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Abstract

A pseudo-Boolean function is a real-valued func-
tion defined on{0, 1}™. A k-bounded function is

a pseudo-Boolean function that can be expressed
as a sum of subfunctions each of which depends
on at mostk input bits. Thek-bounded functions
for constant: play an important role in a number
of research areas including molecular biology, bio-
physics, and evolutionary computation. In this pa-
per, we consider the problem of finding the Fourier
coefficients ofk-bounded functions with a series
of function evaluations at any input strings. Sup-
pose that &-bounded functiorf with m non-zero
Fourier coefficients is given. Our main result is to
present an adaptive randomized algorithm to find
the Fourier coefficients of with high probabil-

ity in O (mlogn) function evaluations for con-
stantk. Up to date, the best known upper bound
is O (a(n, m)mlogn), wherea(n, m) is between

nz andn depending onn. Thus, our bound im-
proves the previous bound by a factortd ne).

Also, it is almost tight with respect to the known
lower bound. To obtain the main result, we first
show that the problem of finding the Fourier coef-
ficients of ak-bounded function is reduced to the
problem of finding ak-bounded hypergraph with

a certain type of queries under an oracle with one-
sided error. For this, we devise a method to test
with one-sided error whether there is a dependency
within some set of input bits among a collection
of sets of input bits. Then, we give a randomized
algorithm for the hypergraph finding problem and
obtain the desired bound by analyzing the algo-
rithm based on a large deviation result for a sum
of independent random variables.
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1 Introduction

A pseudo-Booleafunction is a real-valued function defined
on the set of binary strings of fixed length. If a pseudo-
Boolean function can be expressed as a sum of subfunctions
each of which depends on at mdsinput bits, it is called
k-bounded Given a2-SAT formula, for example, the num-
ber of clauses an assignment satisfie2saunded pseudo-
Boolean function of the assignment. Note that-bounded
pseudo-Boolean function is a polynomial of Boolean vari-
ables of degreg: or less, and vice versa. In this paper,
we consider the problem of finding the Fourier coefficients
of k-bounded pseudo-Boolean functions. In the problem,
we assume the oracle that, given any binary string, returns
the function value at the string. Our main concern is the
query complexity to solve the problem, i.e., the number of
function evaluations required to find the Fourier coefficients
of k-bounded pseudo-Boolean functions. (Unless otherwise
specified, &-bounded function meanskabounded pseudo-
Boolean function in this paper.)

The k-bounded functions have played an important role
in molecular biology and biophysics. In those areas, a num-
ber of mathematical models have been proposed to study
the evolution of a population of organisms (or biological ob-
jects) [Ewe79, FL70, KL87, Lew74, MP89]. In many of the
models including the NK model [Kau89}-bounded func-
tions have been used to measure the fitness of an organism
in an environment. In the NK model [Kau89], each sub-
function represents the contribution of a gene of the organ-
ism to the overall fitness, interacting with a fixed number
of other genes. Hence, labounded function may be re-
garded as a sum of subfunctions each of which depends on
at mostk genes. Theé-bounded functions with small in
the NK model induce the fitness landscapes of reasonable
evolvability and complexity, which were used for describ-
ing the evolution of living systems [Kau93]. They were also
used as a benchmark for comparing the landscapes arising in
RNA folding [FSBB"93]. In this regardk-bounded func-

tions with smallk have been paid attention.
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dency among the input bits inkabounded function. By con-
trolling the degree of the dependency (the valug)pin gen-
eral, we may control the difficulty of the problem of maxi-
mizing thek-bounded functions. There are good heuristic al-
gorithms to approximate the maximum ofdounded func-

functions. However, the extensions of the algorithms do not
give a good bound fat-bounded pseudo-Boolean functions.
One of the main reasons is that their query complexities de-
pend on the values of the target function. For example, for
a k-bounded functiory, (to the best of our knowledge) the

tion when the dependency among the input bits are known most efficient extension [BJT04] among those has the query

[dBIV97, Gol89, MM99, PGCP0O0, Str04].

Fourier transform is a formal approach to define the de-
pendency among the input bits of a pseudo-Boolean func-
tion. There have been a number of papers addressing th

problem of finding the Fourier coefficients ofkabounded
function f : {0,1}" — R with constantt. Kargupta and
Park [KP01] presented a deterministic algorithm using")
function evaluations. Later, Heckendorn and Wright [HWO03,
HWO04] proposed a randomized algorithm for the problem.
They analyzed the algorithm to show that, with negligible er-
ror probability, it finds the Fourier coefficients@(n? log n)
function evaluations on average for thdounded functions
with O(n) non-zero Fourier coefficients generated from a
random model. For thé-bounded functions withn non-
zero Fourier coefficients, Choi, Jung, and Moon [CIMO08]

proved that any randomized algorithm requimé%)

function evaluations to find the Fourier coefficients with er-
ror probability at most a given constantif < n*~= for any
constant > 0. By analyzing the algorithm of Heckendorn
and Wright, they also proved thé&(«(n, m)mlogn) func-
tion evaluations, where(n, m) is betweennz andn de-
pending onm, are enough to find the Fourier coefficients.
Recently, for2-bounded functions of which non-zero Fourier
coefficients are between ¢ andn® in absolute value for
some positive constarisandb, Choi and Kim [CK08] showed

that there exists a deterministic algorithm us@{%)

function evaluations, provided that > n® for any constant
e > 0. This algorithm is non-adaptive while the previous
algorithms are adaptive However, an explicit construction
of the algorithm is unknown.

Our main result is

Theorem 1 Suppose thaf is a k-bounded function defined
on {0, 1}"™ for constant: and thatf hasm non-zero Fourier

complexity of(2 (r (%)2> wherer is the number of input
bits on whichf dependsp is the maximum absolute value

% f, and@ is the minimum absolute value of the non-zero

ourier coefficients off. Thus, the query complexity may
be made arbitrarily large depending Bnandé.? The query
complexity of our algorithm is independent of the values of
the target function.

To prove Theorem 1, we first show that the problem of
finding the Fourier coefficients of A&-bounded function is
reduced to the problem of findingkabounded hypergragh
(with a certain type of queries under a probabilistic oracle).
For a pseudo-Boolean functigidefined on{0, 1}"™, we con-
sider the hypergraph representing the dependency among the
input bits as follows. Suppose thétis a subset ofin], where
[n] is the set of the integers frointo n. We say that there is
alinkageamong the input bits itf if, for any additive ex-
pression off, f = . f;, there isj such thatH is included
in the support set of;.* The linkage graphof f is a hy-
pergraphG; = ([n], E), where each bit ifin] represents a
vertex and a subsé{ of [n] belongs to the edge sétif and
only if there is a linkage among the bits f.

