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Abstract

We study the problem of clustering discrete
probability distributions with respect to the
Kullback-Leibler (KL) divergence. This prob-
lem arises naturally in many applications. Our
goal is to pick k distributions as “representa-
tives” such that the average or maximum KL-
divergence between an input distribution and
the closest representative distribution is min-
imized. Unfortunately, no polynomial-time
algorithms with worst-case performance guar-
antees are known for either of these problems.

The analogous problems for l1, l2 and l22 (i.e.,
k-center, k-median and k-means) have been ex-
tensively studied and efficient algorithms with
good approximation guarantees are known. How-
ever, these algorithms rely crucially on the
(geo-)metric properties of these metrics and
do not apply to KL-divergence. In this paper,
our contribution is to find a “relaxed” metric-
structure for KL-divergence. In doing so, we
provide the first polynomial-time algorithm for
clustering using KL-divergences with provable
guarantees for general inputs.

1 Introduction
In this paper, we consider the problem of clustering dis-
crete probability distributions with respect to the Kullback-
Liebler (KL) divergence where, the KL-divergence from
p = (p1, . . . , pd) to distribution q = (q1, . . . , qd) is de-
fined as

KL(p, q) =
∑
i∈[d]

pi ln
pi

qi
.

Specifically, we consider two problems that take n distri-
butions p1, . . . , pn on [d] as input. In MTCKL (minimum
total cost), the goal is to find distributions c1, . . . , ck such
that the total KL-divergence from each pj to its closest
ci, i.e., ∑

j∈[n]

min
i∈[k]

KL(pj , ci)

is minimized. In MMCKL (minimum maximum cost),
the goal is to find distributions c1, . . . , ck such that the
maximum KL-divergence from each pj to its closest ci,

max
j∈[n]

min
i∈[k]

KL(pj , ci)

is minimized. It turns out that polynomial time algo-
rithms do not exist for either of these problems unless
P = NP . Therefore, we are interested in α-approximation
algorithms, i.e., algorithms that find c̃1, . . . , c̃k satisfying
the guarantee that∑

j∈[n] mini∈[k] KL(pj , c̃i)

minc1,...,cn

∑
j∈[n] mini∈[k] KL(pj , ci)

≤ α

for some α ≥ 1. The smaller the value of α, the better
the approximation.

Both problems have been studied extensively when
the input is a set of arbitrary points (not necessarily dis-
tributions), and instead of KL, the measure of distance
between two points is either a metric (`1 or `2 or an ar-
bitrary metric), with symmetry and the triangle inequal-
ity, or a measure such as `22. The problems are usually
referred to as k-median if the measure is a metric or
k-means if the measure is `22. However, previous algo-
rithms for these problems typically rely crucially on the
(geo-)metric properties of these distances, which do not
hold for the KL-divergence. For example, KL is not
symmetric and does not satisfy the triangle inequality.

In the remainder of the introduction, we motivate the
need to cluster distributions and the reason why KL is
a natural measure in this context. We then review the
related work and summarize our contributions.

Why cluster distributions? A natural application of
distributional clustering is in clustering words for doc-
ument classification by topic [4]. In document classi-
fication, we are given a training set of documents (or
collections of words) whose labels indicate the topic they
represent, and the goal is to classify other similar docu-
ments according to topic. A natural approach is to look
at the words in a document as features that are some-
how correlated with the document labels; each word is
viewed as a frequency distribution over labels, and given
a new document containing a set of words, the distribu-
tions corresponding to the words in it are used to find



the most-likely label for the new document. However,
such data is typically very sparse, because each specific
word occurs a few times in the document corpora. So
a common approach is to cluster together similar word
distributions, for more robust inference algorithms.

Other applications of distributional clustering include
clustering words according to context for language mod-
eling [24], information bottleneck techniques [27, 24,
25], and clustering users according to their preference
for movies in collaborative filtering.

Why KL-divergence? KL-divergence arises as a nat-
ural measure of the dissimilarity between two distribu-
tions in numerous ways. We direct the interested reader
to Pereira et al. [24] for a wider discussion on the moti-
vations. In what follows, we describe the motivation in
terms of compressibility.

Given an alphabet Σ of size d where the i-th symbol
has relative frequency pi, an important question is to
find the binary encoding of the alphabet such the average
number of bits required for an encoded symbol is mini-
mized. This classic problem in information theory was
essentially solved by Huffman who presented a simple
encoding scheme that achieved the optimum value of

H(p) = −
∑
i∈[d]

pi lg pi

if all pi were negative powers of two.
We consider an issue that arises when we have two

or more distributions over Σ. Consider the problem of
trying to encode multiple texts with different statistics
such as texts written in different languages or magazine
articles covering different topics. For example, the word
“perforation” may be common in articles from Gibbons
Stamp Monthly Magazine1 whereas “peroxide” may be
more frequent in issues of Hairdressers Journal Inter-
national2. Hence, if the origin of the text is known it
will make sense to tailor the encoding to the statistics
of the the source. However, it is likely to be unfeasible
to have a different scheme for every possible periodical.
Rather, we consider the problem of designing k encoding
schemes and assigning each of n periodicals to one of
the encoding schemes. How should this be done such
that extra cost of using k encoding schemes rather than
n is minimized?

More formally, let pj be distribution over symbols
in the j-th periodical. We wish to design k encoding
schemes E1, . . . , Ek : Σ → {0, 1}∗ along with an as-
signment of distributions to encoding schemes f : [n] →
[k] such that the increase in average encoding length,∑

j∈[n]

∑
i∈[d]

pj
i |Ef(j)(i)|+

∑
j∈[n]

∑
i∈[d]

pj
i lg pj

i

is minimized. Each encoding scheme Ej can be char-
acterized by a distribution qj over [d] that will capture

1http://www.gibbonsstampmonthly.com/
2http://www.hji.co.uk/

the aggregate statistics of the distributions that use Ej .
Hence we may rewrite the quantity to be minimized as

−
∑
j∈[n]

∑
i∈[d]

pj
i lg q

f(j)
i +

∑
j∈[n]

∑
i∈[d]

pj
i lg pj

i

=
∑
j∈[n]

∑
i∈[d]

pj
i lg

pj
i

q
f(j)
i

= (lg e)
∑
j∈[n]

KL(pj , qf(j))

which is exactly the objective function to be minimized
in MTCKL.

