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Abstract

We describe and explore a new perspective on the
sample complexity of active learning. In many sit-
uations where it was generally believed that ac-
tive learning does not help, we show that active
learning does help in the limit, often with expo-
nential improvements in sample complexity. This
contrasts with the traditional analysis of active
learning problems such as non-homogeneous lin-
ear separators or depth-limited decision trees, in
which ©(1/¢) lower bounds are common. Such
lower bounds should be interpreted carefully; in-
deed, we prove that it is always possible to learn an
e-good classifier with a number of samples asymp-
totically smaller than this. These new insights arise
from a subtle variation on the traditional definition
of sample complexity, not previously recognized
in the active learning literature.
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In particular, the most concrete noteworthy positive resul
for when active learning helps is that of learning homo-
geneous (i.e., through the origin) linear separators, when
the data is linearly separable and distributed uniformigrov
the unit sphere, and this example has been extensively an-
alyzed [8, 2, 10, 4, 9]. However, few other positive results
are known, and there are simple (almost trivial) examples,
such as learning intervals or non-homogeneous linear sepa-
rators under the uniform distribution, where previous gnal
ses of sample complexities have indicated that perhapgacti
learning does not help at all [8].

In this work, we approach the analysis of active learn-
ing algorithms from a different angle. Specifically, we fgoin
out that traditional analyses have studied the number ef lab
requests required before an algorithm can both produee an
good classifieandprove that the classifier’s error is no more
thane. These studies have turned up simple examples where
this number is no smaller than the number of random labeled
examples required for passive learning. This is the case for
learning certain nonhomogeneous linear separators and in-
tervals on the real line, and generally seems to be a common
problem for many learning scenarios. As such, it has led
some to conclude that active learnidges not helfor most

Machine learning research has often focused on the problemearning problems. One of the goals of our present analysis
of learning a classifier from labeled examples sampled inde-is to dispel this misconception. Specifically, we study the
pendent from the particular learning algorithm that is used number of labels an algorithm needs to request before it can
However, for many contemporary practical problems such produce are-good classifier, even if there is no accessible
as classifying web pages or detecting spam, there is oftenconfidence bound available to verify the quality of the clas-
an abundance afnlabeleddata available, from which arel-  sifier. With this type of analysis, we prove that active learn
atively small subset is selected to be labeled and used foring can essentially always achieve asymptotically superio
learning. In such scenarios, the question arises of how tosample complexity compared to passive learning when the
select that subset of examples to be labeled. VC dimension is finite. Furthermore, we find that for most
One possibility, which has recently been generating sub- natural learning problems, including the negative exasple
stantial interest, iactive learning In active learning, the  given in the previous literature, active learning can aghie
learning algorithm itself is allowed to select the subsetrof exponential improvements over passive learning with re-
labeled examples to be labeled. It does this sequentiadly (i  spect to dependence en This situation is characterized in
interactively), using the requested label informationnfro  Figure 1.1.
previously selected examples to inform its decision of Wwhic
example to select next. The hope is that by only requesting1.1 A Simple Example: Unions of Intervals
the labels of informative examples, the algorithm can learn Tq get some intuition about when these types of sample com-
a good classifier using significantly fewer labels than would pjexity are different, consider the following example. Sup

be required if the labeled set were sampled at random. pose thatC is the class of all intervals ovéd, 1] and D is
A number of active learning analyses have recently been

proposed in a PAC-style setting, both for the realizable and 1w slightly abuse the term “exponential” throughout thegrap

for the agnostic cases, resulting in a sequence of importantin particular, we refer to anyolylog(1/€) as being an exponential

positive and negative results [6, 7, 8, 2, 10, 4, 9, 13, 12]. improvement ovet /e.



butions are as follows:

Best accessible confiden

bound on the error o We distinguish between two different variations on the
/ definition of sample complexity. The traditional defi-
True error rate of nition, which we refer to aserifiable sample complex-

the leames hypothesis ity, focuses on the number of label requests needed to

obtain a confidence bound indicating an algorithm has
achieved at most error. The newer definition, which
we refer to simply asample complexityocuses on the
number of label requests before an algorithm actually

. . labels achieves at mosterror. We point out that the latter is
v polylog(1/e) 1/e often significantly smaller than the former, in contrast
to passive learning where they are often equivalent up
Figure 1.1: Active learning can often achieve exponential to constants for most nontrivial learning problems.

improvements, though in many cases the amount of improve-

ment cannot be detected from information available to the e We prove thaanydistribution and finite VC dimension

learning algorithm. Here may be a target-dependent con- concept class has active learning sample complexity

stant. asymptotically smaller than the sample complexity of
passive learning for nontrivial targets. A simple corol-

_ L o lary of this is that finite VC dimension implieg(1/¢)
a uniform distribution ovef0, 1]. If the target function is active learning sample complexity.

the empty interval, then for any sufficiently smaliin order
to verify with high confidence that this (or any) interval has e \We show itis possible to actively learn with exponen-
error < ¢, we need to request labels in at least a constant tial rate a variety of concept classes and distributions,

fraction of theQ(1/e) intervals|0, €], [, 2¢], . . ., requiring many of which are known to require a linear rate in the
Q(1/e) total label requests. traditional analysis of active learning: for example, in-
However, no matter what the target function is, we can tervals on0, 1] and non-homogeneouslinear separators
findane-good classifier with only a logarithmic sample com- under the uniform distribution.
plexity via the following extremely simple 2-phase leaigin
algorithm. We start with a larg€X(1/¢)) set of unlabeled ex- e We show that even in this new perspective, there do
amples. In the first phase, on each round we choose a point ~ exist lower bounds; it is possible to exhibit somewhat
2 uniformly at random from the unlabeled sample and query contrived distributions where exponential rates are not
its label. We repeat this until we observe the firstlabel, at achievable even for some simple concept spaces (see
which point we enter the second phase. In the second phase, = Theorem 12). The learning problems for which these
we alternate between running one binary search on the ex-  lower bounds hold are much more intricate than the
amples betweef and thatz and a second on the examples lower bounds from the traditional analysis, and intu-
between thatr and 1 to approximate the end-points of the itively seem to represent the core of what makes a hard
interval. At the end, we output a smallest interval consiste active learning problem.

with the observed positive labels.

