Regret Bounds for Sleeping Experts and Bandits
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Abstract

We study on-line decision problems where the
set of actions that are available to the decision
algorithm vary over time. With a few notable
exceptions, such problems remained largely unad-
dressed in the literature, despite their applicability
to a large number of practical problems. Departing
from previous work on this “Sleeping Experts”
problem, we compare algorithms against the pay-
off obtained by thebest orderingof the actions,
which is a natural benchmark for this type of prob-
lem. We study both the full-information (best ex-
pert) and partial-information (multi-armed bandit)
settings and consider both stochastic and adaptive
adversaries. For all settings we give algorithms
achieving (almost) information-theoretically opti-
mal regret bounds (up to a constant or a sub-
logarithmic factor) with respect to the best-ordering
benchmark.

Introduction

lems, an algorithm must choose, in each oftheonsecutive

rounds, one of the possible actions. In each round, each ac-

tion receives a real valued positive payoff[in 1], initially Over tme. L _ > _ :
unknown to the algorithm. At the end of each round the al- N hindsight is no longer appropriate since that action migh
gorithm is revealed some information about the payoffs of SOmMetimes be unavailable. A useful thought experiment for
the actions in that round. The goal of the algorithm is to 9uiding our intuition is the following: if each action had
maximize the total payoff, i.e. the sum of the payoffs of the & fixed payoff distribution that waknownto the decision-
chosen actions in each round. The standard on-line decisiorMaker, what would be the best way to choose among the
settings are thdest expersetting (or the full-information
setting) in which, at the end of the round, the payoffalbf.
strategies are revealed to the algorithm, anchtladi-armed

bandit setting (or the partial-information setting) in which
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types of strategies, when we do not refer particularly to ei-
ther.

The performance of the algorithm is typically measured
in terms ofregret The regret is the difference between the
expected payoff of the algorithm and the payoff of a single
fixed strategy for selecting actions. The usual single fixed
strategy to compare against is the one which always selects
the expert or bandit that has the highest total payoff over th
T rounds (in hindsight).

The usual assumption in online learning problems is that
all actions are available at all times. In many applicatjons
however, this assumption is not appropriate. In network-rou
ing problems, for example, some of the routes are unavail-
able at some pointin time due to router or link crashes. Or, in
electronic commerce problems, items are out of stock, sell-
ers are not available (due to maintenance or simply going
out of business), and buyers do not buy all the time. Even in
the setting that originally motivated the multi-armed biand
problems, a gambler playing slot machines, some of the slot
machines might be occupied by other players at any given
time.

In this paper we relax the assumption that all actions are
available at all times, and allow the set of available atitn
vary from one round to the next, a model known as “predic-
tors that specialize” or “sleeping experts” in prior workher
first foundational question that needs to be addressed is how
to define regret when the set of available actions may vary
over time. Defining regret with respect to the best action

available actions? The answer is obvious: one should or-
der all of the actions according to their expected payoénth
choose among the available actions by selecting the ondawhic
ranks highest in this ordering. Guided by the outcome of this

only the payoff of the chosen strategy is revealed. Customar thought experiment, we define our base to be the best order-
ily, in the best expert setting the strategies are cadbquerts

and in the multi-armed bandit setting the strategies atedal
banditsor arms We useactionsto generically refer to both
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ing of actions in hindsight (see Section 2 for a formal defi-
nition) and contend that this is a natural and intuitive way t
define regret in our setting. This contention is also sugabrt

by the informal observation that order-based decisionsrule
seem to resemble the way people make choices in situations

beer to buy at a store.
We prove lower and upper bounds on the regret with re-



spect to the best ordering for both the best expert settidg an lems have been widely studied, and we draw on this literature
the multi-armed bandit settings. We first explore the case of to design algorithms and prove lower bounds for the gener-
stochastic adversary, where the payoffs received by expertalizations considered here. The adversarial expert paradi
(bandit): at each time step are independent samples from anwas introduced by Littlestone and Warmuth [LW94], and

unknown but fixed distributio®; (-) supported o1f0, 1] with
meany,. Assuming thatu; > ps > -+ > u, (and the

Vovk [Vov90]. Cesa-Bianchi et al [CBFHO7] further de-
veloped this paradigm in work which gave optimal regret

algorithm, of course, does not know the identities of these bounds of/7'(Inn) and Vovk [Vov98] characterized the
actions) we show that the regret of any learning algorithm achievable regret bounds in these settings.

will necessarily be at leas? (Z;’: uv—bﬂ) in the best
expert setting, an (log(T) Sl M__L“ in the multi-

armed bandit setting if the game is played Torounds (for

T sufficiently large). We also present efficient learning algo
rithms for both settings. For the multi-armed bandit settin
our algorithm, calledAUER, is an adaptation of theCB1
algorithm in Auer et al [ACBF02], which comes within a

The multi-armed bandit model was introduced by Rob-
bins [Rob]. Lai and Robbins [LR85] gave asymptotically op-
timal strategies for the stochastic version of bandit probi-
in which there is a distribution of rewards on each arm and
the rewards in each time step are drawn according to this
distribution. Auer, Cesa-Bianchi, Fischer [ACBF02] intro
duced the algorithnCB1 and showed that the optimal re-
gret bounds of®(log T') can be achieved uniformly over

constant factor of the lower bound mentioned above. For time for the stochastic bandit problem. (In this bound, the

the expert setting, a very simple algorithm, called “follow
the-awake-leader”, which is a variant of “follow-the-leat
[Han57, KVO05], comes within a constant factor of the lower

bound above. While our algorithms are adaptations of ex-

big-O hides a constant depending on the means and differ-
ences of means of payoffs.) For the adversarial version of
the multi-armed bandit problem, Auer, Cesa-Bianchi, Fre-

und, and Schapire [ACBFS02] proposed the algorittup3

isting techniques, the proofs of the upper and lower boundswhich achieves the regret bound Of /7T logn), leaving
hinge on some technical innovations. For the lower bound, a \/logn factor gap from the lower bound 6¥(v/nT). It is
we must modify the classic asymptotic lower bound proof of worth noting that the lower bound holds even for an oblivious

Lai and Robbins [LR85] to obtain a bound which holds at all

adversary, one which chooses a sequence of payoff functions

sufficiently large finite times. We also prove a novel lemma independently of the algorithm’s choices.

