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Abstract

We study on-line decision problems where the
set of actions that are available to the decision
algorithm vary over time. With a few notable
exceptions, such problems remained largely unad-
dressed in the literature, despite their applicability
to a large number of practical problems. Departing
from previous work on this “Sleeping Experts”
problem, we compare algorithms against the pay-
off obtained by thebest orderingof the actions,
which is a natural benchmark for this type of prob-
lem. We study both the full-information (best ex-
pert) and partial-information (multi-armed bandit)
settings and consider both stochastic and adaptive
adversaries. For all settings we give algorithms
achieving (almost) information-theoretically opti-
mal regret bounds (up to a constant or a sub-
logarithmic factor) with respect to the best-ordering
benchmark.

1 Introduction

In on-line decision problems, or sequential prediction prob-
lems, an algorithm must choose, in each of theT consecutive
rounds, one of then possible actions. In each round, each ac-
tion receives a real valued positive payoff in[0, 1], initially
unknown to the algorithm. At the end of each round the al-
gorithm is revealed some information about the payoffs of
the actions in that round. The goal of the algorithm is to
maximize the total payoff, i.e. the sum of the payoffs of the
chosen actions in each round. The standard on-line decision
settings are thebest expertsetting (or the full-information
setting) in which, at the end of the round, the payoffs ofall n
strategies are revealed to the algorithm, and themulti-armed
bandit setting (or the partial-information setting) in which
only the payoff of the chosen strategy is revealed. Customar-
ily, in the best expert setting the strategies are calledexperts
and in the multi-armed bandit setting the strategies are called
banditsor arms. We useactionsto generically refer to both
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types of strategies, when we do not refer particularly to ei-
ther.

The performance of the algorithm is typically measured
in terms ofregret. The regret is the difference between the
expected payoff of the algorithm and the payoff of a single
fixed strategy for selecting actions. The usual single fixed
strategy to compare against is the one which always selects
the expert or bandit that has the highest total payoff over the
T rounds (in hindsight).

The usual assumption in online learning problems is that
all actions are available at all times. In many applications,
however, this assumption is not appropriate. In network rout-
ing problems, for example, some of the routes are unavail-
able at some point in time due to router or link crashes. Or, in
electronic commerce problems, items are out of stock, sell-
ers are not available (due to maintenance or simply going
out of business), and buyers do not buy all the time. Even in
the setting that originally motivated the multi-armed bandit
problems, a gambler playing slot machines, some of the slot
machines might be occupied by other players at any given
time.

In this paper we relax the assumption that all actions are
available at all times, and allow the set of available actions to
vary from one round to the next, a model known as “predic-
tors that specialize” or “sleeping experts” in prior work. The
first foundational question that needs to be addressed is how
to define regret when the set of available actions may vary
over time. Defining regret with respect to the best action
in hindsight is no longer appropriate since that action might
sometimes be unavailable. A useful thought experiment for
guiding our intuition is the following: if each action had
a fixed payoff distribution that wasknownto the decision-
maker, what would be the best way to choose among the
available actions? The answer is obvious: one should or-
der all of the actions according to their expected payoff, then
choose among the available actions by selecting the one which
ranks highest in this ordering. Guided by the outcome of this
thought experiment, we define our base to be the best order-
ing of actions in hindsight (see Section 2 for a formal defi-
nition) and contend that this is a natural and intuitive way to
define regret in our setting. This contention is also supported
by the informal observation that order-based decision rules
seem to resemble the way people make choices in situations
with a varying set of actions, e.g. choosing which brand of
beer to buy at a store.

We prove lower and upper bounds on the regret with re-



spect to the best ordering for both the best expert setting and
the multi-armed bandit settings. We first explore the case of
stochastic adversary, where the payoffs received by expert
(bandit)i at each time step are independent samples from an
unknown but fixed distributionPi(·) supported on[0, 1] with
meanµi. Assuming thatµ1 > µ2 > · · · > µn (and the
algorithm, of course, does not know the identities of these
actions) we show that the regret of any learning algorithm

will necessarily be at leastΩ
(

∑n−1
i=1

1
µi−µi+1

)

in the best

expert setting, andΩ
(

log(T )
∑n−1

i=1
1

µi−µi+1

)

in the multi-

armed bandit setting if the game is played forT rounds (for
T sufficiently large). We also present efficient learning algo-
rithms for both settings. For the multi-armed bandit setting,
our algorithm, calledAUER, is an adaptation of theUCB1
algorithm in Auer et al [ACBF02], which comes within a
constant factor of the lower bound mentioned above. For
the expert setting, a very simple algorithm, called “follow-
the-awake-leader”, which is a variant of “follow-the-leader”
[Han57, KV05], comes within a constant factor of the lower
bound above. While our algorithms are adaptations of ex-
isting techniques, the proofs of the upper and lower bounds
hinge on some technical innovations. For the lower bound,
we must modify the classic asymptotic lower bound proof of
Lai and Robbins [LR85] to obtain a bound which holds at all
sufficiently large finite times. We also prove a novel lemma
(Lemma 3) that allows us to relate a regret upper bound aris-
ing from application ofUCB1 to a sum of lower bounds for
two-armed bandit problems.

Next we explore the fully adversarial case where we make
no assumptions on how the payoffs for each action are gen-
erated. We show that the regret of any learning algorithm

must be at leastΩ
(

√

Tn log(n)
)

for the best expert setting

andΩ
(√

Tn2
)

for the multi-armed bandit setting. We also

present algorithms whose regret is within a constant factor
of the lower bound for the best expert setting, and within

O
(

√

log(n)
)

of the lower bound for the multi-armed ban-

dit setting. It is worth noting that the gap ofO
(√

log n
)

also
exists in the all-awake bandit problem.

The fully adversarial case, however, proves to be harder,
and neither algorithm is computational efficient. To appreci-
ate the hardness of the fully adversarial case, one can prove1

that, unlessP = NP, any low regret algorithm that learns
internally a consistent ordering over experts can not be com-
putationally efficient. Note that this does not mean that there
can be no computationally efficient, low regret algorithms
for the fully adversarial case. There might exist learning al-
gorithms that are able to achieve low regret without actually
learning a consistent ordering over experts. Finding such al-
gorithms, if they do indeed exist, remains an open problem.

1.1 Related work

Sequential prediction problems. The best-expert and multi-
armed bandit problems correspond to special cases of our
model in which every action is always available. These prob-

1It is a simple reduction from feedback arc set problem, which
is omitted from this extended abstract.

lems have been widely studied, and we draw on this literature
to design algorithms and prove lower bounds for the gener-
alizations considered here. The adversarial expert paradigm
was introduced by Littlestone and Warmuth [LW94], and
Vovk [Vov90]. Cesa-Bianchi et al [CBFH+97] further de-
veloped this paradigm in work which gave optimal regret
bounds of

√

T (ln n) and Vovk [Vov98] characterized the
achievable regret bounds in these settings.

