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Abstract

The problem of how a teacher and a learner can
cooperate in the process of learning concepts from
examples in order to minimize the required sample
size without “coding tricks” has been widely ad-
dressed, yet without achieving teaching and learn-
ing protocols that meet what seems intuitively an
optimal choice for selecting samples in teaching.

We introduce the model of subset teaching sets,
based on the idea that both teacher and learner can
exploit the assumption that the partner is cooper-
ative. We show how this can reduce the sample
size drastically without using coding tricks. For
instance, monomials can be taught with only two
examples independent of the number of variables.

The corresponding variant of the teaching dimen-
sion (STD) turns out to be nonmonotonic with re-
spect to subclasses of concept classes. We dis-
cuss why this nonmonotonicity might be inherent
in optimal cooperative teaching scenarios. Never-
theless, trying to overcome nonmonotonicity, we
introduce a second variant, the recursive teaching
dimension (RTD), which is monotonic and yields
the same positive results for some concept classes,
such as the class of all monomials, yet can be arbi-
trarily worse than the STD.

1 Introduction
1.1 Motivation and approach
One major branch of learning theory and machine learning is
the theory and practice of learning concepts from examples.
Considering a finite instance space and a class of (thus fi-
nite) concepts over that space, it is obvious that each concept
can be uniquely determined if enough examples are known.
Much less obvious is how to minimize the number of exam-
ples required to identify a concept, and with this aim in mind
models of cooperative learning and learning from good ex-
amples were designed and analyzed. The selection of good
examples to be presented to a learner is often modeled using
a teaching device (teacher) that is assumed to be benevolent
by selecting examples expediting the learning process (see
for instance [AK97, JT92, GM96, Mat97]).

Throughout this paper we assume that teaching/learning
proceeds stepwise; in each step the teacher presents an exam-
ple (that is, an instance paired with a label 1 or 0, according
to whether or not the instance belongs to the target concept)
to the learner and the learner returns a concept it believes
to be the target concept. If the learner’s conjecture is right
the process ends, otherwise both proceed to the next step.
This process will terminate successfully for any concept c
in a given concept class C if the following three conditions
hold: (1) the teacher never presents any example twice, (2)
the teacher labels the examples correctly according to the
current target concept, and (3) the learner always returns a
concept consistent with the examples seen so far. The sam-
ple size, i.e., the number of examples the teacher presents
to the learner enroute to termination, is the object of opti-
mization; in particular we are concerned with the worst case
sample size measured over all concepts in C. Other than
that, computational complexity issues are not the focus of
this paper.

A typical question is How can a teacher and a learner
cooperatively minimize the worst case sample size without
using coding tricks?—a coding trick being, e.g., any a pri-
ori agreement on encoding concepts in examples, depending
on the concept class C. For instance, if teacher and learner
agreed on a specific order for the concept representations and
the instances and agreed to use the jth instance in this order-
ing to teach the jth concept, that would be a coding trick.1

A considerable amount of the learning theory literature
deals with the teaching dimension of concept classes (and
variants thereof, see, e.g., [SM91, GK95, ABCS92]). The
teaching dimension of a concept c ∈ C is the size of the
minimum sample that is consistent with c but not with any
other concept in C. Obviously teacher and learner can suc-
ceed with such a sample without coding tricks.

The teaching dimension however does not always seem
to capture the intuitive idea of cooperation in teaching and
learning. Consider the following simple example. Let C0

consist of the empty concept and all singleton concepts over
a given instance space X = {x1, . . . , xn}. Each single-
ton concept {xi} has a teaching dimension of 1, since the
single positive example (xi, 1) is sufficient for determining

1There is so far no generally accepted definition of what a cod-
ing trick (sometimes also called “collusion”) in general is. The
reader is referred to [AK97, OS02, GM96] for a treatment of this
question in different learning models.



{xi}. In contrast to that, the empty concept has a teaching
dimension of n—every example has to be presented. How-
ever, if the learner assumed the teacher was cooperative—
and would therefore present a positive example if the target
concept was non-empty—the learner could confidently con-
jecture the empty concept upon seeing just one negative ex-
ample.