If the targeth” labels every point as-1 (the so-called 2 Background and Notation
all-negativefunction), the algorithm described above would
output a hypothesis with error even aftep label requests.  Let X’ be an instance space apd= {—1,1} be the set of
On the other hand, if the target is an inter{@lb] C [0, 1], possible labels. Let’ be the hypothesis class, a set of mea-
whereb — a = w > 0, then after roughlyO(1/w) queries surable functions mapping frodi to ), and assume that
(a constant number that depends only on the target), a posihas VC dimensionl. We consider here the realizable set-
tive example will be found. Since onty(log(1/¢)) queries  ting in which it is assumed that the instances are labeled by
are required to run the binary search to reach erroreates a target functiorh* in the classC'. Theerror rate of a hy-
sample complexity is at worst logarithmic ife. Thus, we pothesish with respect to a distributiof overX is defined
see a sharp distinction between the sample complexity re-aser(h) = Pp(h(x) # h*(z)).

quired tofind a good classifier (logarithmic) and the sample We assume the existence of an infinite sequence

complexity needed to both find a good classiiad verify 21,9, ... of examples sampled i.i.d. accordingfo The

that it is good. learning algorithm may access any finite initial segment
This example is particularly simple, since there is effec- 21, ¥2,...,7,. Essentially, this means we allow the algo-

tively only one“hard” target function (the all-negative tar-  rithm access to an arbitrarily large, but finite, sequence of
get). However, most of the spaces we study are significantly random unlabeled examples. In active learning, the algo-
more complex than this, and there are generally many targetdithm can select any examplig, and request the labgf (x;)

for which itis difficult to achieve good verifiable complexit  that the target assigns to that example, observing theslabel
of all previous requests before selecting the next exanople t

Our Results: We show that in many situations where it query. The goalis to find a hypothegisvith small error with
was previously believed that active learning cannot halp, a respect taD, while simultaneously minimizing the number
tive learning does help in the limit. Our main specific contri  of label requests that the learning algorithm makes.



2.1 Two Definitions of Sample Complexity

The following definitions present a subtle but significaist di
tinction we refer to throughout the paper. Several of the re-
sults that follow highlight situations where these two diefin
tions of sample complexity can have dramatically different
dependence on

Definition 1 A function S(e, d, h*) is a verifiable sample
complexityfor a pair (C, D) if there exists an active learn-
ing algorithm A(t, §) that outputs both a classifiér, anda
valueé; € R after making at mostlabel requests, such that
for any target functioh* € C,e € (0,1/2),8 € (0,1/4),
foranyt > S(e, 6, h*),

Ppler(hy) <& <e)>1-4.

Definition 2 A functionS(e, §, h*) is a sample complexity
for a pair (C, D) if there exists an active learning algorithm
A(t,d) that outputs a classifieh; after making at most
label requests, such that for any target functiohe C, e €
(0,1/2),0 € (0,1/4), for anyt > S(e, , h*),

Pp(er(hy) <€) >1-0.

Note that both types of sample complexity can be target-
dependent and distribution-dependent. The only distincti

easy to obtain for any learning problem, by requesting the
labels of random examples. As such, there has been much
interest in determining when it is possible to achieve verifi
able sample complexitgmallerthan this, and in particular,
when the verifiable sample complexity is a polylogarithmic
function of1/e (representing exponential improvements over
passive learning).

One of the earliest active learning algorithms in this
model is the selective sampling algorithm of Cohn, Atlas,
and Ladner [6], henceforth referred to as CAL. This algo-
rithm keeps track of two spaces—the curreatsion space
C;, defined as the set of hypotheseglitonsistent with all
labels revealed so far, and the curresgion of uncertainty
R, = {I € X : dhy,he € C; S.t.hl(x) 75 hg(x)} In
each round, the algorithm picks a random unlabeled exam-
ple fromR; and requests its label, eliminating all hypotheses
in C; inconsistent with the received label to make the next
version spac€’;, ;. The algorithm then defineR;,; as the
region of uncertainty for the new version spaCg.; and
continues. lIts final hypothesis can then be taken arbigraril
from Cy, the final version space, and we use the diameter of
C, for theé¢, error bound.

While there are a small number of cases in which this
algorithm and others have been shown to achieve exponen-
tial improvements in the verifiable sample complexity fdr al

is whether or not there is an accessible guarantee on the errotargets (most notably, the case of homogeneous linear sepa-

of the chosen hypothesis that is also at mosThis confi-

rators under the uniform distribution), there exist extegm

dence bound can only depend on quantities accessible to thgjmple concept classes for whi€k(1/¢) labels are needed

learning algorithm, such as theequested labels. Thus, any
verifiable sample complexity function is also a sample com-
plexity function, but we study a variety of cases where the
reverse is not true. In situations where there are sample com
plexity functions significantly smaller than any achiewabl
verifiable sample complexities, we sometimes refer to the
smaller quantity as thieue sample complexity distinguish
it from the verifiable sample complexity.

A common alternative formulation of verifiable sample
complexity is to letA takee as an argument and allow it to

for some targets. For example, consider the class of interva
in [0, 1] under the uniform distribution. In order to distin-
guish the all-negative target from the set of hypotheses tha
are positive on a region of weightand make a high proba-
bility guarantee{2(1/¢) labeled examples are needed [8].
Recently, there have been a few quantities proposed to
measure the verifiable sample complexity of active learning
on any given concept class and distribution. Dasgupfits
ting index[8], which is dependent on the concept class, data
distribution, target function, and a parametgrquantifies

choose online how many label requests it needs in order tohow easy it is to make progress toward reducing the diam-

guarantee error at most[8]. This alternative definition is
essentially equivalent (either definition can be reduceteo
other without significant loss), as the algorithm must be abl
to produce a confidence bound of size at nmwash the error

of its hypothesis in order to decide when to stop requesting
labels anyway.

2.2 The Verifiable Sample Complexity

To date, there has been a significant amount of work study-
ing the verifiable sample complexity (though typically un-
der the aforementioned alternative formulation). It isacle
from standard results in passive learning that verifiabhe-sa
ple complexities oD ((d/e)log(1/€) + (1/€)log(1/6)) are

There is some question as to what the “right” formal model
of active learning is in general. For instance, we couldeadtlet
A generate an infinite sequence /of hypotheses (ofh, é) in
the verifiable case), where: can depend only on the firstlabel
requests made by the algorithm along with some initial segme
of unlabeled examples (as in [5]), representing the caseenlie
are not sure a-priori of when we will stop the algorithm. Hoere
for our present purposes, such alternative models areaquivin
sample complexity up to constants.

eter of the version space by choosing an example to query.
Another quantity to which we will frequently refer is Han-
neke’sdisagreement coefficiefit2], defined as follows.

Definition 3 Foranyh € C'andr > 0, let B(h, r) be a ball
of radiusr aroundh in C. Thatis,

B(h,r) ={h € C :Pp(h(z) # 1 (z)) <r}.

For any hypothesis class', define theregion of disagree-
mentas

DIS(C) = {.I' € X :dhy,he € C: hl(.%') 75 hg(w)} .

Additionally, letC' denote any countable dense subset 6f
For our purposes, thdisagreement coefficient of a hypothe-
sish, denoted);,, is defined as
By, = sup P(DIS(B(h, 7’))).
r>0 r

3That is, C' is countable and/h € C,Ve > 0,30 € C :
P(h(X) # h'(X)) < e. Such a subset exists, for example, in
any C' with finite VC dimension. We introduce this countable
dense subset to avoid certain degenerate behaviors, sweheas
DIS(B(h,0)) = X.