For example, consider the following function:

f(z1, 22, x3, T4, T5) = br12T2 — 3T2T3T4.

Ifwe let fi(z1,22) = Sxyw0 andfa (w2, 23, 4) = —3222314,
f can be represented as an additive expresgien,f; + fo.

In this expression, each subfunctionfohas a support set of
which size is at most three and gas 3-bounded. It can be
shown that the support sets fifand f2, {1, 2} and{2, 3,4},
are hyperedges of/;. By definition of linkage, the non-
empty subsets ofl1, 2} and{2, 3,4} are also hyperedges of
Gy. Generally, if a set of vertices is a hyperedgesgf, then
any non-empty subset of the set is also a hyperedgeof
We call this property thaierarchical propertyamong hyper-

coefficients. Then, there exists an adaptive algorithm to find edges. The linkage grajih, has nine hyperedge$1}, {2},

the Fourier coefficients of in O (m logn) function evalua-
tions with probabilityl — O (1).

We prove Theorem 1 by showing an explicit construction of

{3}, {4}, {1, 2}, {2,3}, {2,4}, {3,4}, and{2, 3,4}. There
is no hyperedge containirigsincef does not depend ary.

For ak-bounded function with constaht the Fourier co-
efficients can be efficiently found when the linkage graph is

the desired algorithm. This result improves the best known known [HWO03, HWO04]. (The description of the relationship

upper bound (a(n, m)mlogn) by a factor of2 (n%) and

mlogn
logm

it is almost tight with respect to the lower boufy

2To see a typical behavior of the complexity, we may consider
the NK model [Kau89]. The NK model with paramete¥s = n
and K = k — 1 generates a class &fbounded functions that are

We should note that there have been a number of papers,yyressed as a sum ofsubfunctions. Wherf is a function ran-
addressing the problem of finding the Fourier coefficients of gomly generated from the NK model with parametafs= n and

Boolean functions [BJT04, BT96, Jac97, KM93, Man94].
The KM algorithm [KM93] is one of the most famous al-

K = k — 1 for constant, it is not difficult to show that = O(n),
B = Q(n), andd = O(1) with high probability. Thus, the query

gorithms for the problem and most of the subsequent algo-complexity of the algorithm [BJTO04] foif is (n®) ‘with high
rithms have been based on the algorithm. These algorithmspProbability while the query complexity of our algorithm fgris
for Boolean functions can be extended to pseudo-Boolean® (nlogn).

'An algorithm is calledadaptiveif the algorithm uses a se-

quence of queries in which some queries depend on the previous

queries. Otherwise, it is calletbn-adaptive

8A hypergraph isc-bounded if the order of each hyperedge is at
mostk.

“The term linkage is from genetics and it means the interaction
among the genes.



is provided in Section 2.) In a hypergraph, we say that a hy- finding problem with edge-counting (or additive) queries.
peredgecrosses amongertain disjoint sets of vertices if the  On the other hand, since the answers of the oracle may con-
number of the sets is equal to the order of the hyperedge andain errors in our situation, we need to handle the error bound
each of the sets contains exactly one vertex in the hyperedgemore carefully, which is the main task in proving Theorem
(By definition, a hyperedge of order one crosses among any3. A large deviation result for a sum of independent random
set of vertices including the hyperedge.) Our main contri- variables with geometric distribution is crucially used for the
bution is to show that, given a collection of disjoint sets of task. (There have been a number of papers addressing the
vertices, the existence of a hyperedge of the linkage graphproblem of finding a graph or a hypergraph by using various
crossing among those sets is testable with one-sided error bytypes of queries. For example, see [AA04, AAOS, ABB2,
using a constant number of function evaluations. ABK ™04, AC06, BAA™01, BGKO05, CK08, GK00].)

Theorem 1 is obtained from Theorems 2 and 3 and the
Theorem 2 Suppose thaf is a k-bounded function defined  relationship between the problems of finding the Fourier co-
on{0,1}"andS,,...,S; arej disjoint subsets di]. Then, efficients and the linkage graph.

we can use’ function evaluations of to test the existence The remainder of the paper is organized as follows. In

of a hyperedge in the linkage gragh; crossing among;’s, Section 2, we review some basic facts and previous results
where the test result is correct with probability at leagt for the problem of finding the Fourier coefficientsiebounded

if such a hyperedge exists and it is correct with probability ~ functions. In Section 3, we prove Theorem 2, which states
otherwise. the linkage testability of a linkage graph, by proving rele-

vant lemmas. Section 4 deals with the graph finding prob-

Theorem 2 is an extension of a previous theorem of Heck- lem with cross-membership queries under the probabilistic
endorn and Wright [HWO04] (Proposition 1 in Section 2), oracle as an independent problem. In the section, we give a
which holds only for the case when each%fs is a sin- randomized algorithm for the problem and analyze it to ob-
gleton set of vertices. To prove Theorem 2, we devise atain Theorem 3. In Section 5, some remarks on the query
random perturbation method for testing the existence of a and time complexity of the proposed algorithm are provided
hyperedge. It tests the existence of a hyperedge by flippingalong with a factor of improving the complexity. Finally,
a randomly generated string at certain bit positions and eval-concluding remarks closes the paper in Section 6.
uating the function values at the flipped strings. We obtain
the desired result by analyzing the method. The analysis ex-2  Preliminaries
tensively uses the properties of basis functions in the Fourier , )
transform of ak-bounded function. 2.1 Linkage Test Function

Theorem 2 implies that the problem of finding the link- Munetomo and Goldberg [MG99] proposed a perturbation
age graph of &-bounded function is reduced to the follow- method to test for the existence of linkage ir-aubset of
ing graph finding problem. Suppose that a hypergréph [n]. Given a2-subsetS and a stringe, it checks the non-
hasn vertices andn hyperedges and the hyperedgestbf  linearity between the two bits il by flipping the two bits
are unknown. Across-membership queasks the existence  of z individually and simultaneously and adding/subtracting
of a hyperedge crossing among certain disjoint sets of ver-the function values at the flipped strings. Heckendorn and
tices. We assume tharacle with one-sided errof as fol- Wright [HWO04] generalized the method to detect linkage for
lows. Given a cross-membership query, the oracle correctly subsets of any order. Suppose tlfails a pseudo-Boolean
answers with probability at least— § if the true answer for ~ function defined o0, 1}", S is a subset ofn], andx is a
the query is YES and it correctly answers with probability ~ string in{0,1}". They considered thknkage test function
otherwise. The problem is to find the hyperedgeg-oby £ depending ory, S, andx as follows:
using as few queries to the oracle as possible.