(Lemma 3) that allows us to relate a regret upper bound aris-

ing from application ofUCBL1 to a sum of lower bounds for
two-armed bandit problems.

Prediction with sleeping experts. Freund, Schapire, Singer,
and Warmuth [FSSW97] and Blum and Mansour [BMO05]

Next we explore the fully adversarial case where we make have considered sleeping experts problems before, anglyzi
no assumptions on how the payoffs for each action are gen-algorithms in a framework different from the one we adopt
erated. We show that the regret of any learning algorithm here. In the model of Freund et al., as in our model, a set of

must be at leas® < Tn log(n)> for the best expert setting
andf2 (\/Tn2> for the multi-armed bandit setting. We also

present algorithms whose regret is within a constant factor

of the lower bound for the best expert setting, and within
@) ( log(n)) of the lower bound for the multi-armed ban-

dit setting. It is worth noting that the gap of (v/Iog ) also
exists in the all-awake bandit problem.

awake experts is specified in each time period. The goal of
the algorithm is to choose one expert in each time period so
as to minimize regret against the best “mixture” of experts
(which constitutes their benchmark). A mixtunds a prob-
ability distribution (uy, us, . .., u,) overn experts which in
time periodt selects an expert according to the restriction of
u to the set of awake experts.

We consider a natural evaluation criterion, namely the
best ordering of experts. In the special case when all ex-

The fully adversarial case, however, proves to be harder, Perts are always awake, both evaluation criteria degemerat

and neither algorithm is computational efficient. To apprec

to picking the best expert. Our “best ordering” criteriomca

ate the hardness of the fully adversarial case, one can’prove Pe regarded as a degenerate case of the “best mixture” cri-

that, unles®® = NP, any low regret algorithm that learns

terion of Freund et al. as follows. For the orderingwe

internally a consistent ordering over experts can not be-com assign probabilities; (1, ¢, €%,..., ") to the sequence of
putationally efficient. Note that this does not mean thatghe experts(c(1),5(2),...,0(n)) whereZ = 112‘-6 is the nor-

can be no computationally efficient, low regret algorithms
for the fully adversarial case. There might exist learnihg a
gorithms that are able to achieve low regret without acyuall
learning a consistent ordering over experts. Finding slich a
gorithms, if they do indeed exist, remains an open problem.

1.1 Related work
Sequential prediction problems. The best-expert and multi-

malization factor and > 0 is an arbitrarily small positive
constant. The only problem is that the bounds that we get
from [FSSW97] in this degenerate case are very weak. As
e — 0, their bound reduces to comparing the algorithm’s
performance to the ordering's performance only for time
periods whers (1) expert is awake, and ignoring the time
periods wherr (1) is not awake. Therefore, a natural reduc-
tion of our problem to the problem considered by Freund et

armed bandit problems correspond to special cases of ourdl- defeats the purpose of giving equal importance to aktim

model in which every action is always available. These prob-

11t is a simple reduction from feedback arc set problem, which
is omitted from this extended abstract.

periods.

Blum and Mansour [BMO05] consider a generalization of
the sleeping expert problem, where one has a sginef se-
lection functionsand the algorithm aims to have low regret



with respect to every expert, according to every time selec-

tion function. It is possible to solve our regret-minimipat
problem (with respect to the best ordering of experts) by re-
ducing to the regret-minimization problem solved by Blum
and Mansour, but this leads to an algorithm which is neither
computationally efficient nor information-theoreticatipti-
mal. We now sketch the details of this reduction. One can
define a time selection function for each (ordering, expert)
pair (o,1%), according tal, ;(t) = 1if i <, jforall j € A,
(that is, o chooses in time periodt if I, ;(t) = 1). The

regret can now be bounded, using Blum and Mansour’s anal-

ysis, as
i @ (\/Im + log(n! - n2)>
i=1
=0 (\/W—l-nlogn) .

This algorithm takes exponential time (due to the expoaénti

an adversary chooses a subdetC {1,2,...,n} of the ac-
tions to be available. The algorithm can only choose among
available actions, and only available actions receive résia
The reward received by an available actibat timet is
’I“i(t) S [0, 1].

We will consider two models for assigning rewards to
actions: a stochastic model and an adversarial model. (In
contrast, the choice of the set of awake experts is always
adversarial.) In the stochastic model the reward for aan
time ¢, r;(t), is drawn independently from a fixed unknown
distribution P;(-) with meany;. In the adversarial model
we make no stochastic assumptions on how the rewards are
assigned to actions. Instead, we assume that the rewards are
selected by an adversary. The adversary is potentiallydiut n
necessarily randomized.

Let o be an ordering (permutation) of theactions, and
A a subset of the actions. We denotedi}d) the action in
A that is highest ranked ia. The reward of an ordering is
the reward obtained by selecting at each time step the highes

number of time selection functions) and gives a regret bound ranked action available.

of ©(v/T'n?logn) against the best ordering, a bound which
we improve in Section 4 using a different algorithm which
also takes exponential time but is information-theordliica
optimal. (Of course, Blum and Mansour were designing their
algorithm for a different objective, not trying to get low-re
gret with respect to best ordering. Our improved bound for

regret with respect to the best ordering does not imply an im-

proved bound for experts learning with time selection func-
tions.)