The disagreement coefficient focancept spacé€’ is de-
fined as) = sup,,cc On-

The disagreement coefficient is often a useful quan-
tity for analyzing the verifiable sample complexity of ac-
tive learning algorithms. For example, it has been shown
that the algorithm of Cohn, Atlas, and Ladner described
above achieves a verifiable sample complexity at réipst -
polylog(1/(ed)) when run with concept class for target
functionh* € C [12]. We will see that both the disagree-
ment coefficient and splitting index are also useful queastit
for analyzing true sample complexities, though their use in
that case is less direct.

2.3 The True Sample Complexity

Theorem 6 SupposeC' has finite VC dimension, and let
D be any distribution onX. For any passive learning
sample complexitys, (e, d, h) for (C, D), there exists an
active learning algorithm achieving a sample complexity
Sa(e,6,h) such that, for all targetsh € C for which
Sp(e,6,h) =w(1),*

Sa(€,6,h) = 0(Sp(€/4,6,h)).
In particular, this implies the following simple corollary

Corollary 7 For any C' with finite VC dimension, and any
distribution D over X, there is an active learning algorithm
that achieves a sample complexitye, J, i) such that

S(e, d,h) =o0(1/e)

This paper focuses on situations where true sample complex-

ities are significantly smaller than verifiable sample com-
plexities. In particular, we show that many common pairs
(C, D) have sample complexity that is polylogarithmic in
both 1/e and 1/§ and linear only in some finite target-
dependent constanf, . This contrasts sharply with the infa-
mousl/e lower bounds mentioned above, which have been
identified for verifiable sample complexity. The implicatio

is that, for any fixed target*, such lower bounds vanish as
e approache$. This also contrasts with passive learning,
wherel /e lower bounds are typically unavoidable [1].

Definition 4 We say tha{C, D) is actively learnable at an
exponential rate if there exists an active learning algamit
achieving sample complexity

S(e,d, ") =~p~ - polylog (1/(ed))
for some finitey,- = v(h*, D) independent of andJ.

3 Strict Improvements of Active Over Passive

In this section, we describe conditions under which active
learning can achieve a sample complexity asymptoticaly su
perior to passive learning. The results are surprisingty-ge
eral, indicating that whenever the VC dimension is finite,
essentiallyany passive learning algorithm is asymptotically
dominatedoy an active learning algorithm @il targets.

Definition 5 A function S(e, 0, h*) is a passive learning
sample complexity for a paiC, D) if there exists an algo-
rithm  A(((x1, h*(x1)), (x2, h*(x2)), ..., (xt, h*(x1))),0)
that outputs a classifieli;, such that for any target function
h* e C,e € (0,1/2),6 € (0,1/4), for anyt > S(e, d, h*),

Pp(er(hy) <€) >1-06.

Thus, a passive learning sample complexity corresponds
to a restriction of an active learning sample complexity to
algorithms that specifically request the fitslabels in the
sequence and ignore the rest. In particular, it is known that
for any finite VC dimension class, there is alwayafi /¢)
passive learning sample complexity [14]. Furthermores thi
is often tight (though not always), in the sense that for an
passive algorithm, there exist targets for which the corre-
sponding passive learning sample complexit@id /¢) [1].

The following theorem states that for any passive learning
sample complexity, there exists an achievable active learn
ing sample complexity with a strictly slower asymptoticerat
of growth. Its proof is included in Appendix D.

for all targetsh € C.

Proof: Let d be the VC dimension of’. The passive
learning algorithm of Haussler, Littlestone & Warmuth [14]
is known to achieve a sample complexity no more than
(kd/e)log(1/0), for some universal constaht< 200 [14].
Applying Theorem 6 now implies the result. [ |

Note the interesting contrast, not only to passive learning
but also to the known results on therifiablesample com-
plexity of active learning. This theorem definitively state
that the{2 (1/¢) lower bounds common in the literature on
verifiable samples complexity careverarise in the anal-
ysis of the true sample complexity of finite VC dimension
classes.

4 Composing Hypothesis Classes

Recall the simple example of learning the class of inter-
vals over[0, 1] under the uniform distribution. It is well
known that the verifiable sample complexity of the “all-
negative” classifier in this class {3(1/¢). However, con-
sider the more limited clas§;, C C containing only the
intervals b with w(h) P(h(X) = +1) > 0. Using
the simple algorithm described in Section 1.1, this rettdc
class can be learned with a (verifiable) sample complexity
of only O(1/w(h) + log(1/€)). Furthermore, the remain-
ing set of classifiers’s = C \ ¢’ (which consists of only
the all-negative classifier) has sample complegityThus,

C = C; U (s, and both(Cy, D) and(Cs, D) are learnable
at an exponential rate.

It turns out that it is often convenient to view concept
classes in terms of such well-constructed, possibly irinit
sequences of subsets. Generally, given a distribufiand
a function class”, suppose we can construct a sequence
of subclasses(, Cs, ..., whereC' = U2, C;, such that
it is possible to actively learn any subclags with only

“Recall that we say a non-negative functipfe) = o (1/e) iff
PE% o(€)/(1/e) = 0. Similarly, ¢(€) = w(1) iff 213% 1/¢(e) = 0.
Here and below, the(-), w(-), ©(-) andO(-) notation should be
interpreted ag — 0 (from the+ direction), treating all other pa-
rameters (e.g4 andh™) as fixed constants. Note that any algorithm
achieving a sample complexity, (¢, §, h) # w(1) is guaranteed,
with probability > 1 — 4, to achieve error zero using a finite num-
ber of samples, and therefore we cannot hope to achieve &rslow
asymptotic growth in sample complexity.



Si(e, 8, h) sample complexity. Thus, if we know that the tar-
geth* is in C;, it is straightforward to guaranteég (e, J, h*)
sample complexity. However, it turns out it is also possible
to learn with sample complexit®)(S;(e/2,/2,h*)) even
without this information. This can be accomplished by using
an aggregation algorithm.

We describe a simple algorithm for aggregation below
in which multiple algorithms are run on different subclasse
C; in parallel and we select among their outputs by com-
parisons. Within each subclag$ we run an active learning
algorithm A;, such as Dasgupta’s splitting algorithm [8] or
CAL, with some sample complexity; (e, d, h).

an algorithm with a known bound on iteerifiable sample
complexity. As the following theorem states, at least f@& th
case of exponential rates, this approach of constructing al
gorithms with good true sample complexity by reduction to
algorithms with known verifiable complexity on subspaces
loses nothing in generality. The proof is included in Ap-
pendix B.