In fact, it is enough for our purpose to consider the hyper- Lf,Sa)=> () (ze14).
graph finding problem for thé-bounded hypergraphs with ACsS
the hierarchical property. Since we think that the problem is
of self interest, however, we consider the problem for arbi-
trary k-bounded hypergraphs. We present an adaptive ran-
domized algorithm for the problem to show

Here,1 4 represents the string consisting of ones in the bit
positions ofA and zeros in the rest. For two stringsy €
{0,1}", x ® y means the bitwise addition modu®f = and

y. The linkage test functio performs a series of function
evaluations at: and the strings obtained by flippingin or-

der to detect the existence of the linkage among the bis in
Heckendorn and Wright [HWO04] proved the following theo-
rem, which shows the usefulness of the linkage test function
in finding hyperedges df ;.

Theorem 3 Suppose tha&s is an unknownk-bounded hy-
pergraph withn vertices andn edges for constarit. Then,
for any constant < § < 1, the hyperedges af can be
found with probabilityl —O (1) by usingO (m log n) cross-
membership queries under the oracle with one-sided érror
(The number of cross-membership queriezi§) in &.)

Our algorithm for Theorem 3 iteratively uses binary search to

find the hyperedges. In this sense, it is analogous to the algo-

rithm of Angluin and Chen [AC04, AC05, AC06] for the hy- SAn edge-detecting query asks the existence of an edge (or a
pergraph finding problem with edge-detecting queries or to hyperedge) in a set of vertices while an edge-counting query asks
the algorithm of Reyzin and Srivastava [RS07] for the graph the number of edges (or hyperedges) in a set of vertices.



Proposition 1 Suppose thaf is a k-bounded function de- Heckendorn and Wright [HWO04] provided a number of

fined on{0, 1}". Then, the followings hold: results to show the relationship between the linkage test func-
(a) A subsetS of [n] is a hyperedge of7; if and only if tion and the Fourier coefficients. Some of them are summa-
£(f,S,x) # 0 for some stringe € {0,1}"™. rized in the following proposition.

(b) For a hyperedgeS of order j in G4, the probability that . ) i
£(f,8,z) # 0 for a stringz chosen uniformly at random Pro_posmon 2 Suppose thaf is a p;eudo-BooIean function
from {0, 1} is at least . defined on{0, 1}™. Then, the followings hold:

(a)For asubsefd of [n], f(H) is a maximal non-zero Fourier

Proposition 1 indicates that the linkage test function de- coefficient off if and only if H is a maximal hyperedge of
termines the existence of a hyperedge with one-sided error.c;, .

Thus, by repeatedly evaluating the linkage test function for (b) For a maximal hyperedgé C [n],
randomly chosen strings, we can make the error arbitrarily

small. In particular, whert is a constant, this implies that F(H) = L£(f, H,0")
a constant number of linkage tests (consequently, a constant 2lH|
number of function evaluations) is enough for determining

the existence of a hyperedge with error probability at most a (c) For a subset! of [n],

given constant. The hierarchical property among hyperedges ~ £(f, H,0") -~
implies that, for; > 2, a j-subsetH can be a hyperedge f(H) = T ol Z f(H).
only if every (j — 1)-subset ofH is a hyperedge. Based on HGH'

this observation, Heckendorn and Wright [HW04] proposed
a randomized algorithm that performs linkage test only for
such a hyperedge candidate: The algorithm first detects the rany — _1\l4]
hyperedges of order one by investigating all the singleton UL H07) Z (=D)L H, L),
subsets ofn]. Then, forj from 2 to k, it detects the hyper-
edges of ordeyf by performing linkage test for the hyperedge Proposition 2 (a) says that the subset$rdfwith maxi-
candidates of ordej“ that have been identified from the in- mal non-zero Fourier coefficients ¢’fare the maximal hy_
formation of the hyperedges of lower order. Recently, the peredges in the linkage graph ¢f Thus, from Proposi-
performance of the algorithm was more precisely analyzed tion 2 (b), the maximal non-zero Fourier coefficients fof

by Choiet al. [CIMO8]. Given ak-bounded functiorf with are found by evaluating the linkage test function at the zero
m hyperedges and a constant 0, they showed thatthe al-  string for each maximal hyperedge. Once the maximal non-

(d) For subsetd] and H' of [n] with H C H’,

ACH\H

gorithm finds the linkage grap&; in O (a(n, m)mlogn) zero Fourier coefficients are found, the Fourier coefficients
function evaluations with error probability at mastwhere  corresponding to the subsets of lower orders can be found
a(n,m) is betweemz andn depending omn. by successively applying Proposition 2 (c). Proposition 2 (d)

) implies that no additional function evaluations are required
2.2 AFourier Transform for finding the Fourier coefficients corresponding to the sub-
Walsh transform is a Fourier transform for the space of pseudsets of lower orders. Hence, ffis k-bounded for constant
Boolean functions in which a pseudo-Boolean function is & andm is the number of hyperedges &y, O(m) addi-
represented as a linear combination26f basis functions  tional function evaluations are enough to find the Fourier co-

calledWalsh functiongWal23]. For each subsdf of [n], efficients of f when the linkage graph of is known. This
the Walsh function corresponding I8, ¢ : {0,1}" — R, implies that an upper bound for finding the linkage graph is
is defined as ‘ valid as an upper bound for finding the Fourier coefficients

V() = (—1)%en 2l if the bound for finding the linkage graph¥m).
wherez[i] represents thé" bit value inz. If we define an ) .
inner product of two pseudo-Boolean functiohandg as 3 Generalized Linkage Test

