
Linear Algorithms for
Online Multitask Classification

Giovanni Cavallanti∗ Nicolò Cesa-Bianchi† Claudio Gentile‡

Abstract

We design and analyze interacting online algo-
rithms for multitask classification that perform bet-
ter than independent learners whenever the tasks
are related in a certain sense. We formalize
task relatedness in different ways, and derive for-
mal guarantees on the performance advantage pro-
vided by interaction. Our online analysis gives
new stimulating insights into previously known
co-regularization techniques, such as the multi-
task kernels and the margin correlation analysis
for multiview learning. In the last part we apply
our approach to spectral co-regularization: we in-
troduce a natural matrix extension of the quasi-
additive algorithm for classification and prove
bounds depending on certain unitarily invariant
norms of the matrix of task coefficients.

1 Introduction
A fundamental and fascinating problem in learning theory
is the study of learning algorithms that influence each other.
Although much is known about the behavior of individual
strategies that learn a classification or regression task from
examples, our understanding of interacting learning systems
is still fairly limited. In this paper, we investigate this prob-
lem from the specific viewpoint of multitask learning, where
each one ofK > 1 learners has to solve a different task (typ-
ically, K classification or K regression tasks). In particu-
lar, we focus on multitask binary classification, where learn-
ers are online linear classifiers (such as the Perceptron algo-
rithm). Our goal is to design online interacting algorithms
that perform better than independent learners whenever the
tasks are related in a certain sense. We formalize task relat-
edness in different ways, and derive formal guarantees on the
performance advantage provided by interaction.

Our analysis builds on ideas that have been developed in
the context of statistical learning. In the statistical analysis
of multitask learning (e.g., [2, 3, 4, 11, 24, 26]) the starting
point is a regularized empirical loss functional or Tikhonov

∗DSI, Università di Milano, Italy.
†DSI, Università di Milano, Italy.
‡DICOM, Università dell’Insubria, Italy. This is the correspond-

ing author. Email: claudio.gentile@uninsubria.it

functional —see, e.g., [10]. In the presence of several tasks,
this functional is extended to allow for co-regularization
among tasks. Roughly speaking, the co-regularization term
forces the set of predictive functions for the K tasks to lie
“close” to each other.

This co-regularization term is typically a squared norm in
some Hilbert space of functions. We follow the approach pi-
oneered by [11], where the K estimated solutions are linear
functions parametrized by u = (u1, . . . ,uK) ∈ RKd and
the co-regularization is u>Au, where A is a positive defi-
nite matrix enforcing certain relations among tasks. The key
observation in [11] is the following. Assume the instances
of the multitask problem are of the form (xt, it), where
xt ∈ Rd is an attribute vector and it ∈ {1, . . . ,K} indi-
cates the task xt refers to. Then one can reduce the K learn-
ing problems in Rd to a single problem in RKd by choos-
ing a suitable embedding of the pairs (xt, it) into a common
RKHS space RKd with inner product 〈u,v〉 = u>Av. This
reduction allows us to solve a multitask learning problem by
running any kernel-based single-task learning algorithm with
the “multitask kernel” defined above. We build on this result
by considering a natural online protocol for multitask linear
classification. Within this protocol we analyze the perfor-
mance of the Perceptron algorithm and some of its variants
when run with a multitask kernel. Because such kernels are
linear, we are not restricted to using kernel-based algorithms
for efficiency reasons.

In Section 3 we consider the kernel Perceptron algorithm,
and derive mistake bounds for the multitask kernels proposed
in [11]. This reveals new insights into the role played by the
regularizer matrix A. First, we see that the update in the ker-
nel space defined byA factorizes in the “shared update” ofK
interacting Perceptrons each running in Rd, thus providing a
basic example of interactive online learning. Second, we ex-
ploit the simplicity of the mistake bound analysis to precisely
quantify the performance advantage brought by the multitask
approach over K independent online algorithms. In particu-
lar, in Subsections 3.2 and 3.3 we give examples where the
mistake bound is used to guide the design ofA. The first part
of the paper is concluded with Sections 4 and 5, where we
show multitask versions and mistake bound analyses for the
second-order Perceptron algorithm of [7] and for the p-norm
algorithm of [13, 14].

In the remaining sections of the paper, we depart from
the approach of [11] to investigate the power of online learn-
ing when other forms of co-regularization are used. In Sec-

tion 6 we consider the case when instances belong to a
space that is different for each task, and the similarity among
tasks is measured by comparing their margin sequences (see,
e.g., [6, 27]). We introduce and analyze a new multitask vari-
ant of the second-order Perceptron algorithm. The mistake
bound that we prove is a margin-based version of the bound
shown in Subsection 3.2 for the multitask Perceptron. Fi-
nally, in Section 7 we consider spectral co-regularization [4]
for online multiview learning. Here diversity is penalized
using a norm function defined on the d × K matrix U =[
u1, . . . ,uK

]
of view vectors. In the spirit of [19], we in-

terpret this penalization function as a potential defined over
arbitrary matrices. We then define a natural extension of the
quasi-additive algorithm of [14, 20] to a certain class of ma-
trix norms, and provide a mistake bound analysis depending
on the singular values of U . The results we obtain are similar
to those in [28, 29, 30], though we are able to overcome some
of the difficulties encountered therein via a careful study of
matrix differentials.

In the next section, we introduce the basic online multi-
task protocol and define the multitask Perceptron algorithm.
In order to keep the presentation as simple as possible, and
to elucidate the interactive character of the updates, we de-
lay the introduction of kernels until the proof of the mistake
bound.

In our initial online protocol, at each time step the mul-
titask learner receives a pair (xt, it), where it is the task in-
dex for time t and xt is the instance for task it. Note that
we view multitask learning as a sequential problem where
at each time step the learner works on a single adversarially
chosen task, rather than working simultaneously on all tasks
(a similar protocol was investigated in [1] in the context of
prediction with expert advice). One of the advantages of this
approach is that, in most cases, the cost of running our mul-
titask algorithms has a mild dependence on the number K of
tasks.

We also remark that linear algorithms for online multi-
task learning have been studied in [9]. However, these re-
sults are sharply different from ours, as they do not depend
on task relatedness.

2 Learning protocol and notation

There are K binary classification tasks indexed by 1, . . . ,K.
At each time step t = 1, 2, . . . the learner receives a task in-
dex it ∈ {1, . . . ,K} and the corresponding instance vector1

xt ∈ Rd (which we henceforth assume to be normalized,
‖xt‖ = 1). Based on this information, the learner outputs a
binary prediction ŷt ∈ {−1, 1} and then observes the correct
label yt ∈ {−1, 1} for task it. As in the standard worst-
case online learning model, no assumptions are made on the
mechanism generating the sequence

(
xt, yt

)
t≥1

. Moreover,
similarly to [1], the sequence of tasks it is also generated in
an adversarial manner.

We compare the learner’s performance to that of a refer-
ence predictor that is allowed to use a different linear clas-
sifier for each of the K tasks. In particular, we compare the

1Throughout this paper all vectors are assumed to be column
vectors.

learner’s mistake count to

inf
u1,...,uK∈Rd

∑
t

`t(uit) (1)

where `t(uit) =
[
1 − yt u>it

xt

]
+

is the hinge loss of the
reference linear classifier (or task vector) uit at time t. Our
goal is to design algorithms that make fewer mistakes thanK
independent learners when the tasks are related, and do not
perform much worse than that when the tasks are completely
unrelated. In the first part of the paper we use Euclidean dis-
tance to measure task relatedness. We say that the K tasks
are related if there exist reference task vectors u1, . . . ,uK ∈
Rd having small pairwise distances ‖ui − uj‖, and achiev-
ing a small cumulative hinge loss in the sense of (1). More
general notions of relatedness are investigated in later sec-
tions.

3 The multitask Perceptron algorithm

We first introduce a simple multitask version of the Percep-
tron algorithm. This algorithm keeps a weight vector for
each task and updates all weight vectors at each mistake us-
ing the Perceptron rule with different learning rates. More
precisely, let wi,t−1 be the weight vector associated with
task i at the beginning of time step t. If we are forced (by
the adversary) to predict on task it, and our prediction hap-
pens to be wrong, we update wit,t−1 through the standard
additive rule wit,t = wit,t−1 + ηyt xt (where η > 0 is a
constant learning rate) but, at the same time, we perform a
“half-update” on the remaining K − 1 Perceptrons, i.e., we
set wj,t = wj,t−1 + η

2yt xt for each j 6= it. This rule is
based on the simple observation that, in the presence of re-
lated tasks, any update step that is good for one Perceptron
should also be good for the others. Clearly, this rule keeps
the weight vectors wj,t, j = 1, . . . ,K, always close to each
other.