Theorem 9 For any (C, D) learnable at an exponential
rate, there exists a sequen€g, Cs, ... with C' = U2, C;,
and a sequence of active learning algorithms, Ao, . ..
such that the algorithmi; achievesverifiablesample com-
plexity at mosty;polylog; (1/(ed)) for the pair (C;, D).

Algorithm 1 The Aggregation Procedure. Here itis assumed Thus, the aggregation algorithm (Algorithm 1) achieves ex-

thatC = U2, C;, and that for eachi, A; is an algorithm
achieving sample complexity at maSi(e, ¢, k) for the pair
(Ci, D). The procedure takésando as parameters.

Let k be the largest integer sk? [721n(4k/8)] < t/2
fori=1,...,kdo
Let h; be the output of runningl;(|¢/(4i%)],5/2) on
the sequencéra, 1},
end for
fori,j € {1,2,...,k} do
if P(h;(X) # h;(X)) > 0then
Let R;; be the firstf721In(4k/J)] elements in the se-
quence{wxay, 122, for which h,;(x) # h,(x)
Request the labels of all examples/ir;
Let m;; be the number of elements i®;; on which
h; makes a mistake
else
Let mi; = 0
end if
end for_
Returnh; = h; wherei =

argmin max

. Mg
ie{1,2,....k} J€{1,2,....k}

Using this algorithm, we can show the following sample
complexity bound. The proof appears in Appendix A.

Theorem 8 For any distributionD, let Cy, Cs, ... be a se-
quence of classes such that for edckhe pair(C;, D) has
sample complexity at mos$f;(¢, 0, h) for all h € C;. Let
C = U2, C;. Then(C, D) has a sample complexity at most

{42'2 [Si(e/2,6/2,h)], 26> {72 In %l } :

foranyh € C. In particular, Algorithm 1 achieves this, when
used with thed; algorithms that each achieve tt#(e, 0, h)
sample complexity.

min max
i:heC;

A particularly interesting implication of Theorem 8 is
that, if we can decompogg into a sequence of classé€s
such that eactiC;, D) is learnable at an exponential rate,

ponential rates when used with these algorithms.

Note that decomposing a givéninto a sequence af’;
subsets that have good verifiable sample complexities is not
always a simple task. One might be tempted to think a simple
decomposition based on increasing values of verifiable sam-
ple complexity with respect toC, D) would be sufficient.
However, this is not always the case, and generally we need
to use information more detailed than verifiable complexity
with respect to(C, D) to construct a good decomposition.
We have included in Appendix C a simple heuristic approach
that can be quite effective, and in particular yields goad-sa
ple complexities for everyC, D) described in Section 5.

5 Exponential Rates

The results in Section 3 tell us that the sample complexity
of active learning can be made strictly superior to any pas-
sive learning sample complexity when the VC dimension is
finite. We now ask how much better that sample complex-
ity can be. In particular, we describe a number of concept
classes and distributions that are learnable a&gmonential
rate, many of which are known to requite1/e) verifiable
sample complexity.

5.1 Exponential rates for simple classes

We begin with a few simple observations, to point out situ-
ations in which exponential rates are trivially achievalie
fact, in each of the cases mentioned in this subsection, the
sample complexity is actuall§(1).

Clearly if | X| < oo or |C] < oo, we can always achieve
exponential rates. In the former case, we may simply re-
quest the label of every in the support ofD, and thereby
perfectly identify the target. The corresponding= |X’|.

In the latter case, for every pair;,ho € C such that
P(h1(X) # ho(X)) > 0, we may request the label of any
x; such that (z;) # ha(z;), and there will be only one (up
to measure zero differences) C that gets all of these ex-
amples correct: namely, the target function. So in this case

then this procedure achieves exponential rates. Since it iswe learn with an exponential rate with= |C|?.

more abstract and it allows us to use known active learning

Less obvious is the fact that this argument extends to any

algorithms as a black box, we often use this compositional countably infinitehypothesis clas€’. In particular, in this

view throughout the remainder of the paper. In particular,
since the verifiable sample complexity of active learning is
presently much better understood in the existing liteegtur
it will often be useful to use this result in combination with

case we can list the classifiers @ft hq, ho,.... Then we
define the sequeneg = {h;}, and simply use Algorithm 1.
By Theorem 8, this gives an algorithm with sample complex-
ity S(e, 8, h;) = 2i? [721n(4i/6)] = O(1).



5.2 Geometric Concepts, Uniform Distribution

Many interesting geometric conceptsi¥t are learnable at
an exponential rate if the underlying distribution is umifo
on some subset dR™. Here we provide some examples;
interestingly, every example in this subsection has some ta
gets for which theverifiable sample complexity i$2 (1/¢).

Proof: (Sketch) There are multiple ways to achieve this. We
describe here a simple proof that uses a decomposition as
follows. Let A(h) be the probability mass of the minority
class under hypothesis 4 contains only the separators

h with A\(h) = 0, andCy; = C \ Cy. As before, we can
use a black box active learning algorithm such as CAL to

As we see in Section 5.3, all of the results in this section can /€arn within each class’;. To prove that we indeed get the

be extended to many other types of distributions as well.

Unions of k intervals under arbitrary distributions: Let

X be the intervall0,1) and letC*) denote the class of
unions of at mosk intervals. In other words(*) contains
functions described by a sequeng®, ai, - - ,as), where

ap = 0,ap = 1,0 < 2k + 1, andag, - - - , ag is the (nonde-
creasing) sequence of transition points between negati/e a
positive segments (sois labeled+1 iff © € [a;,a;41) for
someodd:). For any distribution, this class is learnable at an
exponential rate, by the following decomposition argument
First, let

C1={heC® P(h(X)=+1)=0}.

That is, C, contains the all-negative function, or any func-
tion that is equivalent given the distributiaf. For i
2,3,...,k+ 1, inductively define

Ci={hec® :3p ccli-D
SLP(R(X) # KW (X)) =0} \ UjiC .

In other words,C; contains all of the functions that can be
represented as unionsof- 1 intervals but cannot be repre-
sented as unions of fewer intervals. Clearlyhas verifiable
sample complexity). Fori > 1, within each subclas§';,

the disagreement coefficient is bounded by something pro-

portional tok + 1/w(h), where
w(h) = min{P([a;, aj1+1)) : 0 < j < ¢, P([a, a;11)) > 0}

is the weight of the smallest positive or negative intervel a
(ag,a1,--- ,ag) is the sequence of transition points corre-
sponding to thish. Thus, running CAL withC; achieves
polylogarithmic (verifiable) sample complexity for ahye

C;. SinceC™) = UL, by Theorem 8C™*) is learnable
at an exponential rate.