A recent paper by Langford and Zhang [LZ07] presents
an algorithm called th&poch-Greedy algorithrfor bandit
problems with side information. This is a generalization of
the multi-armed bandit problem in which the algorithm is
supplied with a piece dfide informatiorin each time period
before deciding which action to play. Given a hypothesis
classH of functions mapping side information to actions,

T
Ror = Z To(a,)(t) (1)

t=1

Let Ry = max, R, r (max, E[R, 7] in the stochastic

rewards model) be the reward obtained by the best order-
ing. We define the regret of an algorithm with respect to the
best ordering as the expected difference between the reward
obtained by the best ordering and the total reward of the al-
gorithm’s chosen actions(1), z(2), ..., z(t):

T
Ry — Z T (t) (t)l

where the expectation is taken over the algorithm’s random
choices and the randomness of the reward assignment in the

REGr =E 2

the Epoch-Greedy algorithm achieves low regret against astochastic reward model.

sequence of actions generated by applying a single function

h € 'H to map the side information in every time period to
an action. (The function is chosen so that the resulting se-
guence has the largest possible total payoff.) The stachast
case of our problem is reducible to theirs, by treating the se
of available actionsA;, as a piece of side information and
considering the hypothesis clags consisting of functions
h., for each total ordering of the set of actions, such that
he(A) selects the element of which appears first in the or-
deringo. The regret bound in [LZ07] is expressed implicitly
in terms of the expected regret of an empirical reward max-
imization estimator, which makes it difficult to comparesthi
bound with ours. Instead of pursuing this reduction from our
problem to the contextual bandit problem in [LZ07], Sec-
tion 3.1.1 presents a very simple bandit algorithm for the
stochastic setting with an explicit regret bound that isvpro
ably information-theoretically optimal.

2 Terminology and Conventions

We assume that there is a fixed pool of actiofis,2, ...n},
with n known. We will sometimes refer to an action by-
pert in the best expert setting and laym or banditin the
multi-armed bandit setting. Ateach time step {1,2,...,T},

3 Stochastic Model of Rewards

We first explore the stochastic rewards model, where the re-
ward for action; at each time step is drawn independently
from a fixed unknown distributio®; (-) with meany,. For
simplicity of presentation, throughout this section weuass
thatp; > pe > -+ > py,. Thatis the lower numbered
actions are better than the higher numbered actions. Let
A;; = pi — py foralli < j be the expected increase in
the reward of expertover expert;.

We present optimal (up to a constant factor) algorithms
for both the best expert and the multi-armed bandit setting.
Both algorithms are natural extensions of algorithms fer th
all-awake problem to the sleeping-experts problem. The ana
ysis of the algorithms, however, is not a straightforward ex
tension of the analysis for the all-awake problem and new
proof techniques are required.

3.1 Best expert setting

In this section we study algorithms for the best expertrsgtti
with stochastic rewards. We prove matching (up to a constant
factor) information-theoretic upper and lower bounds an th
regret of such algorithms.



3.1.1 Upper bound (algorithm: FTAL)

To get an upper bound on regret we adapt the “follow the
leader” algorithm [Han57, KV05] to the sleeping experts set

Let us say that the TAL algorithm suffers aifi, j)-anomaly
of type lat timet if =, = j andj,;, — u; > A, ;/2. Let
us say thaF TAL suffers an(i, j)-anomaly of type 2t time

ting: at each time step the algorithm chooses the awake ex-t if iy =i andu; — fi;; > A; ;/2. Note that wherFTAL

pert that has the highest average payoff, where the avesage i

picks a strategy:: = j # i = i}, it suffers an(i, j)-anomaly

taken over the time steps when the expert was awake. If anof type 1 or 2, or possibly both. We will denote the event

expert is awake for the first time, then the algorithm chooses

of an (i, j)-anomaly of typel (resp. type2) at timet¢ by

it. (If there are more than one such such experts, then thec ! (t) (resp.£ (), and we will useM;”), resp. M, to

algorithm chooses one of them arbitrarily.) The pseudocode
for the algorithm is shown in Algorithm 1. The algorithm is
calledFollow The Awakel eader ETAL for short).

1 Initialize z; = 0 andn,; = 0 for all i € [n].
2fort=1toT do
3 if 3j € A; s.t.n; = 0then

4 Play experte(t) = j

5 else

6 Play expert:(t) = arg max;e 4, (%)
7 end

8 Observe payoff;(t) forall i € A;

9 z; — z +ri(t) foralli € A,

10 n; <—n; +1foralli e A,
11 end
Algorithm 1: Follow-the-awake-leadelFTAL) algo-

rithm for sleeping experts problem with stochastic ad-
versary.

Theorem 1 TheFTAL algorithm has a regret of at most

n—1

32
Ajjt1

j=1

with respect to the best ordering.

The theorem follows immediately from the following pair
of lemmas. The second of these lemmas will also be used in
Section 3.2.

Lemma 2 TheFTAL algorithm has a regret of at most

n j—1

Z Z AiQ(Ai,i-&-l +Aj-1,5)

j=21i=1 " J
with respect to the best ordering.

Proof: Let n,;; be the number of times experthas been
awake until timef. Let ji; + be expert’s average payoff until
time ¢. The Azuma-Hoeffding Inequality [Azu67, Hoe63]
says that

Plngefije > ngepg +ngeij/2]
_n3aad
ERT

2
ATt
8

<e

= e 5

and

Plnisfis e < i — 11D j /2]
n? A7,
8ngt

2
A2 ingy

<e

=e

denote the total number 6f, j)-anomaliés of types and2,
respectively. We can bound the expected valuMéjg) by

0 A%j"j,t
EM <D em 5 1{j € A} (3)

t=1
e A2 n

<y e ¥ 4
n=1

1 _ 8

= eA?’j/S 1 — Ag,j7

where line (4) is justified by observing that distinct norwer
terms in (3) have distinct values of; ;. The expectation of
Mi@) is also bounded by/A? ., via an analogous argument.
'Recall that4, denotes thé set of awake experts at time
x; € A denotes the algorithm’s choice at timeandr; (¢)
denotes the payoff of expertat timet (which is distributed
according toP;(-)). Letif € A, denote the optimal expert
at timet (i.e., the lowest-numbered element 4f). Let us
bound the regret of thETAL algorithm now.