The multi-armed bandit model was introduced by Rob-
bins [Rob]. Lai and Robbins [LR85] gave asymptotically op-
timal strategies for the stochastic version of bandit problem—
in which there is a distribution of rewards on each arm and
the rewards in each time step are drawn according to this
distribution. Auer, Cesa-Bianchi, Fischer [ACBF02] intro-
duced the algorithmUCB1 and showed that the optimal re-
gret bounds ofO(log T ) can be achieved uniformly over
time for the stochastic bandit problem. (In this bound, the
big-O hides a constant depending on the means and differ-
ences of means of payoffs.) For the adversarial version of
the multi-armed bandit problem, Auer, Cesa-Bianchi, Fre-
und, and Schapire [ACBFS02] proposed the algorithmExp3
which achieves the regret bound ofO(

√
Tn log n), leaving

a
√

log n factor gap from the lower bound ofΩ(
√

nT ). It is
worth noting that the lower bound holds even for an oblivious
adversary, one which chooses a sequence of payoff functions
independently of the algorithm’s choices.

Prediction with sleeping experts. Freund, Schapire, Singer,
and Warmuth [FSSW97] and Blum and Mansour [BM05]
have considered sleeping experts problems before, analyzing
algorithms in a framework different from the one we adopt
here. In the model of Freund et al., as in our model, a set of
awake experts is specified in each time period. The goal of
the algorithm is to choose one expert in each time period so
as to minimize regret against the best “mixture” of experts
(which constitutes their benchmark). A mixtureu is a prob-
ability distribution(u1, u2, . . . , un) overn experts which in
time periodt selects an expert according to the restriction of
u to the set of awake experts.

We consider a natural evaluation criterion, namely the
best ordering of experts. In the special case when all ex-
perts are always awake, both evaluation criteria degenerate
to picking the best expert. Our “best ordering” criterion can
be regarded as a degenerate case of the “best mixture” cri-
terion of Freund et al. as follows. For the orderingσ, we
assign probabilities1Z (1, ǫ, ǫ2, . . . , ǫn−1) to the sequence of
experts(σ(1), σ(2), . . . , σ(n)) whereZ = 1−ǫn

1−ǫ is the nor-
malization factor andǫ > 0 is an arbitrarily small positive
constant. The only problem is that the bounds that we get
from [FSSW97] in this degenerate case are very weak. As
ǫ → 0, their bound reduces to comparing the algorithm’s
performance to the orderingσ’s performance only for time
periods whenσ(1) expert is awake, and ignoring the time
periods whenσ(1) is not awake. Therefore, a natural reduc-
tion of our problem to the problem considered by Freund et
al. defeats the purpose of giving equal importance to all time
periods.

Blum and Mansour [BM05] consider a generalization of
the sleeping expert problem, where one has a set oftime se-
lection functionsand the algorithm aims to have low regret



with respect to every expert, according to every time selec-
tion function. It is possible to solve our regret-minimization
problem (with respect to the best ordering of experts) by re-
ducing to the regret-minimization problem solved by Blum
and Mansour, but this leads to an algorithm which is neither
computationally efficient nor information-theoreticallyopti-
mal. We now sketch the details of this reduction. One can
define a time selection function for each (ordering, expert)
pair (σ, i), according toIσ,i(t) = 1 if i �σ j for all j ∈ At

(that is,σ choosesi in time periodt if Iσ,i(t) = 1). The
regret can now be bounded, using Blum and Mansour’s anal-
ysis, as

n
∑

i=1

O
(

√

Ti log(n · n! · n) + log(n! · n2)
)

= O
(

√

Tn2 log n + n log n
)

.

This algorithm takes exponential time (due to the exponential
number of time selection functions) and gives a regret bound
of O(

√

Tn2 log n) against the best ordering, a bound which
we improve in Section 4 using a different algorithm which
also takes exponential time but is information-theoretically
optimal. (Of course, Blum and Mansour were designing their
algorithm for a different objective, not trying to get low re-
gret with respect to best ordering. Our improved bound for
regret with respect to the best ordering does not imply an im-
proved bound for experts learning with time selection func-
tions.)

A recent paper by Langford and Zhang [LZ07] presents
an algorithm called theEpoch-Greedy algorithmfor bandit
problems with side information. This is a generalization of
the multi-armed bandit problem in which the algorithm is
supplied with a piece ofside informationin each time period
before deciding which action to play. Given a hypothesis
classH of functions mapping side information to actions,
the Epoch-Greedy algorithm achieves low regret against a
sequence of actions generated by applying a single function
h ∈ H to map the side information in every time period to
an action. (The functionh is chosen so that the resulting se-
quence has the largest possible total payoff.) The stochastic
case of our problem is reducible to theirs, by treating the set
of available actions,At, as a piece of side information and
considering the hypothesis classH consisting of functions
hσ, for each total orderingσ of the set of actions, such that
hσ(A) selects the element ofA which appears first in the or-
deringσ. The regret bound in [LZ07] is expressed implicitly
in terms of the expected regret of an empirical reward max-
imization estimator, which makes it difficult to compare this
bound with ours. Instead of pursuing this reduction from our
problem to the contextual bandit problem in [LZ07], Sec-
tion 3.1.1 presents a very simple bandit algorithm for the
stochastic setting with an explicit regret bound that is prov-
ably information-theoretically optimal.

2 Terminology and Conventions

We assume that there is a fixed pool of actions,{1, 2, ...n},
with n known. We will sometimes refer to an action byex-
pert in the best expert setting and byarm or bandit in the
multi-armed bandit setting. At each time stept ∈ {1, 2, ..., T},

an adversary chooses a subsetAt ⊆ {1, 2, ..., n} of the ac-
tions to be available. The algorithm can only choose among
available actions, and only available actions receive rewards.
The reward received by an available actioni at time t is
ri(t) ∈ [0, 1].

We will consider two models for assigning rewards to
actions: a stochastic model and an adversarial model. (In
contrast, the choice of the set of awake experts is always
adversarial.) In the stochastic model the reward for armi at
time t, ri(t), is drawn independently from a fixed unknown
distribution Pi(·) with meanµi. In the adversarial model
we make no stochastic assumptions on how the rewards are
assigned to actions. Instead, we assume that the rewards are
selected by an adversary. The adversary is potentially but not
necessarily randomized.

Let σ be an ordering (permutation) of then actions, and
A a subset of the actions. We denote byσ(A) the action in
A that is highest ranked inσ. The reward of an ordering is
the reward obtained by selecting at each time step the highest
ranked action available.

Rσ,T =

T
∑

t=1

rσ(At)(t) (1)

Let RT = maxσ Rσ,T (maxσ E[Rσ,T ] in the stochastic
rewards model) be the reward obtained by the best order-
ing. We define the regret of an algorithm with respect to the
best ordering as the expected difference between the reward
obtained by the best ordering and the total reward of the al-
gorithm’s chosen actionsx(1), x(2), ..., x(t):

REGT = E

[

RT −
T
∑

t=1

rx(t)(t)

]

(2)

where the expectation is taken over the algorithm’s random
choices and the randomness of the reward assignment in the
stochastic reward model.

3 Stochastic Model of Rewards

We first explore the stochastic rewards model, where the re-
ward for actioni at each time step is drawn independently
from a fixed unknown distributionPi(·) with meanµi. For
simplicity of presentation, throughout this section we assume
that µ1 > µ2 > · · · > µn. That is the lower numbered
actions are better than the higher numbered actions. Let
∆i,j = µi − µj for all i < j be the expected increase in
the reward of experti over expertj.