Ordinary Binary Classification Trees: Let X’ be the cube
[0,1]™, D be the uniform distribution o', andC' be the
class of binary decision trees using a finite number of axis-
parallel splits (see e.g., Devroye et al. [11], Chapter 29).
this case, (similarly to the previous example) wedgtbe
the set of decision trees ifl distance zero from a tree with
i leaf nodes, not contained in ady; for j < i. For anyi,
the disagreement coefficient for anye C; (with respect to
(Ci, D)) is a finite constant, and we can chod@sgeto have
finite VC dimension, so eactC;, D) is learnable at an ex-
ponential rate (by running CAL withy;), and thus by Theo-
rem 8,(C, D) is learnable at an exponential rate.

5.2.1 Linear Separators

Theorem 10 LetC be the hypothesis class of linear separa-
tors inn dimensions, and leb be the uniform distribution
over the surface of the unit sphere. The pd@it D) is learn-
able at an exponential rate.

desired exponential rate of active learning, we show that th
disagreement coefficient of any separdiowith respect to
(C, D) isatmostx y/n/A(h). Hanneke's results concerning
the CAL algorithm [12] then imply thaf’; is learnable at an
exponential rate. Sincé€’; trivially has sample complexity
1, combined with Theorem 8, this would imply the result.
We describe the key steps involved in computing the dis-
agreement coefficient. First we can show that for any two
linear separatoré(z) = sign(w - x + b) and h/(z) =
sign(w’ - z + b"), we can lower bound the distance between
them as

P(h(X) # h'(X)) > max {|)\ -, 276“ min{\, )\’}} ,

wherea = arccos(w-w') is the angle between andw’, X is

the probability mass of the minority class undeand )\’ is

the probability mass of the minority class undér Assume

for now thath and?’ are close enough together to have the

same minority class; it's not necessary, but simplifiesghin
We are now ready to compute the disagreement coeffi-

cient. Assume < \/\/n. From the previous claim we have

B(h,r) C {h' : max{|/\ - N 2—amin{)\, /\’}} < r}
T

whereB(h, r) is the ball of radius: aroundh in the hypoth-
esis space. The region of disagreement of the set on the left
is contained within

DIS({W :w' =wA|N =)\ <r})
UDIS({h':2—a(A—T)§rA|A—A’|:r}).
T

By some trigonometry, we can show this region is con-
tained within

DIS({h :w' =w AN = Al <7r})
r r
R . < c— : . < c—
U{x |w x+b1|_c/\}u{:v |w x+b2|_c/\}

for some constants , b,, c. Using previous results [2, 12], it

is possible to show that the measure of this region is at most
2r + (vn/N)r = ' (y/n/A)r. This finally implies that for
any target function, the disagreement coefficient is at most
’(v/n/X), where) is the probability of the minority class

of the target function. [ |

5.3 Composition results

We can also extend the results from the previous subsection
to other types of distributions and concept classes in atyari
of ways. Here we include a few results to this end.

Close distributions: If (C, D) is learnable at an exponential
rate, then for any distributio®’ such that for all measurable
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Figure 5.1: lllustration of the proof of Theorem 11. The dark
gray regions represe¥p, (h1,2r) and Bp, (hz2,2r). The func-
tion h that gets returned is in the intersection of these. The light
gray regions represe®p, (h1,¢/3) and Bp, (h2,€/3). The tar-

get functionh™ is in the intersection of these. We therefore must
haver < ¢/3, and by the triangle inequalit(h) < e.

AC X, /\PD(A) < PD/(A) < (I/A)PD(A) for some\ €
(0,1], (C,D") is also learnable at an exponential rate. In
particular, we can simply use the algorithm fo¥, D), filter
the examples fron®’ so that they appear like examples from
D, and then any large enough to find ae\-good classifier
with respect taD is large enough to find arrgood classifier
with respect taD’.

A composition theorem for mixtures of distributions:
Suppose there exist algorithro$;, and A for learning a
classC at an exponential rate under distributiohs and

D, respectively. It turns out we can also learn under any
mixture of D; and D- at an exponential rate, by usind;
and.A, as black boxes. In particular, the following theorem
relates the sample complexity under a mixture to the sample
complexities under the mixing components.

Theorem 11 Let C' be an arbitrary hypothesis class. As-
sume that the pairs(C,D;) and (C,Ds) have sam-
ple complexitiesS; (e, d, h*) and Sa(e, 0, h*) respectively,
where D, and Dy have density function®p, and Pp,
respectively. ~ Then for anyx € [0,1], the pair
(C,aD; + (1 — «)D2) has sample complexity at most
2 fmaX{Sl(e/& 5/27 h*)a S2(6/3a 5/27 h*)}‘| .

Proof: If = 0 or 1 then the theorem statement holds triv-
ially. Assume instead that € (0,1). We describe an algo-
rithm in terms of«, D, andDs, which achieves this sample
complexity bound.

Suppose algorithmd; and.A, achieve the stated sample
complexities undeD; and D, respectively. At a high level,
the algorithm we define works by “filtering” the distribution
over input so that it appears to come from two streams, one
distributed according t®,, and one distributed according to
D-, and feeding these filtered streams4p and.A; respec-
tively. To do so, we define a random sequenceus, - - - of
independent uniform random variableg(n1]. We then run
A; on the sequence of examplesfrom the unlabeled data
sequence satisfying

o‘]P)Dl (xl)
aPp, (x;) + (1 — a)Pp, (z;)’

Uq <

and run A, on the remaining examples, allowing each to
make an equal number of label requests.

Let hy and hy be the classifiers output byt; and As.
Because of the filtering, the examples thht sees are dis-
tributed according tdD;, so aftert/2 queries, the current
error of hy with respect taD; is, with probabilityl — §/2,
at mostinf{e’ : Sy(¢/,d/2,h*) < t/2}. A similar argument
applies to the error df, with respect taD.

Finally, let

r=inf{r : Bp,(h1,7) N Bp,(he,r) # 0} .

Define the output of the algorithm to be any €
BD1 (hl, 27‘) n BD2 (h2727°). If a total of t >

2 [max{Si(e/3,6/2,h*), S2(e/3,6/2,h*)}] queries have
been madet(2 by A; andt/2 by As), then by a union
bound, with probability at least — 4, A* is in the intersec-
tion of thee/3-balls, and so: is in the intersection of the
2¢/3-balls. By the triangle inequality, is within ¢ of A* un-
der both distributions, and thus also under the mixturee (Se
Figure 5.1 for an illustration of these ideas.) [ |

5.4 Lower Bounds

Given the previous discussion, one might suspect aimat
pair (C, D) is learnable at an exponential rate, under some
mild condition such as finite VC dimension. However, we
show in the following that this inotthe case, even for some
simple geometric concept classes when the distributiosis e
pecially nasty.

Theorem 12 There exists a paifC, D), with the VC dimen-
sion ofC' equall, that is not learnable at an exponential rate
(in the sense of Definition 4).

