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Abstract

We propose a model-based learning algorithm, the
Adaptive Aggregation Algorithm (AAA), that aims
to solve the online, continuous state space rein-
forcement learning problem in a deterministic do-
main. The proposed algorithm uses an adaptive
state aggregation approach, going from coarse to
fine grids over the state space, which enables to
use finer resolution in the “important” areas of the
state space, and coarser resolution elsewhere. We
consider an on-line learning approach, in which
we discover these important areas on-line, using an
uncertainty intervals exploration technique. Poly-
nomial learning rates in terms of mistake bound
(in a PAC framework) are established for this algo-
rithm, under appropriate continuity assumptions.

1 Introduction
Markov Decision Processes (MDPs) provide a standard
framework for handling control and sequential decision mak-
ing tasks under uncertainty ([4, 17]). Solid theory and a vari-
ety of algorithms enable the efficient computation of optimal
control policies in MDPs when the state and action spaces
are finite. However, an exact solution becomes intractable
when the number of states is large or infinite. In this case,
some approximation schemes are required. See [4] and [6]
for a thorough discussion. Also, see such recent works as
[1, 11, 14].

One natural approximation approach is state aggrega-
tion, in which the state space is discretized into a (relatively
small) finite collection of cells. Each cell is said to aggregate
the states that fall in this cell. Once the aggregation is per-
formed, the new problem is a planning problem in a reduced
state space, which can be solved by regular techniques. The
main question that arises here is how to perform the aggre-
gation, so that, on the one hand, obtain a “good” approxima-
tion of an optimal policy, and on the other hand minimize the
problem complexity. This question was addressed by many
works, such as [21, 9], which provide formal answers under
some continuity assumptions on the model parameters.

∗We would like to thank the reviewers for their useful comments
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An extra difficulty is added when dealing with learning
problems, namely situations where the model of the MDP
is initially unknown. Reinforcement Learning (RL) encom-
passes a wide range of techniques for solving this problem
by interacting with the environment. An important part of
an RL algorithm is the exploration scheme. The role of ex-
ploration is to gain new information by appropriate action
selection which directs the agent towards unknown states of
the MDP.

Recently, efficient learning algorithms were presented
and proved to learn nearly optimal behavior (with high prob-
ability) within a time or error bound that is polynomial in
the problem size. These include the E3 [13], R-MAX [7],
MBIE [18], GCB [8], UCRL [2] and OLP [20] algorithms.
These algorithms use efficient exploration techniques, which
are often based on the so–called “optimism in face of uncer-
tainty” principle. However, these algorithms are infeasible
in cases where the state and/or action spaces are very large
or infinite, since their time and space complexity is typically
polynomial in the size of the space.

On the other hand, most of the existing algorithms for
solving “large” problems that rely on state aggregation, are
heuristic in nature, without formal guarantees. These include
such works on adaptive aggregation as [15], [16] and [5].
An exception is the algorithm proposed by Diuk et al. [10],
which uses R-MAX as the basis. However, this algorithm re-
quires a specific structure of the problem; otherwise, its total
mistake bound is polynomial in the size of the state space,
which can be very large or infinite.

In this paper we focus on the online reinforcement learn-
ing problem in MDPs with very large or infinite state space,
finite action space, discounted return criterion, and with de-
terministic dynamics and rewards. For concreteness we will
focus on the continuous state case; however our schemes and
results also apply to the discrete case, where the number of
states is very large or countably infinite. The proposed al-
gorithms use an adaptive state aggregation approach, going
from coarse to fine grids over the state space, which enables
to use finer resolution in the “important” areas of the state
space, and coarser resolution elsewhere. We consider an
on-line learning approach, in which we discover these im-
portant areas on-line, using an uncertainty intervals explo-
ration technique1. Certain continuity assumptions on the ba-

1Our uncertainty intervals are the analogue of the confidence
intervals used in the stochastic case [18]. However, the origin of



sic model parameters will be imposed. Such assumptions are
essential for generalization in continuous state space, espe-
cially when using the state aggregation approach.

The principle that governs our basic scheme is simply
to split frequently visited cells. The idea behind this prin-
ciple is as follows. As time progresses, we will visit cells
that are “close” to the optimal trajectory; on the optimal tra-
jectory, we need high resolution. Perhaps surprisingly, this
principle is not sufficient to obtain theoretical results. Con-
sequently, we will propose an improved variant of the basic
algorithm, for which learning rates in terms of total mistake
bound (see below) will be established. In this variant, in ad-
dition to splitting the visited cells, we also split cells that the
algorithm “could have” visited (according to the uncertainty
in the model of the MDP that was learned so far).

We will use the total mistake bound as a performance
metric for our algorithms. This metric counts the total num-
ber of time-steps in which the algorithm’s implemented pol-
icy is strictly suboptimal from the current state. This metric
has been used in a number of recent works on on-line learn-
ing in discounted MDP problems2 [12, 18, 19]. In our case
we will establish two types of mistake bounds, which we
call the prior bound and the posterior bound. The first type
ensures that our algorithm is not worse than a non–adaptive
algorithm, which uses a single uniformly dense grid. In this
case, our mistake bound is thus polynomial in the number of
cells in this grid. The second type ensures that the mistake
bound is polynomial in the number of cells in the actually
used grid.

In our analysis, we need to distinguish between two cases:
The “contractive” case, characterized by γβ < 1, where γ is
the MDP discount factor and β is a (Lipschitz) continuity pa-
rameter of the transition function (cf. equation (6b)); and the
“expansive” case, where γβ > 1. Due to space constraints,
we treat here in detail the former, while the results for the
latter are presented without proofs, which can be found in
[3].

The paper is structured as follows. In Section 2 we present
the model and the notation. In Section 3 we introduce some
further definitions and assumptions. In Section 4 we pro-
pose a basic version of our AAA algorithm, while Section
5 presents an improved variant of the algorithm that is re-
quired for its convergence. In Section 6 polynomial bounds
on the total mistake count of this improved algorithm are
presented for the “contractive” case, while Section 7 proves
these bounds. In Section 8 we provide results for the “ex-
pansive” case, without proof. Finally, conclusions and future
work are presented in Section 9.

2 Model and Performance Metrics
We denote a deterministic MDP by the 4-tuple M = (X, A,
f, r), where X is a state space, A is an action space, f (x, a)
is the transition function which specifies the next state x′ ∈
X given the previous state x ∈ X and action a ∈ A, and
r(x, a) ∈ [rmin, rmax] is the immediate reward function

uncertainty in our model is the (deterministic) aggregation error,
rather than stochastic sampling error.

2These works refer to this metric as the sample complexity of
exploration.

which specifies the reward of performing action a ∈ A in
state x ∈ X.

Let d : X × X → R be a fixed metric on X. We assume
the following regarding the state and action spaces.

Assumption 1
1. The action space A is a finite set.

2. The state space X is a bounded subset of Rn. That is,
there exists a constant ∆max < ∞ such that for all
x, x′ ∈ X, d (x, x′) ≤ ∆max.

The MDP M is used to model an environment, or a dy-
namic system, with which a learning agent interacts. The
interaction proceeds as follows: At time t the agent observes
the state xt ∈ X, chooses an action at ∈ A, receives a re-
ward rt = r(xt, at), and the process moves to state xt+1 =
f(xt, at).