1.1 Prior Work on Clustering
There has been a rich body of research on approximation
algorithms for various forms of clustering. We restrict
ourselves to those on hard-clustering, i.e., each input dis-
tributions is “assigned” to only the closest picked center.
Even so, there is a considerable number of incomparable
results in a variety of settings.

The common optimization measures when clustering
points in general metrics are (a) k-median, in which the
goal is to partition the input points into k sets, while min-
imizing the sum of the distances between each point and
the center of the cluster it is assigned to, and (b) k-center,
where the goal is to again partition the input points to
k sets, while minimizing the maximum diameter of a
cluster. When clustering in Euclidean spaces, an addi-
tional optimization measure which is commonly used is
k-means, in which the goal is to partition the input points
into k clusters, while minimizing the sum of the squares
of the Euclidean distances between each point and the
center of the cluster it is assigned to.

General “Metrics”: For metric k-center, the best ap-
proximation algorithm is due to [16], which achieves an
approximation factor of 2 and this is the best possible
in polynomial time unless P = NP . For asymmet-
ric k-center, when the directed triangle inequality holds,
the best known approximation algorithm is due to [23],
which achieves a factor of O(log∗ n), and this is also
optimal in terms of hardness [7]. For metric k-median,
the best known approximation algorithm is due to [2],
which achieves an approximation factor of 3, when the
distances between points are symmetric, and there is a
triangle inequality.

Euclidean Space: When the input points lie in Eu-
clidean space, two versions of the clustering problems
have been studied. In the restricted version, we require
the cluster centers to be input points, while in the unre-
stricted version,we allow the cluster centers to be any
point in the Euclidean space. For more details about
restricted and unrestricted versions of the problems, see
Section 5. Most results for clustering in Euclidean space
deal with the unrestricted version of the problem.

When the input points lie in d-dimensional Euclidean
spaces, Kolliopoulos and Rao [21] showed an algorithm
for k-median which provides a (1 + ε) approximation,
and runs in time

O(2(O(1+ε−1 log ε−1))d−1
n log k log n) .



Har-Peled and Mazumdar [19] gave a (1+ ε) approxima-
tion algorithm which runs in time

O(n + 2O(1+ε−1 log ε−1)d−1
kO(1) logO(1) n) .

A third algorithm was proposed by Badoiu et al. [3] with
a running time of

O(dO(1)n logO(k) n2O(k/ε)) .

For Euclidean k-means, Har-Peled and Mazumdar
[19] provided an (1 + ε) approximation algorithm with
running time

O(n + (ε−1)2d+1kk+2 logk+1 n logk ε−1) .

A second (1 + ε) approximation algorithm is due to
Feldman et al. [15], which achieves a running time of

O(ndk + d(kε−1)O(1) + 2O(kε−1)) .

Kumar et al. [22] provided a simple algorithm based on
sampling for Euclidean k-means which gave a (1 + ε)-
approximation in

O(dn2poly(kε−1))

time. This was improved by Chen [6] to provide an
algorithm which ran in

O(ndk + d2nσ2poly(kε−1))

time, for any σ > 0. Kanungo et al. [20] gives a (9 +
ε)-approximation for k-means in time O(n3/εd). For
Euclidean k-center, Feder and Greene [13] show that it
is NP-Hard to find an approximation-factor better than
1.822 for this problem.

KL-clustering: In this paper we are interested in KL-
clustering on the probability simplex. We first note that
algorithms that cluster distributions with respect to ei-
ther `1 or `22 may give arbitrarily bad solutions for the
KL-divergence. The following example shows this for
MTCKL.

Example 1 Consider the following three distributions:

p = (
1
2
,
1− ε

2
,
ε

2
), q = (

1
2
,
1
2
, 0), r = (

1
2
+ε,

1
2
−ε, 0) .

We consider the costs of all possible partitions of {p, q, r}
into two groups.

Clustering `22-cost `1-cost KL-cost
{p, q}, {r} ε2/4 ε ε/2 + O(ε2)
{p}, {q, r} ε2 2ε O(ε2)
{p, r}, {q} 3ε2/4 2ε ε/2 + O(ε2)

Note that the clustering {{p, q}, {r}}minimizes the `22 or
`1 cost but that this clustering is a factor Ω(1/ε) from op-
timal in terms of MTCKL. Since ε may be made arbitrarily
small, we conclude that clustering the distributions ac-
cording to either `22 or `1 can lead to arbitrarily bad
solutions.

There has been previous work on methods for KL-
clustering [24, 4, 26, 5, 11]. However, none of these
algorithms achieve guaranteed approximations in the
worst case. The most directly relevant paper is a recent
paper by Ackermann et al. [1]. They present a very
nice algorithm that returns a good approximation for
MTCKL on the assumption that all distributions to be
clustered have constant mass on each coordinate, i.e.,
for some constant γ, pj

i ≥ γ for all j ∈ [t], i ∈ [d].
This implies that d ≤ 1/γ is also constant and even
for distributions with constant dimension, rules out any
sparse data where some coordinates will have zero mass.
Sparse data is common in many applications. In contrast,
the algorithms we present are fully general and require
no assumptions on the sparsity or the dimensionality of
the input distributions.

1.2 Our Contributions
Our main contribution in this paper is to provide al-
gorithms for clustering in the KL-divergence measure
which achieve guaranteed approximations in the worst
case. Our specific contributions are the following:

1. Minimizing Average Distortion: We provide the
first guaranteed approximation algorithm for the
problem of minimizing average distortion in the
KL-divergence measure, when the input is a set of
n arbitrary distributions. To show our result, we first
provide constant factor approximation algorithms
for the related divergences, Hellinger and Jensen-
Shannon. These results exploit the fact that these
divergences satisfy a relaxation of the triangle in-
equality and are closely related to the k-means prob-
lem on the sphere. We then show that although the
KL-divergence between two distributions can be in-
finitely larger than the Jensen-Shannon or Hellinger
divergence, one can relate the average clustering dis-
tortion in terms of the Hellinger cost to the average
clustering distortion in terms of the KL-divergence.
This yields an O(log n)-approximation algorithm
for MTCKL.