Proof: (Sketch) LetI’ be a fixed infinite tree in which each
node at depth hasc; children; ¢; is defined shortly. We
consider learning the hypothesis cl@$svhere eacth € C
corresponds to a path down the tree starting at the rooty ever
node along this path is labelédwhile the remaining nodes
are labeled-1. Clearly for eachh € C there is precisely
one node on each level of the tree labeleby A (i.e. one
node at each deptl). C' has VC dimension 1 since knowing
the identity of the node labeled on leveli is enough to
determine the labels of all nodes on leve]s. . , i perfectly.
This learning problem is depicted in Figure 5.2.

Now we defineD, a “bad” distribution forC. Let ¢;
be the total probability of all nodes on leviehccording to
D. Assume all nodes on levélhave the same probability
according taD, and call thigp;. By definition, we have;
i/ Tl=o 5.

We show that it is possible to define the parameters above
in such a way that for anyy > 0, there exists some < ¢
such that for some level p; = e andc;_1 > (1/p;)'/? =
(1/€)*/2. This implies that2(1/e/?) labels are needed to
learn with error less than, for the following reason. We
know that there is exactly one node on leyéhat has label 1,
and that any successful algorithm must identify this node (o
have a lucky guess at which one it is) since it has probability
e. By the usual probabilistic method trick (picking the targe
at random by choosing the positive node at each level
uniformly from the children of the positive at levé), we



Figure 5.2: A learning problem where exponential rates ateanhievable. The instance space is an infinite-depth frke.
target labels nodes along a single infinite path-dsand labels all other nodesl. When the number of children and probability
mass of each node at each subsequent level are set in a eaaisample complexities @f(1/./¢) are not achievable.

can argue that in order to label that node positive with at

6 Discussion and Open Questions

least some constant probability, we need to query at least a o o ) ) )
constant fraction of the node’s siblings, so we need to query The implication of our analysis is that in many interesting

on the order of;;_; nodes on levej.
Thus it is enough to show that we can define the values

above such that for all ¢;_; > (1/p;)'/?, and such tha;
gets arbitrarily small asgets big.
To start, notice that if we recursively define the values of

%

c; asc; = HJ;IO Cj/£i+1 then

=5
¢

2
Ci—1 = CGi—1

Mo
—

andc;_; > (1/p;)'/? as desired.

To enforce thap; gets arbitrarily small asgets big, we
simply need to sef; appropriately. In particular, we need
lim; o0 4/ H;;t ¢; = 0. Since the denominator is increas-
ing in 4, it suffices to showim,; .., ¢; = 0. Defining the
values of¢; to be any positive probability distribution over
that goes to 0 in the limit completes the proof. [ |

For essentially any functioth = o (1/¢), the tree exam-
ple in the proof can be modified to construct a p@it D)
with the VC dimension ofC' equal to1 such that no al-
gorithm achieves(¢(¢)) sample complexity for all targets:
simply choose:; = |¢(pi4+1)], where{p;} is any sequence
strictly decreasing t0 s.t. p;11¢(pi+1) ]'[KZ. ¢j < V{11 and
o(pi+1) > 1, where as beforé¢/;} is any sequence of pos-
itive values summing td; we can (arbitrarily) assign any
left-over probability mass to the root node= o(1/¢) guar-
antees that such gp;} sequence exists for any = w(1).
Thus, theo (1/€) guarantee of Corollary 7 is in some sense
the tightest guarantee we can make at that level of gengralit
without using a more detailed description of the structdre o
the problem beyond the finite VC dimension assumption.

This type of example can be realized by certain nasty dis-
tributions, even for a variety of simple hypothesis clasfas
example, linear separators R? or axis-aligned rectangles
in R2. We remark that this example can also be modified to
show that we cannot expect intersections of classifierseto pr

cases where it was previously believed that active learning
could not help, it turns out that active learnidges help
asymptotically We have formalized this idea and illustrated
it with a number of examples and general theorems through-
out the paper. This realization dramatically shifts ouremd
standing of the usefulness of active learning: while previ-
ously it was thought that active learning couldt provably
help in any but a few contrived and unrealistic learning prob
lems, in this alternative perspective we now see that active
learning essentiallpalwayshelps, and does so significantly
in all buta few contrived and unrealistic problems.

The use of decompositions 6fin our analysis also gen-
erates another interpretation of these results. Spetyfical
Dasgupta [8] posed the question of whether it would be use-
ful to develop active learning techniques for looking at un-
labeled data and “placing bets” on certain hypotheses. One
might interpret this work as an answer to this question; that
is, some of the decompositions used in this paper can be in-
terpreted as reflecting a preference partial-orderingehth
potheses, similar to ideas explored in the passive leafiting
erature [16, 15, 3]. However, the construction of a good de-
composition in active learning seems more subtle and quite
different from previous work in the context of supervised or
semi-supervised learning.

It is interesting to examine the role of target- and
distribution-dependent constants in this analysis. As@efi
both the verifiable and true sample complexities may de-
pend heavily on the particular target function and distribu
tion. Thus, in both cases, we have interpreted these quanti-
ties as fixed when studying the asymptotic growth of these
sample complexities asapproache$. It has been known
for some time that, with only a few unusual exceptions, any
target- and distribution-independent bound on the vetdiab
sample complexity could typically be no better than the sam-
ple complexity of passive learning; in particular, this ebs
vation lead Dasgupta to formulate his splitting index baund
as both target- and distribution-dependent [8]. This fiszt a
applies to bounds on the true sample complexity as well. In-
deed, the entire distinction between verifiable and true-sam
ple complexities collapses if we remove the dependence on

serve exponential rates. That is, the proof can be extendedhese unobservable quantities.

to show that there exist class€s andCs, such that both
(C1, D) and(Cs, D) are learnable at an exponential rate, but
(C, D) is not, where” = {hy Nhg : hy € C1,hg € Ca}.

There are many interesting open problems within
this framework. Perhaps two of the most interesting are
formulating general necessary and sufficient conditioms fo



learnability at an exponential rate, and determining weeth  Appendix
Theorem 6 can be extended to the agnostic case.
A Proof of Theorem 8

First note that the total number of label requests used
by the aggregation procedure in Algorithm 1 is at most
t. Initially running the algorithmsA,, ..., A requires
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We defineC; = {h € C : v, < i,k < i}. For everyi,
we define an algorithm; that achieves the required polylog
verifiable sample complexity as follows. We first runto
obtain functionh 4. We then let4; always output the closest
classifier inC; to ha. If t > i(log (2/(€6)))?, then aftert la-
bel requests, with probability at least ¢, A(¢, ) outputs an
¢/2-good classifier, so by the triangle inequality, with proba-
bility at leastl — 4, A; (¢, §) outputs are-good classifier. Fur-
thermore,A; can output, = (2/6) exp {—(t/i)'/*}, which
is no more thare. Combining this with Theorem 8 we get
the desired result. |



C Heuristic Approaches to Decomposition overlapping boundary regions and shatterable sets to show
that we can decompose any finite VC dimension class into
a countable number of subsets satisfying these special con-
ditions. This, combined with the aggregation algorithnt, ex
tends Lemma 13 to the general conditions of Theorem 6.