Let ht , {x0, a0, x1, a1, ..., xt−1, at−1, xt} denote the
history of observed states and actions, that is available to the
agent at time t to make its choice of at. Also, let Ht ,
(X× A)t × X denote the space of all possible histories up
to time t. Then, at each time t, the agent makes its deci-
sion according to some decision rule πt : Ht → A, so that
at = πt(ht), t ≥ 0. The collection π = {πt}∞t=0 is the
control policy. A policy is stationary if the decision rule
does not change over time, and depends only on the last state
observed. We shall slightly abuse notation and identify the
stationary policy π with the map π : X → A, so that at each
time t, at = π(xt).

In this paper we focus on the discounted return criterion.
For a given initial state x0 = x, we denote the infinite hori-
zon discounted return of state x, for a given policy π, in MDP
M , by

Jπ
M (x) ,

∞∑
t=0

γtr (xt, πt(ht)) ,

where 0 < γ < 1 is the discount factor. The optimal return is
denoted by VM (x) , supπ Jπ

M (x), which is also called the
optimal value function. We often drop M from the notation
above, if it does not cause confusion. A policy π is optimal if
Jπ(x) = V (x) holds for all x ∈ X. For any ε > 0, a policy
π is ε-optimal if Jπ(x) ≥ V (x)− ε holds for all x ∈ X.

It is well known ([17]) that the optimal value function
satisfies Bellman’s equation

V (x) = max
a∈A

{r(x, a) + γV (f(x, a))} , x ∈ X, (1)

and any stationary deterministic policy π∗ which satisfies
π∗(x) ∈ argmaxa∈A {r(x, a) + γV (f(x, a))} , x ∈ X, is
an optimal policy. Let Q(x, a) , r(x, a) + γV (f(x, a))
denote the action–value function, or Q-function, which pro-
vides the return of choosing an action a in state x, and then
following an optimal policy. Also, we let Vmax , rmax

1−γ .
Note that Vmax is the maximal possible discounted return of
any policy.

Our main performance metric will be mistake bound (or
policy-mistake bound), introduced for RL in [12]. It counts
the number of time steps t in which the algorithm executes a
not ε-optimal policy from the current state, xt. Specifically,
let πt be the decision rule that the algorithm uses at time



t to choose its action. Then, given ht, At = {πk}∞k=t is
a (non-stationary) policy that the algorithm implements at
time t, and

∑∞
k=t γk−trk , JAt(xt) can be interpreted as

the return of this policy from time t onward, where rk =
r(xk, πk(hk)) and xk+1 = f(xk, πk(hk)). Now, the policy-
mistake count is defined as

PM(ε) ,
∞∑

t=0

I
{
JAt(xt) < V (xt)− ε

}
. (2)

For deterministic domains with finite state–space, we have
the following near-optimality criterion.

The Policy-Mistake Bound Criterion
A learning algorithm is PAC (Probably Approximately Cor-
rect) if there exists a polynomial

B = B

(
|X| , |A| , 1

1− γ
,
1
ε

)
such that for all ε > 0, PM(ε) < B.

Note, that while the “probably” aspect is absent in our de-
terministic case, we will find it convenient to keep the PAC
terminology here.

A possible alternative to the policy-mistake count is the
action-mistake count, defined as follows:

AM(ε) ,
∞∑

t=0

I {Q(xt, at) < V (xt)− ε)} . (3)

This criterion counts the number of sub–optimal actions, that
is, the number of times that an algorithm executed an action
whose action–value is ε-inferior to the optimal value. It is
easily verified (see Corollary 1 in [3]) that policy-mistake
count is a stronger criterion, in the sense that AM(ε) ≤
PM(ε). Hence we focus here on the former.

In the above definition, the bound B depends on the num-
ber of states |X|. In case |X| is infinite, some other mea-
sures of X must be considered. As already mentioned, in our
case we will replace |X| by the number of cells in sufficiently
dense grid over the state space.

3 Preliminaries
a. Grid–Cell Notation
A grid S over the state space X is a partition of X into disjoint
elements that covers the whole of X. We call any s ∈ S a
cell. We say that a grid S2 is a refinement of a grid S1, if for
every cell s ∈ S2 there exists s′ ∈ S1, such that s ⊆ s′. We
denote this relation by S2 � S1. For any sets A and B of
cells, we define the intersection operator between these two
sets as

A ∧B , {sA ∩ sB : sA ∈ A, sB ∈ B} \ {Ø} . (4)

For a given cell s ∈ S, let ∆(s) , supx,x′∈s d (x, x′) de-
note the cell size (or diameter) in the given metric d. For two
given cells s, s′ ∈ S, we define the biased distance between
these cells as

db(s, s′) ,

{
infx∈s,x′∈s′ d (x, x′) , s 6= s′,

−∆(s), s = s′.
(5)

This definition will be justified in Section 5 (see Definition
3 and the remark after this Definition). Of course db(s, s′)
is not a distance in a regular sense, since it can be negative.
Also, for given state x ∈ X, let sx ∈ S be the cell that
includes x (x ∈ sx). Then, given a cell s ∈ S, we define the
biased state-to-cell distance db(s, x) , db (s, sx).

b. Feasible Splitting Schemes and Grids
Given a source grid S1 and a candidate s ∈ S1 to split,
a splitting scheme tells us how to split s into csplit cells
s1, ..., scsplit

, with si ∩ sj = Ø, ∪isi = s, to form a refined
(target) grid S2 � S1. We are interested in splitting schemes
that decrease the size ∆(s) of a cell s. More formally, we
require the following condition on the splitting scheme.

Definition 1 (Feasible Splitting Scheme) A splitting sche-
me with splitting coefficient csplit is feasible if there exists
0 < λ < 1 (independent of s) such that ∆(si) ≤ λ∆(s) for
i = 1, ..., csplit.

Now, given a fixed feasible splitting scheme and an initial
grid S0 over the state space X, we define the set of feasible
grids as the set of all grids that can be obtained by using this
given scheme starting from S0.

c. Continuity Assumption
The following continuity assumption will be imposed on the
basic model parameters.

Assumption 2 There exist constants α > 0 and β > 0 such
that, for all x1, x2 ∈ X and a ∈ A it holds that

|r(x1, a)− r(x2, a)| ≤ α · d(x1, x2), (6a)

d (f (x1, a) , f (x2, a)) ≤ β · d(x1, x2). (6b)

A continuity assumption of some kind is obviously es-
sential for generalization in continuous state spaces. As-
sumptions of similar nature to the one above were used in
various works on state aggregation, such as [21, 9]. However,
we note that the specific assumptions used in these papers re-
fer to continuity of probability densities. Consequently they
are too strong for the continuous deterministic case as they
imply that all states are mapped to the same target state.

In this paper we will treat in detail the case γβ < 1
(where γ is the discount factor), in which there is some “con-
traction” effect in the system dynamics. Results for the com-
plementary case of γβ > 1 are presented without proof in
Section 8.

We assume that both α and β are known for the purpose
of learning.

4 The Basic AAA Algorithm
In this section we present the basic variant of the AAA al-
gorithm, which is directly based on the principle of split-
ting frequently visited cells. As it turns out, this algorithm
may fail in some cases, and therefore no theoretical guaran-
tees will be presented. Instead, we will provide an example,
showing the source of the problem. This will provide the
motivation for the improved scheme in the next section.