T
E|) (riz(t) —ra, (t))]
t=1
[ T
=E Z AiTaIt
Lt=1
[ T
—E |y 1{el wveD, ®f A]
Lt=1
[ T
<E (> 1{e 0} Ai;m]
_t:lT
+E |y 1{e, 0} A]
t=1

With the convention thaf\; ; = 0 for j < ¢, the first
term can be bounded by:

2

~E |33 1 {ef0) s

t=1j=2

E 8. (0} A

(Since the evenfi(;)j (t) occurs only forj = x;.)

n j—1

o1 {51‘(;1,)]'@)} Z (Aij — Aiy15)

Jj=2 i=iy

T
=E Y (5)
t=1



{ i1,] i2,]
n j—1 T
<E [Z Aiir1 Y1 {51(13) (t)}
j=2i=1 t=1
n j—1

Similarly, the second term can be bounded by

T
@) )
E Lz_; 1 {gi;,mt (t)} AVEIPR
> 1{e2 ) A,

(6)

=E Z 1{52(2( )} i (Aij —Aij-1)

j=it1

1<i<j<n _©J

Adding the two bounds gives the statement of the leniilha.

Lemma 3 For A; ; = u;

Yo AGA

1<i<j<n

— 1; defined as above

iyit1 <2ZAJ 1,j
and

i—1j <2ZAJ 1)

Yo A7A

1<i<j<n

Proof: It suffices to prove the first of the two inequalities
stated in the lemma; the second follows from the first by re-
placing eachu; with 1 — p;, which has the effect of replacing
Ay With Agy1 g1

For a fixedi € [n], we write

> A

Jig>i

i Ai_f as follows.

:Z1{j>z‘}A;§ 7)
j=2

:/ #{j:j>i,A7
xT

=0

oo
:/ #{j>i,Ai,j§x_1/2}dx
=0

zm}dx

0
:72/ #{j>i,0,; <yly>dy
Yy=00
(Changing the variable of integratia /2 = y)

:2/ #{j>i,A;; <y}y > dy. (8)
Yy

=0
Let us make the following definition, which will be used in
the proof below.

Definition 4 For an expertj andy > 0, let i,(j) be the
minimum numbered expeirt< j such thatA, ; is no more
thany. That is

iy(j) == argmin{i : i < j,A; ; <y}

Now we can write the following chain of inequalities. (Note
that the best (highest payoff) expert is indexed as 1, and low
est payoff is indexea.)

n j—1

DD AT

j=2 i=1

Aiior (©)
n—1

—ZAzH—l Z A

J:ig>i

(]

(From (8).)

#{j:j>0,005 <y}y~ 3dy>
0

n—1

= 2/ y~° (Z A1 #{j>1,4;; < y}> dy
Yy

=0 i=1

(Changing the order of integration and summation.)

:2/iO (ZA“HZl{j>zAm<y})dy

Jj=i+1

(Expanding# {-} into sum of1 {-}.)

o0 n j—1
=2 / y~? (ZZAmHl{j >0, A < y}) dy
y=0 j=2i=1



(Changing the order of summation.) Recall from Definition 4
that for anyj andy > 0, i,(j) is the least indexed expeit
such thatj; ; is still less thary. We get the following.

0o n j—1
:2/ 02173 Z Z Ajir1 | dy
y=

Jj=2 i:iy (7)

:2/ 0973 > (wiyiy — 1) | dy
) _

— =

n 00
= 22/_ v (i, () — 1) dy

j=27y=0

(Changing the order of summation and integration.)

v~ (i, ) — 1) dy (10)

=Aj-1,j

(This is because for values gfless tham;_; ;, i, (j) = j
and integrand is equal to zero.)

(11)

This concludes the proof of the lemma. ]

Remarks forsmallA; ;11  Note that the upper bound stated
in Theorem 1 become very large whe¥ ;; is very small

for somei. Indeed, when mean payoffs of all experts are

equal,A; ;11 = 0 for all ¢ and upper bound becomes trivial,

while the algorithm does well (picking any expert is as good
as any other). We suggest a slight modification of the proof

to take care of such case.

Lete > 0 be fixed (the original theorem corresponds to
the case = 0). Recall the definition of.(j) from Defini-
tion 4. We also define the inversg, (i) as the maximum
numbered experj such thatA; ; is no more thar, i.e.,
Je(i) = argmax{j : j > 4,4, ; < e}. Note that the three
conditions: (1) < i.(j), (2) 5 > je(i), and (3)A;; > ¢
are equivalent. The idea in this new analysis is to “identify
experts that have means withirof each other. (We cannot

This can be seen by rewriting Equation (5) as
T n
EY Y1
t=1j=2

T j—1
+E (> Y1{eP0) Y A

n
t=1j=2 i=ie ()

ie(j)—1

{51‘(;‘1,).7‘ (t)} > Aiin

Lok
7’_11,

and noting that the second term is at most
T n T
1
) RCHITIH RIS o)
t=1

t=1 j=2
since only one of the even@ﬁtf’)j (t) (corresponding tg =
x;) can occur for each Equation (6) can be similarly mod-
ified by splitting the summatio = i +1...z, t0j =
i+1...5.(¢)andj = jc(3) + 1... 2.
Similarly, Lemma 3 can be modified as follows. In equa-
tion (7), instead of rewriting _ ~2 we rewrite

g Bigo

-2
Aij
J:5>1,1<ic(5)

=€T,

to get

2/ #{j>ie <Ay <ylyidy,
y=0
in Equation (8).

Equation (9) can be rewritten as

n i(j)—1

SV A
j=1 i=1

The rest of the analysis goes through as it is written, except
that the limits of integration in Equation (10) now become
y = max{e,A;_1;}...00 instead ofy = A;_q;...00,
resulting in the final expression of

23 " (max{e,A; 1;})7",
j=2
in Equation (11).
Therefore, the denominators of regret expression in The-
orem 1 can be made at leastf we are willing to pay2eT’
upfront in terms of regret.

3.1.2 Lower bound

In this section, assuming that the meanare bounded away
from 0 and1, we prove that in terms of the regret, th€AL
algorithm presented in the section above is optimal (up to
constant factors). This is done by showing the following
lower bound on the regret guarantee of any algorithm.

just make equivalence classes based on this, since the rela-

tion of “being withine of each other” is not an equivalence
relation.)

Lemma 5 Assume that the meapgare bounded away from
0 and1. Any algorithm for the stochastic version of the best

Lemma 2 can be modified to prove that the regret of the expert problem must have regret at least

algorithm is bounded by

2T+ )

1<i<j<n,
Ai,j>e

?