Let us extend this reasoning to a slightly more complex
example, the class of all boolean functions that can be rep-
resented as a monomial over m variables (m = 4 in this
example). Imagine yourself in the role of a learner knowing
your teacher will present helpful examples. If the teacher
sent you the examples

(0100, 1), (0111, 1) ,

what would be your conjecture? Presumably most people
would conjecture the monomial M ≡ v1 ∧ v2, as does for
instance the algorithm proposed in [Val84]. Note that this
choice is not uniquely determined by the data: the empty
monomial and the monomials v1 and v2 are also consistent
with these examples. And yet M seems the best choice, be-
cause we’d think the teacher would not have kept any bit in
the two examples constant if it was not in the position of a
relevant variable. In this example, the natural conjecture is
the most specific concept consistent with the sample, but that
does not, in general, capture the intuitive idea of cooperative
learning. For example, consider the concept class consisting
of just the three concepts {β}, {α, β}, {α, γ}. If the teacher
presented (α, 1) as an example, there would be two most
specific consistent concepts. But a learner that assumed the
teacher was cooperative could confidently guess {α, β} to be
the target concept, because a cooperative teacher would have
presented the unambiguous (γ, 1) if {α, γ} was the target
concept.

Could the learner’s reasoning about the teacher’s behav-
ior in these examples be implemented without a coding trick?
We will show below that no coding trick is necessary to
achieve exactly this behavior of teacher and learner; there
is a general principle that teachers and learners can indepen-
dently implement to cooperatively learn any finite concept
class. When applied to the class of monomials this principle
enables any monomial to be learned from just two examples,
regardless of the number m of variables.

Our approach is to define a new model of cooperation
in learning, based on the idea that each partner in the co-
operation tries to reduce the sample size by exploiting the
assumption that the other partner does so. If this idea is iter-
atively propagated by both partners, one can refine teaching
sets iteratively ending up with a framework for highly effi-
cient teaching and learning without any coding tricks. It is
important to note that teacher and learner do not agree on any
order of the concept class or any order of the instances. All
they know about each others’ strategies is a general assump-
tion about how cooperation should work independent of the
concept class or its representation.

We show that the resulting variant of the teaching dimen-
sion—called the subset teaching dimension (STD)—is not
only a uniform lower bound of the teaching dimension but
can be constant where the original teaching dimension is ex-
ponential, even in cases where only one iteration is needed.
For example, as illustrated above, the STD of the class of

monomials over m variables is 2, in contrast to its original
teaching dimension of 2m.

Some examples however will reveal a nonmonotonicity
of the subset teaching dimension: some classes possess sub-
classes with a higher subset teaching dimension, which is at
first glance not very intuitive. We will explain below why in
a cooperative model such a nonmonotonicity does not have
to contradict intuition; additionally we introduce a second
model of cooperative teaching and learning, that results in a
monotonic dimension, called the recursive teaching dimen-
sion (RTD). Comparing our complexity notions in terms of
the sample size required for teaching and learning shows that
achieving monotonicity here results in a loss in terms of sam-
ple efficiency; however, even though the RTD has some defi-
ciencies compared to the STD, it still significantly improves
on previously studied variants of the teaching dimension.

1.2 Related work
The problem of defining good or helpful examples in learn-
ing has been studied in different fields of learning theory.
Various learning models that involve one particular teacher
can be found in [AK97, JT92, GM96, Mat97]; these mostly
focus on learning boolean functions.

The teaching dimension has been analyzed in the context
of online learning [BE98, RY95] and in the model of learn-
ing from queries, e.g., in [Heg95] and in [Han07], with a
focus on active learning in the PAC framework. In contrast
to these models, in inductive inference the learning process is
not necessarily considered to be finite. Approaches to defin-
ing learning infinite concepts from good examples [FKW93,
LNW98] do not focus on the size of a finite sample of good
examples, but rather on characterizing the cases in which
learners can identify concepts from only finitely many ex-
amples.

The approach we present in this paper is mainly based
on an idea by Balbach [Bal08]. He defined and analyzed
a model in which, under the premise that the teacher uses
a minimal teaching set as a sample, a learner can reduce the
size of a required sample by eliminating concepts which pos-
sess a teaching set smaller than the number of examples pro-
vided by the teacher so far. Iterating this idea, the size of
the teaching sets might be gradually reduced significantly.
Though our approach is syntactically quite similar to Bal-
bach’s, the underlying idea is a different one (we do not con-
sider elimination by the sample size but elimination by the
sample content as compared to all possible teaching sets).
The resulting variant of the teaching dimension in general
yields a much better performance in terms of sample size
than Balbach’s model does.