We note that while a guarantee of O(log n)-factor
from optimality is weaker than we would like, this
does not preclude the possibility that the algorithm
achieves better results in practice. Furthermore, the
clustering found could be used as a preprocessing
step for a improvement heuristic for which there ex-
ist no guarantees. The most important contribution
of a O(log n)-factor approximation is to understand-
ing the structure of the problem.

2. Minimizing Maximum Distortion: We provide the
first guaranteed approximation algorithm for min-
imizing the maximum distortion, when the input
is a set of n arbitrary distributions. To show our
result, we relate the maximum clustering distor-
tion in terms of the KL-divergence to the maxi-
mum diameter of a cluster measured in terms of
the JS-divergence. We then show a constant factor



approximation to the problem of minimizing the
JS diameter. This yields an O(min(log n, log d))-
approximation algorithm for MMCKL.

3. Hardness Results: Finally, we provide hardness re-
sults for the above problems. First, we show that
when we restrict the cluster centers to be in the set of
input distributions, no polynomial-time approxima-
tion is possible, unless P 6= NP . In addition, when
the centers are unrestricted, we show a hardness
of approximation result for k-center by demonstrat-
ing that KL behaves like `22 near the middle of the
probability simplex.

Notation: We denote the probability simplex over Rd

as ∆. We write a = b ± c as short hand for a ∈ [b −
c, b + c].

2 Information Geometry
In this section we review some known results about the
geometry of KL and prove some new results. As we
mentioned, KL(p, q) is asymmetric, does not satisfy a
directed triangle inequality, and can be infinite even if
p and q are on the probability simplex. (It is, however,
at least always positive by Gibb’s inequality.) Further-
more, KL does not even satisfy a relaxed directed triangle
inequality, that is

KL(p, r) + KL(r, q)
KL(p, q)

can be made arbitrarily small with p, q, r ∈ ∆.3 The
following example demonstrates this.

Example 2 KL is not a relaxed metric. Consider
p = (1/2, 1/2), q = (e−c, 1− e−c), r = (ε, 1− ε)

where 1/2 ≥ ε > e−c. Then
KL(p, q) ≥ c/2− ln 2
KL(p, r) ≤ (ln ε−1 − ln 2)/2
KL(r, q) ≤ εc− 1

Hence, by increasing c and decreasing ε, the ratio
(KL(p, r) + KL(r, q))/KL(p, q)

can be made arbitrarily small.

Two other information divergences that will play an
important role in our results are the Hellinger and Jensen-
Shannon divergences. These are both divergences from
the family of f -divergences [10].

Definition 1 The Hellinger and Jensen-Shannon diver-
gence between p, q ∈ ∆ are defined as

He(p, q) =
∑
i∈[d]

(
√

pi −
√

qi)2

JS(p, q) = KL(p,
p + q

2
) + KL(q,

p + q

2
) .

3We note that this ratio can be bounded below for some
families of distributions in terms of the ratio of eigenvalues of
a related Hessian matrix [9].

Both JS(p, q) and He(p, q) are symmetric and bounded:
it can easily be shown that JS(p, q) ≤ 2 and He(p, q) ≤ 2
for all p, q ∈ ∆. Note that since KL(p, q) may be infinite
this rules out any multiplicative relationship in general.

Relationships between JS(p, q) and He(p, q) are given
in the next lemma [18, 28].

Lemma 2 For all distributions p and q,
He(p, q)/2 ≤ JS(p, q) ≤ 2 ln(2) He(p, q) . (1)

Unfortunately, neither JS or He are metrics but we
can show that they are “almost metrics” in that they sat-
isfy non-negativity, identity of indiscernibles, symmetry,
and a relaxation of the triangle inequality. We say that
a measure D satisfies an α-relaxed triangle inequality if
for all p, q, r ∈ ∆,

D(p, r) + D(r, q) ≥ D(p, q)/α.

(When α = 1, this is the usual triangle inequality.)

Lemma 3 He and JS obey the 2-relaxed triangle equal-
ity.

Proof: We note that He and JS are both the square of
metrics: this is obvious for He and the result for JS was
proved in [12]. Therefore, for all p, q, r ∈ ∆,√

He(p, q) +
√

He(q, r) ≥
√

He(p, r)
and hence
He(p, q)+He(q, r)+2

√
He(p, q)He(q, r) ≥ He(p, r) .

By an application of the AM-GM inequality we deduce:
2(He(p, q) + He(q, r)) ≥ He(p, r)

as required. The result for JS follows similarly.
The next lemma is a well-known identity (see, e.g.,

[8]) that relates the KL and JS divergence.

Lemma 4 For all p, q, c ∈ ∆:
KL(p, c) + KL(q, c) = JS(p, q) + 2KL((p + q)/2, c) .

This is referred to as the parallelogram property.

Another useful property that we will exploit is that
the He-balls are convex.

Lemma 5 B`(p) = {p′ : He(p, p′) ≤ `} is convex for
all ` ≥ 0 and p ∈ ∆. Furthermore, for all p, q, r ∈ ∆
and α ∈ (0, 1),
He(p, αq + (1−α)r) ≤ αHe(p, q) + (1−α)He(p, r) .

Proof: Consider any ball B`(p) = {p′ : He(p, p′) ≤ `}
and let q, s ∈ B`(p) and α ∈ (0, 1). Then it suffices to
show that αq + (1−α)r ∈ B`(p). Let β = 1−α. Note
that

α(
√

pi −
√

qi)2 + β(
√

pi −
√

ri)2

(
√

pi −
√

αqi + βri)2
≥ 1

⇔ α
√

qi + β
√

ri ≤
√

αqi + βri

⇔ α2qi + β2ri + 2αβ
√

qiri ≤ αqi + βri

⇔ 2αβ
√

qiri ≤ αβqi + αβri

⇔ 2
√

qiri ≤ qi + ri

and this is true by the AM-GM inequality.



Properties of Cluster Centers: For the remaining re-
sult of this section we need to introduce some further
notation. For any measure D : ∆×∆ → R+:

SumCostD(p1, . . . , pt; c) =
∑
j∈[t]

D(pj , c)

SumCostD(p1, . . . , pt) = min
c∈∆

SumCostD(p1, . . . , pt; c)

MaxCostD(p1, . . . , pt; c) = max
j∈[t]

D(pj , c)

MaxCostD(p1, . . . , pt) = min
c∈∆

MaxCostD(p1, . . . , pt; c)

We denote the centroid of a set of distributions as

cent(p1, . . . , pt) = t−1
∑

pi .