In the following subsections we present the different parts
of this algorithm in detail. An outline of the complete algo-
rithm is presented as Algorithm 1.



Algorithm 1 Basic Adaptive Aggregation Algorithm (out-
line)
Input parameters:

Maximal reward rmax,
Lipschitz continuity parameters α and β,
Count threshold N ,
Cell size threshold ∆ε.

Initialization:

1. Initialize the grid to some initial grid S0(a) = S0 for
all a ∈ A, and the cell count N(s, a) = 0, for all a ∈
A, s ∈ S0;

2. For all s ∈ S0(a) and a ∈ A, initialize the reward upper
bound and the transition uncertainty set:

r̃(s, a) = rmax, CIf (s, a) = S0(a).

For times t = 0, 1, 2, ... do:

1. Policy Computation: Algorithm 2
2. Policy Execution: Algorithm 3
3. Cell Splitting: Algorithm 4

a. Action–Grids and Common Grid
In our algorithm, we will use a separate grid for every action.
This will allow to use a different resolution for each action.
We denote by St(a) the grid that is used by the algorithm at
time t for action a. We denote by St the coarsest grid which
is a refinement of all St(a) at time t. That is

St ,
∧
a∈A

St(a),

where the intersection operator is defined in (4). We call this
grid a common grid (at time t). This grid will be used to
compute the value function, while the action–grids are used
for empirical model estimation.

b. Empirical Model
We use a single sample to estimate empirically the reward
and transition. Specifically, suppose that we choose action
a in cell s. We thus obtain the sample (x, a, r = r(x, a),
x′ = f(x, a)), with x ∈ s and x′ ∈ s′. We define the
empirical model based on this single sample:

r̂(s, a) = r, (7)

f̂(s, a) = s′. (8)

Once the sample from (s, a) is obtained, the model remains
unchanged for this pair (until the cell is split).

c. Uncertainty Intervals and Upper Value Function
In the AAA algorithm we will use an uncertainty intervals
exploration technique as it applies to deterministic systems
due to aggregation. Below we present the definition of the
uncertainty intervals in case of continuous state space, and
how we use them in the algorithm.

At any time t, and for every a ∈ A and s ∈ St(a), we
define the reward uncertainty interval around the empirical
reward (7) as3:

CIr(s, a) ,
[
r˜(s, a), r̃(s, a)

]
= [r̂(s, a)− α∆(s), r̂(s, a) + α∆(s)]

if the pair (s, a) was sampled till time t; otherwise, the re-
ward uncertainty interval for this pair is inherited from the
parent cell. By the continuity Assumption 2, this uncertainty
interval satisfies that r(x, a) ∈ CIr(s, a), ∀x ∈ s. Also, the
transition uncertainty set is defined as:

CIf (s, a) ,
{

s′ ∈ St : db

(
s′, f̂(s, a)

)
≤ β∆(s)

}
,

where db is the biased distance defined in (5). (If the pair
(s, a) was not sampled till time t, the uncertainty set is in-
herited from the parent cell as in the reward case). Again,
by the continuity assumption, this uncertainty set satisfies:
f(x, a) ∈ CIf (s, a), ∀x ∈ s. Using this notation, we define
the following dynamic programming operator.

Definition 2 The upper DP operator at time t for any given
function g : St → R is

T1g(s) = max
a∈A

{
r̃(s, a) + γ max

s′∈CIf (s,a)
g(s′)

}
.

Now, using this operator, we define the upper value func-
tion (UVF) as the solution of the following fixed point equa-
tion:

Ṽt(s) = T1Ṽt(s), s ∈ St.

It can be shown that this equation has a unique solution,
which can be found using Value Iteration or linear program-
ming. Moreover, we can show that this solution is indeed an
upper bound on the optimal value function V . In addition,
on dense enough grid this solution is also very close to V .
We do not provide here proofs for these claims. However,
these claims easily follow from our analysis of the improved
algorithm in Section 7.

The policy that is used in the algorithm is now the opti-
mal (or greedy) policy with respect to Ṽt(s):

πt(s) = argmax
a∈A

{
r̃(s, a) + γ max

s′∈CIf (s,a)
Ṽt(s′)

}
, s ∈ St.

This policy is recalculated only when a cell-action pair is
visited for the first time, or some cell is split.

We summarize the UVF and policy computation algo-
rithm in Algorithm 2.

d. Policy Execution
As we have seen, the decision rule πt that is used at each
time t, is determined by the UVF, as presented in Algorithm
2 (equation (10)). In addition, in each execution of the deci-
sion rule, a new sample is obtained, and the empirical model
and the uncertainty intervals of the corresponding cell–action
pairs are updated. This process is summarized in Algorithm
3.

3We drop the time index from most of our notation for ease of
exposition.



Algorithm 2 Policy Computation
If the model has been changed (that is, some cell-action
pair has been visited for the first time, or some cell has been
split):

1. Compute the UVF over St =
∧

a∈A St(a) by solving

Ṽt(s) = T1Ṽt(s), s ∈ St, (9)

where T1 is defined in Definition 2.
2. Compute the corresponding optimal policy

πt(s) = argmax
a∈A

{
r̃(s, a) + γ max

s′∈CIf (s,a)
Ṽt(s′)

}
.

(10)
If more than one action achieves the maximum, choose
the first one in lexicographic order.

Otherwise, use the previously computed value and policy:
Ṽt = Ṽt−1 and πt = πt−1.

e. Splitting Method
Assume that a fixed feasible splitting scheme is used through-
out (cf. Definition 1). Define a count threshold N . We
will split a cell if the number of visits to it exceeds N . In
addition to this splitting criterion, we also employ a “stop–
splitting” rule, based on the size of the cell. Let ∆ε be a
(small) cell size threshold parameter. Then, if a cell s sat-
isfies ∆(s) ≤ ∆ε, it will not be split anymore. Since the
number of times that the algorithm encounters a pair with
∆(s) > ∆ε can be bounded, it follows that the number of
different (stationary) policies that the algorithm uses can also
be bounded. This will eventually enable us to prove a bound
on the policy-mistake count, in Section 7.

Now, under a fixed feasible splitting scheme, we denote
by Sε the coarsest feasible grid with ∆(s) ≤ ∆ε for all s ∈
Sε. We call this grid ε-optimal grid. The number of cells in
Sε can be bounded as follows (see Lemma 6 in Section 7):

Nε , |Sε| ≤ |S0| csplit

(
∆max

∆ε

)log1/λ(csplit)

, (13)

where S0 is the initial grid, λ and csplit are the parameters of
the splitting scheme (Definition 1), and ∆max is the diameter
of the state space (see Assumption 1).

We summarize the splitting process in Algorithm 4. Re-
call that the complete AAA algorithm is outlined in Algo-
rithm 1.

f. Why the Basic AAA Scheme Might Fail
To realize the problem, consider some cell s. The value of
the function Ṽ at that cell is computed based on the opti-
mistic next-step cell s1:

s1 , argmax
s′∈CIf (s,a)

Ṽt(s′) (14)

(cf. equation (9) and Definition 2). However, it may hap-
pen that the actual process never visits s1, but rather some
other cell in CIf (s, a). This may happen irrespectively of

Algorithm 3 Policy Execution

(i) Execute the action at = πt(st), with st ∈ St being the
current common grid cell. For the visited cell–action
pair (st, at) = (st, a), let s ∈ St(a) be the cell in the
action–grid that contains st.