We present optimal (up to a constant factor) algorithms
for both the best expert and the multi-armed bandit setting.
Both algorithms are natural extensions of algorithms for the
all-awake problem to the sleeping-experts problem. The anal-
ysis of the algorithms, however, is not a straightforward ex-
tension of the analysis for the all-awake problem and new
proof techniques are required.

3.1 Best expert setting

In this section we study algorithms for the best expert setting
with stochastic rewards. We prove matching (up to a constant
factor) information-theoretic upper and lower bounds on the
regret of such algorithms.



3.1.1 Upper bound (algorithm: FTAL)
To get an upper bound on regret we adapt the “follow the
leader” algorithm [Han57, KV05] to the sleeping experts set-
ting: at each time step the algorithm chooses the awake ex-
pert that has the highest average payoff, where the average is
taken over the time steps when the expert was awake. If an
expert is awake for the first time, then the algorithm chooses
it. (If there are more than one such such experts, then the
algorithm chooses one of them arbitrarily.) The pseudocode
for the algorithm is shown in Algorithm 1. The algorithm is
calledFollow TheAwakeLeader (FTAL for short).

Initialize zi = 0 andni = 0 for all i ∈ [n].1

for t = 1 to T do2

if ∃j ∈ At s.t.nj = 0 then3

Play expertx(t) = j4

else5

Play expertx(t) = arg maxi∈At

(

zi

ni

)

6

end7

Observe payoffri(t) for all i ∈ At8

zi ← zi + ri(t) for all i ∈ At9

ni ← ni + 1 for all i ∈ At10

end11

Algorithm 1 : Follow-the-awake-leader (FTAL) algo-
rithm for sleeping experts problem with stochastic ad-
versary.

Theorem 1 TheFTAL algorithm has a regret of at most

n−1
∑

j=1

32

∆j,j+1

with respect to the best ordering.

The theorem follows immediately from the following pair
of lemmas. The second of these lemmas will also be used in
Section 3.2.

Lemma 2 TheFTAL algorithm has a regret of at most

n
∑

j=2

j−1
∑

i=1

8

∆2
i,j

(∆i,i+1 + ∆j−1,j)

with respect to the best ordering.

Proof: Let ni,t be the number of times experti has been
awake until timet. Let µ̂i,t be experti’s average payoff until
time t. The Azuma-Hoeffding Inequality [Azu67, Hoe63]
says that

P[nj,tµ̂j,t > nj,tµj + nj,t∆i,j/2]

≤ e
−

n2
j,t

∆2
i,j

8·nj,t = e−
∆2

i,j
nj,t

8 ,

and

P[ni,tµ̂i,t < ni,tµi − ni,t∆i,j/2]

≤ e
−

n2
i,t

∆2
i,j

8·ni,t = e−
∆2

i,j
ni,t

8 .

Let us say that theFTAL algorithm suffers an(i, j)-anomaly
of type 1at timet if xt = j and µ̂j,t − µj > ∆i,j/2. Let
us say thatFTAL suffers an(i, j)-anomaly of type 2at time
t if i∗t = i andµi − µ̂i,t > ∆i,j/2. Note that whenFTAL
picks a strategyxt = j 6= i = i∗t , it suffers an(i, j)-anomaly
of type 1 or 2, or possibly both. We will denote the event
of an (i, j)-anomaly of type1 (resp. type2) at time t by
E(1)

i,j (t) (resp.E(2)
i,j (t), and we will useM (1)

i,j , resp.M (2)
i,j , to

denote the total number of(i, j)-anomalies of types1 and2,
respectively. We can bound the expected value ofM

(1)
i,j by

E[M
(1)
i,j ] ≤

∞
∑

t=1

e−
∆2

i,j
nj,t

8 1 {j ∈ At} (3)

≤
∞
∑

n=1

e−
∆2

i,j
n

8 (4)

=
1

e∆2
i,j

/8 − 1
≤ 8

∆2
i,j

,

where line (4) is justified by observing that distinct nonzero
terms in (3) have distinct values ofnj,t. The expectation of

M
(2)
i,j is also bounded by8/∆2

i,j , via an analogous argument.
Recall thatAt denotes the set of awake experts at timet,

xt ∈ At denotes the algorithm’s choice at timet, andri(t)
denotes the payoff of experti at timet (which is distributed
according toPi(·)). Let i∗t ∈ At denote the optimal expert
at timet (i.e., the lowest-numbered element ofAt). Let us
bound the regret of theFTAL algorithm now.

E

[

T
∑

t=1

(

ri∗t
(t)− rxt

(t)
)

]

= E

[

T
∑

t=1

∆i∗t ,xt

]

= E

[

T
∑

t=1

1

{

E(1)
i∗t ,xt

(t) ∨ E(2)
i∗t ,xt

(t)
}

∆i∗t ,xt

]

≤ E

[

T
∑

t=1

1

{

E(1)
i∗t ,xt

(t)
}

∆i∗t ,xt

]

+ E

[

T
∑

t=1

1

{

E(2)
i∗t ,xt

(t)
}

∆i∗t ,xt

]

With the convention that∆i,j = 0 for j ≤ i, the first
term can be bounded by:

E

[

T
∑

t=1

1

{

E(1)
i∗t ,xt

(t)
}

∆i∗t ,xt

]

= E





T
∑

t=1

n
∑

j=2

1

{

E(1)
i∗t ,j(t)

}

∆i∗t ,j





(Since the eventE(1)
i∗t ,j(t) occurs only forj = xt.)

= E





T
∑

t=1

n
∑

j=2

1

{

E(1)
i∗t ,j(t)

}

j−1
∑

i=i∗t

(∆i,j −∆i+1,j)



 (5)



≤ E





T
∑

t=1

n
∑

j=2

j−1
∑

i=i∗t

1

{

E(1)
i,j (t)

}

∆i,i+1





(Since1
{

E(1)
i1,j(t)

}

≤ 1

{

E(1)
i2,j(t)

}

for all i1 ≤ i2 < j.)

≤ E





n
∑

j=2

j−1
∑

i=1

∆i,i+1

T
∑

t=1

1

{

E(1)
i,j (t)

}





=

n
∑

j=2

j−1
∑

i=1

∆i,i+1E[M
(1)
i,j ]

≤
∑

1≤i<j≤n

8

∆2
i,j

∆i,i+1.

Similarly, the second term can be bounded by

E

[

T
∑

t=1

1

{

E(2)
i∗t ,xt

(t)
}

∆i∗t ,xt

]

= E

[

T
∑

t=1

n−1
∑

i=1

1

{

E(2)
i,xt

(t)
}

∆i,xt

]

(Since eventE(2)
i,xt

(t) occurs only fori = i∗t .)