The next lemma (a special case of more general result
for all Bregman divergences [5]) shows that the center
that minimizes the average `22 or KL distortion is the
centroid of the distributions being clustered.

Lemma 6 For any distributions p1, . . . , pt,

cent(p1, . . . , pt) = argminq∈∆ SumCost`22(p
1, . . . , pt; q)

= argminq∈∆ SumCostKL(p1, . . . , pt; q),

i.e., the cluster centers for `22 and KL are at centroids.

The next lemma shows that when we are clustering
distributions near the middle of the probability simplex,
the centers that minimize either the maximum or average
KL distortion also lie near the middle of the probability
simplex. Define,

A(r) = {p ∈ ∆ : pj =
1
d
± r for all j ∈ [d]} . (2)

Lemma 7 Let p1, . . . , pt ∈ A(ε/d) and 0 < ε < 1/10.
Then,

argminc∈∆ SumCostKL(p1, . . . , pt; c) ∈ A(ε/d) .

If
MaxCostKL(p1, . . . , pt; c)
MaxCostKL(p1, . . . , pt)

≤ 10

then c ∈ A(10
√

ε).

Proof: The first claim follows from Lemma 6 and the
fact that cent(p1, . . . , pt) is a convex combination of
p1, . . . , pt. For the second claim note that for i ∈ [t],

KL(pi; p1) ≤ ln
1 + ε

1− ε
≤ 3ε,

and hence MaxCostKL(p1, . . . , pt) ≤ 3ε. Consider q /∈
A(10

√
ε). Then

KL(pi; q) ≥ `21(p
i; q) ≥ (10

√
ε− ε/d)2 > 30ε ,

where the first inequality follows by Pinsker’s inequality.
Hence q does not satisfy,

MaxCostKL(p1, . . . , pt; q) ≤ 10·MaxCostKL(p1, . . . , pt) .

3 Minimizing Average Distortion
In this section, we address the problem of computing a
clustering of the input distributions which approximately
minimizes the average Kullback-Liebler divergence be-
tween an input distribution and the center of the cluster
it belongs to. We provide an algorithm that computes a
clustering in which the average KL-divergence between
an input distribution, and the center of the cluster it be-
longs to is at most O(log n) times the optimal cost. The
main theorem in this section is the following.

Theorem 8 There exists a polynomial time O(log n)-
approximation algorithm for MTCKL.

The main idea behind our algorithm is the obser-
vation that even though, in general, the KL-divergence
between two distributions can be infinitely larger than the
He-divergence between them, a clustering of the input
distributions with low average distortion according to
the He-divergence also has low average distortion by the
KL-divergence. Therefore, our analysis proceeds in two
steps. First, we show in Section 3.1 how to compute a
clustering that approximately (within a factor of 2 + ε)
minimizes the average Hellinger divergence between in-
put distributions and the closest cluster center. Then, we
show in Section 3.2 how this leads to a clustering with
low average distortion in the KL-divergence.

3.1 Hellinger Clustering
In this section we present an algorithm for minimizing
average He distortion. The main idea behind our algo-
rithm is the simple observation that the Hellinger distance
between two distributions p and q is the square of the
Euclidean distance between the points

√
p and

√
q where√

p is a shorthand for the vector in the positive quadrant
of the unit sphere:

√
p = (

√
p1, . . . ,

√
pd) .

Therefore, mapping each point pi to
√

pi and then com-
puting a clustering that minimizes the average `22 mea-
sure between each transformed point and the center of
the cluster it belongs to, should give us a good clustering
for minimizing average Hellinger distortion. However,
there will be a slight issue that arises because we insist
that the cluster centers lie on the probability simplex.

Before we address the issue, we present the algo-
rithm:

1. For each input distribution i ∈ [n], compute
√

pi

2. Compute a (1 + ε)-approximation to

MTC`22
(
√

p1, . . . ,
√

pn) ,

using any (1 + ε)-approximation algorithm for k-
means. Let the cluster centers be c̃1, . . . , c̃k. Note
that in general c̃j is not on the unit sphere.

3. Let {pj1 , . . . , pjt} be the set of input distribution
whose closest cluster center is c̃j . Let the final
center for this cluster be cent(pj1 , . . . , pjt).



The issue we need to address is that the cluster center
c that minimizes SumCostHe(p1, . . . , pt; c) need not lie
on ∆: this can be seen as a consequence of the fact that
c̃j is not on the unit sphere in general. Thus the actual
average Hellinger divergence for the same clustering may
be much higher than the k-means cost of the transformed
points. However, the following lemma establishes that
setting c = cent(p1, . . . , pt) (which necessary lies on ∆)
produces a clustering whose average Hellinger distortion
is at most a factor 2 away from the k-means cost of the
transformed points.

Before we state the lemma, we define some notation.
For a vector p = (p1, . . . , pd) over d dimensions, we use
p2 to denote the vector

p2 = (p2
1, . . . , p

2
d)

Lemma 9 For p1, . . . , pt ∈ ∆, for i ∈ [d], define

ai =
∑
j∈[t]

pj
i and bi =

∑
j∈[t]

√
pj

i .

and let a = (a1, . . . , ad) and b = (b1, . . . , bd).

SumCostHe(p1, . . . , pt; a/t)
≤ 2SumCostHe(p1, . . . , pt; (b/t)2)

Proof:∑
j

(
√

pj
i −

√
ai/t)2 = ai +

∑
j

ai/t− 2
√

ai/tbi

= 2ai − 2t−1/2√aibi

and

2
∑

j

(
√

pj
i − bi/t)2 ≤ 2ai − 2t−1b2

i .

Therefore it suffices to show that bi ≤ t1/2√ai but
this follows because

b2
i = ai +

∑
j 6=k

√
pj

ip
k
i ≤ ai + (t− 1)ai .

where the inequality follows by AM-GM inequality.

Theorem 10 There exists a polynomial-time (2 + ε)-
approximation algorithm for MTCHe.

Proof: The result for MTCHe is achieved as described
above: first we map each distribution from the probability
simplex to the positive quadrant of the unit sphere:

f : ∆ → {x ∈ Rd : `2(x) = 1, xi ≥ 1}
(p1, . . . , pd) 7→ (

√
p1, . . . ,

√
pd) .