8
F(Ai,i+1 + A1)
.

n—1 1

asT becomes large enough.



To prove this lemma, we first prove its special case for the
case of two experts.

Lemma 6 Suppose we are given two numbers > s,
both lying in an intervalla, b] such that0 < a < b < 1,
and suppose we are given any online algorithnior the

best expert problem with two experts. Then there is an input

instance in the stochastic rewards model, with two experts
L and R whose payoff distributions are Bernoulli random
variables with meang; and u» or vice-versa, such that for
large enougHhr’, the regret of algorithm is

Q@ h,

whered = p; — po and the constants inside thig(-) may
depend oru, b.

Proof: Let us define some joint distributiong:is the distri-
bution in which both experts have average payaff qr, is
the distribution in which they have payoftg, u2) (left is
better), and;r is the distribution in which they have payoffs
(12, u1) (right expert is better).

Let us define the following eventdz” is true if ¢ picks
L attimet, and similarlyE[.

We denote by (-) the joint distribution for firstt time
steps, where the distribution of rewards in each time period
is p(-). Similarly for ¢*(-). We havep![EL] + p![EF] = 1.
Therefore, for every, there existsM € {L, R} such that
p'[EM] > 1/2. Similarly, there existsV/ € {L, R} such

that

TakeTy, = 5 for a small enough constant We will
prove the claim below fof" = Ty; for larger values off’,
the claim follows easily from this.

Without loss of generality, assume thaf = L. Now
assume the algorithm faces the input distribujgnand de-
fineq = gr. UsingKL(-; ) to denote the KL-divergence of
two distributions, we have

KL(p';¢") < KL(p";¢") =T - KL(p; q)
KL p2) < 672 0(8%)

1

2

T
>

#{t:lgth, p'[EM] > >3

1
< =N
— 50
for a small enough value efwhich depends on andb be-
cause the constant inside t{-) in the line above depends
ona andb.

Karp and Kleinberg [KKO7] prove the following lemma.
If there is an evenE with p(E) > 1/3 andq(FE) < 1/3,
then

=cd~

1

3q(E)

1

)_

. (12)
e

1
KL(p; q) > 3ln(
We have that for at leadt/2 values oft, p'(EL) > 1/3 (it
is actually at least/2). In such time steps, we either have
¢'(EL) > 1/3 or the lemma applies, yielding
1 1 1
— >KL(pY¢") > =In | ———
55 2 kL) > 51 (s

1

>_

e.

This gives
1
> —.
— 10
Therefore, the regret of the algorithm in time period

at least
9 1
M1 10#2

oMLt
SinceT = Q(62), we have that the regret is at least

q'(Ef)

> L

10 10

%5.9(5*2) = Q@Y.

This finishes the proof of the lower bound for two expellls.

Proof of Lemma 5: Let us group experts in pairs @fas

(2i —1,2i) fori = 1,2,...,|n/2]. Apply the two-expert
lower bound from Lemma 6 by creating a series of time steps
whenA; = {2i — 1, 2i} for eachi. (We need a sufficiently
large time horizon — namely” > Z}Z{QJ CAQ_iin —in
order to apply the lower bound to dlh/2] two-expert in-
stances.) The total regret suffered by any algorithm is the
sum of regret suffered in the independé¢nt/2] instances
defined above. Using the lower bound from Lemma 6, we
get that the regret suffered by any algorithm is at least

£o(s)

=1
Similarly, if we group the experts in pairs accordind 20, 2i+
1)fori=1,2,...,|n/2], then we get a lower bound of

Ealet)

> o
1=1

Since both of these are lower bounds, so is their average,
which is
n—1
)-ofa)
i=1

3.2 Multi-armed bandit setting

We now turn our attention to the multi-armed bandit setting
against a stochastic adversary. We first present a variant of
UCBL algorithm [ACBFO02], and then present a matching
lower bound based on idea from Lai and Robbins [LR85],
which is a constant factor away from thECB1-like upper
bound.

3.2.1 Upper bound (algorithm: AUER)

Here the optimal algorithm is again a natural extensionef th
UCBL algorithm [ACBF02] to the sleeping-bandits case. In
a nutshell, the algorithm keeps track of the running average
of payoffs received from each arm, and also a confidence in-

terval of width2 il—_‘lf around armny, wheret is the current
Js

time interval andr; ; is the number of timeg's payoff has
been observed (number of times afrhas been played). At

1

Agi_12i

1
Aoj 241

1
Ajiv

1n71
229<

This proves the lemma.



time ¢, if an arm becomes available for the first time then is at leastA; ; and at mostA; ;). Call thisV; ; for i< j.
the algorithm chooses it. Otherwise the algorithm optimist e claim thatV; ;< 32 InT \ith probabilityl — 2

cally picks the arm with highest “upper estimated reward” ?')2 a7

(or “upper confidence bound” idCB1 terminology) among Let us definel);; = “57=. We want to cla|m that af-
the available arms. That is, it picks the afme A; with ter playingj for Q; ; number of times, we will not make
maximumji; , + Slnt Whereu]t is the mean of the ob-  the mistake of choosing instead of something from the set

{1,2,...,4}; thatis, if some arm ifi] is awake as well ag
served rewards of afm“p totimet, The algorithmis shown  ig a\yake, then some awake arnfifwill be chosen, and not
in Figure 2. The algorithm is callelwakeUpperEstimated

the armj (with probability at least — 4)
Reward AUER). Let us bound the probability of choosingwhen A, N
[i] # 0 afterj has been playe@; ; number of times.