The above algorithm is a special case of the multitask
Perceptron algorithm described below. This more general
algorithm updates each weight vector wj,t through a learn-
ing rate which is an arbitrary positive definite function of the
pair (j, it). These learning rates are defined by a K × K
interaction matrix A.

The pseudocode for the multitask Perceptron algorithm
using a generic interaction matrix A is given in Figure 1.
At the beginning of each time step, the counter s stores the
mistakes made so far (plus one). The (column) vector φt ∈
RKd denotes the multitask instance defined by

φ>t =
(

0, . . . , 0︸ ︷︷ ︸
d(it − 1) times

x>t 0, . . . , 0︸ ︷︷ ︸
d(K − it) times

)
(2)

where xt ∈ Rd is the instance vector for the current task it.
(Note that ‖φt‖ = 1 since the instances xt are normalized.)
The weights of the K Perceptrons are maintained in a com-
pound vector w>

s =
(
w>

1,s, . . . ,w
>
K,s

)
, with wj,s ∈ Rd for

all j. The algorithm predicts yt through the sign ŷt of the
it-th Perceptron’s margin w>

s−1φt = w>
it,s−1xt. Then, if

prediction and true label disagree, the update rule becomes
ws = ws−1 + yt

(
A ⊗ Id

)−1
φt, where ⊗ denotes the Kro-

Parameters: Positive definite K ×K interaction matrix A.
Initialization: w0 = 0 ∈ RKd, s = 1.
At each time t = 1, 2, . . . do the following:

1. Observe task number it ∈ {1, . . . ,K} and the corre-
sponding instance vector xt ∈ Rd;

2. Build the associated multitask instance φt ∈ RKd;

3. Predict ŷt = SGN
(
w>

s−1φt

)
∈ {−1,+1};

4. Get label yt ∈ {−1,+1};

5. If ŷt 6= yt then update:

ws = ws−1 + yt

(
A⊗ Id

)−1
φt

s ← s+ 1 .

Figure 1: The multitask Perceptron algorithm.

necker product betweeen matrices2 and Id is the d×d identity
matrix. Since

(
A⊗ Id

)−1 = A−1 ⊗ Id, the above update is
equivalent to the K task updates

wj,s ← wj,s−1 + ytA
−1
j,it

xt j = 1, . . . ,K .

The algorithm is mistake driven, hence wt−1 is updated (and
is s increased) only when ŷt 6= yt.

3.1 Pairwise distance interaction matrix
We now analyze the choice of A that corresponds to the up-
dates wit,s ← wit,s−1 + η yt xt and wj,s ← wj,s−1 +
η
2 yt xt for j 6= it with η = 2/(K + 1). As it can be easily
verified, this choice is given by

A =

 K −1 . . . −1
−1 K . . . −1
.
−1 K

 (3)

with

A−1 =
1

K + 1

 2 1 . . . 1
1 2 . . . 1
.
1 2

 .

In order to keep in with the notation just introduced, we
equivalently specify an online multitask problem by the se-
quence (φ1, y1), (φ2, y2), · · · ∈ RdK×{−1, 1} of multitask
examples, where φt is the multitask instance defined in (2).
Moreover, given a sequence of multitask examples and refer-
ence task vectors u1, . . . ,uK ∈ Rd, we introduce the “com-
pound” reference task vector u> =

(
u>1 , . . . ,u

>
K

)
∈ RKd

and write

`t(u) def=
[
1− yt u>φt

]
+

=
[
1− yt u>it

xt

]
+

= `t(uit) .

Finally, we use A⊗ as a shorthand for A ⊗ Id, where d is
understood from the context. We have the following result.

2The Kronecker or direct product between two matrices A =
[ai,j] and B of dimension m × n and q × r, respectively, is the
block matrix of dimension mq × nr whose block on row i and
column j is the q × r matrix ai,jB.

Theorem 1 The number of mistakes m made by the mul-
titask Perceptron algorithm in Figure 1, run with in-
teraction matrix (3) on any finite multitask sequence
(φ1, y1), (φ2, y2), . . . ∈ RKd × {−1, 1}, satisfies

m ≤ inf
u∈RKd

(∑
t∈M

`t(u) +
2
(
u>A⊗ u

)
K + 1

+

√√√√2
(
u>A⊗ u

)
K + 1

∑
t∈M

`t(u)

)
,

whereM is the set of mistaken trial indices, and

u>A⊗ u =
K∑

i=1

‖ui‖2 +
∑

1≤i<j≤K

‖ui − uj‖2 .

Remark Note that when all tasks are equal, that is when
u1 = · · · = uK , the bound of Theorem 1 becomes the stan-
dard Perceptron mistake bound (see, e.g., [7]). In the general
case of distinct ui we have

u>A⊗ u

K + 1
<

K∑
i=1

‖ui‖2 −
1

K + 1

∑
1≤i,j≤K

u>i uj .

The sum of squares
∑

i ‖ui‖2 is the mistake bound one can
prove when learning K independent Perceptrons (under lin-
ear separability assumptions). On the other hand, highly
correlated reference task vectors (i.e., large inner products
u>i uj) imply a large negative second term in the right-hand
side of the above expression.

Theorem 1 is immediately proven by using the fact that the
multitask Perceptron is a specific instance of the kernel Per-
ceptron algorithm [12] using the linear kernel introduced
in [11] (see also [15]). As mentioned in the introduction,
this kernel is defined as follows: for any positive definite
K ×K interaction matrix A introduce the Kd-dimensional
reproducing kernel Hilbert space

(
RKd, 〈 · , · 〉H

)
with in-

ner product 〈u,v〉H = u>
(
A⊗Id

)
v. Then define the kernel

feature map ψ : Rd × {1, . . . ,K} → H such that

ψ(xt, it) =
(
A⊗ Id)−1φt . (4)

The kernel used by the multitask Perceptron is thus defined
by

K
(
(xs, is), (xt, it)

)
=

〈
ψ(xs, is), ψ(xt, it)

〉
H

= φ>s
(
A⊗ Id)−1φt . (5)

Proof of Theorem 1: We use the following version of the
kernel Perceptron bound (see, e.g., [7]),

m ≤
∑

t

`t(f) + ‖h‖2H
(
max

t
‖ψ(xt, it)‖2H

)
+ ‖h‖H

√(
max

t
‖ψ(xt, it)‖2H

)∑
t

`t(h)

where h is any function in the RKHS H induced by the ker-
nel. Let A⊗ = A⊗ Id. For the kernel (5) we have ‖u‖2H =
u>A⊗ u and ‖ψ(xt, it)‖2H = φ>t A

−1
⊗ A⊗A

−1
⊗ φt =

φ>t A
−1
⊗ φt = A−1

it,it
. Observing that A−1

is,is
= 2/(K + 1)

for the matrix A−1 defined in (3) concludes the proof.

3.2 A more general interaction matrix
In this section we slightly generalize the analysis of the pre-
vious section and consider an update rule of the form

wj,s = wj,s−1 +

{
b+K

(1+b)K yt xt if j = it,
b

(1+b)K yt xt otherwise,

where b is a nonnegative parameter. The corresponding in-
teraction matrix is given by

A =
1
K

 a −b . . . −b
−b a . . . −b
.
−b a

 . (6)

with a = K + b(K − 1). It is immediate to see that the
previous case (3) is recovered by choosing b = K. The
inverse of (6) is

A−1 =
1

(1 + b)K

 b+K b . . . b
b b+K . . . b
.
b b+K

 .

When (6) is used in the multitask Perceptron algorithm, the
proof of Theorem 1 can be adapted to prove the following
result.

Corollary 2 The number of mistakes m made by the mul-
titask Perceptron algorithm in Figure 1, run with in-
teraction matrix (6) on any finite multitask sequence
(φ1, y1), (φ2, y2), · · · ∈ RKd × {−1, 1}, satisfies

m ≤

(∑
t∈M

`t(u) +
(b+K)
(1 + b)K

(
u>A⊗u

)
+

√
(b+K)
(1 + b)K

(
u>A⊗u

) ∑
t∈M

`t(u)

for any u ∈ RKd, where

u>A⊗u =
K∑

i=1

‖ui‖2 + bK VAR[u] , (7)

being VAR[u] = 1
K

∑K
i=1 ‖ui − u‖2 the “variance”, of the

task vectors, and u the centroid
(
u1 + · · ·+ uK

)
/K.