We then run an algorithm for MTC`22
. For each cluster

formed, return the centroid of the original probability
distributions. This is clearly a probability distribution.
The cost of using this center rather than the center of

mass of the probability distributions once mapped to the
sphere is a factor 2 as shown in Lemma 9.

We conclude this section by noting that our algorithm
also leads to a good clustering for minimizing average
distortion according to the Jensen-Shannon measure us-
ing Eq. 1.

Lemma 11 There exists a polynomial-time (8 ln 2 + ε)-
approximation algorithm for MTCJS.

3.2 Kullback-Leibler Clustering
The following lemma relates SumCostKL(p1, . . . , pt) and
SumCostHe(p1, . . . , pt). We note that that a later result
in Section 4 could be used (in conjunction with Lemma 2)
to achieve a result with that shows the ratio scales with
lg t in the worst case. However, the following proof
establishes better constants and has the benefit that the
proof is more geometric.

Lemma 12 For any distributions p1, . . . , pt,

1/2 ≤ SumCostKL(p1, . . . , pt)
SumCostHe(p1, . . . , pt)

≤ dlg te (ln 16).

Proof: The first inequality follows because for p, q ∈ ∆,
JS(p, q) = minc∈∆(KL(p, c) + KL(q, c)) ≤ KL(p, q)
(this follows from e.g., Lemma 6) and Eq. 1.

We now prove the second inequality. Without loss
of generality assume that t is a power of 2 (otherwise
consider adding (2dlog te − t) new points at He center of
p1, . . . , pt – this can only increases the middle term of
the equation.)

Consider a balanced binary tree on the nodes of the
cluster. For an internal node at height j, associate a multi-
set of distributions S(v) consisting of 2j copies p(u), the
center of mass of the 2j distributions at the leaves of the
subtree rooted at v. Let Sj be the set of distributions at
height j. Note that S0 = {p1, . . . , pt}.

The lemma follows from the next three claims.

Claim 13 For all j, SumCostHe(Sj) ≤ SumCostHe(S0).

Proof: Let c be an arbitrary distribution. By Lemma 5,

2jHe(p, c) + 2jHe(q, c) ≥ 2j+1He((p + q)/2, c)

and therefore SumCostHe(Sj ; c) decreases as j increases
and the result follows.

Claim 14 For all j,∑
v:height(v)=j+1

SumCostKL(∪u:u∈ch(v)S(u))

≤ (ln 16)SumCostHe(Sj) .

where ch(v) denotes the children of v.



Proof: Let u and w be the children of a node v at height
j + 1. Let c = (p(u) + p(w))/2.Then,

SumCostKL(S(u), S(w))

= 2jJS(p(u), p(w))

≤ 2j+1(ln 2)He(p(u), p(w))

≤ 2j+2(ln 2)(He(p(u), c) + He(p(w), c))
≤ (ln 16)SumCostHe(S(u), S(w))

Claim 15∑
j

∑
v:height(v)=j+1

SumCostKL(∪u:u∈ch(v)S(u))

= SumCostKL(p1, . . . , pt) .

Proof: Let v be at height j + 1. Let v have children u
and w and grandchildren u1, u2, w1, w2. Then the result
follows because

SumCostKL(S(u1), S(u2))
+SumCostKL(S(w1), S(w2))
+SumCostKL(S(u), S(w))

= 2j−1(KL(p(u1), p(u)) + KL(p(u2), p(u))
+KL(p(w1), p(w)) + KL(p(w2), p(w))
+2KL(p(u), p(v)) + 2KL(p(w), p(v)))

= 2j−1(KL(p(u1), p(v)) + KL(p(u2), p(v))
+KL(p(w1), p(v)) + KL(p(w2), p(v)))

= SumCostKL(S(u1), S(u2), S(w1), S(w2))

where the second inequality follows from the parallelo-
gram property and the fact that p(u) = (p(u1)+p(u2))/2
and p(w) = (p(w1) + p(w2))/2.

We next show that the above lemma is nearly tight.

Lemma 16 There exists (pi)i∈[t] on d ≥ t coordinates
such that,

SumCostKL(p1, . . . , pt)
SumCostHe(p1, . . . , pt)

= Ω(log t) .

Proof: Let (pi)i∈[t] be t distributions where pi takes
value i with probability 1. Then

SumCostKL(p1, . . . , pt) = t ln t

whereas

SumCostHe(p1, . . . , pt; c) = t

(
(1− 1√

t
)2 +

t− 1
t

)
= 2t− 2

√
t ,

where c = t−1
∑

i pi. Then appeal to Lemma 9.

Then the proof of Theorem 8 follows immediately
from Lemma 12 and Theorem 10.

4 Minimizing Maximum Distortion
In this section, we provide an algorithm for clustering
the input distributions such that the maximum Kullback-
Liebler divergence between an input distribution and
the center of the cluster it belongs to is approximately
minimized. In particular, our algorithm produces a clus-
tering in which the maximum KL-divergence between
an input distribution, and the closest center is at most a
min(O(log d), O(log n)) factor greater than optimal.

Our algorithm is pleasantly simple: we use a variant
of Gonzalez’s algorithm [16] to cluster the input distribu-
tions such that the Jensen-Shannon divergence between
any two points in the same cluster is minimized. We then
show that although the KL-divergence between two distri-
butions can be infinitely larger than their JS-divergence,
this procedure still produces a good clustering according
to the KL-divergence. The main theorem in this section
can be stated as follows.

Theorem 17 There exists a polynomial-time

O(min(log d, log n))

approximation for MMCKL.

Before proving the theorem, we show a lemma which
establishes a general relationship between the KL-divergence
and JS-divergence between two distributions, when the
ratio of probability masses that the two distributions as-
sign to any coordinate is bounded. This lemma may be
of independent interest.