As mentioned, decomposing purely based on verifiable
complexity with respect tdC, D) typically cannot yield a
good decomposition even for very simple problems, such as
unions of intervals. The reason is that the set of classifiers
with high verifiable sample complexity may itself have high | emma 13 SupposéC, D) is such thatC' has finite VC di-
verifiable complexity. mensiond, andvh € C,P(ch) = 0. Then for any pas-
Although we do not yet have a general method that can sjye learning sample complexisi (¢, 8, 1) for (C, D), there
provably always find a good decomposition when one exists exists an active learning algorithm achieving a sample com-

(other than the trivial method in the proof of Theorem 9), we pjexity S, (¢, 6, k) such that, for any target functiol* € C
often find that a heuristic recursive technique can be quite wheres,,(c, §, h*) = w(1),

effective. That is, we can defingé, = C. Then fori > 1,

we recursively defin€; as the set of alh € C;_; such that Sa(€,8/2,h") = o(Sp(e/2,0,h™)) .
0, = ith ttaCi—1,D). S that f . . .
J\}; CNoflvi Q).r??l%?\(}orot(he dIECOI)’npOL;Fi)tipC%SleCQa. . .org](\jme Proof:We perform the learning in two phases. The first

is a passive phase: we simply request the labels of

everyh € C hasf, < oo with respect to at least one of
., x|¢/3], and let

the sets in which it is contained. Thus, the verifiable sample %1, %2, - -

complexity ofh with respect to that set i8(polylog(1/ed)), _ Ay < N (o
and the aggregation algorithm can be used to achieve polylog V={heCiVis [t/3] hw:) = (@)}
sample complexity. In other words,V is the set of all hypotheses that correctly

We could alternatively perform a similar decomposition label the first|¢/3| examples. By standard consistency re-
using a suitable definition of splitting index [8], or morenge  sults [11], with probability at least— 6 /8, there is a univer-

erally using sal constant > 0 such that
SC? (6753 h) 1
limsup% (dlnt+1ng>
sup Pp(hi(x ho(z)) <c| ——= ] .
0 (log (L)) WS p(hi(z) # ha(z)) < ;

for some fixed constarit > 0.

While this procedure does not always generate a good
decomposition, certainly iV < oo exists, then this creates _/ . dlnt+ 1n%
a decomposition for which the aggregation algorithm, com- ~ P(DIS(V)) <P (DIS (B (h 7Cf>)> :
bined with an appropriate sequence of algoritHms}, can
achieve exponential rates. In particular, this is the casalf Let us denote this latter quantity lay;. Note thatA; goes
of the(C, D) described in Section 5. In fact, everNf = oo, to 0 ast grows.
as long as every € C does end up isomesetC; for finite If ever we haveP(DIS(V)) = 0 for some finitet, then

i, this decomposition would still provide exponential rates  clearly we can return any € V, so this case is easy.
Otherwise, letn, = [t/(36P(DIS(V))In(8/4))], and

In particular, on this event, we have

D Proof of Theorem 6 supposet > 3. By a Chernoff bound, with prob-
i ) o ability at leastl — §/8, in the sequence of examples
We now finally prove Theorem 6. This section is mostly T(1/3] 415 T(1/3] 425 - - -+ T{1/3] +ne» AL MOSH/3 Of the exam-
self-contained, though we do make use of Theorem 8 from pjas are iDIS(V). If this is not the case, we fail and output
Section 4 in the final step of the proof. an arbitraryh; otherwise, we request the labels of every one
ForanyV c C'andh  C, define of thesen; examples that are iIS(V). Now construct
By (h,r) = {h' € V : Pp(h(z) # h'(z)) <7}, a sequenc& = {(z1,41), (¥2,43), -, (2, y,,)} of la-

o _ beled examples such thaf = x|,/3);, andy; is either
whereV is, as before, a countable dense subsét.obefine the label agreed upon by all the elements/gfor it is the
theboundaryof h with respect taD andV/, denoteddv i, as h*(x|,/3),) label value we explicitly requested. Note that

1 B becausenf er(h) = 0 with probability 1, we also have
vh = Th_x% DIS(By (h,7)). that with p}rlgt‘;abil(ityal everyy; p: h*(:vg)?/ We may there-
The proof will proceed according to the following out- fore use thes_at exam_ples as iid training examples for the
line. We begin in Lemma 13 by describing special conditions Passive learning algorithm. ,
under which a CAL-like algorithm has the property that the Specifically, let us split up the sequenceinto k = 4

more unlabeled examples it processes, the smaller the fracS€quences s, Lo, ..., L, where

tion of them it requests the labels of. Since CAL always L = {(x/_ ) ity Wit o),
identifies the target’s true label on any example it procgsse ) (=D lne/k]+ ) (= Dlne/k]+
we end up with a set of labeled examples growing strictly (x(i—l)Lnt/kJ+2v y(i—l)\_n,/k]+2)v

faster than the number of label requests used to obtain it;
we can use this as a training set in any passive learning al-
gorithm. However, the special conditions under which this SupposeA is the passive learning algorithm that guaran-
happens are rather limiting, so we require an additiongl ste teesS, (¢, d, h) passive sample complexities. Then foe
in Lemma 14; there, we exploit a subtle relation between {1,2,...,k—1}, leth, be the classifier returned by(L;, ¢).

"’(w;Lnt/kjvygLnt/kJ)} .



Additionally, leth;, be any classifier iV’ consistent with the
labels ins,.

Finally, for eachi,; € {1,2,...,k}, request the
labels of the first|t/(3k?)| examples in the sequence
{xl_t/SJ-ﬁ-nH—la Tt/3]4+ne+29 - } that satisfyhi(:z:) # hJ(ZZ?)
and letR;; denote thesgt/(3k?) | labeled examples;; =
0if Pp(hi(z) # hj(z)) = 0). Letm;; denote the number of

mistakesh; makes on the s&t;;. Finally, leth, = h; where
1 = argmin max m;;.
[ J
This will be the classifier we return.

It is known (see, e.g., [11]) that ifln:/k] >
c((d/e)log(1/e) + (1/€)log(1/d)) for some finite univer-
sal constant’, then with probability at least— ¢ /8 over the
draw of Ly, er(hy) < e. Define

Sp(e, 6, h*)—min{Sp(e, 5,h"), C,dlog(l/e)+1og(1/5) }

€

We have choserk large enough so that, ifn:/k] >
Sp(€, 9, h*), then with probability at least — ¢/8 over the
draw of £, min; er(h;) < e. Furthermore, by a Hoeffding
bound argument (similar to the proof of Theorem 8), for any
t > to = 3k? [721In(16k/5)], we have that with probability
atleastl — §/8, er(hy) < 2min; er(h;). Define

Sa(26,6/2,h%) =

1—|—inf{s>t0 s>144kln§ p(€,0,h")A }

Note that ift > S,(2¢,6/2, h*), then (with probability>
1-4/8)
S,(e,6,h%) <

v 2
= 144k BA, < /K]

is 1, or when the support ob is at most countably infi-
nite. However, for more complex learning problems, this
condition will typically not be satisfied, and as such we re-
quire some additional work in order to use this lemma to-
ward a proof of the general result in Theorem 6. Toward this
end, we again turn to the idea of a decompositiod'othis
time decomposing it into subsets satisfying the condition i
Lemma 13.