= E





T
∑

t=1

n−1
∑

i=1

1

{

E(2)
i,xt

(t)
}

xt
∑

j=i+1

(∆i,j −∆i,j−1)



 (6)

≤ E





T
∑

t=1

n−1
∑

i=1

xt
∑

j=i+1

1

{

E(2)
i,j (t)

}

∆j−1,j





(Since1
{

E(2)
i,j1

(t)
}

≥ 1

{

E(2)
i,j2

(t)
}

for all i < j1 ≤ j2.)

≤ E





n−1
∑

i=1

n
∑

j=i+1

∆j−1,j

T
∑

t=1

1

{

E(2)
i,j (t)

}





=

n−1
∑

i=1

n
∑

j=i+1

∆j−1,jE[M
(2)
i,j ]

≤
∑

1≤i<j≤n

8

∆2
i,j

∆j−1,j

Adding the two bounds gives the statement of the lemma.

Lemma 3 For ∆i,j = µi − µj defined as above

∑

1≤i<j≤n

∆−2
i,j ∆i,i+1 ≤ 2

n
∑

j=2

∆−1
j−1,j

and

∑

1≤i<j≤n

∆−2
i,j ∆j−1,j ≤ 2

n
∑

j=2

∆−1
j−1,j .

Proof: It suffices to prove the first of the two inequalities
stated in the lemma; the second follows from the first by re-
placing eachµi with 1−µi, which has the effect of replacing
∆i,j with ∆n+1−j,n+1−i.

For a fixedi ∈ [n], we write
∑

j:j>i ∆−2
i,j as follows.

∑

j:j>i

∆−2
i,j =

n
∑

j=2

1 {j > i}∆−2
i,j (7)

=

∫ ∞

x=0

#
{

j : j > i,∆−2
i,j ≥ x

}

dx

=

∫ ∞

x=0

#
{

j > i,∆i,j ≤ x−1/2
}

dx

= −2

∫ 0

y=∞

# {j > i,∆i,j ≤ y} y−3dy

(Changing the variable of integrationx−1/2 = y)

= 2

∫ ∞

y=0

# {j > i,∆i,j ≤ y} y−3dy. (8)

Let us make the following definition, which will be used in
the proof below.

Definition 4 For an expertj and y ≥ 0, let iy(j) be the
minimum numbered experti ≤ j such that∆i,j is no more
thany. That is

iy(j) := arg min{i : i ≤ j,∆i,j ≤ y}.
Now we can write the following chain of inequalities. (Note
that the best (highest payoff) expert is indexed as 1, and low-
est payoff is indexedn.)

n
∑

j=2

j−1
∑

i=1

∆−2
i,j ∆i,i+1 (9)

=

n−1
∑

i=1

∆i,i+1

∑

j:j>i

∆−2
i,j

= 2

n−1
∑

i=1

∆i,i+1

(∫ ∞

y=0

# {j : j > i,∆i,j ≤ y} y−3dy

)

(From (8).)

= 2

∫ ∞

y=0

y−3

(

n−1
∑

i=1

∆i,i+1 · # {j > i,∆i,j ≤ y}
)

dy

(Changing the order of integration and summation.)

= 2

∫ ∞

y=0

y−3





n−1
∑

i=1

∆i,i+1

n
∑

j=i+1

1 {j > i,∆i,j ≤ y}



dy

(Expanding# {·} into sum of1 {·}.)

= 2

∫ ∞

y=0

y−3





n
∑

j=2

j−1
∑

i=1

∆i,i+11 {j > i,∆i,j ≤ y}



dy



(Changing the order of summation.) Recall from Definition 4
that for anyj andy ≥ 0, iy(j) is the least indexed experti
such that∆i,j is still less thany. We get the following.

= 2

∫ ∞

y=0

y−3





n
∑

j=2

j−1
∑

i=iy(j)

∆i,i+1



dy

= 2

∫ ∞

y=0

y−3





n
∑

j=2

(

µiy(j) − µj

)



dy

= 2

n
∑

j=2

∫ ∞

y=0

y−3
(

µiy(j) − µj

)

dy

(Changing the order of summation and integration.)

= 2
n
∑

j=2

∫ ∞

y=∆j−1,j

y−3
(

µiy(j) − µj

)

dy (10)

(This is because for values ofy less than∆j−1,j , iy(j) = j
and integrand is equal to zero.)

≤ 2

n
∑

j=2

∫ ∞

y=∆j−1,j

y−3 · y dy

(Sinceµiy(j) − µj ≤ y.)

= 2

n
∑

j=2

∫ ∞

y=∆j−1,j

y−2dy

= 2

n
∑

j=2

∆−1
j−1,j (11)

This concludes the proof of the lemma.

Remarks for small∆i,i+1 Note that the upper bound stated
in Theorem 1 become very large when∆i,i+1 is very small
for somei. Indeed, when mean payoffs of all experts are
equal,∆i,i+1 = 0 for all i and upper bound becomes trivial,
while the algorithm does well (picking any expert is as good
as any other). We suggest a slight modification of the proof
to take care of such case.

Let ǫ > 0 be fixed (the original theorem corresponds to
the caseǫ = 0). Recall the definition ofiǫ(j) from Defini-
tion 4. We also define the inverse,jǫ(i) as the maximum
numbered expertj such that∆i,j is no more thanǫ, i.e.,
jǫ(i) = arg max{j : j ≥ i,∆i,j ≤ ǫ}. Note that the three
conditions: (1)i < iǫ(j), (2) j > jǫ(i), and (3)∆i,j > ǫ
are equivalent. The idea in this new analysis is to “identify”
experts that have means withinǫ of each other. (We cannot
just make equivalence classes based on this, since the rela-
tion of “being within ǫ of each other” is not an equivalence
relation.)

Lemma 2 can be modified to prove that the regret of the
algorithm is bounded by

2ǫT +
∑

1≤i<j≤n,

∆i,j>ǫ

8

∆2
i,j

(∆i,i+1 + ∆j−1,j).

This can be seen by rewriting Equation (5) as

E





T
∑

t=1

n
∑

j=2

1

{

E(1)
i∗t ,j(t)

}

iǫ(j)−1
∑

i=i∗t

∆i,i+1





+ E





T
∑

t=1

n
∑

j=2

1

{

E(1)
i∗t ,j(t)

}

j−1
∑

i=iǫ(j)

∆i,i+1





and noting that the second term is at most

E





T
∑

t=1

n
∑

j=2

1

{

E(1)
i∗t ,j(t)

}

ǫ



 = E

[

ǫ

T
∑

t=1

1

]

= ǫT,

since only one of the eventsE(1)
i∗t ,j(t) (corresponding toj =

xt) can occur for eacht. Equation (6) can be similarly mod-
ified by splitting the summationj = i + 1 . . . xt to j =
i + 1 . . . jǫ(i) andj = jǫ(i) + 1 . . . xt.

Similarly, Lemma 3 can be modified as follows. In equa-
tion (7), instead of rewriting

∑

j:j>i ∆−2
i,j , we rewrite

∑

j:j>i,i<iǫ(j)

∆−2
i,j

to get

2

∫ ∞

y=0

# {j > i, ǫ < ∆i,j ≤ y} y−3dy,

in Equation (8).
Equation (9) can be rewritten as

n
∑

j=1

iǫ(j)−1
∑

i=1

∆−2
i,j ∆i,i+1.