It is interesting to investigate how the above bound depends
on the trade-off parameter b. The optimal value of b (requir-
ing prior knowledge about the distribution of u1, . . . ,uK)
is

b = max

0,

√
K − 1
K

‖u‖2

VAR[u]
− 1

 .

Thus b grows large as the reference task vectors ui get close
to their centroid u (i.e., as all ui get close to each other).
Substituting this choice of b gives

(b+K)
(1 + b)K

(
u>A⊗u

)

=

‖u1‖2 + · · ·+ ‖uK‖2 if b = 0,(
‖u‖+

√
K − 1

√
VAR[u]

)2

otherwise.

When the variance VAR[u] is large (compared to the squared
centroid norm ‖u‖2), then the optimal tuning of b is zero and
the interaction matrix becomes the identity matrix, which
amounts to running K independent Perceptron algorithms.
On the other hand, when the optimal tuning of b is nonzero
we learn K reference vectors, achieving a mistake bound
equal to that of learning a single vector whose length is ‖u‖
plus
√
K − 1 times the standard deviation

√
VAR[u].

At the other extreme, if the variance VAR[u] is zero
(namely, when all tasks coincide) then the optimal b grows
unbounded, and the quadratic term (b+K)

(1+b)K

(
u>A⊗u

)
tends

to the average square norm 1
K

∑K
i=1 ‖ui‖2. In this case the

multitask algorithm becomes essentially equivalent to an al-
gorithm that, before learning starts, chooses one task at ran-
dom and keeps referring all instance vectors xt to that task
(somehow implementing the fact that now the information
conveyed by it can be disregarded).

3.3 Encoding prior knowledge
We could also pick the interaction matrix A so to encode
prior knowledge about tasks. For instance, suppose we know
that only certain pairs of tasks are potentially related. We
represent this knowledge in a standard way through an undi-
rected graph G = (V,E), where two vertices i and j are
connected by an edge if and only if we believe task i and
task j are related. A natural choice for A is then A = I +L,
where L = [Li,j]Ki,j=1 is the Laplacian of G, defined as

Li,j =

{
di if i = j,
−1 if (i, j) ∈ E,
0 otherwise,

where di is the degree (number of incoming edges) of node
i. If we now follow the proof of Theorem 1, which holds
for any positive definite matrix A, we obtain the following
result.

Corollary 3 The number of mistakes m made by the mul-
titask Perceptron algorithm in Figure 1, run with inter-
action matrix I + L on any finite multitask sequence
(φ1, y1), (φ2, y2), . . . ∈ RKd × {−1, 1}, satisfies

m ≤ inf
u∈RKd

(∑
t∈M

`t(u) + cG u>
(
I + L

)
⊗u

+
√
cG u>

(
I + L

)
⊗u

∑
t∈M

`t(u)

)

where

u>
(
I + L

)
⊗u =

K∑
i=1

‖ui‖2 +
∑

(i,j)∈E

‖ui − uj‖2 (8)

and cG = maxi=1,...,K

∑K
j=1

v2
j,i

1+λj
. Here 0 = λ1 <

λ2 ≤ · · · ≤ λK are the eigenvalues of the positive semidef-

inite matrix L, and vj,i denotes the i-th component3 of the
eigenvector vj of L associated with eigenvalue λj .

Proof: Following the proof of Theorem 1, we just need to
bound

max
i=1,...,K

A−1
i,i = max

i=1,...,K
(I + L)−1

i,i .

If v1, . . . ,vK are the eigenvectors of L, then

(I + L)−1 =
K∑

j=1

vj v>j
1 + λj

which concludes the proof.

Ideally, we would like to have cG = O(1/K). Clearly
enough, if G is the clique on K vertices we expect to exactly
recover the bound of Theorem 1. In fact, we can easily verify
that the eigenvector v1 associated with the zero eigenvalue
λ1 is

(
K−1/2, . . . ,K−1/2

)
. Moreover, it is well known that

all the remaining eigenvalues are equal to K (see, e.g., [16]).
Therefore cG = 1

K +
(
1− 1

K

)
1

K+1 = 2
K+1 . In the case

of more general graphs G, we can bound cG in terms of the
smallest nonzero eigenvalue λ2,

cG ≤
1
K

+
(

1− 1
K

)
1

1 + λ2
.

The value of λ2, known as the algebraic connectivity of G,
is 0 only when the graph is disconnected. λ2 is known for
certain families of graphs. For instance, if G is a complete
bipartite graph (i.e., if tasks can be divided in two disjoint
subsets T1 and T2 such that every task in T1 is related to
every task in T2 and for both i = 1, 2 no two tasks in Ti are
related), then it is known that λ2 = min

{
|T1|, |T2|

}
. We

refer the reader to, e.g., [16] for further examples.
The advantage of using a graph G with significantly

fewer edges than the clique is that the sum of pairwise dis-
tances in (8) will contain less than K(K − 1) terms. On the
other hand, this reduction is balanced by a larger coefficient
cG in front of u>

(
I + L

)
⊗u. This coefficient, in general,

is related to the total number of edges in the graph (observe
that the trace of L is exactly twice this total number).

4 The second-order extension
In this section we consider the second-order kernel Percep-
tron algorithm of [7] with the multitask kernel (5). The algo-
rithm, which is described in Figure 2, maintains in its inter-
nal state a matrix S (initialized to the empty matrix) and a
multitask Perceptron weight vector v (initialized to the zero
vector). Just like in Figure 1, we use the subscript s to denote
the current number of mistakes plus one. Note that we have
exploited the linearity of the kernel (5) to simplify the de-
scription of the algorithm. In particular, lettingA⊗ = A⊗Id,
we have repeatedly used the fact that〈
ψ(xs, is), ψ(xt, it)

〉
H = φ>s A

−1
⊗ φt

=
(
A
−1/2
⊗ φs

)>(
A
−1/2
⊗ φt

)
= φ̃

>
s φ̃t ,

3Note that the orthonormality of the eigenvectors imply v2
1,i +

· · ·+ v2
K,i = 1 for all i.

Parameters: Positive definite K ×K interaction matrix A.
Initialization: S0 = ∅, v0 = 0 ∈ RKd, s = 1.
At each time t = 1, 2, . . . do the following:

1. Observe task number it ∈ {1, . . . ,K} and the corre-
sponding instance vector xt ∈ Rd;

2. Build the associated multitask instance φt ∈ RKd and
compute φ̃t =

(
A⊗ Id

)−1/2
φt;

3. Predict ŷt = SGN
(
w>

s−1φ̃t

)
∈ {−1,+1},

where ws−1 =
(
I + Ss−1S

>
s−1 + φ̃tφ̃

>
t

)−1

vs−1;

4. Get the label yt ∈ {−1, 1};

5. If ŷt 6= yt then update:

vs = vs−1+ytφ̃t , Ss =
[
Ss−1

∣∣∣φ̃t

]
, s← s+1 .

Figure 2: The second-order multitask Perceptron algorithm.

where ψ is the kernel feature map (4). The algorithm com-
putes a tentative (inverse) matrix(

I + Ss−1S
>
s−1 + φ̃tφ̃

>
t

)−1

.

Such a matrix is combined with the current Perceptron vec-
tor vs−1 to predict the label yt. If prediction ŷt and label
yt disagree both v and S get updated (no update takes place
otherwise). In particular, the new matrix Ss is augmented
by padding with the current vector φ̃t. Since supports are
shared, the computational cost of an update is not signifi-
cantly larger than that for learning a single-task (see Sec-
tion 4.1).

Theorem 4 The number of mistakes m made by the second-
order multitask Perceptron of Figure 2, run with any posi-
tive definite interaction matrix A, on any finite multitask se-
quence (φ1, y1), (φ2, y2), . . . ∈ RKd × {−1, 1}, satisfies,
for all u ∈ RKd,

m ≤
∑
t∈M

`t(u)

+

√√√√(u>
(
A⊗ Id

)
u +

∑
t∈M

(
u>it

xt

)2) m∑
j=1

ln(1 + λj)

where M is the sequence of mistaken trial indices and
λ1, . . . , λm are the eigenvalues of the m ×m matrix of ele-
ments x>s A

−1
is,it

xt, where s, t ∈M.

Proof: Recall the mistake bound for the second-order kernel
Perceptron algorithm [7]:

m ≤

√√√√(‖h‖2H +
∑
t∈M

h(xt)2
)

m∑
j=1

ln(1 + λj)

where λ1, . . . , λm are the eigenvalues of the m ×m kernel
Gram (sub)matrix including only time steps inM. When the

kernel is (5) with feature map f we have ‖u‖2H = u>A⊗u>

and
〈
u>, ψ(xt, it)

〉2 =
(
u>A⊗A

−1
⊗ φt

)2
=
(
u>it

xt

)2
. Fi-

nally, the kernel Gram matrix is K
(
ψ(xs, is), ψ(xt, it)

)
=

φ>s A
−1
⊗ φt = x>s A

−1
is,it

xt. This concludes the proof.