2 Preliminaries
Let N denote the set of all non-negative integers, ∅ denote
the empty set, and |A| denote the cardinality of a finite setA.
Concerning the teaching framework, we will mostly follow
the notation used in [Bal08].

In the models of teaching and learning to be defined be-
low, we will always assume that the goal in an interaction
between a teacher and a learner is to make the learner iden-
tify a (finite) concept c over a (finite) instance space X . To
formalize this, let n > 0 be a natural number and let X =



{x1, . . . , xn} be an instance space. A concept c is a subset of
X and a concept class C is a set of concepts. Consequently,
concepts and concept classes considered below will always
be finite. As a special case we sometimes consider boolean
functions over variables v1, . . . , vm as concepts, which just
means to represent the instance space X by {0, 1}m.

We identify every concept c with its membership func-
tion given by c(xi) = 1 if xi ∈ c, and c(xi) = 0 if xi /∈
c, where 1 ≤ i ≤ n. Given a sample, i.e., a set S =
{(y1, b1), . . . , (yj , bj)} ⊆ X × {0, 1} of labeled examples,
we say that c is consistent with S if c(yi) = bi for all i ∈
{1, . . . , j}. If C is a concept class then we define

Cons(S,C) = {c ∈ C | c is consistent with S} .

The sample S is called a teaching set for c with respect to
C if Cons(S,C) = {c}. A teaching set allows a learning
algorithm to uniquely identify a concept in the concept class
C. Striving for sample efficiency, one is particularly inter-
ested in teaching sets of minimal size, called minimal teach-
ing sets. The teaching dimension of c in C is the size of
such a minimal teaching set, i.e., TD(c, C) = min{|S| |
Cons(S,C) = {c}}, the worst case of which defines the
teaching dimension of C, i.e., TD(C) = max{TD(c, C) |
c ∈ C}. To refer to the set of all minimal teaching sets of c
with respect to C, we use

TS (c, C) = {S | Cons(S,C)={c} and |S|=TD(c, C)} .

The reader is referred to [GK95, SM91] for original stud-
ies on teaching sets.

Recall our assumptions concerning the learning process:
it proceeds stepwise; in each step the teacher presents a sin-
gle example to the learner and the learner returns a conjec-
ture about the target concept. The process stops when and
only when a correct conjecture is made by the learner. Our
minimal requirements on cooperative partners here is that
teachers never present any example twice and always label
the examples correctly according to the target concept, and
that every conjecture a learner returns is consistent with the
information seen up to that step.

The teaching dimension [GK95] then gives a measure of
the worst case sample size needed by a learner if the teacher
uses only minimal teaching sets for teaching. The reason is
that a teaching set eliminates all but one concept due to in-
consistency. However, if the learner knows TD(c, C) for ev-
ery c ∈ C then sometimes concepts could also be eliminated
by the mere number of examples presented to the learner. For
instance, assume a learner knows that all but one concept
c ∈ C have a teaching set of size one and that the teacher
will teach using teaching sets. After having seen 2 exam-
ples, no matter what they are, the learner could eliminate all
concepts but c. This idea, referred to as elimination by sam-
ple size, was introduced in [Bal08]. If a teacher knew that a
learner eliminates by consistency and by sample size then the
teacher could consequently reduce some teaching sets (e.g,
here, if TD(c, C) ≥ 3, a new “teaching set” for c could be
built consisting of only 2 examples).

More than that—this idea is iterated by Balbach [Bal08]:
if the learner knew that the teacher uses such reduced “teach-
ing sets” then the learner could adapt his assumption on the
size of the samples to be expected for each concept, which

could in turn result in a further reduction of the “teaching
sets” by the teacher and so on. The following definition cap-
tures this idea formally.

Definition 1 (Balbach teaching dimension [Bal08])
Let C be a concept class, c ∈ C, and S a sample. Let
BTD0(c, C) = TD(c, C). We define iterated dimensions
for all k ∈ N as follows.