(f.g) = Z f(z)-g(z) 3.1 Generalized Linkage Test Function
9= n Let f be a pseudo-Boolean function defined @n1}”, S

wve{o1} be a collection of disjoint subsets pf], andz be a string in

the set of Walsh functiongyy; | H C [n]}, becomes anor-  {0,1}". We define thegeneralized linkage test functiatr
thonormal basis of the space of pseudo-Boolean functions.depending ory, S, andx as follows:
Hence, a pseudo-Boolean functigrtan be represented as

f=Y f(H) -tu, £ (f,8,2) =Y (-1)¥f <x@ (@ 1A>>.
HC|[n] S'CS AeS’

o~

wheref(H) = (f,vy) is called theFourier coefficientor- {LV"t‘ille(thg = {){a}!; (afGHH })f]?r a SUbseff()O{;[%n]’ we see
. - N o ate*(f,Sg,z) = ,H,z)foranyz € {0,1}".
responding tdf. Specifically, iff(H) # 0 and f(H") = 0 The following lemmas describes the basic properties of

foranyH’ O H, f(H) is called amaximal non-zero Fourier  phe generalized linkage test function.

coefficienof f. We refer to [HW99] for surveys of the prop-

erties of Walsh functions and Walsh transform in the space Lemma 4 Suppose tha$ is a collection of disjoint subsets
of pseudo-Boolean functions. of [n]. Then, the followings hold:



(a) (Linearity) If f1,..., f, are pseudo-Boolean functions
defined on{0,1}™ andcy,.. ., ¢, are constants,

L L
e (Z cJ,;,S,x) =Y et

=1 i=1

*(flasvx)

forall z € {0,1}".
(b) (RecursionIf f is a pseudo-Boolean function defined on

{013,
S*(f,S,.T) = S*(f,S\{A},ZE) -
forany A € S and anyz € {0,1}".

LS\ {A} e ®1a)

Proof: Omitted. [ |

Lemma 5 Suppose thaf is a pseudo-Boolean function de-
fined on{0,1}" and S is a collection of disjoint subsets of
[n]. If the support set of is disjoint with somed € S,
£5(f,S,z) =0forall z € {0,1}".

Proof: Omitted. ]
3.2 Linkage Test Theorem
A collection of disjoint subsets df:], R = {Ri,..., R},

is called asetwise subcollectioaf S if R; C S; forall 1 <

1 < j. Inthis case, we denote Iy € S. Note that a setwise
subcollectionR of S is allowed to contain multiple empty
sets from the definition. We consider a random mddd)
that generates a setwise subcollectiorSads follows: For
eachS; € S, we select each element §} independently
and with probability% and put it intoR;. Then, we build a
setwise subcollectio® of S by lettingR = {R; | 1 <i <
j}. In the following, str(R) denotes the set of the strings,
x’s, such thatr has the same bit value in the bit positions in
R;foralll <i<j:

str(R) = {z € {0,1}" | z[a] = z[b] for all a, b
such that, b € R; for somei with 1 < i < j}.

Theorem 6 Suppose thaf is a k-bounded function an&
is a collection of disjoint subsets pf]. Then, the followings
hold:

(a) The linkage grapt¥s contains a hyperedge crossing among

S if and only if there exisR € S andx € str(R) such that
L(f,R,zx) # 0.

(b) If G+ contains a hyperedge crossing améhghe proba-
bility that £ (f, R, z) # 0 for a randomly generate® from
I'(S) and a stringc chosen uniformly at random frosar(R)
is at leastsy .

such thatf N A #  for all A € R, by definition of Gy and
Proposition 2. Thus, by Lemma 4 (a),

Zf

£(f, R, x) )L (Y, R, x),

where the summation is over the subséis, such thatif N
A = D forsomeA € R. Since the support set gf;; is H for
anyH C [n], £* (¢, R,z) = 0 for H's in the summation
by Lemma 5 and s&*(f,R,z) = 0.

Now, consider the proof of (b). Le§ = {S;,...,S5,}.
For a setwise subcollectioR of S, letR = {R1,...,R;},
whereR, C S; foralll < i < j. Letr; = |R;| and
r = Zle r;. For eachR;, set a distinct bit position; €
[n —r + j] and, for each’ € [n] \ (U, R;), set a distinct
bit positiond;; € [n — r + j]. For eachH C [n], define
orr:{0,1}"~" — R as follows: If|[H N R;| is odd for
alll <i<j,

prr(y) = (~1) == Ve R g vib]

for anyy € {0,1}"~"+J. Otherwise oy x is the zero func-
tion that assigns zero value to all input strings {0, 1}~ 7.
For eachr € str(R), assign the string,, z € {0,1}"~"*J
such thaty, r[a;] = x[a] for somea € R; forall1 <i < j
andy, r[bi] = «[¢'] for all i' € [n] \ (U, R:). Note that
{yz |z € str(R)} = {0,1}"~"*J and the setstr(R) and
{yz,=|z € str(R)} are in one-to-one correspondence. Let-
tingSr = {{a;} | 1 <i < j}, we have

Claim 7 ForanyH C [n],

£ (wH7 Rv {IT) = E*(@H,Ra SR» yxR)

forall z € str(R).

Proof: Suppose thdt? N R;|is odd foralll <i < j. Letu;
be a bit position ilFHNR; for 1 < i < j. Forallz € str(R),
ZueHﬁR zlu] = |H N Ry| - z[u;] = z[u;] (mod 2) for all
1 <7< jandso

Theorem 6 implies Theorem 2 and provides an efficient method

to test for the existence of a hyperedge crossing among a V()

given collection of sets of vertices in the linkage graph.

Proof: Since (b) implies the only-if part of (a), we first prove
the if part of (a) and then prove (b).