The rest of the analysis goes through as it is written, except
that the limits of integration in Equation (10) now become
y = max{ǫ,∆j−1,j} . . .∞ instead ofy = ∆j−1,j . . .∞,
resulting in the final expression of

2

n
∑

j=2

(max{ǫ,∆j−1,j})−1
,

in Equation (11).
Therefore, the denominators of regret expression in The-

orem 1 can be made at leastǫ, if we are willing to pay2ǫT
upfront in terms of regret.

3.1.2 Lower bound
In this section, assuming that the meansµi are bounded away
from 0 and1, we prove that in terms of the regret, theFTAL
algorithm presented in the section above is optimal (up to
constant factors). This is done by showing the following
lower bound on the regret guarantee of any algorithm.

Lemma 5 Assume that the meansµi are bounded away from
0 and1. Any algorithm for the stochastic version of the best
expert problem must have regret at least

Ω

(

n−1
∑

i=1

1

∆i,i+1

)

,

asT becomes large enough.



To prove this lemma, we first prove its special case for the
case of two experts.

Lemma 6 Suppose we are given two numbersµ1 > µ2,
both lying in an interval[a, b] such that0 < a < b < 1,
and suppose we are given any online algorithmφ for the
best expert problem with two experts. Then there is an input
instance in the stochastic rewards model, with two experts
L and R whose payoff distributions are Bernoulli random
variables with meansµ1 andµ2 or vice-versa, such that for
large enoughT , the regret of algorithmφ is

Ω
(

δ−1
)

,

whereδ = µ1 − µ2 and the constants inside theΩ(·) may
depend ona, b.

Proof: Let us define some joint distributions:p is the distri-
bution in which both experts have average payoffµ1, qL is
the distribution in which they have payoffs(µ1, µ2) (left is
better), andqR is the distribution in which they have payoffs
(µ2, µ1) (right expert is better).

Let us define the following events:EL
t is true if φ picks

L at timet, and similarlyER
t .

We denote bypt(·) the joint distribution for firstt time
steps, where the distribution of rewards in each time period
is p(·). Similarly for qt(·). We havept[EL

t ] + pt[ER
t ] = 1.

Therefore, for everyt, there existsM ∈ {L,R} such that
pt[EM

t ] ≥ 1/2. Similarly, there existsM ∈ {L,R} such
that

#

{

t : 1 ≤ t ≤ T, pt[EM
t ] ≥ 1

2

}

≥ T

2
.

TakeT0 = c
δ2 for a small enough constantc. We will

prove the claim below forT = T0; for larger values ofT ,
the claim follows easily from this.

Without loss of generality, assume thatM = L. Now
assume the algorithm faces the input distributionqR, and de-
fine q = qR. UsingKL(·; ·) to denote the KL-divergence of
two distributions, we have

KL(pt; qt) ≤ KL(pT ; qT ) = T · KL(p; q)

= cδ−2 · KL(µ1;µ2) ≤ cδ−2 · O(δ2) ≤ 1

50
,

for a small enough value ofc which depends ona andb be-
cause the constant inside theO(·) in the line above depends
ona andb.

Karp and Kleinberg [KK07] prove the following lemma.
If there is an eventE with p(E) ≥ 1/3 andq(E) < 1/3,
then

KL(p; q) ≥ 1

3
ln

(

1

3q(E)

)

− 1

e
. (12)

We have that for at leastT/2 values oft, pt(EL
t ) ≥ 1/3 (it

is actually at least1/2). In such time steps, we either have
qt(EL

t ) ≥ 1/3 or the lemma applies, yielding

1

50
≥ KL(pt; qt) ≥ 1

3
ln

(

1

qt(EL
t )

)

− 1

e
.

This gives

qt(EL
t ) ≥ 1

10
.

Therefore, the regret of the algorithm in time periodt is
at least

µ1 −
(

9

10
µ1 +

1

10
µ2

)

≥ 1

10
δ.

SinceT = Ω(δ−2), we have that the regret is at least

1

10
δ · Ω(δ−2) = Ω(δ−1).

This finishes the proof of the lower bound for two experts.

Proof of Lemma 5: Let us group experts in pairs of2 as
(2i − 1, 2i) for i = 1, 2, . . . , ⌊n/2⌋. Apply the two-expert
lower bound from Lemma 6 by creating a series of time steps
whenAt = {2i − 1, 2i} for eachi. (We need a sufficiently
large time horizon — namelyT ≥ ∑⌊n/2⌋

i=1 c∆−2
2i−1,2i — in

order to apply the lower bound to all⌊n/2⌋ two-expert in-
stances.) The total regret suffered by any algorithm is the
sum of regret suffered in the independent⌊n/2⌋ instances
defined above. Using the lower bound from Lemma 6, we
get that the regret suffered by any algorithm is at least

⌊n/2⌋
∑

i=1

Ω

(

1

∆2i−1,2i

)

.

Similarly, if we group the experts in pairs according to(2i, 2i+
1) for i = 1, 2, . . . , ⌊n/2⌋, then we get a lower bound of

⌊n/2⌋
∑

i=1

Ω

(

1

∆2i,2i+1

)

.

Since both of these are lower bounds, so is their average,
which is

1

2

n−1
∑

i=1

Ω

(

1

∆i,i+1

)

= Ω

(

n−1
∑

i=1

∆−1
i,i+1

)

.

This proves the lemma.

3.2 Multi-armed bandit setting

We now turn our attention to the multi-armed bandit setting
against a stochastic adversary. We first present a variant of
UCB1 algorithm [ACBF02], and then present a matching
lower bound based on idea from Lai and Robbins [LR85],
which is a constant factor away from theUCB1-like upper
bound.

3.2.1 Upper bound (algorithm: AUER)
Here the optimal algorithm is again a natural extension of the
UCB1 algorithm [ACBF02] to the sleeping-bandits case. In
a nutshell, the algorithm keeps track of the running average
of payoffs received from each arm, and also a confidence in-

terval of width2
√

8 ln t
nj,t

around armj, wheret is the current

time interval andnj,t is the number of timesj’s payoff has
been observed (number of times armj has been played). At



time t, if an arm becomes available for the first time then
the algorithm chooses it. Otherwise the algorithm optimisti-
cally picks the arm with highest “upper estimated reward”
(or “upper confidence bound” inUCB1 terminology) among
the available arms. That is, it picks the armj ∈ At with

maximumµ̂j,t +
√

8 ln t
nj,t

whereµ̂j,t is the mean of the ob-

served rewards of armj up to timet. The algorithm is shown
in Figure 2. The algorithm is calledAwakeUpperEstimated
Reward (AUER).

Initialize zi = 0 andni = 0 for all i ∈ [n].1

for t = 1 to T do2

if ∃j ∈ At s.t.nj = 0 then3

Play armx(t) = j4

else5

Play arm6

x(t) = arg maxi∈At

(

zi

ni
+
√

8 log t
ni

)

end7

Observe payoffrx(t)(t) for armx(t)8

zx(t) ← zx(t) + rx(t)(t)9

nx(t) ← nx(t) + 110

end11

Algorithm 2 : TheAUER algorithm for sleeping bandit
problem with stochastic adversary.