• Conssize(S,C, k)
= {c ∈ Cons(S,C) | BTDk(c, C) ≥ |S|}.
• BTDk+1(c, C)

= min{|S| | Conssize(S,C, k) = {c}}

Let z be minimal such that BTDz+1(c, C) = BTDz(c, C)
for all c ∈ C. The iterated Balbach teaching dimension
of c in C is defined by BTD(c, C) = BTDz(c, C) and
the iterated Balbach teaching dimension of the class C is
BTD(C) = max{BTD(c, C) | c ∈ C}.2

Obviously, BTD(C) ≤ TD(C) for every concept class
C. How much the sample complexity can actually be re-
duced by a cooperative teacher/learner pair according to this
“elimination by sample size” principle, is illustrated by the
concept class C0 consisting of the empty concept and all sin-
gleton concepts overX . The teaching dimension of this class
is n, whereas the BTD is 2. A more interesting example is
the class of monomials, which contains only one concept for
which the BTD-iteration yields an improvement.

Theorem 2 (Balbach [Bal08]) Let m ∈ N and C the class
of all boolean functions over m ≥ 2 variables that can be
represented by a monomial. Let c0 = ∅ be the concept rep-
resented by a contradictory monomial.

1. BTD(c0, C) = m+ 2 < 2m = TD(c0, C).
2. BTD(c, C) = TD(c, C) for all c ∈ C with c 6= c0.

The intuitive reason why BTD(c0, C) = m+2 in Theo-
rem 2 is that samples for c0 of size m+1 or smaller are con-
sistent also with monomials different from c0. These other
monomials hence cannot be eliminated—neither by size nor
by inconsistency.

3 Teaching and learning using subset
teaching sets

3.1 The model
The approach studied by Balbach [Bal08] does not fully meet
the intuitive idea of teacher and learner exploiting the knowl-
edge that either partner behaves cooperatively. Consider for
instance one more time the class C0 containing the empty
concept and all singletons over X = {x1, . . . , xn}. Each
concept {xi} has the unique minimal teaching set {(xi, 1)}
in this class, whereas the empty concept only has a teach-
ing set of size n, namely {(x1, 0), . . . , (xn, 0)}. The idea of
elimination by size allows a learner to conjecture the empty

2 [Bal08] denotes this by IOTTD, called iterated optimal teacher
teaching dimension; we deviate from this notation for the sake of
convenience.



concept as soon as two examples have been provided, due to
the fact that all other concepts possess a teaching set of size
one. This is why the empty concept has an BTD equal to 2
in this example.

However, as we have argued in the introduction, it would
also make sense to devise a learner in a way to conjecture
the empty concept as soon as a first example for that concept
is provided—knowing that the teacher would not use a neg-
ative example for any other concept in the class. In terms of
teaching sets this means to reduce the teaching sets to their
minimal subsets that are not contained in minimal teaching
sets for other concepts in the given concept class.

Formally, we define this refinement operator and its iter-
ation as follows.

Definition 3 Let C be a concept class, c ∈ C, and S a sam-
ple. Let STD0(c, C)=TD(c, C), STS 0(c, C)=TS (c, C).
We define iterated sets for all k ∈ N as follows.

• Conssub(S,C, k) = {c ∈ C | S ⊆ S′ for some S′ ∈
STSk(c, C)}.
• STDk+1(c, C) = min{|S| | Conssub(S,C, k) = {c}}
• STSk+1(c, C) = {S | Conssub(S,C, k) = {c}, |S| =

STDk+1(c, C)}.

Let z be minimal such that STS z+1(c, C) = STS z(c, C)
for all c ∈ C.3

A sample S with Conssub(S,C, z) = {c} is called a
subset teaching set for c in C. The subset teaching dimen-
sion of c in C is defined as STD(c, C) = STDz(c, C) and
we denote by STS (c, C) = STS z(c, C) the set of all min-
imal subset teaching sets for c in C. The subset teaching
dimension of C is STD(C) = max{STD(c, C) | c ∈ C}.

For illustration, consider again the concept class C0, i.e.,
C0 = {ci | 0 ≤ i ≤ n}, where c0 = ∅ and ci = {xi} for all
i ∈ {1, . . . , n}. Obviously, for k ≥ 1,

STSk(ci) = {{(xi, 1)}} for all i ∈ {1, . . . , n}

and
STSk(c0) = {{(xi, 0)} | 1 ≤ i ≤ n} .

Hence STD(C0) = 1.
The definition of STS (c, C) induces a protocol for teach-

ing and learning: for a target concept c, a teacher presents
the examples in a subset teaching set for c to the learner. The
learner will also be able to pre-compute all subset teaching
sets for all concepts and determine the target concept from
the sample provided by the teacher.4

Protocol 4 Let C be a concept class.