1 Initialize z; = 0 andn; = 0 for all i € [n].
2 fort=1to7 do

3 if3je A stn;=0then Z Z { x; = j) A (j is playedk-th time)
4 Play armz(t) = j t=Qi j+1 k=Q; ;+1

5 else )

6 Play arm A (ArN[i] # @)}

x(t) = arg max;e 4, (ff + Sl;;gt) T )
: : <

! end Bl t*Z 1 k—z 1 :
8 Observe payoff,)(t) for arma(t) =@t h=Qust
9 Za() & Za(t) T Ta(r) (1) . 8lnt _ . 8Int
10 M) < M) +1 M\ AT\ T 2 ke nnt |
11 end
Algorithm 2: The AUER algorithm for sleeping bandit

(nje = k)

whereh, is the indexg in A; N [¢i] which maximizegi, ; +

problem with stochastic adversary. V(8Int)/ng¢, i.e.h = argmaxgea, flg,: ++/(81nt)/ng,
We first need to state a claim about the confidence inter- = Z Z < ) +Ppj+ Aij > pn,)
vals that we are using. t=Qp 41 k=Q 41
Lemma 7 With the definition of.; ; and ; and i;, the fol- =0(1).
lowing holds foralll <i <nandl <¢<T: Here, the first); term comes from the probability thais
confidence interval might be wrong, é§’s confidence in-
Pl & |fus— @’m P+ 8lnt < i. terval might be wrong (it follows from Lemma 7). Since
’ Nig nie ||t k > 320t j’'s confidence interval is at mos¥; ;/2 wide.

Proof: The proof is an application of Chernoff-Hoeffding Therefore, with probabilityt — t% we havei; ; + m <

bounds, and follows from [ACBF02, pp. 242-243]. N 81 ;
i + A, andpg, ¢ + 2L > up,. Also, the probability

Theorem 8 The regret of theAUER algorithm is at most Pluj+Ai; > pn,] =0 smce we know that; +A; j < i,
ash: € [i]. Therefore, we can mess up only constant num-
g ber of times betweefi] and; after j has been playe@,; ;
(64InT) - > Ao number of times. We get that
357
. o E[Ni;] < Qi; +0(1).
up to timef". Now, it is easy to bound the total regret of the algorithm,
The theorem follows immediately from the following lemma which is
and Lemma 3. =1
Z Z 1,7 1 1,J)Ai,j (13)
Lemma 9 TheAUER algorithm has a regret of at most j=2i=1
n j—1
= Nij (Aij —Aig1j),
(32InT) - §;<A2 ) Bt ;; g (Big = Bitj)

which follows by regrouping of terms and the convention
that Ny ; = 0 andA; ; = 0 for all j. Taking the expectation
Proof: We bound the regret of the algorithm arm by arm. of this gives the regret bOUﬂd of
Let us consider an arh < j < n. Let us count the number

of timesj was played, where some armin2, ..., could (32InT) Z Z — A1)
have been played (in these iterations, the regret accueadulat =2 i1 A7 K ’



This gives the statement of the lemma. ]

Remarks for small A; ;41 As noted in the case of expert
setting, the upper bound above become trivial if same;

0 < a < 8 < 1. Let¢ be an algorithm for picking among
arms which, up to time, plays a suboptimal bandit at most
o(t*) number of times for every > 0. Then, there is an
input instance witlh arms endowed with some permutation

are small. In such case, the proof can be modified by chang-of above mentioned distributions, such that the regret of

ing equation (13) as follows.

_]—1

M:

Ni—1,5)Ai

i=1

16(])

<.
/|

N
.

3

Ni-1,;)Ai;
j=2 i=1
n Jj—1
j: i= Le(])"l‘l
n 7'6(.7) 1

<> N NyA 1+1+ZN15(1>,1A5<1>,J

j=2 =1 =2

+

1 1 ])Ai,j

3
<.
|
-

IN

N; iA;iv1 + €T,

>

1<i<j<n,A; j>€

where the last step follows frofn?_, N;_1 ; < T.
Taking the expectation, and using the modification of

has to be at least

— (logt)(ps — priy1)

n—1
Q
<Z KL(MH;M)

i=1

)

We first prove the result for two arms. For this, in the
following, we extend the Lai and Robbins result so that it
holds (with somewhat worse constants) for firilte rather
than only in the limitl" — oo.

fort > n?.

Lemma 11 Letthere be two arms and two distributioRs(-)
and P, (+) with meang.; and s with u; € [, 5] fori = 1,2
and0 < a < § < 1. Let¢ be any algorithm for choosing
the arms which never picks the worse arm (for any values of
w1 andpug in [a, B]) more thano(T*) times (for any value of

a > 0).

Then there exists an instance forwith two arms en-
dowed with two distributions above (in some order) such that
the regret of the algorithm if presented with this instange i
at least

KL(pe2; p11) ’
where the constant inside the big-omega is at legst

Proof: Since we are proving a lower bound, we just focus on
Bernoulli distributions, and prove that if we have two ban-
dits, with Bernoulli payoffs with meang; andus such that

a < py < pp < B, then we can get the above mentioned

Lemma 3 suggested in Section 3.1.1 gives us an upper boundower bound.

of
n—1
€T + (64InT) Z(maX{E, A })h
i=1
for anye > 0.

3.2.2 Lower bound

In this section, we prove that tJER algorithm presented
is information theoretically optimal up to constant fastor
when the means of arms’s are bounded away froihand
1. We do this by presenting a lower bound of

<1nT ZAl 1+1>

for this problem. This is done by closely following the lower
bound of Lai and Robbins [LR85] for two armed bandit prob-
lems. The difference is that Lai and Robbins prove their
lower bound only in the case wheh approacheso, but
we want to get bounds that hold for finife Our main result

is stated in the following lemma.

Lemma 10 Suppose there are arms andn Bernoulli dis-
tributions P; with meansu;, with eachu; € [«, 8] for some

Let us fix ad < 1/10. From the assumption that and
1o are bounded away frofhand1, there exists a Bernoulli
distribution with mear\ > p; with

| KL(p2; A) — KL(p25 p1)| < 0 - KL(po; 1),

because of the continuity of KL divergence in its second ar-
gument.

This claim provides us with a Bernoulli distribution with
mean\ and

KL(5 A) < (14 8) KL(juz: ). (14)

From now on, until the end of the proof, we work with the
following two distributions ort-step historiesp is the distri-
bution induced by Bernoulli arms with meaf)s,, ), and

q is the distribution induced by Bernoulli arms with means
(11, A). From the assumption of the lemma, we have

Ey[t — noy] < o(t%), foralla > 0.