(ii) Update the counter: N(s, a) := N(s, a) + 1.

(iii) If (s, a) is visited for the first time, compute the model
of this pair. Namely,

(a) Compute the empirical reward and transition ac-
cording to equations (7) and (8).

(b) Compute the upper reward value

r̃(s, a) := r̂(s, a) + α∆(s), (11)

(c) Compute the transition uncertainty set

CIf (s, a) :=
{

s′ ∈ St : db

(
s′, f̂(s, a)

)
≤ β∆(s)

}
.

(12)
(d) Save the basic sample (x, a, x′) obtained for this

(s, a), with x = xt and x′ = xt+1.

Algorithm 4 Splitting Algorithm

1. Initialize St+1(a) = St(a), for all a ∈ A.

2. For each cell–action pair (s, a), with s ∈ St(a), which
satisfy N(s, a) ≥ N and ∆(s) > ∆ε, perform the fol-
lowing:

(a) Split this cell-action pair according to the given
(feasible) splitting scheme. Let s1, ..., scsplit

∈
St+1(a) be the resulting sub-cells after this split.
Let sk be the cell that contains the sample of the
parent cell s.

(b) Initialize the reward upper bounds of the new cells:

r̃(sj , a) = r̃(s, a), ∀j 6= k,

r̃(sk, a) = r̂(s, a) + α∆(sk),

(c) Initialize the transition uncertainty sets of the new
cells:

CIf (sj , a) = CIf (s, a), ∀j 6= k,

CIf (sk, a) =
{

s′ ∈ St : db

(
s′, f̂(s, a)

)
≤ β∆(sk)

}
,

(d) Update the counts of the new cells as follows:

N(sj , a) = 0, ∀j 6= k,

N(sk, a) = 1.

how small s is, or how many times it is visited. This might
be the case, for example, if some points (states) in s map un-
der f(x, a) to the border between s1 and some adjacent cell
s2, and all visits to s are to that part that maps to s2. In that
case, cell s1 which is not visited will remain large, hence



with potentially large error in its empirical estimates. This
may lead to a large error in the estimated value function at
s, and consequently to an error in the computed policy. We
propose a solution to this problem in the next section.

5 The AAA Algorithm
To overcome the potential pitfalls of the basic AAA algo-
rithm above, we need to modify the definition of the upper
value function so that it will more closely approximate the
optimal one. Two modifications will be introduced. First,
we propose splitting of the optimistic next-step cells (recall
the cell s1 defined in (14)), in addition to actually visited
ones. Those cells, which we call “virtually visited” cells,
will be defined formally in Definition 5 below. However,
splitting those cells is not enough to fix the problem, since it
may happen that no actual samples are obtained for the cre-
ated cells. Thus, we introduce a smoothing operator in the
DP equations. This operator, which is specified in Definition
3 below, allows to improve the accuracy of the upper value
function in (small) cells even if they are not actually visited
(hence not actually sampled), based on the values of their
geometric neighbors.

In what follows we will focus on the case γβ < 1. As
can be seen in the proof of Lemma 1 (Section 7), in this case
we have some sort of a contraction effect. Thus, the results
are technically much simpler than for γβ > 1. The latter
case will be briefly discussed in Section 8, and is treated in
detail in [3].

Definition 3 Let the continuity function of the optimal value
be defined as

ω (θ) ,
α

1− γβ
θ, θ ≥ 0.

The smoothing operator at time t for any given function g :
St → R is

T2g(s) , min
s′∈St

{g(s′) + ω (∆ (s) + db (s, s′))} .

Remark. Note that by definition of the biased distance db

in (5), the above minimized set also includes g(s), since for
s′ = s,

g(s) + ω (∆ (s) + db (s, s)) = g(s) + ω (0) = g(s).

Therefore, T2g(s) ≤ g(s) for all s ∈ St.

It is shown in Lemma 1 in Section 7, that the continuity
function ω is in fact a bound on the modulus of continuity of
the optimal value function V . The definition of the smooth-
ing operator is then formally justified in Lemma 3, which
states that if g is an upper value function, that is g(s) ≥ V (x)
for all s and x ∈ s, then so is T2g. Thus, the smoothing op-
erator T2 tightens the upper value function g based on the
values in adjacent cells.

Now, using the smoothing operator, we modify the defi-
nition of the upper DP operator (Definition 2).

Definition 4 The smoothed upper DP operator at time t is
defined by T̃ , T1T2. That is, for given function g : St → R,

T̃ g(s) = max
a∈A

{
r̃(s, a) + γ max

s′∈CIf (s,a)
T2g(s′)

}
.

This new operator smoothes g(s) before applying to it the
DP operation. As before, we define the UVF as the solution
of the fixed point equation:

Ṽt(s) = T̃ Ṽt(s), s ∈ St.

Our second modification involves splitting of “virtually
visited cells”. We next define the required notation.

Definition 5 (Virtually Visited Cells) At any period [t0, t1]
of the algorithm’s execution:

1. Let {st}t1
t=t0

be the actually visited cells st ∈ St that
are visited during this period, and {at}t1

t=t0
be the cor-

responding actions, with at = πt(st).

2. Let {(s′t, at)}t1
t=t0

be the actually visited cell–action
pairs during this period, with s′t ∈ St(at), such that
st ⊆ s′t.

3. Denote the virtually visited cells during this period by
{s∗t }

t1+1
t=t0+1, where s∗t ∈ St and is the argument of the

maximization

s∗t+1 , argmax
s′∈CIf (s′t,at)

T2Ṽt(s′).

4. For each virtually visited common grid cell s∗t ∈ St,
let {sa}a∈A be the action-grid cells (sa ∈ St(a)) which
contain s∗t . We define the virtually visited cell-action
pair as the pair (s̃t, ãt) = (sa, a) with the cell sa hav-
ing the smallest diameter among those action-grid cells.

In the course of the algorithm, both actually and vir-
tually visited cell-action pairs will be split (using a count
threshold as before). We note that the splitting of virtually
visited cells is needed in the common grid St, to avoid the
problem presented in Section 4. This splitting can be done
directly in St. However, we have chosen to keep the rela-
tion St =

∧
a∈A St(a). Thus, we will split the smallest cell

s̃ ∈ St(ã) which contains the virtually visited cell s∗ ∈ St

that is candidate for splitting. In this way, the split is inher-
ited by St.

To summarize, the following modifications are introduced
in the AAA algorithm: In Algorithm 2, equation (9) is re-
placed by

Ṽt(s) = T̃ Ṽt(s), s ∈ St, (15)

where T̃ is defined in Definition 4. Also, equation (10) is
replaced by

πt(s) = argmax
a∈A

{
r̃(s, a) + γ max

s′∈CIf (s,a)
T2Ṽt(s′)

}
. (16)

Finally, in Algorithm 3, step (ii), we update the counters of
both the actually and virtually visited cell–action pairs:

N(s′t, at) := N(s′t, at) + 1, N (s̃t, ãt) := N (s̃t, ãt) + 1.