Lemma 18 Let p, q ∈ ∆ such that, for all i, pi/qi ≤ t,
where t ≥ e2. Then,

KL(p, q) ≤ 2 ln t

ln(6/5)
JS(p, q)

Proof: For each i, let δi = (pi − qi)/qi so that pi =
(1 + δi)qi. Then,

∑
i δiqi =

∑
i pi − qi = 0,

KL(p, q) =
∑

i

qi(1 + δi) ln(1 + δi) ,

and

JS(p, q) =
∑

i

qi((1+δi) ln(1+δi)−(2+δi) ln(1+
δi

2
))

Since pi/qi ≤ t, and δi ≤ t− 1, from Lemma 19,

KL(p, q) ≤ Λ · JS(p, q) +
∑

i

δiqi

where Λ = 2 ln t
ln 6/5 . The lemma follows from the fact that∑

i δiqi = 0 and t ≥ 4.

Lemma 19 For any x ∈ [−1, 2],

(1 + x) ln(1 + x) ≤ 4((1 + x) ln(1 + x)
−2(1 + x/2) ln(1 + x/2)) + x .



For any x ∈ (2, x∗],

(1 + x) ln(1 + x) ≤ 2 ln x∗

ln(6/5)
((1 + x) ln(1 + x)

−2(1 + x/2) ln(1 + x/2)) + x .

Proof: Let Λ be a parameter and let

Y (x) = (1 + x) ln(1 + x)− Λ((1 + x) ln(1 + x)
−2(1 + x/2) ln(1 + x/2))− x

.

Our goal is to show that Y (x) ≤ 0 for suitable values of
the parameter Λ. The first and second order derivatives
of Y can be written as follows:

Y ′(x) = Λ ln(1 + x/2)− (Λ− 1) ln(1 + x)

and
Y ′′(x) =

2− Λ + x

(1 + x)(2 + x)
.

We first consider x ∈ [−1, 2) and Λ = 4. If x < 2,
then Y ′′(x) < 0. Therefore, Y ′(x) is strictly decreas-
ing in the range [−1, 2). We note that Y ′(−1) = ∞
and Y ′(0) = 0; therefore Y is a strictly increasing func-
tion from [−1, 0) and strictly decreasing from (0, 2]. As
Y (0) = 0, Y (x) < 0 for x < 0 and Y (x) < 0 for x > 0,
and the first part of the lemma follows.

To prove the second part, we write the derivative
Y ′(x) as follows:

Y ′(x) = Λ · ln 1 + x/2
1 + x

+ ln(1 + x)

If x > 2, then ln 1+x/2
1+x < ln(5/6). By plugging in

Λ = 2 ln x∗

ln 6/5 ,

Y ′(x) < −2 ln x∗ + ln(1 + x) < 0

for x in (2, x∗], which means that Y is strictly decreasing
in this interval. As t ≥ e2, here Λ ≥ 4. The previous
part of the lemma implies that Y (2) < 0, for any Λ > 4,
and hence the lemma follows.

Lemma 20 Consider t distributions p1, . . . , pt such that
He(pi, pj) ≤ r for all i, j ∈ [t]. Then He(pi, c) ≤ r
for all i ∈ [t] where c is any convex combination of
p1, . . . , pt.

Proof: The result follows by Lemma 5: Consider distri-
bution pi and the set of distributions in Br(pi) = {q :
He(pi, q) ≤ r}. By Lemma 5, Br(pi) is convex. Since
pj ∈ Br(pi) for all j ∈ [t] and c is a convex combi-
nation of {pj}j∈[t] we deduce that c ∈ Br(pi). Hence
He(pi, c) ≤ r as required. Since i was arbitrary the result
follows.

Lemma 21 Let p1, . . . , pt be t distributions over [d] and
let c = cent(p1, . . . , pt). Then,

MaxCostKL(p1, . . . , pt; c)
maxi,j JS(pi, pj)

≤ O(log t) .

Moreover, there exists some c∗ which is a convex combi-
nation of p1, . . . , pt such that:

MaxCostKL(p1, . . . , pt; c∗)
maxi,j JS(pi, pj)

≤ O(log d) .

Proof: To show the first inequality, we observe that for
any i ∈ [d], j ∈ [t]: pj

i/ci ≤ t. Using this fact along
with Lemma 18, we conclude that:

MaxCostKL(p1, . . . , pt; c) ≤ O(log t) ·max
i

JS(pi, c)

The rest of the inequality follows from the fact that JS is
constant factor related to He (Lemma 2), followed by an
application of Lemma 20.

To show the second inequality, let

q1, . . . , qd ⊂ {p1, . . . , pt}
be distributions such that for any i ∈ [d] and any j ∈ [n],
qi
i ≥ pj

i . We define

c∗ = cent(q1 + . . . + qd) .

Observe that for any i ∈ [d], j ∈ [t]: pj
i/c∗i ≤ d. There-

fore, from Lemma 18, for any i,

MaxCostKL(p1, . . . , pt; c∗) ≤ O(log d)JS(pi, c∗)

From Lemma 2, JS(pi, c∗) ≤ O(He(pi, c∗)). As c∗ is a
convex combination of p1, . . . , pt, the rest of the lemma
follows from an application of Lemma 20.

Lemma 22 Let p1, . . . , pt be t distributions over [d].

1
2
≤ MaxCostKL(p1, . . . , pt)

maxi,j JS(pi, pj)

Proof: Let (i, j) = argmax JS(pi, pj). Note that since
we allow unrestricted centers,

MaxCostKL(pi, pj) ≤ MaxCostKL(p1, . . . , pt; c) ,

and let q minimize max{KL(pi, q), KL(pj , q)}. But

2 max{KL(pi, q), KL(pj , q)} ≥ KL(pi, q) + KL(pj , q)

≥ min
q

KL(pi, q) + KL(pj , q)

= JS(pi, pj) .

from which the Lemma follows.

We now are in a position to complete the proof of
Theorem 17.
Proof: From Lemmas 21 and 22, and the fact that for
any c,

MaxCostKL(p1, . . . , pt; c) ≥ MaxCostKL(p1, . . . , pt)

(by definition), we know that if we α-approximate the
problem of minimizing the maximum JS diameter of a
cluster, we get a min(O(α log d), O(α log n)) approxi-
mation for k-center KL clustering. In the rest of the proof
we show that we may assume α = 4.