We first need to state a claim about the confidence inter-
vals that we are using.

Lemma 7 With the definition ofni,t andµi and µ̂i, the fol-
lowing holds for all1 ≤ i ≤ n and1 ≤ t ≤ T :

P

[

µi 6∈
[

µ̂i,t −
√

8 ln t

ni,t
, µ̂i,t +

√

8 ln t

ni,t

]]

≤ 1

t4
.

Proof: The proof is an application of Chernoff-Hoeffding
bounds, and follows from [ACBF02, pp. 242–243].

Theorem 8 The regret of theAUER algorithm is at most

(64 ln T ) ·
n−1
∑

j=1

1

∆j,j+1
.

up to timeT .

The theorem follows immediately from the following lemma
and Lemma 3.

Lemma 9 TheAUER algorithm has a regret of at most

(32 ln T ) ·
n
∑

j=2

j−1
∑

i=1

(

1

∆2
i,j

)

∆i,i+1

Proof: We bound the regret of the algorithm arm by arm.
Let us consider an arm2 ≤ j ≤ n. Let us count the number
of timesj was played, where some arm in1, 2, . . . , i could
have been played (in these iterations, the regret accumulated

is at least∆i,j and at most∆1,j). Call thisNi,j for i < j.
We claim thatNi,j ≤ 32 ln T

∆2
i,j

with probability1− 2
t4 .

Let us defineQi,j = 32 ln T
∆2

i,j

. We want to claim that af-

ter playingj for Qi,j number of times, we will not make
the mistake of choosingj instead of something from the set
{1, 2, . . . , i}; that is, if some arm in[i] is awake as well asj
is awake, then some awake arm in[i] will be chosen, and not
the armj (with probability at least1− 2

t4 ).
Let us bound the probability of choosingj whenAt ∩

[i] 6= ∅ afterj has been playedQi,j number of times.

T
∑

t=Qi,j+1

T
∑

k=Qi,j+1

P

[

(xt = j) ∧ (j is playedk-th time)

∧ (At ∩ [i] 6= ∅)
]

≤
T
∑

t=Qi,j+1

T
∑

k=Qi,j+1

P

[

(nj,t = k)

∧
(

µ̂j,t +

√

8 ln t

k
≥ µ̂ht,t +

√

8 ln t

nht,t

)]

,

whereht is the indexg in At ∩ [i] which maximizeŝµg,t +
√

(8 ln t)/ng,t, i.e. h = arg maxg∈At
µ̂g,t +

√

(8 ln t)/ng,t

=

T
∑

t=Qi,j+1

T
∑

k=Qi,j+1

O
(

1

t4

)

+ P [µj + ∆i,j ≥ µht
]

= O(1).

Here, the first 1
t4 term comes from the probability thatj’s

confidence interval might be wrong, orht’s confidence in-
terval might be wrong (it follows from Lemma 7). Since
k > 32 ln t

∆2
i,j

, j’s confidence interval is at most∆i,j/2 wide.

Therefore, with probability1− 2
t4 , we havêµj,t +

√

8 ln t
k ≤

µj + ∆i,j andµ̂ht,t +
√

8 ln t
nht,t

≥ µht
. Also, the probability

P[µj +∆i,j ≥ µht
] = 0 since we know thatµj +∆i,j ≤ µht

asht ∈ [i]. Therefore, we can mess up only constant num-
ber of times between[i] andj after j has been playedQi,j

number of times. We get that

E[Ni,j ] ≤ Qi,j +O(1).

Now, it is easy to bound the total regret of the algorithm,
which is

E





n
∑

j=2

j−1
∑

i=1

(Ni,j −Ni−1,j)∆i,j



 (13)

=

n
∑

j=2

j−1
∑

i=1

Ni,j (∆i,j −∆i+1,j) ,

which follows by regrouping of terms and the convention
thatN0,j = 0 and∆j,j = 0 for all j. Taking the expectation
of this gives the regret bound of

(32 ln T ) ·
n
∑

j=2

j−1
∑

i=1

(

1

∆2
i,j

)

(∆i,j −∆i+1,j).



This gives the statement of the lemma.

Remarks for small ∆i,i+1 As noted in the case of expert
setting, the upper bound above become trivial if some∆i,i+1

are small. In such case, the proof can be modified by chang-
ing equation (13) as follows.

n
∑

j=2

j−1
∑

i=1

(Ni,j −Ni−1,j)∆i,j

=

n
∑

j=2

iǫ(j)
∑

i=1

(Ni,j −Ni−1,j)∆i,j

+

n
∑

j=2

j−1
∑

i=iǫ(j)+1

(Ni,j −Ni−1,j)∆i,j

≤
n
∑

j=2

iǫ(j)−1
∑

i=1

Ni,j∆i,i+1 +
n
∑

j=2

Niǫ(j),j∆iǫ(j),j

+

n
∑

j=2

j−1
∑

i=iǫ(j)+1

(Ni,j −Ni−1,j)ǫ

≤
n
∑

j=2

iǫ(j)−1
∑

i=1

Ni,j∆i,i+1 + ǫ
n
∑

j=2

Niǫ(j),j

+ ǫ

n
∑

j=2

(Nj−1,j −Niǫ(j),j)

≤
∑

1≤i<j≤n,∆i,j>ǫ

Ni,j∆i,i+1 + ǫT,

where the last step follows from
∑n

j=2 Nj−1,j ≤ T .
Taking the expectation, and using the modification of

Lemma 3 suggested in Section 3.1.1 gives us an upper bound
of

ǫT + (64 ln T )

n−1
∑

i=1

(max{ǫ,∆i,i+1})−1,

for anyǫ ≥ 0.

3.2.2 Lower bound
In this section, we prove that theAUER algorithm presented
is information theoretically optimal up to constant factors
when the means of armsµi’s are bounded away from0 and
1. We do this by presenting a lower bound of

Ω

(

lnT ·
n−1
∑

i=1

∆−1
i,i+1

)

for this problem. This is done by closely following the lower
bound of Lai and Robbins [LR85] for two armed bandit prob-
lems. The difference is that Lai and Robbins prove their
lower bound only in the case whenT approaches∞, but
we want to get bounds that hold for finiteT . Our main result
is stated in the following lemma.

Lemma 10 Suppose there aren arms andn Bernoulli dis-
tributionsPi with meansµi, with eachµi ∈ [α, β] for some

0 < α < β < 1. Letφ be an algorithm for picking amongn
arms which, up to timet, plays a suboptimal bandit at most
o(ta) number of times for everya > 0. Then, there is an
input instance withn arms endowed with some permutation
of above mentionedn distributions, such that the regret ofφ
has to be at least

Ω

(

n−1
∑

i=1

(log t)(µi − µi+1)

KL(µi+1;µi)

)

,

for t ≥ n2.

We first prove the result for two arms. For this, in the
following, we extend the Lai and Robbins result so that it
holds (with somewhat worse constants) for finiteT , rather
than only in the limitT →∞.