We choose any: < 4. By an application of Markov’s in-
equality, we get that

—0)(logt)/ KL(pi2; A)]
< ]Eq[t — 77,2,25]
~ t—(1=6)(logt)/ KL(p2; A)

P[n2t<(

<o(t® 1. (15)



Let& denote the eventthat ; < (1—-9)logt/ KL(ug2; A).
If P,(£) < 1/3, then

Ep[nas] > Pp(€) - (1 —0)logt/ KL(pa, A)
> 2 (1= 6)logt/ KL(us, \)

=3
(1—5 logt )

2
1+ 6 KL(p2; p1)

=3
which implies the stated lower bound f®k= 1/10.
Henceforth, we will assum&,(£) > 1/3. We have
P,(€) < 1/3 using (15). Now we can apply the lemma from
[KKO7] stated in (12), we have

1 1 1
KL(p; q) > gln (30(15“‘1)> T
=1-a)lnt—0(). (16)

The chain rule for KL divergence [CT99, Theorem 2.5.3]
implies

KL(p; q) = Ep[na ] - KL(p2; A) (17)
Combining (16) with (17), we get
(1—a)lnt—0(1)
]E.U'I’IJ'Z [n27t} - KL(,UQ, )\)
1—a Int
>———— —0(1). 18
1+ 6 KL(p2; 1) M (18)
Usinga < § < 1/10, the regret bound follows. |

We now extend the result frothto n» bandits.
Proof of Lemma 10: A naive way to extend the lower bound
is to divide the time line betweery2 blocks of length2T /n
each and use/2 separate two-armed bandit lower bounded
as done in the proof of Lemma 5.

We can pair the arms in pairs ¢2i — 1,2¢) for ¢
1,2,...,|n/2]. We present the algorithm with two arms
2¢ — 1 and2i in the i-th block of time. The lower bound

e |

H1 — [2
KL (pe2; p11)

o H2in/2]—1 — H2|n/2)
KL(12n/2); B2|n/2)-1)
ln/2]
Q| (logT)- Z Az_i}ziq )
i=1

n

if we takeT > n?. Using the fact thati; € [«, 3], we have
KL (pei5 15) O(A;j) which justifies the derivation of the
second line above.

We get a similar lower bound by presenting the algorithm
with (24, 2¢ + 1), which gives us a lower bound of

[n/2]
Q| (logT) - Z A2_i}2i+1
i—1

Taking their averages gives the required lower bound, prov-
ing the lemma. |

4 Adversarial Model of Rewards

We now turn our attention to the case where no distributional
assumptions are made on the generation of rewards. In this
section we prove information theoretic lower bounds on the
regret of any online learning algorithm for both the best ex-
pert and the multi-armed bandit settings. We also present
online algorithms whose regret is within a constant facfor o
the lower bound for the expert setting and within a subloga-
rithmic factor of the lower bound for the bandit setting. Un-
like in the stochastic rewards setting, however, these-algo
rithms are not computationally efficient. It is an open prob-
lem if there exists an efficient algorithm whose regret grows
as polynomial im.

4.1 Bestexpert

Theorem 12 For every online algorithm\LG and every time
horizonT', there is an adversary such that the algorithm’s re-
gret with respect to the best ordering, at tiffieis

Q(v/Tnlog(n)).

Proof: We construct a randomized oblivious adversary (i.e.,
a distribution on input sequences) such that the regret of
any algorithmALG is at leastQ2(/Tnlog(n)). The ad-
versary partitions the timelin€l, 2,..., T} into a series of
two-expert games.e. intervals of consecutive rounds during
which only two experts are awake and all the rest are asleep.
In total there will beQ(n) = ©(nlogn) two-expert games,
whereQ(n) is a function to be specified later in (20). For
i=1,2,...,Q(n), the set of awake experts throughout the
i-th two-experts game is a pait) = {z;,;}, determined
by the adversary based on the (random) outcomes of previ-
ous two-experts games. The precise rule for determining the
elements ofA(?) will be explained later in the proof.

Each two-experts game runs fo5 = 7'/Q(n) rounds,
and the payoff functions for the rounds are independent, ran
dom bijections fromA(® to {0, 1}. Letting ¢ (), ¢ (:)
denote the payoffs af; andy;, respectively, during the two-
experts game, it follows from Khintchine’s inequality [K¥3]

that
E (|99(:) - gV wi)|) = 2 (V).

The expected payoff for any algorithm can be at t

so for each two-experts game the regret of any algorithm is
at leastQ(\/Ty). For each two-experts game we define the
winnerW; to be the element ofz;, y; } with the higher pay-

off in the two-experts game; we will adopt the convention
thatW,; = z; in case of a tie. Théoser L, is the element of
{z;,y:} which is not the winner.

The adversary recursively constructs a sequencg(oj
two-experts games and an ordering of the experts such that
the winner of every two-experts game precedes the loser in
this ordering. (We call such an orderiognsistentith the
sequence of games.) In describing the construction, we as-
sume for convenience thatis a power of2. If n = 2 then
we setQ)(2) = 1 and we have a single two-experts game and
an ordering in which the winner precedes the losen. if 2
then we recursively construct a sequence of games and an
ordering consistent with those games, as follows:

(19)



1. We construct)(n/2) games among the experts in the 4.2 Multi-armed bandit setting

shet{l, 2,...,n/2} and an orderings; consistent with  the4rem 14 For every online algorithnALG and every time
those games. horizonT, there is an adversary such that the algorithm’s re-