Again, this bound should be compared to the one ob-
tained when learning K independent tasks. As in the first-
order algorithm, we have the complexity term u>

(
A⊗Id

)
u.

In this case, however, the interaction matrix A also plays a
role in the scale of the eigenvalues of the resulting multi-
task Gram matrix. Roughly speaking, we gain a factor K
from u>A−1

⊗ u (according to the arguments in Section 3).
In addition, however, we gain a further factor K, since the
trace of the multitask Gram matrix

[
φ>s A

−1
⊗ φt

]
s,t∈M =

[x>s A
−1
is,it

xt

]
s,t∈M is about 1/K times the trace of the origi-

nal Gram matrix
[
x>s xt

]
s,t∈M. Since both factors are under

the square root, the resulting gain over the K independent
task bound is about K.

4.1 Implementation in dual variables

It is easy to see that the second-order multitask Perceptron
can be run in dual variables by maintainingK classifiers that
share the same set of support vectors. This allows an efficient
implementation that does not impose any significant over-
head with respect to the corresponding single-task version.
Specifically, given some interaction matrix A, the margin at
time t is computed as (see [7, Theorem 3.3])

w>
s−1φ̃t = v>s−1

(
I + Ss−1S

>
s−1 + φ̃tφ̃

>
t

)−1

φ̃t

= y>s

(
I + S>s Ss

)−1

S>s φ̃t , (9)

where ys is the s-dimensional vector whose first s− 1 com-
ponents are the labels yi where the algorithm has made a
mistake up to time t− 1, and the last component is 0.

First, note that replacing I + S>s Ss with I + S>s−1Ss−1

in (9) does not change the sign of the prediction. The mar-
gin at time t can then be computed by calculating the scalar
product between S>s φ̃t and y>s

(
I + S>s−1Ss−1

)−1
. Now,

each entry of the vector S>s φ̃t is of the form A−1
j,it

x>j xt, and
thus computing S>s φ̃t requires O(s) inner products so that,
overall, the prediction step requires O(s) scalar multiplica-
tions andO(s) inner products (independent of the number of
tasks K).

On the other hand, the update step involves the computa-
tion of the vector y>s

(
I + S>s Ss

)−1
. For the matrix update

we can write

Is + S>s Ss =

[
Is−1 + S>s−1Ss−1 S>s−1φ̃t

φ̃
>
t Ss−1 1 + φ̃

>
t φ̃t

]
.

Using standard facts about the inverse of partitioned matrices
(e.g., [17, Ch. 0]), one can see that the inverse of matrix Is +
S>s Ss can be computed from the inverse of Is−1+S>s−1Ss−1

with O(s) extra inner products (again, independent of K)
and O(s2) additional scalar multiplications.

5 The p-norm extension
We now extend our multitask results to the p-norm Percep-
tron algorithm of [14, 13]. As before, when the tasks are all
equal we want to recover the bound of the single-task algo-
rithm, and when the task vectors are different we want the
mistake bound to increase according to a function that pe-
nalizes task diversity according to their p-norm distance.

We develop our p-norm multitask analysis for the spe-
cific choices of p = 2 ln d (or p = 2 lnK when d ≤ K) and
for the pairwise distance matrix (3). It is well known that
for p = 2 ln d the mistake bound of the single-task p-norm
Perceptron is essentially equivalent to the one of the zero-
threshold Winnow algorithm of [22]. We now see that this
property is preserved in the multitask extension.

We start with the following slightly more general algo-
rithm based on arbitrary norms. Later, we specialize it to
p-norms. The quasi-additive multitask algorithm of [20, 14]
is defined for any norm ‖·‖ over RKd. Initially, w0 = 0 ∈
RKd. If s − 1 mistakes have been made in the first t − 1
time steps, then the prediction at time t is SGN

(
w>

s−1φt

)
. If

a mistake occurs at time t, then ws−1 is updated with the
rule ws = ∇ 1

2 ‖vs‖2, where the primal weight vs ∈ RKd is
updated using the multitask Perceptron rule, v0 = 0 ∈ RKd

and vs = vs−1 + ytA
−1
⊗ φt for an arbitrary positive definite

interaction matrix A.
This can be analyzed using the following technique

(see [8] for details). Let vm be the primal weight after any
number m of mistakes. Then, by Taylor expanding 1

2 ‖vs‖2
around vs−1 for each s = 1, . . . ,m, and using the fact
yt w>

s−1φt ≤ 0 whenever a mistake occurs at step t, we get

1
2
‖vm‖2 ≤

m∑
s=1

D (vs‖vs−1) (10)

D (vs‖vs−1) = 1
2

(
‖vs‖2 − ‖vs−1‖2

)
− yt w>

s−1xt is a so-
called Bregman divergence; i.e., the error term in the first-
order Taylor expansion of 1

2 ‖·‖
2 around vector vs−1, at vec-

tor vs.
Fix any u ∈ RKd. Using the convex inequality for

norms u>v ≤ ‖u‖ ‖v‖∗ where ‖·‖∗ is the dual norm of ‖·‖
(see, e.g., [25, page 131]), and using the fact u>A⊗vs =
u>A⊗vs−1 + ytu

>φt ≥ u>A⊗vs−1 +1− `t(u), one then
obtains

‖vm‖ ≥
u>A⊗vm

‖A⊗u‖∗
≥
m−

∑
t `t(u)

‖A⊗u‖∗
. (11)

Combining (10) with (11) and solving for m gives

m ≤
∑
t∈M

`t(u) + ‖A⊗u‖∗

√√√√2
m∑

s=1

D (vs‖vs−1) . (12)

We obtain our multitask version of the p-norm Perceptron
when ‖u‖ = ‖u‖p =

(
|u1|p + |u2|p + · · ·

)1/p
. In particu-

lar, we focus our analysis on the choice p = 2 lnmax{K, d},
which gives mistake bounds in the dual norms ‖u‖1 and
‖xt‖∞, and on the pairwise distance matrix (3).

Using the analysis in [8] we obtain, for ts = t,

D (vs‖vs−1) ≤
p− 1

2

∥∥A−1
⊗ φt

∥∥2

p
=
p− 1

2
‖xt‖2p

∥∥∥A−1
↓it

∥∥∥2

p

where A−1
↓it

is the it-th column of A−1. If we now use p =
2 ln max{K, d}, then ‖xt‖2p ≤ e ‖xt‖2∞ and∥∥∥A−1

↓it

∥∥∥2

p
≤ e

∥∥∥A−1
↓it

∥∥∥2

∞
= e

(
A−1

it,it

)2 =
4 e

(K + 1)2
.

We now turn to the computation of the dual norm ‖A⊗u‖q,
where q = p/(p−1) is the dual coefficient of p. We find that

‖A⊗u‖2q ≤ ‖A⊗u‖21 =

(
K∑

i=1

∥∥∥ui +
∑
j 6=i

(
ui − uj

)∥∥∥
1

)2

.

Plugging back into (12) gives the following theorem.

Theorem 5 The number of mistakes m made by the p-norm
multitask Perceptron, run with the pairwise distance ma-
trix (3) and p = 2 ln max{K, d}, on any finite multitask se-
quence (φ1, y1), (φ2, y2), . . . ∈ RKd × {−1, 1}, satisfies,
for all u ∈ RKd,

m ≤
∑
t∈M

`t(u) +H +
√

2H
∑
t∈M

`t(u)

where H is equal to

4 e2 lnmax{K, d}
(K + 1)2

X2
∞

(
K∑

i=1

∥∥∥ui +
∑
j 6=i

(
ui − uj

)∥∥∥
1

)2

.

and X∞ = maxt∈M ‖xt‖∞.

Remark When all tasks are equal, u1 = · · · = uK , the
coefficient H in the bound of Theorem 5 becomes(

4 e2 lnmax{K, d}
)(

max
t
‖xt‖∞

)2

‖ui‖21 .

If K ≤ d this bound is equivalent (apart from constant fac-
tors) to the mistake bound for the single-task zero-threshold
Winnow algorithm of [22].