Suppose thaty; does not contain any hyperedge cross-
ing amongS. LetR be a setwise subcollection S§fand letx
be a string in{O 1}". SinceGy does not contain any hyper-
edge crossing among, Gy does not contain any hyperedge

crossing among@R. This implies thatf( )y =0foral H

(- 1)21 wennr; T+ e\, ry) @[]
(— 1)21 e[+ e m (U, ry) 21
_ ( )Z Yz, R[Uw JFZZ EH\(U R. )yz R[b ]

ouR Yz R)-

) for R" C R. If xz € str(R),
= Ygs,R O (@i:RieR’ 1{ai})'

Letzr =z @ (@AE’R/
rre € str(R) andy,,, =



Hence, for allz € str(R),

£ (Yu, R, )
= Z (—1)® (fEGB (@ 1A>>
R'CR AcR/
= Z IRy (2r0)
RICR
= Z (1) Ry r (Yo R)
R/ICR
= Z (—1)|{ai|Ri€R'}|99H,R <ymz69< @ 1{,11}))
R'CR i:R;,ER/
= Z (_1)|S/‘90H,R (y;mz@ (@ 13))
S'CSr BesS'

= £ (@R, SR Yz, R)-

Now, suppose thaf7 N R;| is even for some. For allz €
{0, 13", £ (¢, R\{Ri},x) = £° (¢, R\{R;},2H1g,)
and sof* (¢, R,xz) = 0 by Lemma 4 (b). Sincey r is
the zero function, on the other har®f; (v =, Sr,y) = 0
forally € {0,1}"~"*7. Hence,

£ (Ym, R, )
for all x € str(R).

= £"(¢n,R, SR Ya,R)
|
Define the pseudo-Boolean functigpr : {0,1}" "/ —
R by
grR= Y FH) onr.
HCln]
Claim 8 For all = € str(R),
L(f,R,x)
Proof: By Lemma 4 (a) and Claim 7,

=£(95,R, SR+ Yz, R)-

S (fRx) = Y f(H) £@Wu R )
HC|[n]
= > JH) £ (pnr, SR, Ys.R)
HC|n]

’8* (gf,Ra SRa Z/x,R)7
|

Suppose tha; contains a hyperedge crossing among

forall z € str(R).

Claim 9 Suppose that a setwise subcollectiois randomly
generated fronT'(S). Then, the probability that the linkage
graph of g = has the hyperedge crossing amafg is at
least 5.

Proof: SinceGy contains a hyperedge crossing amahg

there exist subsefd’s such thatf(H) #0andH N S; # 0
for all S; € S. Among those subsets, we choose a maximal
subsetH ™ in viewpoint of the size of intersection with};'s:
Foreachl <i < j,|H*NS;| > |H N S;| forany H such

thatf(H) #0, HNS; # O forall S; € S, and|H N S| =

|H* N S| forall1 <1 <i—1. Let A, be a set consisting
of an elementind* N S; and letB; = (H* N S;) \ 4;. Let
R ={Ri,...,R;}, whereR; C S;forall1 <i < j. Since
A, UB; = H*NS;and)_, [A, UB;| = >, |H*"NS;| <
|H*| < k, the probability that?;, > A; andR; 2 B; for all
1 <i<jisatleasty.

Consider the condition thdt; > A; andR; 2 B; for all
1 <1 < j. Denote

W' ={H C[n]| f(H)#0
H D (UiBi) U (H"\ (UiS5y)),
and|H NS;| = |H* N S;| forall i}.
It is clear thatH™* € H*. Given the condition, ifpy r =

wm+ r, H should be irf{*. Thus, in the Walsh transform of
g¢,r, the Walsh coefficient corresponding to the Walsh func-

tion pp+ = is equal toy _,, f(H), where the summation is
over H's such thatd € H* and(H N S; \ B;) C R; for all

. SinceH* was chosen in a maximal sense as mentioned, for
anyH € H*,|HNS;\B;| = 1forall1 < i < j. Thus, when

we choose each element$h\ (A; U B;) independently and
with probability% and put it intoR;, the conditional proba-

bility that >, f(H) # 0, where the summation is ovéf's
such thatd € H* and(H N S; \ B;) C R, for all 7, is at
least 21] . In this casep - » may be expressed as; for
H' C[n—r+ j]suchthat

H = {ai | 1< < j}U{bl/ ‘ = (UiBi)U(H* \ (Uzsz))}
and the Walsh coefficient corresponding/tg: in the Walsh
transform ofg;  is non-zero. Atthis time, the linkage graph
of g¢ = has thej-hyperedge crossing amodk = {{a;} |
1<i<j}

Therefore, the probability that the linkage graplyeiz
has the hyperedge crossing amdhg for a setwise subcol-
lectionR randomly generated frof(S) is at least' and
the proof is completed. |

Since f is a k-bounded functiong; = is alsok-bounded.
Thus, when the linkage graph gf z has the hyperedge
crossing amongr , the probability thatt* (g =, Sr,y) #

0 for a stringy chosen uniformly at random frof, 1}7—"+J

is at Ieastﬁ by Proposition 1 (b). Hence, by Claim 9, the
probability that* (g =, Sr,y) # 0 for a setwise subcollec-
tion R randomly generated frofii(S) and a stringy chosen
uniformly at random fron{0, 1}"~"*J is at leasts. Since
the setstr(R) and {0,1}" " = {y, = | z € str(R)}
are in one-to-one correspondence, we have the part (b) of the
theorem by Claim 8. |

4 Finding Graphs with Cross-Membership
Queries

In this section, we focus on the problem to find an unknown
hypergraph with cross-membership queries under the oracle
with one-sided errof. Recall that, given a cross-membership
query, the oracle with one-sided errdrcorrectly answers
with probability at least — ¢ if the true answer for the query

is YES and it correctly answers with probabilityotherwise.
Section 4.1 presents a randomized algorithm for the graph
finding problem. The algorithm is analyzed in Section 4.2,
which induces Theorem 3.



GRAPHFINDINGALGORITHM(n,k,0)
Il E; : the set of the hyperedges of ordefiound so far
Il Q : the set of the vertices in the hyperedges of oydigrund so far
/' W : the set of the verticessuch that all the hyperedges of ordgcontainingv have been found by the algorithm
for jfrom1tok
Q—0,W —0;
Ej — @;
repeat
(Si)]_, < CHECKEXISTENCE(D,W ,);
if (S;)7_; = NULL, break;
v < BINARY SEARCH((S;)7_;,1);
Q— QU {v}
while Q \ W # 0
choose a vertexin Q \ W;
E, ; — FINDHYPEREDGE%{v},IW,j);
E; — E;UE, ;;

Q—QU (UHEEW H);
W — WU {v};
returnF;

Figure 1: Main procedure of the algorithm GFA (The output of GFA is the set of the hyperedges of the input graph that have
been found. For the subprocedures{ECKEXISTENCE, BINARY SEARCH, and ANDHYPEREDGES see Figures 2, 3, and 4,
respectively.)