0. Teacher and learner both compute STS (c, C) for all
c ∈ C.

Let c ∈ C be a target concept known to the teacher.

3Such a z exists because STD0(c, C) is finite and can hence be
reduced only finitely often.

4Note that we focus on sample size here, but neglect efficiency
issues arising from the pre-computation of all subset teaching sets.

1. The teacher chooses a set S ∈ STS (c, C) at random.
2. The teacher presents S to the learner (stepwise/batch).
3. The learner looks up and identifies the unique concept
c ∈ C for which S ∈ STS (c, C).

It is important to note at this point that Definition 3 as
such is independent of the particular shape or structure of the
concept class. It does not presume any special order of the
concept representations or of the instances, i.e., teacher and
learner do not have to agree on any such order to make use
of the teaching and learning protocol. That means, given a
special concept class C, the computation of its subset teach-
ing sets does not involve any special coding trick depending
on C—it just follows a general rule.

3.2 Comparison to the Balbach teaching dimension
Obviously, Protocol 4 based on the subset teaching dimen-
sion never requires a sample larger than a teaching set; often
a smaller sample is sufficient. Similarly, the subset teaching
dimension compares to the Balbach teaching dimension as
follows.

Proposition 5 1. STD(C) ≤ BTD(C) for every concept
class C.

2. There is a concept class C with STD(C) < BTD(C).

Proof. Assertion (1) immediately follows from the defini-
tions. Informally, if a (Balbach) teaching set S in one itera-
tion for a concept c is going to be reduced according to the
BTD-rule (see Definition 1), then |S| ≥ |S′| + 2 for ev-
ery (Balbach) teaching set S′ on the current state of iteration
for some concept c′ 6= c consistent with S. In particular,
if the Balbach teaching dimension of c is reduced to some
value u < |S|, then S has got a subset of size u (or even
smaller) that is not contained in any teaching set for any con-
cept c′ 6= c in C. The minimal such subset has cardinality at
most u and is at least as big as a minimal subset teaching set
for c.

Assertion (2) is witnessed by the class C0 containing the
empty concept and all singletons over X .

The second assertion of this proposition even holds in a
stronger form, see Theorem 6.

Theorem 6 For each u ∈ N there is a concept class C such
that STD(C) = 1 and BTD(C) = u.

Proof. Let n = 2u + u be the number of instances in X .
Define a concept class C = Cu

0/1 as follows. For every s =
(s1, . . . , su) ∈ {0, 1}u, C contains the concepts cs,0 = {xi |
1 ≤ i ≤ u and si = 1} and cs,1 = cs,0 ∪ {xu+1+int(s)}.
Here int(s) ∈ N is defined by int(s) =

∑u−1
i=0 si+1 · 2i. We

claim that STD(C) = 1 and BTD(C) = u.
Let s = (s1, . . . , su) ∈ {0, 1}u. Then

TS (cs,0, C) = {{(xi, si) | 1 ≤ i ≤ u}
∪ {(xu+1+int(s), 0)}}

TS (cs,1, C) = {{(xu+1+int(s), 1)}}
Since for each c ∈ C the minimal teaching set for c with

respect to C contains an example that does not occur in the



minimal teaching set for any other concept c′ ∈ C, one ob-
tains STD(C) = 1 in just one iteration. See Table 1 for the
case u = 2.

In contrast to that, we obtain BTD0(cs,0, C) = u + 1,
BTD1(cs,0, C) = u, and BTD0(cs,1, C) = 1 for all s ∈
{0, 1}u. Consider any s ∈ {0, 1}u and any sample S ⊆
{(x, cs,0(x)) | x ∈ X} with |S| = u − 1. Clearly there is
some s′ ∈ {0, 1}u with s′ 6= s such that cs′,0 ∈ Cons(S,C).
So |Cons(S,C, 1)| > 1 and in particular Cons(S,C, 1) 6=
{cs,0}. Hence BTD2(cs,0, C) = BTD1(cs,0, C), which fi-
nally implies BTD(C) = u.