6 Learning tasks in heterogeneous spaces
In this section we slightly deviate from the approach fol-
lowed so far. We consider the case when the K task vectors
ui may live in different spaces: ui ∈ Rdi , i = 1, . . . ,K.
This is a plausible assumption when attributes associated
with different tasks have a completely different meaning. In
such a case, the correlation among tasks is naturally mea-
sured through the task margins u>i x (or views) —see, e.g.,
the previous work of [6, 27] for a similar approach in the
context of semi-supervised learning. In order to allow for the
views to interact in a meaningful way, we slightly modify the
learning protocol of Section 2. We now assume that, at each
time t, we receive the adversarial choice of task it together
with all instance vectors xi,t ∈ Rdi for i = 1, . . . ,K. The
co-regularization terms motivating our algorithm are propor-
tional to the distance between the margin u>it

xit,t of task it
and the average margin 1

k

∑k
j=1 u>j xj,t of all tasks:

bK

(
u>it

xit,t −
1
K

K∑
j=1

u>j xj,t

)2

, (13)

where b is a positive constant. We add the above terms up to
time t, resulting in a cumulative regularization term

bK
∑

s∈Mt

(
u>is

xis,s −
1
K

K∑
j=1

u>j xj,s

)2

,

whereMt is the set of mistaken trials up to time t. Thus, in
trial t our prior knowledge about task relatedness is encoded
as a (positive) correlation among the K margin sequences
(u>j xj,1,u

>
j xj,2, . . . ,u

>
j xj,t), j = 1, . . . ,K.

The algorithm of Figure 3 is a natural multitask predic-
tor operating with the above view-based regularization cri-
terion. We call this algorithm the multiview-based multitask
Perceptron algorithm, or MMPERC for brevity. MMPERC can
be viewed as a variant of the second-order Perceptron using
the cumulative covariance matrix of the past margin vectors
in order to suitably transform instances.

MMPERC has a constant tradeoff parameter b > 0
(playing the same role as the one in Section 3.2), and
maintains in its internal state a multitask matrix A (initial-
ized to the identity matrix I) and a Perceptron multitask
weight vector v (initialized to the zero vector). The sub-
script s plays the same role as in the previous algorithms.
Unlike the algorithms in previous sections, MMPERC ob-
serves the task number it and the multitask instance Φ>

t =(
x>1,t,x

>
2,t, . . . ,x

>
K,t

)
made up of the instance vectors of all

tasks. Then MMPERC computes a tentative matrix A′t to be
used for prediction. Matrix A′t is obtained by adding the
rank-one positive semidefinite matrixMt to the previous ma-
trix As−1. Here φj,t is the (d1 + · · · + dK)-dimensional
vector

φ>j,t =
(

0, . . . , 0︸ ︷︷ ︸
d1 + · · ·+ dj−1 times

x>j,t 0, . . . , 0︸ ︷︷ ︸
dj+1 + · · ·+ dK times

)

for j = 1, . . . ,K. Observe that Mt has been set so as to
make the quadratic form u>Mtu coincide with the regular-
ization term (13). Similarly to the algorithms of previous
sections, the tentative matrix A′t and the current Perceptron
vector vs−1 are used for predicting the true label yt. If pre-
diction ŷt and label yt disagree both v and A get updated. In
particular, As is set to the tentative matrix A′t.

In this protocol we call example the triple (it,Φt, yt).
Like the results contained in the previous sections, our anal-
ysis will provide a multitask bound on the number of predic-
tion mistakes which is comparable to the one obtained by a
single task plus a penalization term due to task relatedness.
However, though this algorithm is a second-order prediction
method, we only give a first-order analysis that disregards
the eigenstructure of the data. This is due to the technical
difficulty of handling a time-varying matrix A that in trial t
includes all instance vectors x1,t, . . .xK,t.

Theorem 6 The number of mistakes m made by the al-
gorithm in Figure 3, run on any multitask sequence
(i1,Φ1, y1), (i2,Φ2, y2), . . . satisfies, for all u> =

Parameters: b > 0.
Initialization: A0 = I , v0 = 0 ∈ Rd1+···+dK , s = 1.
At each time t = 1, 2, . . . do the following:

1. Observe task number it ∈ {1, . . . ,K};

2. Observe multitask instance vector

Φ>
t =

(
x>1,t, . . . ,x

>
K,t

)
∈ Rd1+···+dK ;

3. Build the associated multitask instance φit,t;

4. Set A′t = As−1 +Mt where

Mt = bK
(
φit,t −

Φt

K

)(
φit,t −

Φt

K

)>
;

5. Predict ŷt = SGN
(
v>s−1(A

′
t)
−1φit,t

)
∈ {−1,+1};

6. Get label yt ∈ {−1,+1};

7. If ŷt 6= yt then update:

vs = vs−1 + yt φit,t , As = A′t , s← s+ 1 .

Figure 3: The multiview-based multitask Perceptron algo-
rithm (MMPERC).

(
u>1 , . . . ,u

>
K

)
,

m ≤
∑
t∈M

`t(u) +
K(b+ 1)− b

bK(K − 1) +K

(
u>Amu

)
+

√
K(b+ 1)− b

bK(K − 1) +K

(
u>Amu

) ∑
t∈M

`t(u) ,

where

u>Amu

=
K∑

i=1

||ui||2 + bK

m∑
t∈M

(
u>it

xit,t −
1
K

K∑
j=1

u>j xj,t

)2

,

beingM the set of mistaken trials.

Remark It is the factor
K(b+ 1)− b

bK(K − 1) +K

(
u>Amu

)
(14)

that quantifies the relatedness among tasks (the leading con-
stant bK in the second term of u>Am,u is needed for scal-
ing purposes). Note that the notion of relatedness provided
by u>Am u is analogous to the one used in Section 3.2. As
suggested in Section 3.3, other measures of similarity are
possible.

The parameter b allows for a limited trade-off between∑K
i=1 ||ui||2 and the cumulative “margin deviation”

m∑
t∈M

(
u>it

xit,t −
1
K

K∑
j=1

u>j xj,t

)2

. (15)

In particular, setting b = 0 corresponds to running K inde-
pendent (first-order) Perceptron algorithms (no task related-
ness), while letting b go to infinity is optimal only when each

one of the margin deviation terms in (15) is zero (maximal
task relatedness). Notice that setting b = 1 gives

(14) =
2K − 1
K2

K∑
i=1

||ui||2

+
2K − 1
K

m∑
t∈M

(
u>it

xit,t −
1
K

K∑
j=1

u>j xj,t

)2

yielding a gain of K whenever the K tasks are significantly
related, as measured by (15).

Proof of Theorem 6: Although the general structure of the
analysis is based on the second-order Perceptron proof, we
use the special properties of I +Mt in order to compute the
contribution of K and b to the final bound.

Let t = ts be the time step when the s-th mistake occurs.
We write

v>s A
−1
s vs = (vs−1 + ytφit,t)

>A−1
s (vs−1 + ytφit,t)

(from the update rule in Figure 3)

= vs−1A
−1
s vs−1 + 2ytv

>
s−1A

−1
s φit,t

+ φ>it,tA
−1
s φit,t

≤ vs−1A
−1
s vs−1 + φ>it,tA

−1
s φit,t

≤ vs−1A
−1
s−1vs−1 + φ>it,t(I +Mt)−1φit,t .

(16)

In order to prove the first inequality, note that on the s-th
mistaken trial As = A′t and ytv

>
s−1(A

′
t)−1φit,t ≤ 0. In

order to prove the second inequality note that As − As−1

and As − (I +Mt) are both positive semidefinite.
We now focus on computing the quadratic form φ>it,t(I+

Mt)−1φit,t. Recall that Φt =
∑K

j=1 φj,t is the sum of the
orthonormal vectors φ1,t, . . . ,φit,t, . . . ,φK,t. Thus, from
the very definition of Mt in Figure 3 it is easy to verify that

(I +Mt) φit,t = (b(K − 1) + 1) φit,t −
b(K − 1)

K
Φt .

(17)
Also, since Mt Φt = 0, we have (I + Mt)Φt = Φt, and
thus (I +Mt)−1Φt = Φt. Hence (17) allows us to write

φit,t = (b(K − 1) + 1) (I +Mt)−1 φit,t −
b(K − 1)

K
Φt .

Taking the inner product of both sides with φit,t, and solving
for φit,t(I +Mt)−1φit,t yields

φit,t(I +Mt)−1φit,t =
K(b+ 1)− b

bK(K − 1) +K
.

Substituting this into (16), recalling that v0 = 0, and sum-
ming over s = 1, . . . ,m we obtain

v>mA
−1
m vm ≤ m

K(b+ 1)− b
bK(K − 1) +K

.

A lower bound on the left-hand side can be obtained in the
standard way (details omitted),√

v>mA
−1
m vm ≥

m−
∑

t∈M `t(u)∥∥∥A1/2
m u

∥∥∥ .