4.1 Algorithm for Finding Graphs algorithm. The variabld”; contains the hyperedges of order

. . . i j found so far. To check the existence of a new connected
In this section, we present the algorithm to find an unknown o mponent of two or more vertices in the subgraph consist-
hypergrap_h with cross-membershlp_querles L_mder the oracle;ng of the hyperedges of ordg; GRAPHFINDINGALGO-
with one-sided erro#, the Graph Finding Algorithm(GFA). RITHM calls the subprocedureHBCKEXISTENCE.
The algorithm GFA takes three arguments: The number of

vertices of the unknown hypergraph the order of the hy-
pergraphk, and the error bound for the answer of the or
cle0 < § < 1. It returns the set of the hyperedges of the ; : . X
hypergraph that have found. The algorithm GFA consists all the vertices iy a_nd d(_)es not contain the verthesI/Ih. .
of the main procedure GAPHFINDINGALGORITHM (Fig- Fgr the purpose., it iteratively generates a collect|.on of dis-
ure 1) and the three subprocedureseCKEXISTENCE (Fig-  Joint sets of verticesS;);_, for a cross-membership query
ure 2), BNARY SEARCH (Figure 3), and NDHYPEREDGEs @S follows. LettingU' = {1, ..., vy}, the sets; is fixed
(Figure 4). In the pseudocode, the valuesipk, andé can ~ With S; = {v;} for 1 < i < [U]. The setsS|y11,...,5;
be accessed by any procedure. All other variables are localare generated as a uniform random partition of vertices in
to the given procedure. [n] \ (UUW). If the oracle answers YES for the cross-

Suppose that! is an unknown hypergraph given to GFA membership query with SOf](é?i)f_:p there is a hyperedge
and letG; be the induced subgraph@fconsisting of the hy- ~ Of orderj crossing among;’s, which contains the vertices

Given sets of vertice§/ and W and a positive integer
a- j, the procedure GECKEXISTENCE performs a randomized
test for whether there is a hyperedge of orgléhiat contains

peredges of ordej for 1 < j < k. The algorithm GFA suc-  in U and does not contain the verticeslif. In this case,
cessively finds the hyperedges@f, G», and so on. After ~ CHECKEXISTENCEreturns the generated s¢g);_, . Ifthe
the algorithm finally finds the hyperedges®f, it returns all oracle answers NO for all the generated collections of dis-
the hyperedges found so far. To find the hyperedgé%dbr ]Omt S_etS, GIECKEXISTENCE returns NULL regardlng that

j =1,...,k, the algorithm iteratively checks whether there there is no such a hyperedge.

is a hyperedge of ordgrthat has not been found and, if such If CHECKEXISTENCE returns NULL, GRAPHFINDIN -

a hyperedge exists, the algorithm finds all the hyperedges inGALGORITHM regards that there is no hyperedge of order
the connected component that the hyperedge belongs to. Itj and continues to find the hyperedges of orger 1. If
continues this process until there is no more hyperedge thatCHECKEXISTENCE returns a (non-NULL) collection of dis-
can be found. joint sets of vertices, this implies that there is a hyperedge
In the main procedure GAPHFINDING ALGORITHM, the of order;. To find a vertex in the hyperedge RGPHFIND-
variable contains the vertices in the hyperedges found so INGALGORITHM calls the subprocedureBARY SEARCH.
far. The variabldV contains the vertices such that all the  Given a collection of disjoint sets of verticéS;)]_, and a
hyperedges of ordef containingv have been found by the positive integer betweenl andj, the procedure BIARY-



CHECKEXISTENCE(U,W ,5)
label the vertices i/ asvy, . .., vjy|;
forifrom1to|U|
Si —{vi};
forifrom |U| + 1toj
Si —0;
repeat[%ﬂ? logn] times
for eachv € [n] \ (U UW)
choose uniformly at random from{|U| + 1,...,j};
S; — S; U {’U},
if CMQ(S1, ..., 5;) = YES
return(S;)7_;;
return NULL,

Figure 2: Procedure to check the existence of a hyperedge of ptiat contains all the vertices i and does not contain the
vertices inW (Here, CMQ(S;)7_,) is the answer of the oracle for the cross-membership qu&ny._,.)

BINARY SEARCH((S;)/_, )
if |S,.| = 1, return the vertex irb,;
repeat] “t) 106 1] times

choose a subsét. of S,. uniformly at random among the subsets of or{j@dj;
if CMQ(Sl, PN Srfl, S;A, Sr,n+1, ey SJ) = YES,
Sy — S5
if |S| = 1, return the vertex irb,;
return a vertex irb,.;

Figure 3: Procedure to search a vertexSinthat is contained in a hyperedge of ordecrossing among, ..., S; (Here,
CMQ((S;)]_,) is the answer of the oracle for the cross-membership qu&ny._, .)

SEARCH returns a vertex that is i, and in one of the hy-  have been found. Initiallyd is set to be empty. IfU| = j,
peredges crossing amongy's. Among the subsets o, of U is the only hyperedge of ordgrcontaining the vertices
OrderL ‘STU, it chooses asubsé’; uniform|y atrandom. For in U and ANDHYPEREDGESreturns the set ConSiSting of

e sets2of vertice§S:)1_, in which S, is replaced withs U. Otherwise, it recursively finds the desired hyperedges of
it asks the cross-membership query to check whether theregﬁjeirkjS ash;?ﬂg\:vtsﬁesayiscgnéng g’eE dCZngIzTENCtEéétnIgiSr:s
is a hyperedge crossing among the sets. If the answer of th yp 9 fitiTa

oracle is YES, i.e., if it turns out that there is a hyperedgee[he vertices irl/ and does not contain the verticesin. If
crossing among the sets, it replacgswith 5. The proce- CHECKEXISTENCE returns NULL, RNDHYPEREDGESTe-

dure BNARY SEARCH repeats this process "2t most a speci- gards that there is no such a hyperedge and returns the set
fied number of times until there remains one verte$,n If of the hyperedges found so far. Otherwise, it chooses a ver-
there remains one vertex ) before the specified number of texv in the hyperedge by calImg IBARY S.EARCH' T_hen,_
iterations, BNARY SEARCH returns the vertex. Otherwise, it it finds the hyperedges of ordgtthat contain the vertices in

fails to exactly search the desired vertex and returns an arbi-C - {?} and does not contain the verticesifL A by calling
trary vertex inS, . FINDHYPEREDGESrecursively. After that, it puts into A