We use a variant of an algorithm by Gonzalez [16]
that is applicable to divergences that satisfy a relaxed
triangle inequality. Recall that JS satisfies,

JS(p, q) + JS(q, r) ≥ JS(p, r)/2 .

for all p, q, r. The algorithm assumes knowledge of the
optimum JS diameter (note that there are at most n2 possi-
ble values and thus we can check them all); let this value
be D. Initially, let all pj be “unmarked.” The algorithm
proceeds by picking an arbitrary unmarked distribution
pi, marking all pj such that JS(pj , pi) ≤ D and repeating
until all distributions are marked. Define the each cluster
as the set of distributions marked in the same iteration
and call pi the “center” of this cluster. This results in a
clustering such that the maximum diameter is at most
2(D +D) = 4D. We need to show that the process does
not determine more than k centers. Suppose we pick
k + 1 centers. Note that each of these centers are strictly
greater than (D + D)/2 = D apart and hence no two
may be in the same cluster for the optimum clustering.
This is a contradiction.

5 Hardness Results
In this final section of our paper, we prove hardness of
approximation results for MMCKL and MTCKL, i.e., we
show lower bounds of the approximation factors possible
in polynomial time on the assumption that P 6= NP . We
consider two variants of these problems. For all the algo-
rithms we presented in the previous sections, we insisted
that the centers c1, . . . , ck lay in ∆ but other than this the
centers were unrestricted. In some of the previous work
on approximation algorithms for clustering a variant is
considered in which it is required that c1, . . . , ck are cho-
sen from among the input distributions {p1, . . . , pn}. We
call this the restricted center version.

When a metric is used rather than KL, the restricted
and unrestricted versions of the problems are closely re-
lated: it can be shown that the restriction can at most
double the clustering cost. However, for KL we show
that, while we have presented approximation algorithms
for the unrestricted case, no approximation to any multi-
plicative factor is possible in the restricted case.

5.1 Unrestricted Centers
In this section, we prove an approximation hardness re-
sult for MMCKL. Our result is based on demonstrating
that near the center of the simplex KL behaves similarly
to `22. We then use a result by Feder and Greene [13] that
showed an approximation hardness of 1.822 for k-center
in the plane where distance are measured as `2. (Hence,
this gives a 1.8222 < 3.320 approximation hardness
result for `22.)

Recall the definition,

A(r) = {p ∈ ∆ : pj = 1/d± r for all j ∈ [d]} . (3)

Lemma 23 For p, q ∈ A(ε/d),

KL(p, q) = (1± 5ε)d`22(p, q) .

Proof: We apply Taylor’s Theorem to the terms of the
KL divergence:

KL(p, q) =
∑
i∈[d]

pi log
pi

qi
− pi + qi

=
∑
i∈[d]

−pi log
(

1− pi − qi

pi

)
− pi + qi

=
∑
i∈[d]

(pi − qi)2

pi
+ η3

i pi

for some ηi with |ηi| ≤ |pi − qi|/pi. Note that

|ηi|3pi ≤
(pi − qi)2

pi
· |pi − qi|

pi
≤ 3ε

(pi − qi)2

pi

and therefore

KL(p, q) = (1±3ε)
∑
i∈[d]

(pi − qi)2

pi
≤ (1±5ε)d`22(p−q) .

Using the above lemma, the next theorem shows that
if the distributions to be clustered are near the center of
the simplex, then we can use an approximation algorithm
for MTCKL or MMCKL to get a good approximation for
MTC`22

or MMC`22
respectively.

Theorem 24 Let τ ∈ (1, 10) and let

p1, . . . , pn ∈ A(ε2/(502d3)) .

Then, a τ -approximation for MTCKL yields a (τ + 5ε)-
approximation for MTC`22

. Similarly, a τ -approximation
for MMCKL yields a (τ + 5ε)-approximation for MMC`22

.

Proof: We first consider MTCKL. Suppose we want to
solve MTC`22

on the input p1, . . . , pn ∈ ∆ and let

{c̃1, . . . , c̃k}
be a τ -approximation for MTCKL. Without loss of gen-
erality, we may assume that c̃1, . . . , c̃k are in the con-
vex hull of p1, . . . , pn since if c̃j is the closest center to
{pi}i∈I then the objective function only decreases if we
let c̃j = cent(pi : i ∈ I).

Denote the convex hull of p1, . . . , pn by H and note
that q ∈ H implies that q ∈ A(ε2/(502d3)) ⊂ A(ε/(5d)).
Hence, by appealing to Lemmas 7 and 23, we deduce,∑

j∈[n]

min
i∈[k]

`22(p
j , c̄i)

=
1

d(1± ε)2
∑
j∈[n]

min
i∈[k]

KL(pj , c̄i)

≤ τ

d(1± ε)2
min

c1,...,ck∈H

∑
j∈[n]

min
i∈[k]

KL(pj , ci)

≤ τ

(1± ε)4
min

c1,...,ck∈H

∑
j∈[n]

min
i∈[k]

`22(p
j , ci)

=
τ

(1± ε)4
min

c1,...,ck∈∆

∑
j∈[n]

min
i∈[k]

`22(p
j , ci) .



where the last line follows because the optimum centers
for MTC`22

lie in convex(P ).
We now consider MMCKL and suppose {c̃1, . . . , c̃k}

is a τ -approximation for MMCKL. By appealing to Lemma
7, we may assume

c̃1, . . . , c̃k ∈ A(10
√

ε2/(502d2)) = A(ε/(5d)) .

Hence,

max
j∈[n]

min
i∈[k]

`22(p
j , c̄i)

=
1

d(1± ε)2
max
j∈[n]

min
i∈[k]

KL(pj , c̄i)

≤ τ

d(1± ε)2
min

c1,...,ck∈A( ε
5d )

(
max
j∈[n]

min
i∈[k]

KL(pj , ci)
)

≤ τ

(1± ε)4
min

c1,...,ck∈A( ε
5d )

(
max
j∈[n]

min
i∈[k]

`22(p
j , ci)

)
=

τ

(1± ε)4
min

c1,...,ck∈∆

(
max
j∈[n]

min
i∈[k]

`22(p
j , ci)

)
.

where the last line follows because the optimum centers
for MMC`22

lie in A(ε/(5d)). This can be shown using
ideas contained in Lemma 7:

`22(p
i, p1) ≤ d max

j∈[d]
(pi

j − p1
j )

2 ≤ 4ε4/(504d5)

while for q /∈ A(ε/(5d)),

`22(p
i, q) ≥ (ε2/(5d)2 − ε2/(502d3))2 ≥ 4ε4/(504d5) .