2. We construct)(n/2) games among the experts in the gret with respect to the best ordering, at titfigis Q(nv/T).
set{(n/2) + 1,...,n} and an ordering<» consistent
with those games. Proof: To prove the lower bound we will rely on the lower
. i bound proof for the multi-armed bandit in the usual setting
3. Letk = 2Q(n/2). Fori = 1,2,...,n/2, we define  \yhen all the experts are awake [ACBFS02]. In the usual ban-
1+i andyy ¢, to be thei-th elements in the orderings gt setting with a time horizon df}, any algorithm will have
<1, <2, respectively. Thek + i)-th two-experts game gt |east((y/Tyn) regret with respect to the best expert. To
uses the sefl ¥ = {z4 15 yp 1} ensure this regret, the input sequence is generated by sam-
4. The ordering of the experts puts the winner of the game PliNg Zo times independently from a distribution in which
betweerwkf: andyy s Ft))eforg the loser, for ever{y:g ?very bandit bu_t one receives a payoffloMth p_rob_abmty
! bti = and( otherwise. The remaining bandit, which is chosen
1,2,...,n/2, and it puts both elements of(*+%) pe- 2 . . o
fore both elements afl (k+i+1) at rando_m, incurs a payoff afwith probability 5 + ¢ for an
appropriate choice af

By construction, itis clear that the ordering of expertsis-c To obtain the lower bound for the sleeping bandits set-

sistent with the games, and that the number of games satisfiesing we set up a sequencemimulti-armed bandit games as

the recurrence described above. Each game will run iy = % rounds.
Q(n) =2Q(n/2) +n/2, (20) The bandit that received the highest payoff during the game

will become asleep and unavailable in the rest of the games.

whose solution ig)(n) = O(n logn). In games, any algorithm will have a regret of at least

The best ordering of experts achieves a payoff at least as
high as that achieved by the constructed ordering which is Q (/£ (n — z’)) with respect to the best bandit in that game.

consistent with the games. By (19), the expected payoff of |n consequence, the total regret of any learning algorithm
that ordering isT'/2 + Q(n) - (v/To). The expected payoff  \ith respect to the best ordering is:

of ALG in each round is 1/2, because the outcome of that

round is independent of the outcomes of all prior rounds.

Hence the expected payoff ALG is onlyT'/2, and its regret n-l [p _ T ol '
is Z E(n_z): Ez:jl/z
Q(n) - Q(ﬁ) = Q(nlogny/T/(nlogn)) i=1 Jj=1

= Q(y/Tnlogn). > \/f/mnol 2 2dy = \/fi ((n _ 1)3/2)

This proves the theorem. |

The theorem follows. |

It is interesting to note that the adversary that achieves
this lower bound is not adaptive in either choosing the pay-
offs or choosing the awake experts at each time step. It only
needs to be able to carefully coordinate which experts are  To get an upper bound on regret, we will use th@4
awake based on the payoffs at previous time steps. algorithm [ACBFS02]. Sinc&xp4 requires an oblivious ad-

Even more interesting, this lower bound is tight, so an versary, in the following, we assume that the adversary is
adaptive adversary is not more powerful than an oblivious oblivious (as opposed to adaptiveBxp4 chooses an action
one. There is a learning algorithm that achieves a regretby combining the advice of a set of “experts.” At each round,
of O(/T'nlog(n)), albeit not computationally efficient. To  each expert provides advice in the form of a probability dis-
achieve this regret we transform the sleeping experts prob-tribution over actions. In particular the advice can be apoi
lem to a problem withn! experts that are always awake. In distribution concentrated on a single action. (It is regdir
the new problem, we have one expert for each ordering of that at least one of the experts is tingiform expertwhose
the originaln experts. At each round, each of theexperts advice is always the uniform distribution over actions.) To
makes the same prediction as the highest ranked expert iruseExp4 for the sleeping experts setting, in addition to the
its corresponding ordering, and receives the payoff of that uniform expert we have an expert for each ordering over ac-
expert. tions. At each round, the advice of that expert is a point

Theorem 13 An algorithm that makes predictions using ggtrrézzté%%%%ngfdnéﬁgd on the highest ranked actiohén t

Hedge on the transformed problem achiev@é,/7'n log(n)) Since the uniform expert may advise us to pick actions
regret with respect to the best ordering. which are not awake, we assume for convenience that the

Proof: Every expert in the transformed problem receives the Problem is modified as follows. Instead of being restricted
payoff of its corresponding ordering in the original prable 0 choose an action in the sef, at time ¢, the algorithm
SinceHedge achieves regrad (/T log(n!)) with respect to is allowed to choose any action at all, with the proviso that

; he payoff of an action in the complement 4f is defined
the best expert in the transformed problem, the same regre . . -
is achieved by the algorithm in the original problem. M lio be0. Note that any algorithm for this modified problem
can easily be transformed into an algorithm for the original



problem: every time the algorithm chooses an action in the [CT99]
complement ofd, we instead play an arbitrary action if.

Such atransformation can only increase the algorithm’s pay [FSSW97]

off, i.e. decrease the regret. Hence, to prove the regretdou
asserted in Theorem 15 below, it suffices to prove the same
bound for the modified problem.

) o [Han57]
Theorem 15 Against an oblivious adversary, tl&p4 algo-
rithm as described above achieves a regred6fi /T log(n))
with respect to the best ordering.
Proof: We haven actions andl + n! experts, so the re-  [Hoe63]

gret of Exp4 with respect to the payoff of the best expert is

O(y/Tnlog(n! + 1)) [ACBFS02]. Since the payoff of each
expert is exactly the payoff of its corresponding orderlng W [Khi23]
obtain the statement of the theorem.

The upper bound and lower bound differ by a factor of [KKO7]

O(4/log(n)). The same gap exists in the usual multi-armed

bandit setting where all actions are available at all times, [KVO5]
hence closing the logarithmic gap between the lower and up-
per bounds in Theorems 14 and 15 is likely to be as difficult

as closing the corresponding gap for the nonstochastig-mult

armed bandit problem itself. [LR85]

5 Conclusions

We have analyzed algorithms for full-information and peeti ~ [LW94]

information prediction problems in the “sleeping experts”
setting, using a novel benchmark which compares the algo-
rithm’s payoff against the best payoff obtainable by séhgct
available actions using a fixed total ordering of the actions

We have presented algorithms whose regret is information-
theoretically optimal in both the stochastic and adveasari [LZ07]
cases. In the stochastic case, our algorithms are simple and
computationally efficient. In the adversarial case, thetmos
important open question is whether there is a computation- [Rob]
ally efficient algorithm which matches (or nearly matches)

the regret bounds achieved by the exponential-time alyost

presented here. [Vov90]
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