concept STS0 STS1

∅ {(x1, 0), (x2, 0), (x3, 0)} {(x3, 0)}
{x3} {(x3, 1)} {(x3, 1)}
{x2} {(x1, 0), (x2, 1), (x4, 0)} {(x4, 0)}
{x2, x4} {(x4, 1)} {(x4, 1)}
{x1} {(x1, 1), (x2, 0), (x5, 0)} {(x5, 0)}
{x1, x5} {(x5, 1)} {(x5, 1)}
{x1, x2} {(x1, 1), (x2, 1), (x6, 0)} {(x6, 0)}
{x1, x2, x6} {(x6, 1)} {(x6, 1)}

Table 1: Iterated subset teaching sets for the class Cu
0/1 with

u = 2, where Cu
0/1 = {c00,0, c00,1 . . . , c11,0, c11,1} with

c00,0 = ∅, c00,1 = {x3}, c01,0 = {x2}, c01,1 = {x2, x4},
c10,0 = {x1}, c10,1 = {x1, x5}, c11,0 = {x1, x2}, c11,1 =
{x1, x2, x6}.

3.3 Teaching monomials
This section provides an analysis of the STD for a more nat-
ural example, the monomials, showing that the very intuitive
example given in the introduction is indeed what a cooper-
ative teacher and learner in our model would come up with.
The main result is that the STD of the class of all monomi-
als is 2, independent on the number m of variables, whereas
its teaching dimension is exponential in m and its BTD is
linear in m, cf. [Bal08].

Theorem 7 Let m ∈ N and C the class of all boolean func-
tions over m variables that can be represented by a mono-
mial. Then STD(C) = 2.

Proof. Let m ∈ N and s = (s1, . . . , sm), s′ = (s′1, . . . , s
′
m)

elements in {0, 1}m. Let 4(s, s′) denote the Hamming dis-
tance of s and s′, i.e.,4(s, s′) =

∑
1≤i≤m |s(i)− s′(i)|.

We distinguish the following types of monomialsM over
m variables.

Type 1: M is the empty monomial.
Type 2: M has got m variables, M 6≡ v1 ∧ v1.
Type 3: M has got k variables, 1 ≤ k < m,M 6≡ v1∧v1.
Type 4: M is contradictory, i.e., M ≡ v1 ∧ v1.
The following facts state some properties of the corre-

sponding minimal teaching sets.
Fact 1: If M is of type 1 and S ∈ STS 0(M,C), then S

contains two positive examples of Hamming distance m.
Fact 2: If M is of type 2 and S ∈ STS 0(M,C), then

S contains (i) one positive example and (ii) m negative ex-
amples, where the Hamming distance between two negative
examples is less than m.

Fact 3: If M is of type 3 and S ∈ STS 0(M,C), then
S contains (i) two positive examples of Hamming distance
m − k and (ii) k negative examples, where the Hamming
distance between each two negative examples is less than m.

Fact 4: If M is of type 4 and S ∈ STS 0(M,C), then
S = {(s, 0) | s ∈ {0, 1}m}.

Fact 5: For every s ∈ {0, 1}m there are two different
monomials M,M ′ of type 3 such that (s, 1) ∈ S ∩ S′ for
some S ∈ STS 0(M,C) and some S′ ∈ STS 0(M ′, C).

Fact 6: For every s ∈ {0, 1}m there are two different
monomials M,M ′ of type 3 such that (s, 0) ∈ S ∩ S′ for
some S ∈ STS 0(M,C) and some S′ ∈ STS 0(M ′, C).

Fact 7: For every s ∈ {0, 1}m there are two different
monomials M,M ′ of type 2 such that (s, 0) ∈ S ∩ S′ for
some S ∈ STS 0(M,C) and some S′ ∈ STS 0(M ′, C).

Fact 8: If M is of type 2, S ∈ STS 0(M,C) and S′ ⊂ S,
then there is a monomial M3 of type 3 such that S′ ⊆ S3 for
some S3 ∈ STS 0(M3, C).

After the first iteration we obtain the following facts.
Fact 9: If M is of type 1 and S ∈ STS 1(M,C), then

S ∈ STS 0(M,C).
Fact 10: If M is of type 2 and S ∈ STS 1(M,C), then

S ∈ STS 0(M,C).
Fact 11: If M is of type 3 and S ∈ STS 1(M,C), then S

contains two positive examples.
Fact 12: If M is of type 4 and S ∈ STS 1(M,C), then S

contains two negative examples of Hamming distance m.
After the second iteration we obtain the following facts.
Fact 13: If M is of type 1 and S ∈ STS 2(M,C), then

S ∈ STS 1(M,C).
Fact 14: If M is of type 2 and S ∈ STS 2(M,C), then S

contains one positive and one negative example. Moreover,
for every s ∈ {0, 1}m, there is a monomialM of type 2 such
that (s, 0) ∈ S for some S ∈ STS 2(M,C).

Fact 15: If M is of type 3 and S ∈ STS 1(M,C), then
S ∈ STS 2(M,C).

Fact 16: If M is of type 4 and S ∈ STS 2(M,C), then
S ∈ STS 1(M,C).

Combining the insights achieved so far, it is easily seen
that STD3(M,C) = STD2(M,C) = 2 for all M ∈ C.

For illustration of this proof in case m = 2 see Table 2.
A further simple example showing that the STD can be

constant as compared to an exponential teaching dimension,
this time with an STD of 1, is the following.

Let Cm
∨DNF contain all boolean functions over m vari-

ables that can be represented by a 2-term DNF of the form
v1 ∨ M , where M is a monomial that contains, for each i
with 2 ≤ i ≤ m, either the literal vi or the literal vi. More-
over, Cm

∨DNF contains the boolean function that can be rep-
resented by the monomial M ′ ≡ v1.

Theorem 8 Let m ∈ N.

1. TD(Cm
∨DNF ) = 2m−1.

2. STD(Cm
∨DNF ) = 1.



STS0 STS1

v1 {(10,1),(11,1),(00,0)} {(10,1),(11,1)}
{(10,1),(11,1),(01,0)}

v1 {(00,1),(01,1),(10,0)} {(00,1),(01,1)}
{(00,1),(01,1),(11,0)}

v2 {(01,1),(11,1),(00,0)} {(01,1),(11,1)}
{(01,1),(11,1),(10,0)}

v2 {(00,1),(10,1),(01,0)} {(00,1),(10,1)}
{(00,1),(10,1),(11,0)}

v1 ∧ v2 {(11,1),(01,0),(10,0)} {(11,1),(01,0),(10,0)}
v1 ∧ v2 {(10,1),(00,0),(11,0)} {(10,1),(00,0),(11,0)}
v1 ∧ v2 {(01,1),(00,0),(11,0)} {(01,1),(00,0),(11,0)}
v1 ∧ v2 {(00,1),(01,0),(10,0)} {(00,1),(01,0),(10,0)}
v1 ∧ v1 {(00,0),(01,0),(10,0),(11,0)} {(00,0),(01,0)}

{(00,0),(10,0)}
{(01,0),(11,0)}
{(10,0),(11,0)}

λ {(00,1),(11,1)} {(00,1),(11,1)}
{(01,1),(10,1)} {(01,1),(10,1)}

STS2 STS3

v1 {(10,1),(11,1)} {(10,1),(11,1)}
v1 {(00,1),(01,1)} {(00,1),(01,1)}
v2 {(01,1),(11,1)} {(01,1),(11,1)}
v2 {(00,1),(10,1)} {(00,1),(10,1)}
v1 ∧ v2 {(11,1),(01,0)} {(11,1),(01,0)}

{(11,1),(10,0)} {(11,1),(10,0)}
v1 ∧ v2 {(10,1),(00,0)} {(10,1),(00,0)}

{(10,1),(11,0)} {(10,1),(11,0)}
v1 ∧ v2 {(01,1),(00,0)} {(01,1),(00,0)}

{(01,1),(11,0)} {(01,1),(11,0)}
v1 ∧ v2 {(00,1),(01,0)} {(00,1),(01,0)}

{(00,1),(10,0)} {(00,1),(10,0)}
v1 ∧ v1 {(00,0),(01,0)} {(00,0),(01,0)}

{(00,0),(10,0)} {(00,0),(10,0)}
{(01,0),(11,0)} {(01,0),(11,0)}
{(10,0),(11,0)} {(10,0),(11,0)}

λ {(00,1),(11,1)} {(00,1),(11,1)}
{(01,1),(10,1)} {(01,1),(10,1)}

Table 2: Iterated subset teaching sets for the class of all
monomials over m = 2 variables. Here λ denotes the empty
monomial.

Proof. The straightforward details concerning the proof of
Assertion (2) are omitted; Assertion (1) can be verified as
follows.