To show a hardness result for unrestricted centers it is
therefore sufficient to show a hardness result for MMC`22
when the points to be clustered lie near the middle of
the probability simplex. We do this by taking Feder and
Greene [13] result the showed the hardness of MMC`2
in the plane and demonstrating that the plane can be
mapped into the middle of the probability simplex in a
manner that preserves approximation factors. This will
give the following theorem.

Theorem 25 For any α < 3.320, unless P = NP , no
polynomial-time, α-approximation algorithm exists for
MMCKL.

k-means on the middle of ∆: Given an instance I of
MMC`2 on a bounded domain A of the x1 − x2 plane,
we show how to produce an instance I ′ of MMC`2 on
the three-dimensional simplex, such that, there is an
approximation preserving bijection between the solutions
to I and the solutions to I ′.

To show this, we first assume without loss of gener-
ality that A ⊆ [0, 1/4] × [0, 1/4]. We can assume this
because translating and scaling scales down the distance
between every pair of points by the same number. For
any x ∈ A, we define a map φ(x) as follows:

φ(x) = Ux + [1/3, 1/3, 1/3]T

where U is the matrix:

U =


1√
2

0 1√
3

− 1√
2

1√
2

1√
3

0 − 1√
2

1√
3


Lemma 26 If x ∈ A, φ(x) lies on the simplex.

Proof: We first show that if x lies on the x1 − x2 plane,
then Ux lies on the plane x1 + x2 + x3 = 0. Let

y1 = (1/
√

2,−1/
√

2, 0) and y2 = (0, 1/
√

2,−1/
√

2) .

As y1 = Ux1 and y2 = Ux2, if x = α1x1 + α2x2, then,
Ux = α1y1 + α2y2. Since

y1 · (1, 1, 1) = y2 · (1, 1, 1) = 0 ,

Ux · (1, 1, 1) = 0 as well, which means that Ux lies on
the plane x1 + x2 + x3 = 0.

Since Ux lies on the plane x1 + x2 + x3 = 0, we
deduce that φ(x) lies on the plane x1 + x2 + x3 = 1.
Since x ∈ [0, 1/4]× [0, 1/4], for any i ∈ {1, 2, 3},

(Ux)i ≥ −1
4
× 1√

2
≥ −1

3
.

Therefore, for any i, (φ(x))i ≥ 0. Again, as x ∈
[0, 1/4]× [0, 1/4], for any i ∈ {1, 2, 3},

(Ux)i ≤
1
4
× 1√

2
≤ 2

3
.

Therefore, (φ(x))i ≤ 1 for each i, from which the lemma
follows.

To map an instance I of MMC`2 on the x1−x2 plane
to the probability simplex, we simply apply the map φ
on each point of I . This produces another instance I ′

of the problem on the simplex, which has the following
property.

Lemma 27 There is an approximation-preserving bijec-
tion between the solutions of I and the solutions of I ′.

Proof: We observe that as U is a unitary matrix, the map
φ is a bijection. Moreover, since φ consists of a trans-
lation and a rotation, it preserves the distance between
every pair of points. Therefore, applying φ on a solution
of I produces a solution of I ′ of the same cost. The
mapping φ is thus approximation preserving.

Finally, by mapping each point x ∈ I ′ to εx+(1−ε)u
where u = [1/3, 1/3, 1/3]T we generate a set of points
that lie arbitrarily close to the center of ∆ (setting ε as
small as necessary.) Again, this transformation can be
seen to be approximation preserving.

5.2 Restricted Centers
In this section, we consider the restricted version of
MMCKL and MTCKL where we insist that the cluster cen-
ters c1, . . . , cn ∈ {p1, . . . , pn}. Our result is based on
relating the problem to the SET-COVER problem and ap-
pealing to a result of Feige [14].



Theorem 28 For any α ≥ 1, unless P = NP , no
polynomial-time, α-approximation algorithm exists for
either MTCKL or MMCKL.

Proof: Consider a reduction from the problem SET-
COVER: Consider S1, . . . , Sn−d−1 ∈ [d− 1] and k ≤ d.
It was shown by Feige [14] that it is NP-hard to de-
termine if there exists S = {Si1 , . . . , Sik−1} such that⋃

Sij
= [d− 1].

We first consider MMCKL. Let c1, c2 > 1 such that

(d− 1)e−c1 < 1 and (d− 1)e−c2 < e−c1 .

Let qi be the probability distribution with mass e−c1 on
each element in Si, and the remaining mass on {d}. Let
pi = ei (i.e., the i-th vector of the standard basis) for
i ∈ [d − 1]. Let r be the probability distribution with
e−c2 mass on each element in [d− 1] and the remaining
mass on {d}.

Note that KL(pi, qj) = c1, KL(pi, r) = c2, and

KL(qj , r) = (1− |Sj |e−c1) ln
1− |Sj |e−c1

1− (d− 1)e−c2

+|Sj |e−c1 ln(e−c1/e−c2)

≤ |Sj |e−c1(c2 − c1) ≤ de−c1c2

Hence, if there exists S, the clustering with cen-
ters pi1 , . . . , pik−1 , r costs at most max{c1, de−c1c2}
whereas otherwise the cost is

max{c1, c2, de−c1c2} ≥ c2 .

Hence the ratio difference is at least
c2

max{c1, de−c1c2}

which we can make arbitrarily large.
This also implies that no approximation is possi-

ble for MTCKL because any α′-approximate solution for
MTCKL is also a αn-approximation solution for MMCKL
for k-median when centers must be original points.

Bi-criteria Approximation: We briefly mention an
approximation algorithm for the related approximation
problem of finding the minimum number k′ of centers
c1, c2, . . . , ck′ ∈ {p1, . . . , pn} such that for all i ∈ [n],

min
j∈[k′]

KL(pi, cj) ≤ r

for some given r. This can be approximated up to a
factor of O(log n) using a well-known approximation
algorithm for SET-COVER. Specifically, for each pi we
define a set Si = {j ∈ [n] : KL(pj , pi) ≤ r}. Then,
our problem becomes picking the smallest number of
sets Si1 , Si2 , . . . such that ∪j≥1Sij = [n]. An O(log n)-
approximation algorithm exists for this problem.

Acknowledgements: We would like to thank Sanjoy
Dasgupta for helpful discussions.
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