Lemma 11 Let there be two arms and two distributionsP1(·)
andP2(·) with meansµ1 andµ2 with µi ∈ [α, β] for i = 1, 2
and0 < α < β < 1. Let φ be any algorithm for choosing
the arms which never picks the worse arm (for any values of
µ1 andµ2 in [α, β]) more thano(T a) times (for any value of
a > 0).

Then there exists an instance forφ with two arms en-
dowed with two distributions above (in some order) such that
the regret of the algorithm if presented with this instance is
at least

Ω

(

(log t)(µ1 − µ2)

KL(µ2;µ1)

)

,

where the constant inside the big-omega is at least1/2.

Proof: Since we are proving a lower bound, we just focus on
Bernoulli distributions, and prove that if we have two ban-
dits, with Bernoulli payoffs with meansµ1 andµ2 such that
α ≤ µ2 < µ1 ≤ β, then we can get the above mentioned
lower bound.

Let us fix aδ < 1/10. From the assumption thatµ1 and
µ2 are bounded away from0 and1, there exists a Bernoulli
distribution with meanλ > µ1 with

|KL(µ2;λ)− KL(µ2;µ1)| ≤ δ · KL(µ2;µ1),

because of the continuity of KL divergence in its second ar-
gument.

This claim provides us with a Bernoulli distribution with
meanλ and

KL(µ2;λ) ≤ (1 + δ)KL(µ2;µ1). (14)

From now on, until the end of the proof, we work with the
following two distributions ont-step histories:p is the distri-
bution induced by Bernoulli arms with means(µ1, µ2), and
q is the distribution induced by Bernoulli arms with means
(µ1, λ). From the assumption of the lemma, we have

Eq[t− n2,t] ≤ o(ta), for all a > 0.

We choose anya < δ. By an application of Markov’s in-
equality, we get that

Pq[n2,t < (1− δ)(log t)/KL(µ2;λ)]

≤ Eq[t− n2,t]

t− (1− δ)(log t)/KL(µ2;λ)
≤ o(ta−1). (15)



LetE denote the event thatn2,t < (1−δ) log t/KL(µ2;λ).
If Pp(E) < 1/3, then

Ep[n2,t] ≥ Pp(E) · (1− δ) log t/KL(µ2, λ)

≥ 2

3
· (1− δ) log t/KL(µ2, λ)

≥ 2

3

(

1− δ

1 + δ

log t

KL(µ2;µ1)

)

,

which implies the stated lower bound forδ = 1/10.
Henceforth, we will assumePp(E) ≥ 1/3. We have

Pq(E) < 1/3 using (15). Now we can apply the lemma from
[KK07] stated in (12), we have

KL(p; q) ≥ 1

3
ln

(

1

3 o(ta−1)

)

− 1

e

= (1− a) ln t−O(1). (16)

The chain rule for KL divergence [CT99, Theorem 2.5.3]
implies

KL(p; q) = Ep[n2,t] · KL(µ2;λ) (17)

Combining (16) with (17), we get

Eµ1,µ2
[n2,t] ≥

(1− a) ln t−O(1)

KL(µ2;λ)

≥ 1− a

1 + δ

ln t

KL(µ2;µ1)
−O(1). (18)

Usinga < δ < 1/10, the regret bound follows.

We now extend the result from2 to n bandits.
Proof of Lemma 10: A naive way to extend the lower bound
is to divide the time line betweenn/2 blocks of length2T/n
each and usen/2 separate two-armed bandit lower bounded
as done in the proof of Lemma 5.

We can pair the arms in pairs of(2i − 1, 2i) for i =
1, 2, . . . , ⌊n/2⌋. We present the algorithm with two arms
2i − 1 and2i in the i-th block of time. The lower bound
then is

log

(

T

n

)(

µ1 − µ2

KL(µ2;µ1)
+ · · ·+ µ2⌊n/2⌋−1 − µ2⌊n/2⌋

KL(µ2⌊n/2⌋;µ2⌊n/2⌋−1)

)

= Ω



(log T ) ·





⌊n/2⌋
∑

i=1

∆−1
2i,2i−1







 ,

if we takeT > n2. Using the fact thatµi ∈ [α, β], we have
KL(µi;µj) = O(∆−2

i,j ) which justifies the derivation of the
second line above.

We get a similar lower bound by presenting the algorithm
with (2i, 2i + 1), which gives us a lower bound of

Ω



(log T ) ·





⌊n/2⌋
∑

i=1

∆−1
2i,2i+1







 .

Taking their averages gives the required lower bound, prov-
ing the lemma.

4 Adversarial Model of Rewards

We now turn our attention to the case where no distributional
assumptions are made on the generation of rewards. In this
section we prove information theoretic lower bounds on the
regret of any online learning algorithm for both the best ex-
pert and the multi-armed bandit settings. We also present
online algorithms whose regret is within a constant factor of
the lower bound for the expert setting and within a subloga-
rithmic factor of the lower bound for the bandit setting. Un-
like in the stochastic rewards setting, however, these algo-
rithms are not computationally efficient. It is an open prob-
lem if there exists an efficient algorithm whose regret grows
as polynomial inn.

4.1 Best expert

Theorem 12 For every online algorithmALG and every time
horizonT , there is an adversary such that the algorithm’s re-
gret with respect to the best ordering, at timeT , is

Ω(
√

Tn log(n)).

Proof: We construct a randomized oblivious adversary (i.e.,
a distribution on input sequences) such that the regret of
any algorithmALG is at leastΩ(

√

Tn log(n)). The ad-
versary partitions the timeline{1, 2, . . . , T} into a series of
two-expert games, i.e. intervals of consecutive rounds during
which only two experts are awake and all the rest are asleep.
In total there will beQ(n) = Θ(n log n) two-expert games,
whereQ(n) is a function to be specified later in (20). For
i = 1, 2, . . . , Q(n), the set of awake experts throughout the
i-th two-experts game is a pairA(i) = {xi, yi}, determined
by the adversary based on the (random) outcomes of previ-
ous two-experts games. The precise rule for determining the
elements ofA(i) will be explained later in the proof.

Each two-experts game runs forT0 = T/Q(n) rounds,
and the payoff functions for the rounds are independent, ran-
dom bijections fromA(i) to {0, 1}. Lettingg(i)(xi), g(i)(yi)
denote the payoffs ofxi andyi, respectively, during the two-
experts game, it follows from Khintchine’s inequality [Khi23]
that

E

(∣

∣

∣
g(i)(xi)− g(i)(yi)

∣

∣

∣

)

= Ω
(

√

T0

)

. (19)

The expected payoff for any algorithm can be at mostT0

2 ,
so for each two-experts game the regret of any algorithm is
at leastΩ(

√
T0). For each two-experts game we define the

winnerWi to be the element of{xi, yi} with the higher pay-
off in the two-experts game; we will adopt the convention
thatWi = xi in case of a tie. TheloserLi is the element of
{xi, yi} which is not the winner.

The adversary recursively constructs a sequence ofQ(n)
two-experts games and an ordering of the experts such that
the winner of every two-experts game precedes the loser in
this ordering. (We call such an orderingconsistentwith the
sequence of games.) In describing the construction, we as-
sume for convenience thatn is a power of2. If n = 2 then
we setQ(2) = 1 and we have a single two-experts game and
an ordering in which the winner precedes the loser. Ifn > 2
then we recursively construct a sequence of games and an
ordering consistent with those games, as follows:



1. We constructQ(n/2) games among the experts in the
set{1, 2, . . . , n/2} and an ordering≺1 consistent with
those games.