Lemma 14 For any (C, D) whereC' has finite VC dimen-
siond, there exists a countably infinite sequenige Co, . ..
such thatC' = U2, C; andVi, Yh € C;,P(0¢,h) = 0.

Proof: The case ofl = 0 is clear, so assumé > 0. A
decomposition procedure is given in Algorithm 2. We will
show that, if we letl = Decomposg”), then the maximum
recursion depth is at mogt(counting the initial call as depth
0). Note that if this is true, then the lemma is proved, since
it implies thatH can be uniquely indexed by @&tuple of
integers, of which there are at most countably many.

Algorithm 2 DecomposgH)

LetHo = {h € H : P(dyh) = 0}
if Hoo = H then
Return{H}
else
Fori e {1,2,...}, letH; =
{heH : P(Iyh) € (142743~ (1427 (@)1=}
Return |J DecomposéH;)U {Heo}
ie{1,2,...}
end if

For the sake of contradiction, suppose that the maximum
recursion depth of Decompds®) is more thani (or is infi-

So, by a union bound over the possible failure events listed nite). Thus, based on the firgtt 1 recursive calls in one of

above (/8 for P(DIS(V)) > A, §/8 for more thart/3 ex-
amples off in DIS(V), § /8 for min; er(h;) > ¢, ands/8 for

er(hy) > 2min, er(h;)), if t > S4(2¢,6/2, h*), then with
probability at least — §/2, er(h;) < 2e. S0S, (e, 0, h*) is a
valid sample complexity function, achieved by the desatibe
algorithm. Furthermore,

Sa(e,5/2,h*) < 1
+ max {to, 144k 1n gSP(E/Q, 6, h*)ASa(e,é/Q,h*)Q}-

Sp(e,0,h*) = w(l) implies S,(e,6/2,h*) = w(l), so we
know thatAg, (e 5/2,n+)—2 = o(1). Thus,S,(e,d/2,h*)
0 (Sp(e/2,6,h*)), and thus we haveS,(e,d/2, h*)
o(Sp(e/2,0,h")).

As an interesting aside, it is also true (by essentially the In particular,

those deepest paths in the recursion tree, there is a sefjuenc
of sets

C=HO >HD D>OHE ... xld+t) £

and a corresponding sequence of finite positive integers
i1,42,...,1i4+1 Such that foreach € {1,2,...,d + 1}, ev-
eryh e H(J) has

P(9yi-nh) € ((1 27 (14 2—<d+3>)1—z‘j} _

Take anyhq 1 € H(*t1), There must exist some> 0
suchthavj € {1,2,...,d+ 1},
]P’(DIS(BHM*) (hat1,7)))
c ((1 4 27(d+3))7ij; (1 4 27((14’2))(1 4 27((14*3))71']‘] .

any set of< 29! classifiers T C

same argument) that under the conditions of Lemma 13, the By, ;) (ha+1,/2) must haveP(Nperdp -1 h) > 0.

verifiable sample complexity of active learning is strictly
smaller than theverifiable sample complexity of passive
learning in this same sense. In particular, this impliesra ve
ifiable sample complexity that is(1/e) under these con-

We now construct a shattered set of points of gize1.
Consider constructing a binary tree with*! leaves as fol-
lows. The root node contairfs;+; (call this level 0). Let
ha € By (hat1,7/4) be some classifier witl(hq(X) #

ditions. For instance, with some effort one can show that h,1(X)) > 0. Let the left child of the root bé,,; and

these conditions are satisfied when the VC dimensiofi' of

the right child beh, (call this level 1). Defined; = {z :



ha(z) # hayi(z)}, and letA; = 27@H+2P(4;), Now
for eachj € {d — 1,d — 2,...,0} in decreasing order,
we define thel — j + 1 level of the tree as follows. Let
T,+1 denote the nodes at thile— j level in the tree, and let

i—j+1 = Nher,,, Onwh. We iterate over the elements
of T4, in left-to-right order, and for each ortg we find
h e BH(j) (h, Ad,j) with

Pp(h(x) # R (z) ANx € Ay_;1,) >0.

We then define the left child df to beh and the right child
to beh/, and we update

d-jr1 — Ag_jo N {z h(z) # W (2)}

After iterating through all the elements ©f.; in this man-
ner, defined,_;1, to be the final value of4; . , and

Ag_jy1 = 27@F2DP(A,_,.1). The key is that, because
every h in the tree is withinr/2 of hgyq, the setAiifjJr1
always has nonzero measure, and is containéy,in » for
anyh € Tj;1, so there always exists & arbitrarily close
to h with Pp(h(z) # h'(z) Nz € Ay_;y) > 0.

Note that fori € {1,2,...,d+ 1}, every node in the left
subtree of any: at leveli — 1 is strictly within distancA;
of h, and every node in the right subtree of @nat leveli — 1
is strictly within distanceA; of the right child ofh. Since
2A,29+1 = P(4;), there must be some sdt C A; with
P(AF) > 0 such that for every. at leveli — 1, every node
in its left subtree agrees with on everyz € A} and every
node in its right subtree disagrees witlon everyz € A}.
Therefore, taking anyx1, xa, . .., x4, xq4+1 } Such that each
x; € Af creates a shatterable set (shattered by the set of leaf
nodes in the tree). This contradicts VC dimensibrso we
must have that the maximum recursion depth is at niclk

Proof:[Theorem 6] Theorem 6 now follows by a sim-
ple combination of Lemmas 13 and 14, along with Theo-
rem 8. That is, the passive learning algorithm achieving
passive learning sample complexisy (e, d, h) on (C, D)
also achieves, (¢, , ) on any(C;, D), whereCq, Cs, . ..

is the decomposition from Lemma 14. So Lemma 13 guar-
antees the existence of active learning algorithinsA,, . . .
such that4; achieves a sample complexiy(e, §/2, h)
0(Sp(e/2,0,h)) on (C;, D) forall h € C; s.t. Sp(e,6,h) =
w(1). Finally, Theorem 8 tells us that this implies the ex-
istence of an active learning algorithm based on thése
combined with Algorithm 1, achieving sample complexity
o(Sp(e/4,0,h)) on(C, D). |

Note there is nothing special abauin Theorem 6. Using a
similar argument, it can be made arbitrarily closd to