6 Main Results (γβ < 1)
In this section we summarize the main results regarding the
AAA algorithm. Proofs are deferred to the next section.

Recall the definition of the mistake count (2) and the cor-
responding near–optimality criterion. Also, recall that Sε is



the coarsest (feasible) grid with ∆(s) ≤ ∆ε, which satis-
fies (13). First we present the main theorem, which provides
a mistake bound of modified AAA scheme in terms of the
number of cells in Sε.

Theorem 1 Let ε > 0 and assume that the AAA algorithm
receives an input

∆ε =
(1− γ)(1− γβ)

2α(γ + 2)
ε.

Then, the policy-mistake count of the algorithm is bounded
by

PM(ε) ≤ |Sε| |A| (2N + 1)
1− γ

ln
2 (rmax − rmin)

ε (1− γ)
.

In addition to the above theorem, we can obtain a possi-
bly tighter mistake bound in terms of the posterior number of
cells actually used in the course of the algorithm. In fact, the
purpose of adaptive aggregation is that as time progresses,
the algorithm will split cells only in the vicinity of the op-
timal trajectory. Therefore, the actual number of grid cells
“at infinity” will be much less than |Sε|. We make this more
formal below.

Definition 6 Let x0 be the initial state and let N∞(x0, a) be
the number of cells in the grid limt→∞ St(a), that is

N∞(x0, a) , lim
t→∞

|St(a)| . (17)

Also, let N∞(x0) ,
∑

a∈A N∞(x0, a).

We note that the limit in (17) exists and is finite, since |St(a)|
increases in t, while |St(a)| ≤ |Sε| due to the enforced “stop-
splitting” rule. For the same reason, we have the trivial bound
N∞(x0) ≤ |Sε| |A|.

Theorem 2 Let ε > 0 and assume that the AAA algorithm
receives an input ∆ε as in Theorem 1. Then, it holds that

PM(ε) ≤ 4N∞(x0)N
1− γ

ln
2 (rmax − rmin)

ε (1− γ)
.

Note that the bound of Theorem 2 becomes better than the
bound of Theorem 1 if N∞(x0) ≤ 1

2 |Sε| |A|.

Remark. Since the action-mistake count satisfies AM(ε) ≤
PM(ε), the policy-mistake bounds of Theorems 1 and 2 ap-
ply also to the action-mistake.

Discussion. Theorem 1 implies that the mistake bound is
linear in |Sε|. Therefore, using equation (13), we obtain the
following explicit dependence on ε (ignoring the log factor):

PM(ε) ≤ C (1/ε)n |A| (2N + 1) , (18)

where the constant C is polynomial in α, 1/(1 − γ) and in
1/(1−γβ). Note however the exponential dependence on the
dimension n of the state-space, which is an obvious artifact
of the dense aggregation approach.

In the context of the posterior bound (Theorem 2), it
should be noted that there is a trade-of between the choice
of the count threshold N and the number of cells at infinity

N∞(x0). If we choose N too small, the algorithm will per-
form many splits, and consequently N∞(x0) will be large.
In this case it may happen that the algorithm will produce re-
dundant cells, which are not actually needed for near-optimal
performance. On the other hand, if we choose large N ,
the algorithm will perform less splits, resulting in a smaller
N∞(x0). This however may lead to a slower convergence to
the optimal trajectory.

Two comparisons that may be of interest follow. First,
consider our algorithm for the “flat” model, which uses a
sufficiently fine grid (namely, Sε) over the state space. It can
be shown that the mistake bound in such case will be as in
Theorem 1, with 2N + 1 replaced by 1. Clearly, however,
such an algorithm is not feasible if |Sε| is large.

Moreover, consider a näive approach, where the “flat”
model is treated as a finite-state MDP, and an efficient explo-
ration technique is used on this MDP (such as the R-MAX
algorithm [7]). In the ideal case when the MDP assumption
happens to hold true, such an algorithm will again have the
mistake bound as in Theorem 1, with 2N + 1 replaced by 1
(see for instance [12], Theorem 8.3.5). However, as this as-
sumption generally is not satisfied, the computed value func-
tion might underestimate the optimal one, resulting in algo-
rithm’s failure (and, in fact, in infinite mistake count).

7 Analysis of the AAA Scheme
Below is the outline of the analysis. First we show that the
optimal value function V possesses some continuity prop-
erty, which will justify the use of the smoothing operator T2.
Then, we show that there exists a unique solution to equation
(15), and that this solution upper bounds the optimal value V .
Finally, we prove that under certain conditions on the grid,
the optimal policy with respect to the UVF (equation (16)) is
an ε-optimal policy, which will enable us to prove a polyno-
mial bound on the policy-mistake count of the algorithm.

For ease of exposition, throughout the analysis we write
CI for the transition uncertainty set (instead of CIf ), and de-
note by Vb , 1

1−γ (rmax − rmin) the maximal difference
between two returns of any two policies. Also, recall that the
proofs presented below are limited to the γβ < 1 case.

a. Continuity of the Optimal Value Function
In this subsection we show that under the continuity As-
sumption 2, the optimal value function is also Lipschitz con-
tinuous4.

Lemma 1 For any given x1, x2 ∈ X, we have that

|V (x1)− V (x2)| ≤
α

1− γβ
d(x1, x2) , ω (d(x1, x2)) .

Proof. Fix x1, x2 ∈ X. From the optimality equation (1), we
have that

|V (x1)− V (x2)|
≤ max

a
|r(x1, a)− r(x2, a)|

+ γ max
a
|V (f(x1, a))− V (f(x2, a))|

≤ αd(x1, x2) + γ max
a
|V (f(x1, a))− V (f(x2, a))| ,

4In case γβ > 1 it is Hölder continuous, see [3] for details.



where the second inequality follows by Assumption 2. Also
by this assumption, we have that

d(f(x1, a), f(x2, a)) ≤ βd(x1, x2),

for any a. Applying the above inequalities iteratively, for any
integer H > 0, we obtain the following bound:

|V (x1)− V (x2)| ≤ αd(x1, x2)
H−1∑
k=0

(γβ)k + γHVb.

Now, since γβ < 1, we can take H = ∞ in the above bound,
and obtain the desired result.

b. The Upper Value Function
First we prove the contraction property of the upper DP op-
erator used in the fixed point equation (15).

Lemma 2 The operator T̃ is a contraction mapping in the
`∞ norm, with the contraction factor γ. Thus, there exists a
unique solution to equation (15).

Proof. Given two functions g1 and g2, we have the following
sequence of inequalities:∣∣∣(T̃ g1)(s)− (T̃ g2)(s)

∣∣∣
≤ γ max

a∈A

∣∣∣∣ max
s′∈CI(s,a)

T2g1(s′)− max
s′∈CI(s,a)

T2g2(s′)
∣∣∣∣

≤ γ max
a∈A

max
s′∈CI(s,a)

|T2g1(s′)− T2g2(s′)|

≤ γ max
s′∈St

|T2g1(s′)− T2g2(s′)| .