2. We constructQ(n/2) games among the experts in the
set{(n/2) + 1, . . . , n} and an ordering≺2 consistent
with those games.

3. Let k = 2Q(n/2). For i = 1, 2, . . . , n/2, we define
xk+i andyk+i to be thei-th elements in the orderings
≺1,≺2, respectively. The(k + i)-th two-experts game
uses the setA(k+i) = {xk+i, yk+i}.

4. The ordering of the experts puts the winner of the game
betweenxk+i andyk+i before the loser, for everyi =
1, 2, . . . , n/2, and it puts both elements ofA(k+i) be-
fore both elements ofA(k+i+1).

By construction, it is clear that the ordering of experts is con-
sistent with the games, and that the number of games satisfies
the recurrence

Q(n) = 2Q(n/2) + n/2, (20)

whose solution isQ(n) = Θ(n log n).
The best ordering of experts achieves a payoff at least as

high as that achieved by the constructed ordering which is
consistent with the games. By (19), the expected payoff of
that ordering isT/2 + Q(n) ·Ω(

√
T0). The expected payoff

of ALG in each roundt is 1/2, because the outcome of that
round is independent of the outcomes of all prior rounds.
Hence the expected payoff ofALG is onlyT/2, and its regret
is

Q(n) · Ω(
√

T0) = Ω(n log n
√

T/(n log n))

= Ω(
√

Tn log n).

This proves the theorem.

It is interesting to note that the adversary that achieves
this lower bound is not adaptive in either choosing the pay-
offs or choosing the awake experts at each time step. It only
needs to be able to carefully coordinate which experts are
awake based on the payoffs at previous time steps.

Even more interesting, this lower bound is tight, so an
adaptive adversary is not more powerful than an oblivious
one. There is a learning algorithm that achieves a regret
of O(

√

Tn log(n)), albeit not computationally efficient. To
achieve this regret we transform the sleeping experts prob-
lem to a problem withn! experts that are always awake. In
the new problem, we have one expert for each ordering of
the originaln experts. At each round, each of then! experts
makes the same prediction as the highest ranked expert in
its corresponding ordering, and receives the payoff of that
expert.

Theorem 13 An algorithm that makes predictions using
Hedge on the transformed problem achievesO(

√

Tn log(n))
regret with respect to the best ordering.

Proof: Every expert in the transformed problem receives the
payoff of its corresponding ordering in the original problem.
SinceHedge achieves regretO(

√

T log(n!)) with respect to
the best expert in the transformed problem, the same regret
is achieved by the algorithm in the original problem.

4.2 Multi-armed bandit setting

Theorem 14 For every online algorithmALG and every time
horizonT , there is an adversary such that the algorithm’s re-
gret with respect to the best ordering, at timeT , isΩ(n

√
T ).

Proof: To prove the lower bound we will rely on the lower
bound proof for the multi-armed bandit in the usual setting
when all the experts are awake [ACBFS02]. In the usual ban-
dit setting with a time horizon ofT0, any algorithm will have
at leastΩ(

√
T0n) regret with respect to the best expert. To

ensure this regret, the input sequence is generated by sam-
pling T0 times independently from a distribution in which
every bandit but one receives a payoff of1 with probability
1
2 and0 otherwise. The remaining bandit, which is chosen
at random, incurs a payoff of1 with probability 1

2 + ǫ for an
appropriate choice ofǫ.

To obtain the lower bound for the sleeping bandits set-
ting we set up a sequence ofn multi-armed bandit games as
described above. Each game will run forT0 = T

n rounds.
The bandit that received the highest payoff during the game
will become asleep and unavailable in the rest of the games.

In gamei, any algorithm will have a regret of at least

Ω
(
√

T
n (n− i)

)

with respect to the best bandit in that game.

In consequence, the total regret of any learning algorithm
with respect to the best ordering is:

n−1
∑

i=1

√

T

n
(n− i) =

√

T

n

n−1
∑

j=1

j1/2

≥
√

T

n

∫ n−1

x=0

x1/2dx =

√

T

n

2

3

(

(n− 1)3/2
)

= Ω
(

n
√

T
)

.

The theorem follows.

To get an upper bound on regret, we will use theExp4
algorithm [ACBFS02]. SinceExp4 requires an oblivious ad-
versary, in the following, we assume that the adversary is
oblivious (as opposed to adaptive).Exp4 chooses an action
by combining the advice of a set of “experts.” At each round,
each expert provides advice in the form of a probability dis-
tribution over actions. In particular the advice can be a point
distribution concentrated on a single action. (It is required
that at least one of the experts is theuniform expertwhose
advice is always the uniform distribution over actions.) To
useExp4 for the sleeping experts setting, in addition to the
uniform expert we have an expert for each ordering over ac-
tions. At each round, the advice of that expert is a point
distribution concentrated on the highest ranked action in the
corresponding ordering.

Since the uniform expert may advise us to pick actions
which are not awake, we assume for convenience that the
problem is modified as follows. Instead of being restricted
to choose an action in the setAt at time t, the algorithm
is allowed to choose any action at all, with the proviso that
the payoff of an action in the complement ofAt is defined
to be0. Note that any algorithm for this modified problem
can easily be transformed into an algorithm for the original



problem: every time the algorithm chooses an action in the
complement ofAt we instead play an arbitrary action inAt.
Such a transformation can only increase the algorithm’s pay-
off, i.e. decrease the regret. Hence, to prove the regret bound
asserted in Theorem 15 below, it suffices to prove the same
bound for the modified problem.

Theorem 15 Against an oblivious adversary, theExp4 algo-
rithm as described above achieves a regret ofO(n

√

T log(n))
with respect to the best ordering.

Proof: We haven actions and1 + n! experts, so the re-
gret ofExp4 with respect to the payoff of the best expert is
O(
√

Tn log(n! + 1)) [ACBFS02]. Since the payoff of each
expert is exactly the payoff of its corresponding ordering we
obtain the statement of the theorem.

The upper bound and lower bound differ by a factor of
O(
√

log(n)). The same gap exists in the usual multi-armed
bandit setting where all actions are available at all times,
hence closing the logarithmic gap between the lower and up-
per bounds in Theorems 14 and 15 is likely to be as difficult
as closing the corresponding gap for the nonstochastic multi-
armed bandit problem itself.

5 Conclusions

We have analyzed algorithms for full-information and partial-
information prediction problems in the “sleeping experts”
setting, using a novel benchmark which compares the algo-
rithm’s payoff against the best payoff obtainable by selecting
available actions using a fixed total ordering of the actions.
We have presented algorithms whose regret is information-
theoretically optimal in both the stochastic and adversarial
cases. In the stochastic case, our algorithms are simple and
computationally efficient. In the adversarial case, the most
important open question is whether there is a computation-
ally efficient algorithm which matches (or nearly matches)
the regret bounds achieved by the exponential-time algorithms
presented here.
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