithm predicts with�

t

= x

1::t�1

=(t + a). In other words,
�

t

= (1=(t + a) � 


t

)x

1::t�1

. In the appendix we show
that 


t

is of the form1=(t + d

t

) whered
t

is a monotoni-
cally decreasing sequence ending withd

T

= 0. So there
exists at

0

2 f0; : : : ; Tg such that for1 � t � t

0

, �
t

has
the same sign asx

1::t�1

, and fort
0

+ 1 � t � T , �
t

has
the opposite sign asx

1::t�1

. So the adversary’s strategy of
Theorem 3 chooses the instancex

t

= �sgn(x

1::t�1

), for
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1 � t � t

0

, andx
t

= sgn(x

1::t�1

), for t
0

+ 1 � t �

T . This strategy produces the following instance sequence:
x

T

= (1;�1; 1;�1; : : : ; 1;�1; 1; 1; : : : ; 1). Namely,

x

t

=

�

1 if (1 � t � t

0

andt is odd) or(t � t

0

+ 1),
�1 if (1 � t � t

0

andt is even).
(6)

Note that this would not be the optimal choice for an adver-
sary playing against the forward algorithm because the for-
ward algorithm plays non-optimally in the future. However
the adversary given in Theorem 3 assumes that the learner
plays optimally in the future. We will show that the above
sequence with an appropriate choice oft

0

makes the regret
large enough for obtaining the lower bound.

Theorem 4 Let ^

� be the forward algorithm that predicts

with ^

�(x

t�1

) = x

1::t�1

=(t + a) for a fixed a 2 R. Then
there exists a t

0

2 f0; : : : ; Tg such that the instance se-
quence xT defined in (6) gives

R

T

(

^

�;x

T

) �

1

2

lnT � 
� o(1);

where 
 � 0:55.

Proof. By the definition of the instance sequence, it is obvi-
ous that

�

t

=

8

<

:

0 if 1 � t � t

0

andt is odd,
1

t+a

if 1 � t � t

0

andt is even,
t�t

0

�1

t+a

if t � t

0

+ 1.

It is straightforward to show that the regret becomes

R

T

(

^

�;x

T

) =

1

2

T

X

t=1

(�

t

� x

t

)

2

�

1

2

T

X

t=1

�

x

t

�

x

1::T

T

�

2

=

1

2

X

1�t�t

0

t:even

�

1

(t+ a)

2

+

2

t+ a

�

+

1

2

(t

0

+ a+ 1)

2

T

X

t=t

0

+1

1

(t+ a)

2

�

t

0

2

+

t

2

0

2T

:

The first sum is lower-bounded by

1

2

X

1�q�t

0

=2

�

1

(2q + a)

2

+

2

2q + a

�

�

1

2

Z

t

0

=2+1

1

�

1

(2x+ a)

2

+

2

2x+ a

�

dx

=

1

4(a+ 2)

�

1

4(t

0

+ a+ 2)

+

1

2

ln(t

0

+ a+ 2)�

1

2

ln(a+ 2)

and similarly the second sum by

1

2

(t

0

+ a+ 1)

2

�

1

t

0

+ a+ 1

�

1

T + a+ 1

�

=

t

0

+ a+ 1

2

�

(t

0

+ a+ 1)

2

2(T + a+ 1)

:

So the regret is lower-bounded by

R

T

(

^

�;x

T

) �

1

4(a+ 2)

�

1

4(t

0

+ a+ 2)

+

1

2

ln(t

0

+ a+ 2)�

1

2

ln(a+ 2)

+

a+ 1

2

�

(t

0

+ a+ 1)

2

2(T + a+ 1)

+

t

2

0

2T

: (7)

Pluggingt
0

= 0 andt
0

= T into the above formula, we have

R

T

(

^

�;x

T

) �

a+ 1

2

�

(a+ 1)

2

2(T + a+ 1)

and

R

T

(

^

�;x

T

) �

1

2

ln(T + a+ 2)�

1

2

ln(a+ 2)

+

1

4(a+ 2)

�

1

4(T + a+ 2)

;

respectively. From these we can show that ifa � lnT or
a � 1:45 thenR

T

(

^

�;x

T

) �

1

2

lnT � 
 � o(1). So in the
following we assume1:45 � a � lnT . In this case we
chooset

0

= T=(2a+ 1). Then (7) becomes

R

T

(

^

�;x

T

) �

1

2

lnT �

1

2

ln(2a+ 1) +

1

4(a+ 2)

�

1

2

ln(a+ 2) +

a+ 1

2

�

2a

2a+ 1

�

2

� o(1):

The r.h.s. of the above formula is monotonically increasing
in a whena � 1 and so is minimized ata = 1:45. A simple
calculation shows thatR

T

(

^

�;x

T

) �

1

2

lnT � 
� o(1). 2
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A Proof of Lemma 3

We want to estimate

t

and

1::T

=

P

T

t=1




t

, where the se-
quencef


t

g is defined by the recurrence




t�1

= 


t

(1 + 


t

) (8)

for 1 � t � T and

T

= 1=T . Taking logarithm for both
sides of (8) we have

ln 


t�1

� ln 


t

= ln(1 + 


t

):

Since the inequalitiesx � x

2

=2 � ln(1 + x) � x hold for
anyx � 0,




t

� 


2

t

=2 � ln 


t�1

� ln 


t

� 


t

:

By (8) we can replace
2
t

by 

t�1

� 


t

and get




t

� (


t�1

� 


t

)=2 � ln 


t�1

� ln 


t

� 


t

:

Summing the above inequalities fort over f1; : : : ; Tg we
have




1::T

� (


0

� 


T

)=2 � ln 


0

� ln 


T

� 


1::T

:

Since

T

= 1=T we get both upper and lower bounds for



1::T

:

lnT + ln 


0

� 


1::T

� lnT + ln 


0

+ (


0

� 1=T )=2: (9)

We need to estimate

0

as a function ofT to express the
bound in a closed form. Now we define another sequence
fd

t

g so that




t

=

1

t+ d

t

holds for anyt. Plugging the above equality into (8) we have
a recurrence with respect tofd

t

g:

d

t�1

= d

t

+

1

d

t

+ t+ 1

: (10)

Note thatd
T

= 0 and

0

= 1=d

0

. It is clear from (10) that

d

t�1

� d

t

+

1

t+ 1

�

1

t+ 1

+

1

t+ 2

+ � � �+

1

T + 1

:

The r.h.s. is a harmonic sum and so we have

d

t

� ln(T + 1)� ln(t+ 1): (11)

This gives a lower bound of

t

:




t

=

1

t+ d

t

�

1

t+ ln(T + 1)� ln(t+ 1)

: (12)

Similarly, plugging (11) into the second term of (10) we have

d

t�1

� d

t

+

1

t+ 1 + ln(T + 1)� ln(t+ 1)

� d

t

+

1

t+ 1 + ln(T + 1)

and so

d

t

� ln(T + 2 + ln(T + 1))� ln(t+ 2 + ln(T + 1))

� ln(T + 1)� ln(t+ 2 + ln(T + 1));

which gives an upper bound of

t

:




t

�

1

t+ ln(T + 1)� ln(t+ 2 + ln(T + 1))

: (13)

From (12) and (13) it follows that

1

ln(T + 1)

� 


0

�

1

ln(T + 1)� ln(2 + ln(T + 1))

:

Plugging this into (9) we can easily get




1::T

= lnT � ln lnT +O

�

ln lnT

lnT

�

:


