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Abstract

A pseudo-Boolean function is a real-valued func-
tion defined on{0, 1}n. A k-bounded function is
a pseudo-Boolean function that can be expressed
as a sum of subfunctions each of which depends
on at mostk input bits. Thek-bounded functions
for constantk play an important role in a number
of research areas including molecular biology, bio-
physics, and evolutionary computation. In this pa-
per, we consider the problem of finding the Fourier
coefficients ofk-bounded functions with a series
of function evaluations at any input strings. Sup-
pose that ak-bounded functionf withm non-zero
Fourier coefficients is given. Our main result is to
present an adaptive randomized algorithm to find
the Fourier coefficients off with high probabil-
ity in O (m log n) function evaluations for con-
stantk. Up to date, the best known upper bound
isO (α(n,m)m log n), whereα(n,m) is between
n

1
2 andn depending onm. Thus, our bound im-

proves the previous bound by a factor ofΩ
(
n

1
2

)
.

Also, it is almost tight with respect to the known
lower bound. To obtain the main result, we first
show that the problem of finding the Fourier coef-
ficients of ak-bounded function is reduced to the
problem of finding ak-bounded hypergraph with
a certain type of queries under an oracle with one-
sided error. For this, we devise a method to test
with one-sided error whether there is a dependency
within some set of input bits among a collection
of sets of input bits. Then, we give a randomized
algorithm for the hypergraph finding problem and
obtain the desired bound by analyzing the algo-
rithm based on a large deviation result for a sum
of independent random variables.
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1 Introduction

A pseudo-Booleanfunction is a real-valued function defined
on the set of binary strings of fixed length. If a pseudo-
Boolean function can be expressed as a sum of subfunctions
each of which depends on at mostk input bits, it is called
k-bounded. Given a2-SAT formula, for example, the num-
ber of clauses an assignment satisfies is a2-bounded pseudo-
Boolean function of the assignment. Note that ak-bounded
pseudo-Boolean function is a polynomial of Boolean vari-
ables of degreek or less, and vice versa. In this paper,
we consider the problem of finding the Fourier coefficients
of k-bounded pseudo-Boolean functions. In the problem,
we assume the oracle that, given any binary string, returns
the function value at the string. Our main concern is the
query complexity to solve the problem, i.e., the number of
function evaluations required to find the Fourier coefficients
of k-bounded pseudo-Boolean functions. (Unless otherwise
specified, ak-bounded function means ak-bounded pseudo-
Boolean function in this paper.)

Thek-bounded functions have played an important role
in molecular biology and biophysics. In those areas, a num-
ber of mathematical models have been proposed to study
the evolution of a population of organisms (or biological ob-
jects) [Ewe79, FL70, KL87, Lew74, MP89]. In many of the
models including the NK model [Kau89],k-bounded func-
tions have been used to measure the fitness of an organism
in an environment. In the NK model [Kau89], each sub-
function represents the contribution of a gene of the organ-
ism to the overall fitness, interacting with a fixed number
of other genes. Hence, ak-bounded function may be re-
garded as a sum of subfunctions each of which depends on
at mostk genes. Thek-bounded functions with smallk in
the NK model induce the fitness landscapes of reasonable
evolvability and complexity, which were used for describ-
ing the evolution of living systems [Kau93]. They were also
used as a benchmark for comparing the landscapes arising in
RNA folding [FSBB+93]. In this regard,k-bounded func-
tions with smallk have been paid attention.

Thek-bounded functions have been also used as testbed
problems for comparing the performance of heuristic algo-
rithms in the area of evolutionary computation [CC06, HG97,
MM99, MG99, PG00]. The problem of maximizing arbi-
traryk-bounded functions is NP-hard even fork = 2 as it is
at least as hard as the MAX-2-SAT problem [GJS76]. The
larger the value ofk is, the higher is the degree of the depen-



dency among the input bits in ak-bounded function. By con-
trolling the degree of the dependency (the value ofk), in gen-
eral, we may control the difficulty of the problem of maxi-
mizing thek-bounded functions. There are good heuristic al-
gorithms to approximate the maximum of ak-bounded func-
tion when the dependency among the input bits are known
[dBIV97, Gol89, MM99, PGCP00, Str04].

Fourier transform is a formal approach to define the de-
pendency among the input bits of a pseudo-Boolean func-
tion. There have been a number of papers addressing the
problem of finding the Fourier coefficients of ak-bounded
function f : {0, 1}n → R with constantk. Kargupta and
Park [KP01] presented a deterministic algorithm usingO(nk)
function evaluations. Later, Heckendorn and Wright [HW03,
HW04] proposed a randomized algorithm for the problem.
They analyzed the algorithm to show that, with negligible er-
ror probability, it finds the Fourier coefficients inO(n2 log n)
function evaluations on average for thek-bounded functions
with O(n) non-zero Fourier coefficients generated from a
random model. For thek-bounded functions withm non-
zero Fourier coefficients, Choi, Jung, and Moon [CJM08]

proved that any randomized algorithm requiresΩ
(

m log n
log m

)
function evaluations to find the Fourier coefficients with er-
ror probability at most a given constant ifm ≤ nk−ε for any
constantε > 0. By analyzing the algorithm of Heckendorn
and Wright, they also proved thatO(α(n,m)m log n) func-
tion evaluations, whereα(n,m) is betweenn

1
2 andn de-

pending onm, are enough to find the Fourier coefficients.
Recently, for2-bounded functions of which non-zero Fourier
coefficients are betweenn−a andnb in absolute value for
some positive constantsa andb, Choi and Kim [CK08] showed

that there exists a deterministic algorithm usingO
(

m log n
log m

)
function evaluations, provided thatm ≥ nε for any constant
ε > 0. This algorithm is non-adaptive while the previous
algorithms are adaptive.1 However, an explicit construction
of the algorithm is unknown.

Our main result is

Theorem 1 Suppose thatf is ak-bounded function defined
on{0, 1}n for constantk and thatf hasm non-zero Fourier
coefficients. Then, there exists an adaptive algorithm to find
the Fourier coefficients off in O (m log n) function evalua-
tions with probability1−O

(
1
n

)
.

We prove Theorem 1 by showing an explicit construction of
the desired algorithm. This result improves the best known

upper boundO (α(n,m)m log n) by a factor ofΩ
(
n

1
2

)
and

it is almost tight with respect to the lower boundΩ
(

m log n
log m

)
.

We should note that there have been a number of papers
addressing the problem of finding the Fourier coefficients of
Boolean functions [BJT04, BT96, Jac97, KM93, Man94].
The KM algorithm [KM93] is one of the most famous al-
gorithms for the problem and most of the subsequent algo-
rithms have been based on the algorithm. These algorithms
for Boolean functions can be extended to pseudo-Boolean

1An algorithm is calledadaptive if the algorithm uses a se-
quence of queries in which some queries depend on the previous
queries. Otherwise, it is callednon-adaptive.

functions. However, the extensions of the algorithms do not
give a good bound fork-bounded pseudo-Boolean functions.
One of the main reasons is that their query complexities de-
pend on the values of the target function. For example, for
a k-bounded functionf , (to the best of our knowledge) the
most efficient extension [BJT04] among those has the query

complexity ofΩ
(
r
(

B
θ

)2)
, wherer is the number of input

bits on whichf depends,B is the maximum absolute value
of f , andθ is the minimum absolute value of the non-zero
Fourier coefficients off . Thus, the query complexity may
be made arbitrarily large depending onB andθ.2 The query
complexity of our algorithm is independent of the values of
the target function.

To prove Theorem 1, we first show that the problem of
finding the Fourier coefficients of ak-bounded function is
reduced to the problem of finding ak-bounded hypergraph3

(with a certain type of queries under a probabilistic oracle).
For a pseudo-Boolean functionf defined on{0, 1}n, we con-
sider the hypergraph representing the dependency among the
input bits as follows. Suppose thatH is a subset of[n], where
[n] is the set of the integers from1 to n. We say that there is
a linkageamong the input bits inH if, for any additive ex-
pression off , f =

∑
i fi, there isj such thatH is included

in the support set offj .4 The linkage graphof f is a hy-
pergraphGf = ([n], E), where each bit in[n] represents a
vertex and a subsetH of [n] belongs to the edge setE if and
only if there is a linkage among the bits inH.

For example, consider the following function:

f(x1, x2, x3, x4, x5) = 5x1x2 − 3x2x3x4.

If we letf1(x1, x2) = 5x1x2 andf2(x2, x3, x4) = −3x2x3x4,
f can be represented as an additive expression,f = f1 + f2.
In this expression, each subfunction off has a support set of
which size is at most three and sof is 3-bounded. It can be
shown that the support sets off1 andf2, {1, 2} and{2, 3, 4},
are hyperedges ofGf . By definition of linkage, the non-
empty subsets of{1, 2} and{2, 3, 4} are also hyperedges of
Gf . Generally, if a set of vertices is a hyperedge ofGf , then
any non-empty subset of the set is also a hyperedge ofGf .
We call this property thehierarchical propertyamong hyper-
edges. The linkage graphGf has nine hyperedges:{1}, {2},
{3}, {4}, {1, 2}, {2, 3}, {2, 4}, {3, 4}, and{2, 3, 4}. There
is no hyperedge containing5 sincef does not depend onx5.

For ak-bounded function with constantk, the Fourier co-
efficients can be efficiently found when the linkage graph is
known [HW03, HW04]. (The description of the relationship

2To see a typical behavior of the complexity, we may consider
the NK model [Kau89]. The NK model with parametersN = n
andK = k − 1 generates a class ofk-bounded functions that are
expressed as a sum ofn subfunctions. Whenf is a function ran-
domly generated from the NK model with parametersN = n and
K = k− 1 for constantk, it is not difficult to show thatr = Θ(n),
B = Ω(n), andθ = O(1) with high probability. Thus, the query
complexity of the algorithm [BJT04] forf is Ω

`
n3

´
with high

probability while the query complexity of our algorithm forf is
O (n log n).

3A hypergraph isk-bounded if the order of each hyperedge is at
mostk.

4The term linkage is from genetics and it means the interaction
among the genes.



is provided in Section 2.) In a hypergraph, we say that a hy-
peredgecrosses amongcertain disjoint sets of vertices if the
number of the sets is equal to the order of the hyperedge and
each of the sets contains exactly one vertex in the hyperedge.
(By definition, a hyperedge of order one crosses among any
set of vertices including the hyperedge.) Our main contri-
bution is to show that, given a collection of disjoint sets of
vertices, the existence of a hyperedge of the linkage graph
crossing among those sets is testable with one-sided error by
using a constant number of function evaluations.

Theorem 2 Suppose thatf is ak-bounded function defined
on{0, 1}n andS1, . . . , Sj arej disjoint subsets of[n]. Then,
we can use2j function evaluations off to test the existence
of a hyperedge in the linkage graphGf crossing amongSi’s,
where the test result is correct with probability at least1

22k

if such a hyperedge exists and it is correct with probability1
otherwise.

Theorem 2 is an extension of a previous theorem of Heck-
endorn and Wright [HW04] (Proposition 1 in Section 2),
which holds only for the case when each ofSi’s is a sin-
gleton set of vertices. To prove Theorem 2, we devise a
random perturbation method for testing the existence of a
hyperedge. It tests the existence of a hyperedge by flipping
a randomly generated string at certain bit positions and eval-
uating the function values at the flipped strings. We obtain
the desired result by analyzing the method. The analysis ex-
tensively uses the properties of basis functions in the Fourier
transform of ak-bounded function.

Theorem 2 implies that the problem of finding the link-
age graph of ak-bounded function is reduced to the follow-
ing graph finding problem. Suppose that a hypergraphG
hasn vertices andm hyperedges and the hyperedges ofG
are unknown. Across-membership queryasks the existence
of a hyperedge crossing among certain disjoint sets of ver-
tices. We assume theoracle with one-sided errorδ as fol-
lows. Given a cross-membership query, the oracle correctly
answers with probability at least1− δ if the true answer for
the query is YES and it correctly answers with probability1
otherwise. The problem is to find the hyperedges ofG by
using as few queries to the oracle as possible.

In fact, it is enough for our purpose to consider the hyper-
graph finding problem for thek-bounded hypergraphs with
the hierarchical property. Since we think that the problem is
of self interest, however, we consider the problem for arbi-
trary k-bounded hypergraphs. We present an adaptive ran-
domized algorithm for the problem to show

Theorem 3 Suppose thatG is an unknownk-bounded hy-
pergraph withn vertices andm edges for constantk. Then,
for any constant0 ≤ δ < 1, the hyperedges ofG can be
found with probability1−O

(
1
n

)
by usingO (m log n) cross-

membership queries under the oracle with one-sided errorδ.
(The number of cross-membership queries is2O(k) in k.)

Our algorithm for Theorem 3 iteratively uses binary search to
find the hyperedges. In this sense, it is analogous to the algo-
rithm of Angluin and Chen [AC04, AC05, AC06] for the hy-
pergraph finding problem with edge-detecting queries or to
the algorithm of Reyzin and Srivastava [RS07] for the graph

finding problem with edge-counting (or additive) queries.5

On the other hand, since the answers of the oracle may con-
tain errors in our situation, we need to handle the error bound
more carefully, which is the main task in proving Theorem
3. A large deviation result for a sum of independent random
variables with geometric distribution is crucially used for the
task. (There have been a number of papers addressing the
problem of finding a graph or a hypergraph by using various
types of queries. For example, see [AA04, AA05, ABK+02,
ABK+04, AC06, BAA+01, BGK05, CK08, GK00].)

Theorem 1 is obtained from Theorems 2 and 3 and the
relationship between the problems of finding the Fourier co-
efficients and the linkage graph.

The remainder of the paper is organized as follows. In
Section 2, we review some basic facts and previous results
for the problem of finding the Fourier coefficients ofk-bounded
functions. In Section 3, we prove Theorem 2, which states
the linkage testability of a linkage graph, by proving rele-
vant lemmas. Section 4 deals with the graph finding prob-
lem with cross-membership queries under the probabilistic
oracle as an independent problem. In the section, we give a
randomized algorithm for the problem and analyze it to ob-
tain Theorem 3. In Section 5, some remarks on the query
and time complexity of the proposed algorithm are provided
along with a factor of improving the complexity. Finally,
concluding remarks closes the paper in Section 6.

2 Preliminaries

2.1 Linkage Test Function

Munetomo and Goldberg [MG99] proposed a perturbation
method to test for the existence of linkage in a2-subset of
[n]. Given a2-subsetS and a stringx, it checks the non-
linearity between the two bits inH by flipping the two bits
of x individually and simultaneously and adding/subtracting
the function values at the flipped strings. Heckendorn and
Wright [HW04] generalized the method to detect linkage for
subsets of any order. Suppose thatf is a pseudo-Boolean
function defined on{0, 1}n, S is a subset of[n], andx is a
string in{0, 1}n. They considered thelinkage test function
L depending onf , S, andx as follows:

L(f, S, x) =
∑
A⊆S

(−1)|A|f (x⊕ 1A) .

Here,1A represents the string consisting of ones in the bit
positions ofA and zeros in the rest. For two stringsx, y ∈
{0, 1}n, x⊕ y means the bitwise addition modulo2 of x and
y. The linkage test functionL performs a series of function
evaluations atx and the strings obtained by flippingx in or-
der to detect the existence of the linkage among the bits inS.
Heckendorn and Wright [HW04] proved the following theo-
rem, which shows the usefulness of the linkage test function
in finding hyperedges ofGf .

5An edge-detecting query asks the existence of an edge (or a
hyperedge) in a set of vertices while an edge-counting query asks
the number of edges (or hyperedges) in a set of vertices.



Proposition 1 Suppose thatf is a k-bounded function de-
fined on{0, 1}n. Then, the followings hold:
(a) A subsetS of [n] is a hyperedge ofGf if and only if
L(f, S, x) 6= 0 for some stringx ∈ {0, 1}n.
(b) For a hyperedgeS of orderj in Gf , the probability that
L(f, S, x) 6= 0 for a string x chosen uniformly at random
from{0, 1}n is at least 1

2k−j .

Proposition 1 indicates that the linkage test function de-
termines the existence of a hyperedge with one-sided error.
Thus, by repeatedly evaluating the linkage test function for
randomly chosen strings, we can make the error arbitrarily
small. In particular, whenk is a constant, this implies that
a constant number of linkage tests (consequently, a constant
number of function evaluations) is enough for determining
the existence of a hyperedge with error probability at most a
given constant. The hierarchical property among hyperedges
implies that, forj ≥ 2, a j-subsetH can be a hyperedge
only if every(j − 1)-subset ofH is a hyperedge. Based on
this observation, Heckendorn and Wright [HW04] proposed
a randomized algorithm that performs linkage test only for
such a hyperedge candidate: The algorithm first detects the
hyperedges of order one by investigating all the singleton
subsets of[n]. Then, forj from 2 to k, it detects the hyper-
edges of orderj by performing linkage test for the hyperedge
candidates of orderj that have been identified from the in-
formation of the hyperedges of lower order. Recently, the
performance of the algorithm was more precisely analyzed
by Choiet al. [CJM08]. Given ak-bounded functionf with
m hyperedges and a constantε > 0, they showed that the al-
gorithm finds the linkage graphGf in O (α(n,m)m log n)
function evaluations with error probability at mostε, where
α(n,m) is betweenn

1
2 andn depending onm.

2.2 A Fourier Transform

Walsh transform is a Fourier transform for the space of pseudo-
Boolean functions in which a pseudo-Boolean function is
represented as a linear combination of2n basis functions
calledWalsh functions[Wal23]. For each subsetH of [n],
the Walsh function corresponding toH, ψH : {0, 1}n → R,
is defined as

ψH(x) = (−1)
P

i∈H x[i],

wherex[i] represents theith bit value inx. If we define an
inner product of two pseudo-Boolean functionsf andg as

〈f, g〉 =
∑

x∈{0,1}n

f(x) · g(x)
2n

,

the set of Walsh functions,{ψH | H ⊆ [n]}, becomes an or-
thonormal basis of the space of pseudo-Boolean functions.
Hence, a pseudo-Boolean functionf can be represented as

f =
∑

H⊆[n]

f̂(H) · ψH ,

wheref̂(H) = 〈f, ψH〉 is called theFourier coefficientcor-
responding toH. Specifically, iff̂(H) 6= 0 andf̂(H ′) = 0
for anyH ′ ) H, f̂(H) is called amaximal non-zero Fourier
coefficientof f . We refer to [HW99] for surveys of the prop-
erties of Walsh functions and Walsh transform in the space
of pseudo-Boolean functions.

Heckendorn and Wright [HW04] provided a number of
results to show the relationship between the linkage test func-
tion and the Fourier coefficients. Some of them are summa-
rized in the following proposition.

Proposition 2 Suppose thatf is a pseudo-Boolean function
defined on{0, 1}n. Then, the followings hold:
(a)For a subsetH of [n], f̂(H) is a maximal non-zero Fourier
coefficient off if and only ifH is a maximal hyperedge of
Gf .
(b) For a maximal hyperedgeH ⊆ [n],

f̂(H) =
L(f,H, 0n)

2|H| .

(c) For a subsetH of [n],

f̂(H) =
L(f,H, 0n)

2|H| −
∑

H(H′

f̂(H ′).

(d) For subsetsH andH ′ of [n] withH ⊆ H ′,

L(f,H ′, 0n) =
∑

A⊆H′\H

(−1)|A|L(f,H, 1A).

Proposition 2 (a) says that the subsets of[n] with maxi-
mal non-zero Fourier coefficients off are the maximal hy-
peredges in the linkage graph off . Thus, from Proposi-
tion 2 (b), the maximal non-zero Fourier coefficients off
are found by evaluating the linkage test function at the zero
string for each maximal hyperedge. Once the maximal non-
zero Fourier coefficients are found, the Fourier coefficients
corresponding to the subsets of lower orders can be found
by successively applying Proposition 2 (c). Proposition 2 (d)
implies that no additional function evaluations are required
for finding the Fourier coefficients corresponding to the sub-
sets of lower orders. Hence, iff is k-bounded for constant
k andm is the number of hyperedges inGf , O(m) addi-
tional function evaluations are enough to find the Fourier co-
efficients off when the linkage graph off is known. This
implies that an upper bound for finding the linkage graph is
valid as an upper bound for finding the Fourier coefficients
if the bound for finding the linkage graph isΩ(m).

3 Generalized Linkage Test

3.1 Generalized Linkage Test Function

Let f be a pseudo-Boolean function defined on{0, 1}n, S
be a collection of disjoint subsets of[n], andx be a string in
{0, 1}n. We define thegeneralized linkage test functionL∗

depending onf , S, andx as follows:

L∗(f,S, x) =
∑
S′⊆S

(−1)|S
′|f

(
x⊕

(⊕
A∈S′

1A

))
.

If we let SH = {{a} | a ∈ H} for a subsetH of [n], we see
thatL∗(f,SH , x) = L(f,H, x) for anyx ∈ {0, 1}n.

The following lemmas describes the basic properties of
the generalized linkage test function.

Lemma 4 Suppose thatS is a collection of disjoint subsets
of [n]. Then, the followings hold:



(a) (Linearity) If f1, . . . , f` are pseudo-Boolean functions
defined on{0, 1}n andc1, . . . , c` are constants,

L∗

(∑̀
i=1

cifi,S, x

)
=
∑̀
i=1

ciL
∗(fi,S, x)

for all x ∈ {0, 1}n.
(b) (Recursion) If f is a pseudo-Boolean function defined on
{0, 1}n,

L∗(f,S, x) = L∗(f,S \ {A}, x)− L∗(f,S \ {A}, x⊕ 1A)

for anyA ∈ S and anyx ∈ {0, 1}n.

Proof: Omitted.

Lemma 5 Suppose thatf is a pseudo-Boolean function de-
fined on{0, 1}n andS is a collection of disjoint subsets of
[n]. If the support set off is disjoint with someA ∈ S,
L∗(f,S, x) = 0 for all x ∈ {0, 1}n.

Proof: Omitted.

3.2 Linkage Test Theorem

A collection of disjoint subsets of[n], R = {R1, . . . , Rj},
is called asetwise subcollectionof S if Ri ⊆ Si for all 1 ≤
i ≤ j. In this case, we denote byR b S. Note that a setwise
subcollectionR of S is allowed to contain multiple empty
sets from the definition. We consider a random modelΓ(S)
that generates a setwise subcollection ofS as follows: For
eachSi ∈ S, we select each element inSi independently
and with probability1

2 and put it intoRi. Then, we build a
setwise subcollectionR of S by lettingR = {Ri | 1 ≤ i ≤
j}. In the following, str(R) denotes the set of the strings,
x’s, such thatx has the same bit value in the bit positions in
Ri for all 1 ≤ i ≤ j:

str(R) = {x ∈ {0, 1}n | x[a] = x[b] for all a, b

such thata, b ∈ Ri for somei with 1 ≤ i ≤ j} .

Theorem 6 Suppose thatf is a k-bounded function andS
is a collection of disjoint subsets of[n]. Then, the followings
hold:
(a) The linkage graphGf contains a hyperedge crossing among
S if and only if there existR b S andx ∈ str(R) such that
L∗(f,R, x) 6= 0.
(b) If Gf contains a hyperedge crossing amongS, the proba-
bility that L∗(f,R, x) 6= 0 for a randomly generatedR from
Γ(S) and a stringx chosen uniformly at random fromstr(R)
is at least 1

22k .

Theorem 6 implies Theorem 2 and provides an efficient method
to test for the existence of a hyperedge crossing among a
given collection of sets of vertices in the linkage graph.

Proof: Since (b) implies the only-if part of (a), we first prove
the if part of (a) and then prove (b).

Suppose thatGf does not contain any hyperedge cross-
ing amongS. LetR be a setwise subcollection ofS and letx
be a string in{0, 1}n. SinceGf does not contain any hyper-
edge crossing amongS,Gf does not contain any hyperedge
crossing amongR. This implies thatf̂(H) = 0 for all H

such thatH ∩A 6= ∅ for all A ∈ R, by definition ofGf and
Proposition 2. Thus, by Lemma 4 (a),

L∗(f,R, x) =
∑
H

f̂(H)L∗ (ψH ,R, x) ,

where the summation is over the subsets,H ’s, such thatH ∩
A = ∅ for someA ∈ R. Since the support set ofψH isH for
anyH ⊆ [n], L∗ (ψH ,R, x) = 0 for H ’s in the summation
by Lemma 5 and soL∗(f,R, x) = 0.

Now, consider the proof of (b). LetS = {S1, . . . , Sj}.
For a setwise subcollectionR of S, letR = {R1, . . . , Rj},
whereRi ⊆ Si for all 1 ≤ i ≤ j. Let ri = |Ri| and
r =

∑j
i=1 ri. For eachRi, set a distinct bit positionai ∈

[n − r + j] and, for eachi′ ∈ [n] \ (
⋃

iRi), set a distinct
bit position bi′ ∈ [n − r + j]. For eachH ⊆ [n], define
ϕH,R : {0, 1}n−r+j → R as follows: If |H ∩ Ri| is odd for
all 1 ≤ i ≤ j,

ϕH,R(y) = (−1)
Pj

i=1 y[ai]+
P

i′∈H\(
S

i Ri)
y[bi′ ]

for anyy ∈ {0, 1}n−r+j . Otherwise,ϕH,R is the zero func-
tion that assigns zero value to all input stringsy ∈ {0, 1}n−r+j .
For eachx ∈ str(R), assign the stringyx,R ∈ {0, 1}n−r+j

such thatyx,R[ai] = x[a] for somea ∈ Ri for all 1 ≤ i ≤ j
andyx,R[bi′ ] = x[i′] for all i′ ∈ [n] \ (

⋃
iRi). Note that

{yx,R|x ∈ str(R)} = {0, 1}n−r+j and the setsstr(R) and
{yx,R|x ∈ str(R)} are in one-to-one correspondence. Let-
ting SR = {{ai} | 1 ≤ i ≤ j}, we have

Claim 7 For anyH ⊆ [n],

L∗(ψH ,R, x) = L∗(ϕH,R,SR, yx,R)

for all x ∈ str(R).

Proof: Suppose that|H∩Ri| is odd for all1 ≤ i ≤ j. Letui

be a bit position inH∩Ri for 1 ≤ i ≤ j. For allx ∈ str(R),∑
u∈H∩Ri

x[u] = |H ∩ Ri| · x[ui] = x[ui] (mod 2) for all
1 ≤ i ≤ j and so

ψH(x) = (−1)
P

i

P
u∈H∩Ri

x[u]+
P

i′∈H\(
S

i Ri)
x[i′]

= (−1)
P

i x[ui]+
P

i′∈H\(
S

i Ri)
x[i′]

= (−1)
P

i yx,R[ai]+
P

i′∈H\(
S

i Ri)
yx,R[bi′ ]

= ϕH,R(yx,R).

Let xR′ = x ⊕
(⊕

A∈R′ 1A

)
for R′ ⊆ R. If x ∈ str(R),

xR′ ∈ str(R) and yxR′ ,R = yx,R ⊕
(⊕

i:Ri∈R′ 1{ai}
)
.



Hence, for allx ∈ str(R),

L∗(ψH ,R, x)

=
∑
R′⊆R

(−1)|R
′|ψH

(
x⊕

(⊕
A∈R′

1A

))
=
∑
R′⊆R

(−1)|R
′|ψH (xR′)

=
∑
R′⊆R

(−1)|R
′|ϕH,R

(
yxR′ ,R

)
=
∑
R′⊆R

(−1)|{ai|Ri∈R′}|ϕH,R

(
yx,R ⊕

( ⊕
i:Ri∈R′

1{ai}

))

=
∑

S′⊆SR

(−1)|S
′|ϕH,R

(
yx,R ⊕

(⊕
B∈S′

1B

))
= L∗(ϕH,R,SR, yx,R).

Now, suppose that|H∩Ri| is even for somei. For allx ∈
{0, 1}n, L∗(ψH ,R\{Ri}, x) = L∗(ψH ,R\{Ri}, x⊕1Ri

)
and soL∗(ψH ,R, x) = 0 by Lemma 4 (b). SinceϕH,R is
the zero function, on the other hand,L∗(ϕH,R,SR, y) = 0
for all y ∈ {0, 1}n−r+j . Hence,

L∗(ψH ,R, x) = L∗(ϕH,R,SR, yx,R)

for all x ∈ str(R).

Define the pseudo-Boolean functiongf,R : {0, 1}n−r+j →
R by

gf,R =
∑

H⊆[n]

f̂(H) · ϕH,R.

Claim 8 For all x ∈ str(R),

L∗(f,R, x) = L∗(gf,R,SR, yx,R).

Proof: By Lemma 4 (a) and Claim 7,

L∗(f,R, x) =
∑

H⊆[n]

f̂(H) · L∗(ψH ,R, x)

=
∑

H⊆[n]

f̂(H) · L∗(ϕH,R,SR, yx,R)

= L∗(gf,R,SR, yx,R),

for all x ∈ str(R).

Suppose thatGf contains a hyperedge crossing among
S.

Claim 9 Suppose that a setwise subcollectionR is randomly
generated fromΓ(S). Then, the probability that the linkage
graph ofgf,R has the hyperedge crossing amongSR is at
least 1

2k+j .

Proof: SinceGf contains a hyperedge crossing amongS,
there exist subsetsH ’s such thatf̂(H) 6= 0 andH ∩ Si 6= ∅
for all Si ∈ S. Among those subsets, we choose a maximal
subsetH∗ in viewpoint of the size of intersection withSi’s:
For each1 ≤ i ≤ j, |H∗ ∩ Si| ≥ |H ∩ Si| for anyH such
that f̂(H) 6= 0, H ∩ Si 6= ∅ for all Si ∈ S, and|H ∩ Sl| =

|H∗ ∩ Sl| for all 1 ≤ l ≤ i − 1. LetAi be a set consisting
of an element inH∗ ∩ Si and letBi = (H∗ ∩ Si) \ Ai. Let
R = {R1, . . . , Rj}, whereRi ⊆ Si for all 1 ≤ i ≤ j. Since
Ai ∪ Bi = H∗ ∩ Si and

∑
i |Ai ∪ Bi| =

∑
i |H∗ ∩ Si| ≤

|H∗| ≤ k, the probability thatRi ⊇ Ai andRi 6⊇ Bi for all
1 ≤ i ≤ j is at least 1

2k .
Consider the condition thatRi ⊇ Ai andRi 6⊇ Bi for all

1 ≤ i ≤ j. Denote

H∗ = {H ⊆ [n] | f̂(H) 6= 0,
H ⊇ (∪iBi) ∪ (H∗ \ (∪iSi)) ,
and|H ∩ Si| = |H∗ ∩ Si| for all i}.

It is clear thatH∗ ∈ H∗. Given the condition, ifϕH,R =
ϕH∗,R,H should be inH∗. Thus, in the Walsh transform of
gf,R, the Walsh coefficient corresponding to the Walsh func-
tion ϕH∗,R is equal to

∑
H f̂(H), where the summation is

overH ’s such thatH ∈ H∗ and(H ∩ Si \Bi) ⊆ Ri for all
i. SinceH∗ was chosen in a maximal sense as mentioned, for
anyH ∈ H∗, |H∩Si\Bi| = 1 for all 1 ≤ i ≤ j. Thus, when
we choose each element inSi \(Ai ∪Bi) independently and
with probability 1

2 and put it intoRi, the conditional proba-

bility that
∑

H f̂(H) 6= 0, where the summation is overH ’s
such thatH ∈ H∗ and(H ∩ Si \Bi) ⊆ Ri for all i, is at
least 1

2j . In this case,ϕH∗,R may be expressed asψH′ for
H ′ ⊆ [n− r + j] such that

H ′ = {ai | 1 ≤ i ≤ j}∪{bi′ | i′ ∈ (∪iBi)∪(H∗ \ (∪iSi))}
and the Walsh coefficient corresponding toψH′ in the Walsh
transform ofgf,R is non-zero. At this time, the linkage graph
of gf,R has thej-hyperedge crossing amongSR = {{ai} |
1 ≤ i ≤ j}.

Therefore, the probability that the linkage graph ofgf,R
has the hyperedge crossing amongSR for a setwise subcol-
lectionR randomly generated fromΓ(S) is at least 1

2k+j and
the proof is completed.

Sincef is a k-bounded function,gf,R is alsok-bounded.
Thus, when the linkage graph ofgf,R has the hyperedge
crossing amongSR, the probability thatL∗(gf,R,SR, y) 6=
0 for a stringy chosen uniformly at random from{0, 1}n−r+j

is at least 1
2k−j by Proposition 1 (b). Hence, by Claim 9, the

probability thatL∗(gf,R,SR, y) 6= 0 for a setwise subcollec-
tionR randomly generated fromΓ(S) and a stringy chosen
uniformly at random from{0, 1}n−r+j is at least 1

22k . Since
the setsstr(R) and{0, 1}n−r+j = {yx,R | x ∈ str(R)}
are in one-to-one correspondence, we have the part (b) of the
theorem by Claim 8.

4 Finding Graphs with Cross-Membership
Queries

In this section, we focus on the problem to find an unknown
hypergraph with cross-membership queries under the oracle
with one-sided errorδ. Recall that, given a cross-membership
query, the oracle with one-sided errorδ correctly answers
with probability at least1−δ if the true answer for the query
is YES and it correctly answers with probability1 otherwise.
Section 4.1 presents a randomized algorithm for the graph
finding problem. The algorithm is analyzed in Section 4.2,
which induces Theorem 3.



GRAPHFINDINGALGORITHM(n,k,δ)
// Ej : the set of the hyperedges of orderj found so far
// Q : the set of the vertices in the hyperedges of orderj found so far
// W : the set of the verticesv such that all the hyperedges of orderj containingv have been found by the algorithm

for j from 1 to k
Q← ∅,W ← ∅;
Ej ← ∅;
repeat

(Si)
j
i=1 ← CHECKEXISTENCE(∅,W ,j);

if (Si)
j
i=1 = NULL, break;

v ← BINARY SEARCH((Si)
j
i=1,1);

Q← Q ∪ {v};
whileQ \W 6= ∅

choose a vertexv in Q \W ;
Ev,j ← FINDHYPEREDGES({v},W ,j);
Ej ← Ej ∪ Ev,j ;

Q← Q ∪
(⋃

H∈Ev,j
H
)

;

W ←W ∪ {v};
E ←

⋃k
j=1Ej ;

returnE;

Figure 1: Main procedure of the algorithm GFA (The output of GFA is the set of the hyperedges of the input graph that have
been found. For the subprocedures, CHECKEXISTENCE, BINARY SEARCH, and FINDHYPEREDGES, see Figures 2, 3, and 4,
respectively.)

4.1 Algorithm for Finding Graphs

In this section, we present the algorithm to find an unknown
hypergraph with cross-membership queries under the oracle
with one-sided errorδ, theGraph Finding Algorithm(GFA).
The algorithm GFA takes three arguments: The number of
vertices of the unknown hypergraphn, the order of the hy-
pergraphk, and the error bound for the answer of the ora-
cle 0 ≤ δ < 1. It returns the set of the hyperedges of the
hypergraph that have found. The algorithm GFA consists
of the main procedure GRAPHFINDINGALGORITHM (Fig-
ure 1) and the three subprocedures CHECKEXISTENCE (Fig-
ure 2), BINARY SEARCH (Figure 3), and FINDHYPEREDGES
(Figure 4). In the pseudocode, the values ofn, k, andδ can
be accessed by any procedure. All other variables are local
to the given procedure.

Suppose thatG is an unknown hypergraph given to GFA
and letGj be the induced subgraph ofG consisting of the hy-
peredges of orderj for 1 ≤ j ≤ k. The algorithm GFA suc-
cessively finds the hyperedges ofG1, G2, and so on. After
the algorithm finally finds the hyperedges ofGk, it returns all
the hyperedges found so far. To find the hyperedges ofGj for
j = 1, . . . , k, the algorithm iteratively checks whether there
is a hyperedge of orderj that has not been found and, if such
a hyperedge exists, the algorithm finds all the hyperedges in
the connected component that the hyperedge belongs to. It
continues this process until there is no more hyperedge that
can be found.

In the main procedure GRAPHFINDINGALGORITHM, the
variableQ contains the vertices in the hyperedges found so
far. The variableW contains the verticesv such that all the
hyperedges of orderj containingv have been found by the

algorithm. The variableEj contains the hyperedges of order
j found so far. To check the existence of a new connected
component of two or more vertices in the subgraph consist-
ing of the hyperedges of orderj, GRAPHFINDINGALGO-
RITHM calls the subprocedure CHECKEXISTENCE.

Given sets of verticesU andW and a positive integer
j, the procedure CHECKEXISTENCEperforms a randomized
test for whether there is a hyperedge of orderj that contains
all the vertices inU and does not contain the vertices inW .
For the purpose, it iteratively generates a collection of dis-
joint sets of vertices(Si)

j
i=1 for a cross-membership query

as follows. LettingU = {v1, . . . , v|U |}, the setSi is fixed
with Si = {vi} for 1 ≤ i ≤ |U |. The setsS|U |+1, . . . , Sj

are generated as a uniform random partition of vertices in
[n] \ (U ∪W ). If the oracle answers YES for the cross-
membership query with some(Si)

j
i=1, there is a hyperedge

of orderj crossing amongSi’s, which contains the vertices
in U and does not contain the vertices inW . In this case,
CHECKEXISTENCEreturns the generated sets(Si)

j
i=1. If the

oracle answers NO for all the generated collections of dis-
joint sets, CHECKEXISTENCE returns NULL regarding that
there is no such a hyperedge.

If CHECKEXISTENCE returns NULL, GRAPHFINDIN -
GALGORITHM regards that there is no hyperedge of order
j and continues to find the hyperedges of orderj + 1. If
CHECKEXISTENCE returns a (non-NULL) collection of dis-
joint sets of vertices, this implies that there is a hyperedge
of orderj. To find a vertex in the hyperedge, GRAPHFIND-
INGALGORITHM calls the subprocedure BINARY SEARCH.
Given a collection of disjoint sets of vertices(Si)

j
i=1 and a

positive integerr between1 andj, the procedure BINARY-



CHECKEXISTENCE(U ,W ,j)
label the vertices inU asv1, . . . , v|U |;
for i from 1 to |U |

Si ← {vi};
for i from |U |+ 1 to j

Si ← ∅;
repeatd ej√j+1

1−δ log ne times
for eachv ∈ [n] \ (U ∪W )

choosei uniformly at random from{|U |+ 1, . . . , j};
Si ← Si ∪ {v};

if CMQ(S1, . . . , Sj) = YES
return(Si)

j
i=1;

return NULL;

Figure 2: Procedure to check the existence of a hyperedge of orderj that contains all the vertices inU and does not contain the
vertices inW (Here, CMQ((Si)

j
i=1) is the answer of the oracle for the cross-membership query(Si)

j
i=1.)

BINARY SEARCH((Si)
j
i=1,r)

if |Sr| = 1, return the vertex inSr;
repeatd 6(j+1)

1−δ log ne times

choose a subsetS′r of Sr uniformly at random among the subsets of orderb |Sr|
2 c;

if CMQ(S1, . . . , Sr−1, S
′
r, Sr+1, . . . , Sj) = YES,

Sr ← S′r;
if |Sr| = 1, return the vertex inSr;

return a vertex inSr;

Figure 3: Procedure to search a vertex inSr that is contained in a hyperedge of orderj crossing amongS1, . . . , Sj (Here,
CMQ((Si)

j
i=1) is the answer of the oracle for the cross-membership query(Si)

j
i=1.)

SEARCH returns a vertex that is inSr and in one of the hy-
peredges crossing amongSi’s. Among the subsets ofSr of
orderb |Sr|

2 c, it chooses a subsetS′r uniformly at random. For
the sets of vertices(Si)

j
i=1 in whichSr is replaced withS′r,

it asks the cross-membership query to check whether there
is a hyperedge crossing among the sets. If the answer of the
oracle is YES, i.e., if it turns out that there is a hyperedge
crossing among the sets, it replacesSr with S′r. The proce-
dure BINARY SEARCH repeats this process at most a speci-
fied number of times until there remains one vertex inSr. If
there remains one vertex inSr before the specified number of
iterations, BINARY SEARCH returns the vertex. Otherwise, it
fails to exactly search the desired vertex and returns an arbi-
trary vertex inSr.

Once a vertex in the new connected component is found
by BINARY SEARCH, GRAPHFINDINGALGORITHM puts the
vertex intoQ and repeats the following process whileQ \
W 6= ∅. It chooses a vertexv in Q \ W and finds all the
hyperedges of orderj containingv by calling the subproce-
dure FINDHYPEREDGES. Given two sets of verticesU and
W and a positive integerj, FINDHYPEREDGESreturns the
set of the hyperedges of orderj that contain the vertices inU
and do not contain the vertices inW . In the procedure FIND-
HYPEREDGES, the variableA contains the vertices such that
the desired hyperedges of orderj containing the vertices inA

have been found. Initially,A is set to be empty. If|U | = j,
U is the only hyperedge of orderj containing the vertices
in U and FINDHYPEREDGESreturns the set consisting of
U . Otherwise, it recursively finds the desired hyperedges of
order j as follows. By calling CHECKEXISTENCE, It first
checks whether there is a hyperedge of orderj that contains
the vertices inU and does not contain the vertices inW . If
CHECKEXISTENCE returns NULL, FINDHYPEREDGESre-
gards that there is no such a hyperedge and returns the set
of the hyperedges found so far. Otherwise, it chooses a ver-
tex v in the hyperedge by calling BINARY SEARCH. Then,
it finds the hyperedges of orderj that contain the vertices in
U∪{v} and does not contain the vertices inW ∪A by calling
FINDHYPEREDGESrecursively. After that, it putsv into A
and continues to find the desired hyperedges of orderj not
containing the vertices inA.

After all the hyperedges of orderj containingv are found,
they are put intoEj . The vertices contained in the hyper-
edges are put intoQ to mark that they are in the connected
component being searched. The vertexv is put intoW to
prevent the hyperedges of orderj containingv from being
searched again.

4.2 Algorithm Analysis

In this section, we analyze the algorithm GFA to obtain The-
orem 3. We first analyze the number of cross-membership



FINDHYPEREDGES(U ,W ,j)
if |U | = j, return{U};
EU,j ← ∅,A← ∅;
repeat

(Si)
j
i=1 ← CHECKEXISTENCE(U ,W ∪A,j);

if (Si)
j
i=1 = NULL, break;

v ← BINARY SEARCH((Si)
j
i=1,|U |+ 1);

EU,j ← EU,j∪ FINDHYPEREDGES(U ∪ {v},W ∪A,j);
A← A ∪ {v};

returnEU,j ;

Figure 4: Procedure to find the hyperedges of orderj that contain all the vertices inU and do not contain the vertices inW

queries used in GFA.

Lemma 10 Suppose thatG is an unknownk-bounded hy-
pergraph withn vertices andm hyperedges for constantk.
Then, for any constant0 ≤ δ < 1, GFA usesO (m log n)
cross-membership queries forG under the oracle with one-
sided errorδ.

Proof: Omitted.

To analyze the error probability of GFA, we need a large
deviation result for a sum of independent random variables
following geometric distributions. A random variableX fol-
lows the geometric distribution with parameterp if, for a coin
of which HEAD appears with probabilityp,X is the number
of coin tosses until the first HEAD appears. It is easy to show
that the expectation ofX is 1

p . We obtain the desired result
by using the Chernoff bound as follows [Che52, MR95].

Proposition 3 Suppose that, for some0 < p ≤ 1,X1, . . . , X`

are independent random variables such thatPr[Xi = 1] = p
and Pr[Xi = 0] = 1 − p for all 1 ≤ i ≤ `. Let X =∑`

i=1Xi. Then, for any0 ≤ α < 1,

Pr [X ≤ (1− α)E[X]] ≤ exp
(
−E[X]α2

2

)
.

Now, we present the result for a sum of independent random
variables following geometric distributions.

Lemma 11 Suppose that, for some0 < p ≤ 1, X1, . . . , X`

are independent random variables each of which follows the
geometric distribution with parameterp. LetX =

∑`
i=1Xi.

Then, for anyα > 0,

Pr [X > (1 + α)E[X]] ≤ exp
(
− α2`

2(1 + α)

)
.

Proof: Omitted.

Lemma 12 Suppose thatG is an unknownk-bounded hy-
pergraph withn vertices andm hyperedges for constantk.
Then, for any0 ≤ δ < 1, GFA correctly finds the hyper-
edges ofG with probability1−O

(
1
n

)
under the oracle with

one-sided errorδ.

Proof: We will show that the probability that GFA does not
find all the hyperedges ofGj is O

(
1
n

)
for eachj with 1 ≤

j ≤ k. Then, the lemma follows by the union bound.
We first consider the probability that CHECKEXISTENCE

performs incorrectly for given argumentsU ,W , andj. Sup-
pose that there is no hyperedge of orderj in G that con-
tains the vertices inU and does not contain the vertices in
W . In this case, CHECKEXISTENCE returns NULL and the
probability of CHECKEXISTENCE being incorrect is zero.
Suppose that there is a hyperedge of orderj in G that con-
tain the vertices inU and does not contain the vertices in
W . Let U = {v1, . . . , v|U |} and let the hyperedge of or-
derj be{v1, . . . , v|U |, v|U |+1, . . . , vj}. The probability that

v|U |+1, . . . , vj are put into differentSi’s is (j−|U |)!
(j−|U |)j−|U| . When

v|U |+1, . . . , vj are put into differentSi’s, the probability that

the oracle answers YES for the cross-membership query(Si)
j
i=1

is at least1− δ. Thus, for each iteration of the repeat loop in
CHECKEXISTENCE, the probability that the hyperedge is not
detected is at most1− (j−|U |)!

(j−|U |)j−|U| (1− δ). Hence, the prob-

ability that the hyperedge is not detected ford ej√j+1
1−δ log ne

iterations of the repeat loop is at most(
1− (j − |U |)!

(j − |U |)j−|U | (1− δ)
) ej√j+1

1−δ log n

.

By using the fact that1− x ≤ e−x for any realx, this value
is at most

exp
(
− (j − |U |)!ej

√
j + 1

(j − |U |)j−|U | log n
)
.

After some calculation using the facts that(j−|U |)!
(j−|U |)j−|U| ≥ j!

jj

andj! >
√

2πj
(

j
e

)j
e

1
12j+1 , we have

exp
(
− (j − |U |)!ej

√
j + 1

(j − |U |)j−|U | log n
)

≤ exp (−(j + 1) log n)

=
1

nj+1
.

Thus, the probability of CHECKEXISTENCE being incorrect
is at most 1

nj+1 .
Now, we bound the probability that BINARY SEARCHper-

forms incorrectly for given arguments(Si)
j
i=1 and r. To



this end, we consider an imaginary procedure BS’ that is
the same as BINARY SEARCH except that, in the procedure
BS’, the repeat loop continues until the size ofSr becomes
one. In the repeat loop of BS’,Sr is iteratively halved and
updated. Suppose that the size ofSr becomes one afterSr

is halved and updatedt times. For1 ≤ i ≤ t, letXi be the
number of iterations of the repeat loop between the(i− 1)th
update and theith update ofSr. Let v be a vertex of a hy-
peredge crossing amongSi’s that is in the initialSr. When
v is in the(i− 1) times updatedSr, the probability thatv is
chosen as an element ofS′r is at least13 . (The extreme case is
when the order ofSr is three.) Thus,Xi follows a geometric
distribution with the parameter at least1

3 (1 − δ). If we let
X =

∑t
i=1Xi, by linearity of expectation,

E [X] ≤ 3t
1− δ

.

Thus,

Pr
[
X >

6(j + 1)
1− δ

log n
]

= Pr
[
X >

(
2(j + 1) log n

t

)(
3t

1− δ

)]
≤ Pr

[
X >

(
2(j + 1) log n

t

)
E[X]

]
.

SinceXi’s are independent, letting1 + α = 2(j+1) log n
t , we

apply Lemma 11 to the above inequality to obtain

Pr
[
X >

6(j + 1)
1− δ

log n
]
≤ exp

(
− α2t

2(1 + α)

)
≤ exp (−(j + 1) log n)

=
1

nj+1
.

Thus, the probability of BINARY SEARCH performing incor-
rectly is at most 1

nj+1 as it is at most the probability ofX

being more thand 6(j+1)
1−δ log ne.

The number of CHECKEXISTENCEand BINARY SEARCH
being called for GFA to find the hyperedges ofGj are at
mostj2m, respectively. Thus, in the process of GFA find-
ing the hyperedges ofGj , the probability that CHECKEX-
ISTENCE or BINARY SEARCH incorrectly perform once or

more times is at most2j2m
nj+1 ≤ 2j2nj

nj+1 = 2j2

n , which isO
(

1
n

)
sincej ≤ k for constantk. This means that, with probability
1 − O

(
1
n

)
, CHECKEXISTENCE and BINARY SEARCH per-

forms correctly throughout the process of GFA finding the
hyperedges ofGj .

Suppose the condition that CHECKEXISTENCE and BI-
NARYSEARCH correctly perform throughout the process of
GFA finding the hyperedges ofGj . We show that, given
U , W , and j, FINDHYPEREDGEScorrectly return the set
of the hyperedges of orderj containing the vertices inU
and not containing the vertices inW . Suppose that, for any
u ∈ A, the hyperedges of orderj containing the vertices
in U ∪ {u} and not containing the vertices inW have been
found by FINDHYPEREDGES. At this time, any hyperedge
that has not been found is a hyperedge containing the ver-
tices inU ∪{v} and not containing the vertices inW ∪A for

somev 6∈ U ∪W ∪A. Thus, it must be found by a recursive
call of FINDHYPEREDGESlater.

Returning to the main procedure GRAPHFINDINGAL-
GORITHM, for each vertexv ∈ [n], the hyperedges of order
j containingv are found by FINDHYPEREDGESin the while
loop and so all the hyperedges ofGj are found by GFA. It
is clear that the set of the hyperedges of orderj returned by
GFA is included in the set of the hyperedges ofGj . Thus,
GFA finds the hyperedges ofGj correctly, given the condi-
tion that CHECKEXISTENCEand BINARY SEARCH correctly
perform. Therefore, GFA correctly finds the hyperedges of
Gj with probability1−O

(
1
n

)
.

Theorem 3 follows from Lemmas 10 and 12. Here, we
mention that it is more straightforward to obtainO

(
m log2 n

)
algorithm for the hypergraph finding problem (and hence
O
(
m log2 n

)
algorithm for finding the Fourier coefficients)

by querying the oracleΘ(log n) times for each cross-mem-
bership query to make the error probabilityO (1/poly(n)).

For thek-bounded hypergraph finding problem, it is not
difficult to show that any randomized algorithm requires
Ω (m log n) cross-membership queries for constantk to make
the error probability at most a given constant, provided that
m ≤ nk−ε for any constantε > 0. (To obtain the lower
bound, we may use Yao’s minimax principle [Yao77] and
the information-theoretic arguments based on the fact that,
for a cross-membership query, the oracle returns one of two
values.) Thus, GFA is optimal up to a constant factor, pro-
vided thatm ≤ nk−ε for any constantε > 0. Note that
this does not mean the optimality of the proposed algorithm
for the problem of finding Fourier coefficients. While the
oracle for the hypergraph finding problem gives binary val-
ues, function evaluations for the problem of finding Fourier
coefficients give real values that may give more information
about the Fourier coefficients.

5 Remarks on Query and Time Complexity

Suppose that we are given ak-bounded functionf defined
on{0, 1}n with m non-zero Fourier coefficients. To find the
Fourier coefficients off , we first find the hyperedges of the
linkage graph off . From Theorem 6, we have the oracle with
one-sided errorδ = 1− 1

22k that gives the answer for a cross-
membership query by using2k function evaluations. Since
f hasm non-zero Fourier coefficients, the linkage graph of
f has at most2km hyperedges. Given ak-bounded hyper-
graph withn vertices and at most2km hyperedges, GFA uses

O
(

(2e)kk3.5

1−δ m log n
)

cross-membership queries as shown

in the proof of Lemma 10. Thus, we can find the hyper-
edges of the linkage graph off (with high probability) by
usingO

(
(16e)kk3.5m log n

)
function evaluations.

Once the linkage graph off is obtained, the Fourier co-
efficients can be found by usingO

(
2km

)
additional func-

tion evaluations from Proposition 2. Thus, the overall query
complexity of finding the Fourier coefficients off (with high
probability) isO

(
(16e)kk3.5m log n

)
. This isO (m log n)

for constantk and Theorem 1 follows. Another important
issue in practical applications is the time complexity of the
algorithm. From the pseudocode of the proposed algorithm,
we can check that the time complexity of the algorithm is



O (nm log n) for constantk. (It is exponential ink.)
We should note that GFA does not assume the hierarchi-

cal property among the hyperedges. The query complexity
of GFA can be improved for the restricted class of thek-
bounded hypergraphs with the hierarchical property. Thus,
the query complexity of finding the Fourier coefficients of
a k-bounded function can be improved for generalk. More
concretely, to find the hyperedges of orderj, we consider
only the subsets of orderj that contain some hyperedge of
order j − 1 that have been already found. This reduces it

toO
(

j
1−δ log n

)
the number of iterations of the repeat loop

in CHECKEXISTENCE for checking the existence of a hy-
peredge of orderj. (It also reduces the number of CHECK-
EXISTENCE and BINARY SEARCH being called toO (km).)
By this modification, the query complexity of GFA for find-
ing a k-bounded hypergraph withn vertices and at most

2km hyperedges is reduced toO
(

2kk2

1−δ m log n
)

. If we use

this modified version of GFA, the query complexity of find-
ing the Fourier coefficients is to beO

(
(16)kk2m log n

)
for

a k-bounded function defined on{0, 1}n with m non-zero
Fourier coefficients.

6 Conclusion

In this paper, we showed that the Fourier coefficients of ak-
bounded function withm non-zero Fourier coefficients can
be found inO (m log n) function evaluations for constantk.
To this end, we first showed that the problem of finding the
Fourier coefficients of ak-bounded function is reduced to
the problem of finding ak-bounded hypergraph with cross-
membership queries under the oracle with one-sided error.
Then, we gave a randomized algorithm for the hypergraph
finding problem and analyzed it to obtain the desired bound.

As shown in the previous section, the query (and time)
complexity of the proposed algorithm is exponential ink.
Although the main concern of this paper is the case when
k is constant, it would be worth trying to find an algorithm
with better query (and time) complexity for generalk.
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