Now, since

|T2g1(s′)− T2g2(s′)|

=
∣∣∣ min

s′′∈St

{g1(s′′) + ω (∆ (s′) + db (s′, s′′))} −

− min
s′′∈St

{g2(s′′) + ω (∆ (s′) + db (s′, s′′))}
∣∣∣

≤ max
s′′∈St

|g1(s′′)− g2(s′′)| = ‖g1 − g2‖∞ ,

it follows that
∣∣∣(T̃ g1)(s)− (T̃ g2)(s)

∣∣∣ ≤ γ ‖g1 − g2‖∞ for

all s ∈ St. Hence,
∥∥∥T̃ g1 − T̃ g2

∥∥∥
∞
≤ γ ‖g1 − g2‖∞ , which

proves the result.

We will need the following property of the smoothing
operator T2.

Lemma 3 If g1 : St → R is an upper bound on the value
function (that is, g1(s) ≥ V (x) for all s ∈ St and x ∈ s),
then so is g2 , T2g1.

Proof. For given s ∈ St, let s∗ be the cell that achieves the
minimum in the smoothing operator T2:

s∗ = argmin
s′∈St

{g1(s′) + ω (∆ (s) + db (s, s′))} .

If s = s∗, then by definition of the biased distance (5) we
have that db(s, s∗) = −∆(s), implying that

ω (∆ (s) + db (s, s∗)) = ω (0) = 0.

Thus, g2(s) = g1(s) ≥ V (x) for all x ∈ s. Otherwise,
let5 xmin ∈ s and x∗min ∈ s∗ be such that db(s, s∗) =
d(xmin, x∗min). We have that

g2(s) , g1(s∗) + ω (∆ (s) + db (s, s∗))
≥ V (x∗min) + ω (∆ (s) + db (s, s∗))
≥ V (x),

where the first inequality follows by hypothesis for the state
x∗min ∈ s∗, and the second inequality holds for every x ∈ s
by Lemma 1, since

d(x, x∗min) ≤ d(xmin, x∗min)+d(x, xmin) ≤ db(s, s∗)+∆(s).

Lemma 4 The UVF Ṽt is indeed an upper bound on the op-
timal value function. That is, at every time t, we have that
Ṽt(s) ≥ V (x), ∀s ∈ St,∀x ∈ s.

Proof. Since, by Lemma 2, T̃ is a contraction operator, we
can prove the claim by induction on the steps of value itera-
tion. For the base case, let Ṽ 0(s) ≡ Vmax ≥ V (x),∀x ∈ X.
Now assume that the claim holds for n-th iteration. For n+1-
th iteration we have by the Lipschitz continuity of the reward
(Assumption 2) and by the definition of r̃(s, a), that for all
s ∈ St and x ∈ s,

r̃(s, a) = r(xs, a) + α∆(s) ≥ r(x, a),

where xs is a sample point in s. Also, by Assumption 2 and
by the definition of CI(s, a), it follows for any x ∈ s, that
f(x, a) ∈ s′, with s′ ∈ CI(s, a). Thus,

max
s′∈CI(s,a)

T2Ṽ
n(s′) ≥ T2Ṽ

n(s′ : f(x, a) ∈ s′) ≥ V (f(x, a)),

where the last inequality follows by the induction assump-
tion and Lemma 3. Therefore, we have

Ṽ n+1(s) = max
a∈A

{
r̃(s, a) + γ max

s′∈CI(s,a)
T2Ṽ

n(s′)
}

≥ max
a∈A

{r(x, a) + γV (f(x, a))}

= V (x).

which completes the induction proof. Since Ṽ n → Ṽ , the
result follows.

c. Near–Optimality of the UVF Optimal Policy
In this section we provide a sufficient condition on the grid,
which ensures that the return obtained by the policy At =
{πτ}∞τ=t which the algorithm implements at time t, is ε-close
to the UVF: Ṽt(s) − JAt

M (x) ≤ ε, for a given s ∈ St and all
x ∈ s. This will imply that V (x) − JAt

M (x) ≤ ε, since Ṽt is
an upper bound on the optimal value; namely, this will imply
that At is an ε-optimal policy.

To proceed, we introduce the definitions of known cell–
action pairs and the escape event.

5A denotes the closure of a set A.



Definition 7 (Known Pairs) At any time t, define the set of
actually known cell–action pairs:

AKt , {(s, a) ∈ St(a)× A : ∆(s) ≤ ∆ε, (s, a) was sampled} .

Also, define the set of virtually known cell–action pairs:

V Kt , {(s, a) ∈ St(a)× A : ∆(s) ≤ ∆ε} .

The following is a standard definition, which specifies a
mixing time of any stationary policy in discounted MDPs.

Definition 8 (ε/2-Horizon Time) In an MDP M , the ε/2-
horizon time is defined to be

Tε/2 , log1/γ

2Vb

ε
.

Definition 9 (Escape Event) At any time t, define the actual
escape event from a given starting cell s ∈ St:

AEt(s) ,


In a path starting from cell s and following
At for Tε/2 steps in M, an actually visited

pair (s′t, at) not in AKt is encountered.


Also, define the virtual escape event from a given starting cell
s ∈ St:

V Et(s) ,


In a path starting from cell s and following
At for Tε/2 steps in M, a virtually visited

pair (s̃t, ãt) not in V Kt is encountered.


Finally, the escape event is defined as

Et(s) = AEt(s)
⋃

V Et(s).

Definition 10 (Episode) An episode is a maximal period of
time [t0, t1], in which:

(i) All actually and virtually visited cell–action pairs till
time t1 − 1 satisfy

∆(s′t) ≤ ∆ε, ∆(s̃t) ≤ ∆ε,

and in addition, {(s′t, at)}t1−1
t=t0

were previously sampled
(that is, were previously visited).

(ii) At time t = t1, the algorithm encounters a pair for
which the condition in (i) is not true.

Note that during each episode, a fixed stationary policy is
used by the algorithm, and the policy is (potentially) changed
only at the beginning of each episode. Also, observe that the
above definitions depend on the cell size threshold parameter
∆ε. The next lemma formulates the condition on ∆ε which
will imply that the execution of the algorithm’s implemented
policy At from time t will obtain a return which is ε-close to
the UVF.

Lemma 5 Let ε > 0 be given and assume that

∆ε =
(1− γ)(1− γβ)

2α(γ + 2)
ε. (19)

Then,
Ṽt(s)− JAt

M (x) ≤ ε + I{Et(s)}Vb

holds for all t, s ∈ St and x ∈ s.

Proof. At given time t0, we consider the execution of the
(non-stationary) policy At0 for Tε/2 time steps in M . We
will use the notation of visited grid cells specified in De-
finition 5, with t1 = t0 + Tε/2 − 1. Now, we have two
mutually exclusive cases: (a) For all (s′t, at) it holds that
∆(s′t) ≤ ∆ε and (s′t, at) was sampled, and for all s∗t it holds
that ∆(s∗t ) ≤ ∆ε. (b) There exists at least one t ∈ [t0, t1]
such that the above condition regarding either s′t or s∗t does
not hold.

The case (b) above is easy – if it happens, we have that
either a pair (s′, a) not in AKt is encountered, or a virtually
visited cell s∗ with ∆(s∗) > ∆ε is encountered. In the lat-
ter case, since the corresponding virtually visited cell-action
pair (s̃, ã) satisfies s∗ ⊆ s̃, we have that this pair is not in
V Kt. Thus, the escape event Et0(s) occurred during the ex-
ecution ofAt0 for Tε/2 time-steps, which is expressed by the
I {Et0(s)}Vb term in the bound.