and continues to find the desired hyperedges of ojdest

Once a vertex in the new connected component is found containing the vertices ir. o
by BINARY SEARCH, GRAPHFINDING ALGORITHM puts the After all the hyperedges of ordgicontaining are found,
vertex intoQ and repeats the following process while\ they are put intol/;. The vertices contained in the hyper-
W # 0. It chooses a vertex in Q \ W and finds all the edges are put mt@ to mark that they are in thg connected
hyperedges of order containingv by calling the subproce- ~ component being searched. The verteis put into W to
dure ANDHYPEREDGES Given two sets of vertice§ and prevent the hyperedges of ordgcontainingv from being
W and a positive integef, FINDHYPEREDGESTeturns the ~ Searched again.
set of the hyperedges of ordgthat contain the vertices i . :
and do not contain the verticeslifi. In the procedure R D- 4.2 Algorithm Analysis
HYPEREDGES the variabled contains the vertices such that In this section, we analyze the algorithm GFA to obtain The-
the desired hyperedges of orgarontaining the vertices id orem 3. We first analyze the number of cross-membership




FINDHYPEREDGERU,WV ,j)
if |U| =3, return{U};
EU_’j — @, A — @;
repeat
(S:)]_, + CHECKEXISTENCE(U,W U A,j);
if (S;)7_, = NULL, break;
v — BINARY SEARCH((S;)_,,|U| + 1);

Ey,; < Ey, ;U FINDHYPEREDGERU U {v},W U A,j);

A— AU{v};
returnEy ;;

Figure 4: Procedure to find the hyperedges of oyddiat contain all the vertices i and do not contain the vertices Wi

queries used in GFA.

Lemma 10 Suppose tha& is an unknownt-bounded hy-
pergraph withn vertices andn hyperedges for constaiit
Then, for any constart < § < 1, GFA usesO (mlogn)
cross-membership queries fér under the oracle with one-
sided errors.

Proof: Omitted. [ |

To analyze the error probability of GFA, we need a large
deviation result for a sum of independent random variables

following geometric distributions. A random variablefol-

Proof: We will show that the probability that GFA does not
find all the hyperedges a¥, is O (1) for eachj with 1 <
j < k. Then, the lemma follows by the union bound.

We first consider the probability that{E CKEXISTENCE
performs incorrectly for given argumerits W, andj. Sup-
pose that there is no hyperedge of ordein G that con-

tains the vertices itV and does not contain the vertices in

W. In this case, @eECKEXISTENCE returns NULL and the
probability of GHECKEXISTENCE being incorrect is zero.
Suppose that there is a hyperedge of ordar G that con-

tain the vertices i/ and does not contain the vertices in

W. LetU = {vi,...,vy|} and let the hyperedge of or-

lows the geometric distribution with parametef, foracoin ~ 9€rJ be{vr,-...vjup vy - ;). The Pro{?a’bility that
of which HEAD appears with probability, X is the number  vjy|4+1, ..., v; are putinto differens;’s is % When
of coin tosses until the first HEAD appears. Itis easy to show V|41, - - - v; Are putinto differens;’s, the probability that

that the expectation ok is 1. We obtain the desired result

by using the Chernoff bourfd as follows [Che52, MR95].

Proposition 3 Suppose that, for sonle< p < 1, X3, ...

7X€
are independent random variables such thatX; = 1] =

Il =

andPr[X; =0 =1—pforall <i < /{ LetX
Zle X;. Then, forany) < o < 1,
E[X]a?
Pr(X < (1 —a)E[X]] < exp (— [ 2]0‘ ) .

the oracle answers YES for the cross-membership qu&iy._,
is at leastl — §. Thus, for each iteration of the repeat loop in
CHECKEXISTENCE, the probability that the hyperedge is not

detected is at modt— %(1 —0). Hence, the prob-

ability that the hyperedge is not detected f6r4 . log 7]
iterations of the repeat loop is at most

el VIFT

G- U
(1 ~Gopm - ‘”)

logn

Now, we present the result for a sum of independent randomByY using the fact that — = < e™* for any realz, this value

variables following geometric distributions.

Lemma 11 Suppose that, for sonfe< p < 1, X1,..., X,

are independent random variables each of which follows the

geometric distribution with parameter Let X = Zle X;.
Then, for anyx > 0,

o2
Pr(X > (1+ o)E[X]] <exp (2(1—1—€a)> .

Proof: Omitted. [ |

Lemma 12 Suppose tha& is an unknownt-bounded hy-
pergraph withn vertices andn hyperedges for constat

Then, for any0 < § < 1, GFA correctly finds the hyper-
edges of> with probability1 — O (1) under the oracle with
one-sided errop.

is at most
exp e _\UI).e vV J+110gn ‘
(7 — [U])i=1vl

: . i—|U])! j!
After some calculation using the facts t J_J‘Ul)j,“,, > J]—J

andj! > /27 (1)’ e™77, we have
. _ ! j 0 1
exp (_(J [UD'e? Vi + 10gn>

G — [0y
< exp (=(j + 1) logn)
1

Thus, the probability of @ECKEXISTENCE being incorrect
is at most—.

Now, we bound the probability thatiBARY SEARCH per-
forms incorrectly for given argumentss;)]_, andr. To



this end, we consider an imaginary procedure BS’ that is somev ¢ U UW U A. Thus, it must be found by a recursive

the same as BIARY SEARCH except that, in the procedure
BS’, the repeat loop continues until the size%fbecomes
one. In the repeat loop of BSS, is iteratively halved and
updated. Suppose that the sizeShfbecomes one aftes,

is halved and updatedtimes. Forl < i < ¢, let X; be the
number of iterations of the repeat loop between(the 1)t
update and thé'" update ofS,.. Letv be a vertex of a hy-
peredge crossing amorfy’s that is in the initialS,.. When
visinthe(i — 1) times updated.,., the probability thav is
chosen as an element$f is at least.. (The extreme case is
when the order oF,. is three.) ThusX; follows a geometric
distribution with the parameter at leastl — ). If we let

X =Y!_, Xi, by linearity of expectation,

3t
EX]| < ——.
X] = 1-9
Thus,
Pr {X > G(fj—;) 1ogn}

3t

e (25 )

e (211080 gy

SinceX;’s are independent, letting+ o = 2+ 1ogn

apply Lemma 11 to the above inequality to obtain

6G+1) log n] exp (_2(10—?@)

1-96
< exp(—(j+1)logn)
1
nitl’

, we

IN

Pr [X>

Thus, the probability of BNARY SEARCH performing incor-
rectly is at most_+ as it is at most the probability ok

being more tharﬁm+1 logn].