Thus we get v>mA
−1
m vm ≥

(m−
P

t∈M `t(u))2

u>Amu
. Finally,

recall that by construction

u>Amu

=
K∑

i=1

||ui||2 + bK
∑
t∈M

(
u>it

xit,t −
1
K

K∑
j=1

u>j xj,t

)2

.

Putting together and solving for m gives the desired bound.

6.1 Implementation in dual variables
Like the second-order multitask Perceptron algorithm, also
MMPERC can be formulated in dual variables. Due to the
need to handle K instance vectors at a time, the implemen-
tation we sketch below has an extra linear dependence on K,
as compared to the one in Section 4.1.

Let t = ts be the trial when the s-th mistake occurs, zr

be the vector zr =
√
bK(φir,r −Φr/K), Ss be the matrix

whose columns are the vectors φir,r corresponding to mis-
taken time steps r up to time t, and Zs be the matrix whose
columns are the vectors zr corresponding to mistaken time
steps r up to time t. It is easy to verify that As = I +ZsZ

>
s

and vs−1 = Ss ys where ys is as in Section 4.1. From the
inversion formula (e.g., [17, Ch. 0])

(I + ZsZ
>
s)−1 = I − Zs(I + Z>s Zs)−1Z>s

we see that the margin v>s−1(A
′
t)
−1φit,t in Figure 3 can be

computed as

v>s−1(A
′
t)
−1φit,t

= y>s S
>
s φit,t − y>s S

>
s Zs(I + Z>s Zs)−1Z>s φit,t .

Calculating the vectors S>s φit,t and Z>s φit,t in the above
expression takes O(s) inner products while other O(s) in-
ner products are required to incrementally compute S>s Zs

from S>s−1Zs−1. Finally, when calculating the inverse (I +
Z>s Zs)−1 we exploit the same updating scheme of Sec-
tion 4.1,

Is + Z>s Zs =
[
Is−1 + Z>s−1Zs−1 Z>s−1zs

z>s Zs−1 1 + z>s zs

]
,

where Z>s−1zs and z>s zs require O(Ks) and O(K) inner
products, respectively. Hence (Is + Z>s Zs)−1 can be com-
puted from (Is−1 + Z>s−1Zs−1)−1 with O(Ks) extra inner
products and O(s2) additional scalar multiplications.

7 Spectral co-regularization
An extreme case of multitask learning is the multiview set-
ting, where all tasks share the same label. In the multi-
view protocol, at each time step t the learner receives K in-
stances x1,t, . . . ,xK,t ∈ Rd, predicts with ŷt ∈ {−1, 1},
and then receives the correct binary label yt, which —unlike
the general multitask case— is the same for all instances.
What distinguishes multiview learning from a standard on-
line binary classification task, defined on instances of the
form xt = (x1,t, . . . ,xK,t

)
, is that in multiview one postu-

lates the existence of K vectors u1, . . . ,uK such that each

ui is a good linear classifier for the corresponding sequence
(xi,1, y1), (xi,2, y2), . . . of examples. In this respect a nat-
ural baseline for online multiview learning is the algorithm
that chooses a random index i ∈ {1, . . . ,K} and then runs a
Perceptron algorithm on the sequence of examples (xi,t, yt)
for t ≥ 1. Equivalently, we may think of running K Per-
ceptrons in parallel and then average their mistakes (see the
remark after Theorem 10).

In this section we design multiview learning algorithms
that in certain cases are able to perform significantly better
than the above baseline. In order to do so, we arrange the K
d-dimensional instances x1,t, . . . ,xK,t in a d ×K instance
matrixXt and penalize diversity among the reference vectors
u1, . . . ,uK using a matrix norm of the d ×K matrix U =
[u1, . . . ,uK].

We focus our attention on matrix norms that are unitar-
ily invariant. Such norms are of the form ‖U‖f = f(σU),
where σU = (σ1, . . . , σr) is the vector of the ordered sin-
gular values σ1 ≥ · · · ≥ σr ≥ 0 of U and f : Rr → R,
with r = min{K, d}, is an absolutely symmetric function
—that is, f is invariant under coordinate permutations and
sign-changes.

Matrix norms of this form control the distribution of the
singular values of U , thus acting as spectral co-regularizers
for the reference vectors (see, e.g., [4] for very recent devel-
opments on this subject). Known examples are the Schatten
p-norms, ‖U‖sp

def= ‖σU‖p. For instance, the Schatten 2-
norm is the Frobenius norm. For p = 1 the Schatten p-norm
becomes the trace norm, a good proxy for the rank of U ,
since ‖U‖s1

= ‖σU‖1 ≈ ‖σU‖0 = rank of U .
In order to obtain a multiview bound that depends on

‖σU‖p, we extend the dual norm analysis of Section 5 to
matrices. We start by defining the matrix version of the
quasi-additive algorithm of [14, 20]. We remark that ma-
trix versions of the EG algorithm and the Winnow algorithm
(related to specific instances of the quasi-additive algorithm)
have been proposed and analyzed in [28, 29, 30]. When deal-
ing with the trace norm regularizer, their algorithms could
be specialized to our multiview framework to obtain mistake
bounds comparable to ours. See the brief discussion at the
end of this section.

The quasi-additive matrix algorithm maintains a d × K
matrix W . Initially, W0 is the zero matrix. If s− 1 mistakes
have been made in the first t− 1 time steps, then the predic-
tion at time t is SGN

(
〈Ws−1, Xt〉

)
, where Xt is the d × K

matrix [x1,t, . . . ,xK,t] in which xi,t is the instance vector
associated with the i-th view at time t, and 〈Ws−1, Xt〉 is the
standard matrix inner product 〈Ws−1, Xt〉 = TR

(
W>

s−1Xt

)
.

If a mistake occurs at time t, then Ws−1 is updated with
Ws = ∇ 1

2 ‖Vs‖2f where, in turn, the d × K matrix Vs is
updated using a matrix Perceptron rule, Vs = Vs−1 + ytXt.

A useful property of norms ‖U‖f = f(σU) is that their
duals are easily computed.

Theorem 7 [21, Theorem 2.4] If f is absolutely symmetric
and ‖U‖f = f(σU), then ‖U‖f∗ = f∗(σU) where f∗ is the
convex dual of f .

In the case of Schatten p-norms, we have that the dual of
vector norm ‖·‖p is vector norm ‖·‖q, where q = p/(p − 1)

is the dual coefficient of p.
An important feature of the quasi-additive algorithms for

vectors is that the mapping µ : v 7→ µ(v) = ∇ 1
2 ‖v‖

2 is
invertible whenever the vector norm ‖·‖ satisfies certain reg-
ularity properties (see, e.g., [8, page 294]). We call such
norms Legendre. Hence, we “do not lose information” when
the primal weight vector v is mapped to the weight vector
w = µ(v) used for prediction. In particular, we always have
that µ−1(v) = ∇ 1

2 ‖v‖
2
∗, where ‖·‖∗ is the dual norm of a

Legendre norm ‖·‖ (see, e.g., [8, Lemma 11.5]). This prop-
erty is preserved when the algorithm is applied to matrices.
This is shown by the following result where, without loss
of generality, we prove the property for f(σU) rather than
1
2f(σU)2. (In fact, if f is Legendre, then 1

2f
2 is also Legen-

dre).

Theorem 8 Let f be a Legendre function. If ‖U‖f =

f(σU) then
(
∇‖·‖f

)−1 = ∇‖·‖f∗ .

The following result will be useful.

Theorem 9 [21, Theorem 3.1] Let U DIAG[σA]V > be an
SVD decomposition of a matrix A. If ‖·‖f is a matrix norm
such that ‖A‖f = f(σA) for f Legendre, then ∇f(σA) =
σ∇‖A‖f

. Moreover, ∇‖A‖f = U DIAG
[
∇f(σA)

]
V >.

Proof of Theorem 8: If A = U DIAG[σA]V >, then by The-
orem 9
∇‖A‖f = U DIAG

[
∇f(σA)

]
V > = U DIAG

[
σ∇‖A‖f

]
V > .

Therefore, using Theorem 9,

∇
∥∥∥(∇‖A‖f)∥∥∥

f∗
= U DIAG

[
∇f∗

(
∇f(σA)

)]
V >

= U DIAG[σA]V > (f is Legendre)
= A

concluding the proof.

We now develop a general analysis of the quasi-additive ma-
trix algorithms, and then specialize it (in Theorem 10 below)
to a multiview algorithm operating with a Schatten p-norm
regularizer.