Now, if (a) is the case, during the execution of At0 for
Tε/2 time steps we stay in the same episode, and thus the
algorithm’s policy remains unchanged and it is the stationary
policy πt0 . For simplicity, assume t0 = 0, write π for π0 and
Ṽ for Ṽ0, and recall that π is the greedy policy with respect
to Ṽ (equation (16)). Thus, Ṽ (s0) = r̃ (s′0, a0)+γT2Ṽt(s∗1).
Also, by Bellman’s equation,

Jπ
M (x0) = r (x0, a0) + γJπ

M (x1).

Now, we have that

Ṽ (s0)− Jπ
M (x0)

≤ 2α∆(s′0) + γ
(
T2Ṽt(s∗1)− Jπ

M (x1)
)

≤ 2α∆(s′0)

+ γ
(
Ṽ (s1) + ω (∆ (s∗1) + db (s∗1, s1))− Jπ

M (x1)
)

≤ 2α∆(s′0)

+ γω (∆ (s∗1) + 2β∆ (s′0)) + γ
(
Ṽ (s1)− Jπ

M (x1)
)

.

The first inequality follows by the definition of virtually vis-
ited cells, and by the continuity assumption on the reward,
since

r̃ (s′0, a0)− r (x0, a0) = r (x′, a0) + α∆(s′0)− r (x0, a0)
≤ 2α∆(s′0),

where x′ is the sample that was received for this cell-action
pair. The second inequality follows by the definition of the
smoothing operator (Definition 3). Note that s1 ∈ S1 by
its definition (cf. Definition 5). Finally, the third inequality
follows since both s∗1 and s1 are in CI(s′0, a0), having

db (s∗1, s1) ≤ db

(
s∗1, f̂(s′0, a0)

)
+ db

(
f̂(s′0, a0), s1

)
≤ β∆ (s′0) + β∆ (s′0) .

Thus, proceeding iteratively, we obtain the following bound:

Ṽ (s0)− Jπ
M (x0)

≤
Tε/2−1∑

t=0

γt
[
2α∆ (s′t) + γω

(
∆

(
s∗t+1

)
+ 2β∆ (s′t)

)]
+ γTε/2Vb.



By the definition of Tε/2 (Definition 8), we have γTε/2Vb ≤
ε
2 . Now, we have to check that the condition (19) of the
lemma regarding ∆ε, implies that

Tε/2−1∑
t=0

γt
[
2α∆ (s′t) + γω

(
∆

(
s∗t+1

)
+ 2β∆ (s′t)

)]
≤ ε

2
.

Indeed,

Tε/2−1∑
t=0

γt
[
2α∆ (s′t) + γω

(
∆

(
s∗t+1

)
+ 2β∆ (s′t)

)]
≤

Tε/2−1∑
t=0

γt [2α∆ε + γω (∆ε + 2β∆ε)]

≤
∞∑

t=0

γt [2α∆ε + γω (∆ε + 2β∆ε)]

=
1

1− γ

[
2α∆ε + γ

α

1− γβ
(1 + 2β)∆ε

]
=

2α + γα

(1− γ)(1− γβ)
∆ε =

ε

2
,

where the first inequality follows since we are addressing
case (a), in which all actually and virtually visited cells are
smaller then ∆ε, the second inequality holds by taking the
infinite some instead of the finite one, the first equality fol-
lows by the definition of ω (see Definition 3), and the last
equality follows by the hypothesis (19) of the Lemma. This
completes the proof of the Lemma.

d. Number of Cells in ε-Optimal Grid
Before proving the mistake bounds, we provide an upper
bound on the number of cells Nε = |Sε|.

Lemma 6 For a fixed feasible splitting scheme, with para-
meters csplit and λ, and a single initial grid S0, we have that

Nε ≤ |S0| csplit

(
∆max

∆ε

)log1/λ(csplit)

.

Proof. For every s ∈ S0, consider performing k(s) splits
iteratively, such that at each iteration we obtain new csplit

cells instead of the original one. It follows that after k(s)
such splits, the size of a split cell s′ ⊆ s satisfies ∆(s′) ≤
λk(s)∆(s). In addition, the number of cells in the grid that
contains all such cells s′ is

N =
∑
s∈S0

c
k(s)
split. (20)

Thus, for each s ∈ S0, we need to find the minimal k(s),
such that

λk(s)∆(s) ≤ ∆ε. (21)

From (21), it follows that this minimal k(s) = k∗(s) satisfies

log1/λ

(
∆(s)
∆ε

)
≤ k∗(s) < log1/λ

(
∆(s)
∆ε

)
+ 1.

Substituting the last inequality in (20) yields

Nε =
∑
s∈S0

c
k∗(s)
split

≤ csplit

∑
s∈S0

(csplit)
log1/λ

(
∆(s)
∆ε

)

= csplit

∑
s∈S0

(
∆(s)
∆ε

)log1/λ(csplit)

≤ |S0| csplit

(
∆max

∆ε

)log1/λ(csplit)

,

which completes the proof.

Remark. We note that Lemma 6 shows an exponential de-
pendence of Nε on the state space dimension n since in most
cases log1/λ (csplit) is of order of n.

e. Proof of Theorem 1
First, we note that the escape event Et(s) (Definition 9) can
be viewed as an exploration event. If it occurs at some time
t ≥ 0, the algorithm will encounter (in an execution of length
Tε/2) a cell-action pair (s, a) (either actually, or virtually),
with s that is not in Sε. In addition, in case of actual escape
event (see Definition 9), this pair was not sampled. This fact
can be interpreted as a “discovery” of new information, since
every such occurrence of an “unknown” pair will lead to an
increase of the count of such pair, and, eventually, to split of
such a pair.

Next two lemmas show that the number of times that “ac-
tual” and “virtual” escape events can occur is bounded.

Lemma 7 The number of times that AEt(s) can occur is
bounded by Nε |A| (N + 1) Tε/2.

Proof. Note that any cell s ∈ St(a) for any a and t, can be
visited no more then N times – after this number of times,
the cell is split. Now think of the grid representation of
the state space as a tree, with cells as leaves. The inter-
nal nodes in such tree represent the larger aggregations, that
were used in previous episodes. Now, the number of such in-
ternal nodes is less or equal to the number of leaves, since the
splitting coefficient is greater or equal to 2. Using this tree
representation, the visit to the “unknown” pair can be inter-
preted as a visit to an internal node of Sε. Since the counter
of this pair is incremented in this visit, by a simple counting
argument (a.k.a. the Pigeonhole Principle), the number of
times that the algorithm can encounter an internal node of Sε

is bounded by

(number of internal nodes of Sε) · N · |A| ≤ NεN |A| .
Finally, when the algorithm encounters a leaf of Sε, then only
one such occurrence is sufficient in order to the desired cell
to become sampled. Again, by a simple counting argument,
the number of times this can occur is bounded by

(number of leaves of Sε) · |A| = Nε |A| .
To conclude, the number of times that an “unknown” cell-
action pair can be encountered is bounded by

NεN |A|+ N∗
ε |A| = Nε (N + 1) |A| .