The number of @GECKEXISTENCEand BNARY SEARCH
being called for GFA to find the hyperedges @f are at
mostj2m, respectively. Thus, in the process of GFA find-
ing the hyperedges af;, the probability that @ECKEX-
ISTENCE or BINARY SEARCH incorrectly perform once or
more times is at mos%ffj’? < %ffff = % whichisO (1)
sincej < k for constant. This means that, with probability
1 — O (1), CHECKEXISTENCE and BNARY SEARCH per-
forms correctly throughout the process of GFA finding the
hyperedges of;.

Suppose the condition thatHECKEXISTENCE and B-
NARY SEARCH correctly perform throughout the process of
GFA finding the hyperedges dF;. We show that, given
U, W, andj, FINDHYPEREDGEScorrectly return the set
of the hyperedges of order containing the vertices i/
and not containing the vertices . Suppose that, for any
u € A, the hyperedges of ordgrcontaining the vertices
in U U {u} and not containing the vertices W have been
found by AFNDHYPEREDGES At this time, any hyperedge

call of FINDHYPEREDGESlater.

Returning to the main procedureRGPHFINDINGAL-
GORITHM, for each vertexw € [n], the hyperedges of order
j containingv are found by FNDHYPEREDGESIN the while
loop and so all the hyperedges Gf are found by GFA. It
is clear that the set of the hyperedges of ordegturned by
GFA is included in the set of the hyperedges(df. Thus,
GFA finds the hyperedges 6f; correctly, given the condi-
tion that GHECKEXISTENCEand BINARY SEARCH correctly
perform. Therefore, GFA correctly finds the hyperedges of
G; with probabilityl — O (1). [ ]

Theorem 3 follows from Lemmas 10 and 12. Here, we
mention that it is more straightforward to obt&h(m log® n)
algorithm for the hypergraph finding problem (and hence
O (mlog®n) algorithm for finding the Fourier coefficients)
by querying the oracl® (logn) times for each cross-mem-
bership query to make the error probabil®/(1/poly(n)).

For thek-bounded hypergraph finding problem, it is not
difficult to show that any randomized algorithm requires
Q (mlogn) cross-membership queries for constata make
the error probability at most a given constant, provided that
m < nF~¢ for any constant > 0. (To obtain the lower
bound, we may use Yao's minimax principle [Yao77] and
the information-theoretic arguments based on the fact that,
for a cross-membership query, the oracle returns one of two
values.) Thus, GFA is optimal up to a constant factor, pro-
vided thatm < nF—¢ for any constant > 0. Note that
this does not mean the optimality of the proposed algorithm
for the problem of finding Fourier coefficients. While the
oracle for the hypergraph finding problem gives binary val-
ues, function evaluations for the problem of finding Fourier
coefficients give real values that may give more information
about the Fourier coefficients.

5 Remarks on Query and Time Complexity

Suppose that we are givenkabounded functionf defined
on{0, 1}™ with m non-zero Fourier coefficients. To find the
Fourier coefficients off, we first find the hyperedges of the
linkage graph off. From Theorem 6, we have the oracle with
one-sided errof = 1 — 2% that gives the answer for a cross-
membership query by usirgf function evaluations. Since
f hasm non-zero Fourier coefficients, the linkage graph of
f has at mos2*m hyperedges. Given k-bounded hyper-
graph withn, vertices and at mog&tm hyperedges, GFA uses

@) (Mmlogn cross-membership queries as shown

in the proof of Lemma 10. Thus, we can find the hyper-
edges of the linkage graph ¢f (with high probability) by
using® ((16e)*k35mlogn) function evaluations.

Once the linkage graph g¢f is obtained, the Fourier co-
efficients can be found by using (2*m) additional func-
tion evaluations from Proposition 2. Thus, the overall query
complexity of finding the Fourier coefficients @f(with high
probability) is O ((16e)*k*5mlogn). This isO (mlogn)
for constantt and Theorem 1 follows. Another important
issue in practical applications is the time complexity of the

that has not been found is a hyperedge containing the ver-algorithm. From the pseudocode of the proposed algorithm,

tices inU U {v} and not containing the vertices ¥ U A for

we can check that the time complexity of the algorithm is



O (nmlogn) for constant. (It is exponential irk.)

We should note that GFA does not assume the hierarchi-
cal property among the hyperedges. The query complexity [AC05]
of GFA can be improved for the restricted class of the
bounded hypergraphs with the hierarchical property. Thus,
the query complexity of finding the Fourier coefficients of
a k-bounded function can be improved for genéralMore
concretely, to find the hyperedges of orderwe consider
only the subsets of orderthat contain some hyperedge of

[AC06]

orderj — 1 that have been already found. This reduces it [BAA T01]

to O (1%5 log n) the number of iterations of the repeat loop

in CHECKEXISTENCE for checking the existence of a hy-
peredge of ordej. (It also reduces the number oHECK-
EXISTENCE and BNARY SEARCH being called taD (km).)
By this modification, the query complexity of GFA for find-
ing a k-bounded hypergraph with vertices and at most

2Fm hyperedges is reduced @ (%’“fk;m log n) . If we use
this modified version of GFA, the query complexity of find-
ing the Fourier coefficients is to b ((16)"k?m log n) for

a k-bounded function defined of0, 1} with m non-zero
Fourier coefficients.

[BGKO5]

[BJT04]
6 Conclusion

In this paper, we showed that the Fourier coefficients kf a
bounded function withm non-zero Fourier coefficients can
be found inO (m log n) function evaluations for constaht
To this end, we first showed that the problem of finding the
Fourier coefficients of &-bounded function is reduced to
the problem of finding &-bounded hypergraph with cross-
membership queries under the oracle with one-sided error.
Then, we gave a randomized algorithm for the hypergraph
finding problem and analyzed it to obtain the desired bound.
As shown in the previous section, the query (and time)
complexity of the proposed algorithm is exponentialkin
Although the main concern of this paper is the case when
k is constant, it would be worth trying to find an algorithm
with better query (and time) complexity for genetkal

[BT96]

[CCO6]

[Che52]

[CIMO8]
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