We start by adapting the dual norm proof of Section 5 to
an arbitrary matrix norm ‖A‖f = f(σA), where f is Legen-
dre. Let Vm be the primal weight matrix after any number m
of mistakes. By Taylor expanding 1

2 ‖Vs‖2f around Vs−1 for
each s = 1, . . . ,m, and using yt 〈Ws−1, Xt〉 ≤ 0, we get

1
2
‖Vm‖2f ≤

m∑
s=1

D (Vs‖Vs−1)

where D (Vs‖Vs−1) is the matrix Bregman divergence
1
2

(
‖Vs‖2f − ‖Vs−1‖2f

)
− yt 〈Ws−1, Xt〉.

Fix any d×K matrix U . First, we derive a matrix version
of the convex inequality for vector norms. We use a classical
result by von Neumann (see, e.g., [18, p. 182]) stating that
〈V,U〉 ≤ σ>V σU for any two d ×K matrices U and V . We
have
‖Vm‖f ‖U‖f∗ = f

(
σVm

)
f∗
(
σU

)
(by Theorem 7)

≥ σ>Vm
σU (by the convex ineq. for norms)

≥ 〈Vm, U〉 (by von Neumann’s ineq.).

In addition, we have 〈U, Vs〉 = 〈U, Vs−1〉+ yt〈U,Xt〉. Thus
we obtain

‖Vm‖ ≥
〈U, Vm〉
‖U‖f∗

≥
Km−

∑
t `t(U)

‖U‖f∗

where `t(U) def=
∑K

i=1

[
1 − yt u>i xi,t

]
+

=
∑K

i=1 `t(ui).
Solving for m gives

m ≤ 1
K

∑
t∈M

`t(U) +
‖U‖f∗
K

√√√√2
m∑

s=1

D (Vs‖Vs−1) . (18)

Equation (18) is our general starting point for analyzing mul-
tiview algorithms working under spectral co-regularization.
The analysis reduces to bounding from above the second-
order term D (·‖·) of the specific matrix norm ‖·‖f under
consideration.

For the rest of this section we focus on the Schatten 2p-
norm ‖V ‖s2p

= ‖σV ‖2p ,where V is a generic d×K matrix,
and p is a positive integer (thus 2p is an even number ≥ 2).
Note that, in general, ‖V ‖2s2p

= TR
(
(V >V)p

)1/p
.

In order to prove our main result, stated below, we use
some facts from differential matrix calculus. A standard ref-
erence on this subject is [23], to which the reader is referred.

Theorem 10 The number of mistakes m made by the
2p-norm matrix Perceptron, run on any sequence
(X1, y1), (X2, y2), . . . satisfies, for any d × K matrix
U ,

m ≤ 1
K

∑
t∈M

`t(U) + (2p− 1)

(
Xs2p

‖U‖s2q

K

)2

+
Xs2p ‖U‖s2q

K

√
2p− 1
K

∑
t∈M

`t(U)

whereXs2p
= maxt∈M ‖Xt‖s2p

, ‖U‖s2q
is the Schatten 2q-

norm of U , with 2q = 2p
2p−1 , and M is the set of mistaken

trial indices.

Remark Similarly to the vector case, when the parameter
p is chosen to be logarithmic in r = min{d,K}, the p-
norm matrix Perceptron penalizes diversity using the trace
norm of U . If the vectors ui span a subspace of size� K,
and instances tend to have K nonzero singular values of
roughly the same magnitude, then ‖U‖s2q

≈ ‖U‖s2
while

X2
s2p
≈ X2

s∞ ≈ X2
s2
/K. Hence this choice of p leads

(at least in the linearly separable case) to a factor K im-
provement over the bound achieved by the matrix algorithm
based on the Frobenius norm (p = 1 in Theorem 10), which
amounts to running K independent Perceptrons in parallel
and then average their mistakes.

The following trace inequality is our main technical lemma.

Lemma 11 Let A,B be positive semidefinite matrices, of
size d × d and K × K respectively, with the same nonzero
eigenvalues. LetX be an arbitrary real matrix of size d×K.
Then, for any pair on nonnegative exponents l, g ≥ 0, we
have TR(X>AlXBg) ≤

(
TR(X>X)p

)1/p(
TR A(l+g)q

)1/q

where 1/p+ 1/q = 1, p ≥ 1.

Proof of Lemma 11: We first consider the case l ≤ g.
By the Cauchy-Schwartz and Holder’s inequalities applied
to traces [23, Ch.11] we have

TR(X>AlXBg) = TR
(
B(g−l)/2X>AlXB(g+l)/2

)
(19)

≤ TR
(
X>A2lXBg−l

)1/2
TR
(
X>XBg+l

)1/2

≤ TR
(
X>A2lXBg−l

)1/2
Tp

(
X>X

)1/2
Tq

(
Bg+l

)1/2

where we used the shorthand Tr(Z) = (TRZr)1/r. In the
case when l > g we can simply swap the matrices X>Al

and XBg and reduce to the previous case.
We now recursively apply the above argument to the

left-hand side of (19). Recalling that Tq(A) = Tq(B) and
Tp(X>X) = Tp(XX>), after n steps we obtain

TR
(
X>AlXBg

)
≤
(

TR(X>Al′XBg′)
)1/2n

×

× Tp

(
X>X

)Pn
i=1(1/2)i

Tq

(
Bg+l

)Pn
i=1(1/2)i

for some pair of exponents l′, g′ ≥ 0 such that l′+g′ = l+g.
Since for any such pair l′, g′, we have TR(X>Al′XAg′) <
∞, we can take the limit as n → ∞. Recalling that∑∞

i=1(1/2)i = 1 completes the proof.

Proof of Theorem 10: We set for brevity G : Rd×K → R,

G(V) =
1
2

TR
(
(V >V)p

)1/p=
1
2
‖V ‖2s2p

.

Thus in our case

D (Vs‖Vs−1) = G(Vs−1+ytXt)−G(Vs−1)−yt 〈Ws−1, Xt〉.

Since G(V) is twice4 continuously differentiable, by the
mean-value theorem we can write

D (Vs‖Vs−1) =
1
2

VEC(Xt)>HG(ξ)VEC(Xt), (20)

where VEC(X) is the standard columnwise vectorization of a
matrix X , HG denotes the Hessian matrix of (matrix) func-
tion G and ξ is some matrix on the line connecting Vs−1

to Vs. Using the rules of matrix differentiation, the gra-
dient ∇G of G is ∇G(V) = c(V)VEC(D)> where we
set for brevity D = V Bp−1, c(V) = TR(Bp)1/p−1, with
B = V >V . Taking the second derivative HG = ∇∇G
gives HG(V) = VEC (D)∇(c(V)) + c(V)∇ (D). Now,
recalling the definition of c(V), it is not hard to show that
VEC (D)∇(c(V)) is the Kd×Kd matrix

2(1− p)TR(Bp)1/p−2 VEC(D) VEC(D)>.

Since p ≥ 1 this matrix is negative semidefinite, and we
can disregard it when bounding from the above the quadratic
form (20). Thus we continue by considering only the second
term c(V)∇ (D) of the Hessian matrix. We have

∇ (D) =
(
Bp−1 ⊗ Id

)
+ (Ik ⊗ V)∇

(
Bp−1

)
,

4In fact G is C∞ everywhere but (possibly) in zero, since
TR

“
(V >V)p

”
is just a polynomial function of the entries of V .

Moreover TR
“
(V >V)p

”
= 0 if and only if V is the zero matrix.

where

∇(Bp−1) =

(
p−2∑
`=0

B` ⊗Bp−2−`

)
(IK2 + TK)

(
Ik ⊗ V >

)
,

and TK is the K2 × K2 commutation matrix such that
TK VEC(M) = VEC(M>) for anyK×K matrixM . Putting
together

(20) ≤ c(V)
2

VEC(Xt)>(Bp−1 ⊗ Id) VEC(Xt)

+
c(V)

2
VEC(Xt)>(Ik ⊗ V)Σ×

× (IK2 + TK)
(
Ik ⊗ V >

)
VEC(Xt) , (21)

where we used the shorthand Σ =
∑p−2

`=0 B
` ⊗Bp−2−`. We

now bound the two terms in the right-hand side of (21). By
well-known relationships between Kronecker products and
the VEC operator (see [23, Ch. 3]) we can write
c(V)

2
VEC(Xt)>(Bp−1 ⊗ Id) VEC(Xt)

=
c(V)

2
TR(X>

t XtB
p−1) ≤ 1

2
(

TR(X>
t Xt)p

)1/p
,

independent of V . The majorization follows from Holder’s
inequality applied to the positive semidefinite matrices
X>

t Xt and Bp−1. Moreover, it is easy to see that the sym-
metric matrices Σ and TK commute, thereby sharing the
same eigenspace. Hence, Σ (IK2 + TK) 4 2Σ, and we can
bound from above the second term in (21) by

c(V)VEC(Xt)>
p−2∑
`=0

B` ⊗Ap−1−`VEC(Xt) ,

where we set A = V V >. Again, [23, Ch. 3] allows us to
rewrite this quadratic form as the sum of traces

c(V)
p−2∑
`=0

TR(X>
t A

p−1−`XtB
`) .