At each time t, consider the execution of a (non-stationary)
policy At for Tε/2 time steps in M . We have two mutually
exclusive cases: (a) If starting at time t, we execute the policy
At for Tε/2 time steps, without encountering an “unknown”
pair (that is, a pair not in AKt), there is no occurrence of the
escape event AEt(s). (b) If starting at time t, we execute
the policy At for Tε/2 time steps, and encounter at least one
unknown pair at time t ≤ t′ ≤ t + Tε/2, the escape event
AEt(s) occurs.

We then wish to bound the number of time steps that
(b) is the case. In the worst case we will encounter an un-
known pair at the end of the execution period of length Tε/2.
In this case, we have that all the succeeding executions for
t < t′ ≤ t + Tε/2 will also encounter this unknown pair.
That is, if AEt(xt) occurs at some time t, also AEt′(xt′) for
t < t′ ≤ t + Tε/2 will occur, in the worst case. Since after
Nε (N + 1) |A| visits to unknown pairs, all the pairs will be-
come known, AEt(s) can occur at most Nε (N + 1) |A|Tε/2

times.

Lemma 8 The number of times that V Et(s) can occur is
bounded by Nε |A| NTε/2.

Proof. The proof is similar to the proof of Lemma 7, with
the difference that the virtual escape event cannot occur on
the leaves of Sε.

Lemma 9 The number of times that the escape event Et(s)
can occur is bounded by Nε |A| (2N + 1) Tε/2.

Proof. Follows by Lemmas 7 and 8 and Definition 9.

Finally, we prove the main theorem regarding the mistake
bound of the AAA algorithm.

Proof of Theorem 1. For each time t, we consider the execu-
tion of policy At for Tε/2 time-steps in M , with the initial
state in each such execution xt (xt ∈ st). We then have that

JAt

M (xt) ≥ Ṽt(st)− ε− I {Et(st)}Vb

≥ V (xt)− ε− I {Et(st)}Vb,

where the first inequality holds by Lemma 5, and the second
inequality holds by Lemma 4. However, by Lemma 9, the
number of times the event Et(st) can occur is bounded by
Nε (2N + 1) |A|Tε/2, implying that

∞∑
t=0

I
{

JAt

M (xt) < V (xt)− ε
}
≤ Nε |A| (2N + 1) Tε/2,

which completes the proof of the theorem, using the defin-
ition of the ε/2-horizon time, and the fact that log1/γ C ≤

1
1−γ lnC, for any C.

f. Proof of Theorem 2
Recall the definition of the posterior number N∞(x0) of ac-
tually used cells in the course of the algorithm (Definition 6).
We only need to prove the analogue of Lemma 9 in this case.
The rest of the proof is exactly the same as that of Theorem
1.

Thus, we need to bound the number of times that an es-
cape event occurs. Here we consider the trees that repre-
sent the grids “at infinity”, namely S∞(a) = limn→∞ St(a),
a ∈ A, instead of the ε-optimal grid Sε. First, consider the
actual escape event. As previously, this event can occur on
internal nodes of S∞(a) no more than

(number of internal nodes of S∞ (a)) · N ≤ N∞(x0, a)N

times. The leaves of the tree (which are the cells of S∞(a))
can be classified into two groups: (a) “Small” leaves, with
∆(s) ≤ ∆ε, and (b) “Large” leaves, with ∆(s) > ∆ε. On
“small” leaves, only one occurrence of the escape event is
possible, since such a cell becomes known (Definition 7) af-
ter one sample. On “large” leaves, there cannot be more than
N occurrences of the escape event – otherwise these cells
would have been split. Thus, the number of times the escape
event can occur on leaves is bounded by

(number of leaves of S∞ (a))N = N∞(x0, a)N .

To summarize, the number of times that the (actual) escape
event can occur on all nodes, for all actions a ∈ A, is bounded
by

∑
a∈A 2N∞(x0, a)N .

Similarly, the virtual escape event cannot occur more than∑
a∈A 2N∞(x0, a)N times. Note that there is no difference

in bounds on the number of occurrences of actual and virtual
escape events, since the cells of S∞(a) can be “large” ones,
that is having ∆(s) > ∆ε. Thus, the virtual escape event can
also happen on leaves. By the same arguments as in proof
of Theorem 1, the sum of the above two bounds times the
ε/2-horizon time Tε/2 is the mistake bound of the algorithm.

8 The Expansive Case (γβ > 1)
Our analysis above focused on case γβ < 1. When γβ > 1,
the analysis becomes more involved. This can be observed
for example, from the bound on the distance between optimal
values of two states, presented in proof of Lemma 1:

|V (x1)− V (x2)| ≤ αd(x1, x2)
H−1∑
k=0

(γβ)k + γHVb. (22)

If γβ > 1, instead of bounding the infinite sum of distances
between future rewards, we have to employ a “cut-off tac-
tics”. Specifically, we have to make a balance between the
first term in (22), which grows exponentially in H , and the
second term, which decays exponentially in H . A detailed
treatment of this case can be found in [3] and is omitted here
due to space limitations. Using the approach outlined above,
it is shown that to obtain the mistake bounds of Theorems 1
and 2, the cell size threshold should be taken as ∆ε = Kεξ,
where ξ , log1/γ β, and K is polynomial in α, β, 1/(1− γ)
and exponential in ξ; note that ξ > 1 and compare this con-
dition to (19) in case γβ < 1. As a result, in the expansive
case we obtain a worse explicit dependence of the mistake
bound on ε, as follows:

PM(ε) ≤ C ′ (1/ε)nξ |A| (2N + 1) ,

where C ′ is polynomial in α, β, 1/(1−γ), and is exponential
in ξ; compare this bound to (18).



9 Conclusion

We presented a model-based learning algorithm that aims to
solve the online, continuous state space reinforcement learn-
ing problem in deterministic domain, under continuity as-
sumption of model parameters. We note that we did not ad-
dress at all the issue of the computational complexity. The
goal of the analysis was to show feasibility in the sense of
sample efficiency.

Some ideas for improvement of the proposed algorithm
and its analysis follow. First, it would be interesting from
computational perspective, to formulate an on-line asynchro-
nous variant, that will perform only one back-up of Value
Iteration each time-step, instead of exact calculation, and an-
alyze its performance. Also, the explicit dependence of the
posterior number of cells on the number of cells needed on
the optimal trajectory remains an open and difficult ques-
tion which requires new tools for its analysis. In addition,
more elaborate splitting rules and possible merging schemes
should be considered. Finally, evaluation of the algorithm
using simulations would be interesting from the practical
point of view.

The extension of similar ideas to the stochastic domains
seems possible, under a different continuity assumption (na-
mely, under continuity of transition density as in [9]). Pre-
liminary results for this case can be found in [3]. A possible
future direction here is to formulate an algorithm that will
work for both the stochastic and deterministic cases, under
a unified continuity assumption. Another possible extension
is to the case of continuous action space A, which can be
approached using aggregation, similarly to the state space.
Finally, other reward criteria should be considered – aver-
age reward (with associated loss bounds), and shortest path
problems (total reward). In particular, the shortest path for-
mulation is more natural in such deterministic problems, as
navigation in maze.
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