Since A and B have the same nonzero eigenvalues, we can
apply Lemma 11 to each term and put together as in (21).
After simplifying we get

(20) ≤ 1
2

(2p−1)
(

TR(X>
t Xt)p

)1/p
=

1
2

(2p−1)||Xt||2s2p
.

The desired bound is then obtained by plugging back into
(18), solving the resulting inequality for m, and overapprox-
imating.

The result of Theorem 10 is similar to those obtained
in [28, 29, 30]. However, unlike these previous results,
our matrix algorithm has no learning rate to tune (a prop-
erty inherited from the vector p-norm Perceptron of [13])
and works for arbitrary nonsquare matrices U . We also ob-
serve that the prediction ŷt = SGN

(
TR
(
W>

s−1Xt

))
of the

p-norm matrix Perceptron reduces to computing the sign of
TR
(
(V >s−1Vs−1)p−1V >s−1Xt

)
(recall the expression for ∇G

calculated in the proof of Theorem 10). Since matrix Vs

is updated additively, it is clear that both V >s−1Vs−1 and
V >s−1Xt do depend on instance vectors xi,t only through in-
ner products. This allows us to turn our p-norm matrix Per-
ceptron into a kernel-based algorithm, and repeat the analysis
given here using a standard RKHS formalism.

8 Conclusions and ongoing research

In this work we have studied the problem of learning mul-
tiple tasks online using various approaches to formalize the
notion of task relatedness.

Our results can be extended in different directions. First,
in Sections 3.2 and 6 it might be interesting to devise meth-
ods for dynamically adapting the b parameter as new data
are revealed. Second, the mistakes of the second-order algo-
rithm MMPERC have been bounded using a first-order anal-
ysis. A more refined analysis should reveal in the bound an
explicit dependence on the spectral properties of the data.
It is also worth noting that the significance of the mistake
bound obtained for MMPERC relies on the fact that the algo-
rithm assumes the tasks to be different, although somewhat
related. In the case when the K observed instances share
the same label at each time step (like in multiview learning),
we could not devise an algorithm with a significant advan-
tage over the following trivial baseline: run K Perceptrons
in parallel and use the sum of margins to predict. Third, it
would be interesting to study the problem of learning multi-
ple tasks when K predictions have to be output in each step.
In this case the main difficulty appears to be the control of
the interaction among instances at each time step. Fourth, it
would be also interesting to prove lower bounds on the num-
ber of mistakes, as a function of task relatedness. Finally,
since multitask learning problems arise naturally in a variety
of settings, spanning from biology to news processing, we
plan to complement the theoretical analysis presented in this
paper with experimental results, so as to evaluate the empir-
ical performance of our algorithms in real-case scenarios.
Acknowledgments. Thanks to Sham Kakade, Massi Pontil,
and Francis Bach for useful discussions. We also thank the
COLT 2008 reviewers for their comments. This work was
supported in part by the PASCAL2 Network of Excellence
under EC grant no. 216886. This publication only reflects
the authors’ views.

References
[1] J. ABERNETHY, P.L. BARTLETT & A. RAKHLIN, Multitask

learning with expert advice, Proc. 20th COLT, pp. 484–498,
Springer, 2007.

[2] R.K. ANDO & T. ZHANG, A framework for learning predic-
tive structures from multiple tasks and unlabeled data, JMLR,
6, pp. 1817–1853, MIT Press, 2005.

[3] A. ARGYRIOU, T. EVGENIOU & M. PONTIL Multi-Task
feature learning, NIPS 19, pp. 41–48, MIT Press, 2007.

[4] A. ARGYRIOU, C.A. MICCHELLI, M. PONTIL & Y. YING,
A spectral regularization framework for multi-task structure
learning, NIPS 20, MIT Press, 2008.

[5] K. AZOURY AND M. WARMUTH, Relative loss bounds for
on-line density estimation with the exponential family of dis-
tributions, Machine Learning, 43, pp. 211–246, 2001.

[6] U. BREFELD, T. GAERTNER, T. SCHEFFER, & S. WROBEL,
Efficient co-regularised least squares regression, Proc. 23rd
ICML, 2006.

[7] N. CESA-BIANCHI, A. CONCONI & C. GENTILE, A
second-order Perceptron algorithm, SIAM Journal on Com-
puting, 34/3, pp. 640–668, 2005.

[8] N. CESA-BIANCHI & G. LUGOSI, Prediction, Learning,
and Games. Cambridge University Press, 2006.

[9] O. DEKEL, P.M. LONG & Y. SINGER, Online learning of
multiple tasks with a shared loss, JMLR, 8, pp. 2233–2264,
2007.

[10] T. EVGENIOU, M. PONTIL & T. POGGIO, Regularization
networks and Support Vector Machines, Advances in Com-
putational Mathematics, 13/1, pp. 1–50, Springer, 2000.

[11] T. EVGENIOU, C. MICCHELLI & M. PONTIL, Learning
Multiple tasks with kernel methods, JMLR, 6, pp. 615–637,
MIT Press, 2005.

[12] Y. FREUND & R.E. SCHAPIRE, Large margin classification
using the Perceptron algorithm. Machine Learning, 37:3, pp.
277–296, 1999.

[13] C. GENTILE, The robustness of the p-norm algorithms, Ma-
chine Learning, 53, pp. 265–299, 2003.

[14] A. GROVE, N. LITTLESTONE & D. SCHUURMANS, General
convergence results for linear discriminant updates, Machine
Learning, 43, pp. 173–210, 2001.

[15] M. HERBSTER, M. PONTIL & L. WAINER, Online learning
over graphs, Proc. 22nd ICML, pp. 305–312, ACM Press,
2005.

[16] L. HOGBEN, Handbook of Linear Algebra, Discrete Mathe-
matics and Its Applications, 39, CRC Press, 2006.

[17] R.A. HORN & C.R. JOHNSON, Matrix Analysis. Cambridge
University Press, 1985.

[18] R.A. HORN & C.R. JOHNSON, Topics in Matrix Analysis.
Cambridge University Press, 1991.

[19] A. JAGOTA & M.K. WARMUTH, Continuous and discrete
time nonlinear gradient descent: relative loss bounds and
convergence, Electr. Proc. 5th International Symposium on
Artificial Intelligence and Mathematics, 1998. Electronic,
http://rutcor.rutgers.edu/∼amai.

[20] J. KIVINEN & M. WARMUTH, Relative loss bounds for mul-
tidimensional regression problems, Machine Learning, 45,
pp. 301–329, 2001.

[21] A.S. LEWIS, The convex analysis of unitarily invariant ma-
trix functions, Journal of Convex Analysis, 2, pp. 173–183,
1995.

[22] N. LITTLESTONE, Mistake bounds and logarithmic linear-
threshold learning algorithms. Ph.D. Thesis, University of
California at Santa Cruz, 1989.

[23] J.R. MAGNUS, & H, NEUDECKER, Matrix Differential Cal-
culus with Applications in Statistics and Econometrics, re-
vised edition. John Wiley, 1999.

[24] A. MAURER, Bounds for linear multi-task learning, JMLR,
7, pp. 117–139, MIT Press, 2006.

[25] R.T. ROCKAFELLAR, Convex Analysis. Princeton University
Press, 1970.

[26] D. ROSENBERG & P. BARTLETT, Rademacher complexity
of co-regularized kernel classes, Proc. Artificial Intelligence
and Statistics, 2007.

[27] V. SINDHWANI, P. NIYOGI & M. BELKIN, A co-regularized
approach to semi-supervised learning. Proc. ICML Workshop
on Learning with Multiple Views, 2005.

[28] K. TSUDA, G. RAETSCH & M.K. WARMUTH, Matrix expo-
nentiated gradient updates for on-line learning and Bregman
projection, JMLR, 6, pp. 995–1018, 2005.

[29] M.K. WARMUTH & D. KUZMIN, Online variance minimiza-
tion, Proc. 19th COLT, Springer, 2006.

[30] M.K. WARMUTH, Winnowing subspaces. Proc. 24th ICML,
pp. 999–1006, ACM Press, 2007.