Let S be a sample that is consistent with M ′. Assume
that for some s ∈ {0, 1}m, the sample S does not contain the
negative example (s, 0). Obviously, there is a 2-term DNF
D ≡ v1 ∨M such that D is consistent with S ∪ {(s, 1)}.
Hence S is not a teaching set for M ′. Since there are exactly
2m−1 2-term DNFs that represent different functions in C, a
teaching set for M ′ must contain at least 2m−1 examples.

4 Nonmonotonicity and the recursive
teaching dimension

4.1 Nonmonotonicity versus redundancy of variables
Interpreting the subset teaching dimension as a measure of
complexity of a concept class in terms of cooperative teach-

ing and learning, we observe a fact that is worth discussing,
namely the nonmonotonicity of this complexity notion, as
stated by the following theorem.

Theorem 9 There is a concept class C with STD(C ′) >
STD(C) for some subclass C ′ ⊂ C.

Sketch of proof. This is witnessed by the concept classes
C = Cu

0/1 and their subclasses C ′ = {cs,0 | s ∈ {0, 1}u}
used in the proof of Theorem 6 (see Table 1 for u = 2).

Note that this nonmonotonicity result holds with a fixed
number of instances n. In fact, if n was not considered fixed
then every concept class C ′ would have a superset C (via
addition of instances) of lower subset teaching dimension.
However, the same even holds for the teaching dimension
itself which we yet consider monotonic since it is monotonic
given fixed n. So whenever we speak of monotonicity we
assume a fixed instance space X .

Of course such an instance space X might contain re-
dundant instances the removal of which would not affect the
subset teaching dimension and would retain a non-redundant
subset of the set of all subset teaching sets. In the follow-
ing subsection, where we discuss a possible intuition behind
the nonmonotonicity of the STD , redundancy conditions on
instances will actually play an important role and show the
usefulness of the following technical discussion. However, it
is not straightforward to impose a suitable redundancy con-
dition characterizing when an instance can be removed.

We derive such a condition starting with a redundancy
condition for the original variant of teaching sets. For that
purpose we introduce the notion C−x for the concept class
resulting from C after removing the instance x from the in-
stance space X . Here C is any concept class over X and
x ∈ X is any instance. For example, if X = {x1, x2, x3}
and C = {{x1}, {x1, x2}, {x2, x3}} then

C−x3 = {{x1}, {x1, x2}, {x2}}

considered over the instance space {x1, x2}.

Lemma 10 Let C be a concept class over X and x ∈ X . If
for all c ∈ C and for all S ∈ TS (c, C)

(x, c(x)) ∈ S ⇒
∃y 6= x [(S \ {(x, c(x))}) ∪ {(y, c(y))} ∈ TS (c, C)] ,

then for all c ∈ C and for all samples S

S ∈ TS (c, C−x) ⇐⇒ [S ∈ TS (c, C) ∧ (x, c(x)) /∈ S] .

Proof. Note that |C−x| = |C|. Let c ∈ C be an arbitrary
concept and let S be any sample over X .

First assume S ∈ TS (c, C) and (x, c(x)) /∈ S. Since
obviously TD(c, C−x) ≥ TD(c, C) we immediately obtain
S ∈ TS (c, C−x).

Second assume S ∈ TS (c, C−x). By definition, we have
(x, c(x)) /∈ S. Hence it remains to prove that S ∈ TS (c, C).
If S /∈ TS (c, C) then there exists some T ∈ TS (c, C) with
|T | < |S|. We distinguish two cases.

Case 1. (x, c(x)) /∈ T .
Then T ∈ TS (c, C−x) in contradiction to the facts S ∈

TS (c, C−x) and |S| 6= |T |.



Case 2. (x, c(x)) ∈ T .
Then by the premise of the lemma there exists a y 6= x

such that

A
def= (S \ {(x, c(x))}) ∪ {(y, c(y))} ∈ TS (c, C) .

Since (x, c(x)) /∈ A we have A ∈ TS (c, C−x) and |A| =
|T | 6= |S|. This again contradicts S ∈ TS (c, C−x).

Since both cases reveal a contradiction, we obtain S ∈
TS (c, C).

For illustration see Table 3. In this example the instances
x4 and x5 meet the redundancy condition. After eliminating
x5, x4 still meets the condition and can be removed as well.
The new representation of the concept class then involves
only the instances x1, x2, x3.

concept in C TS

∅ {(x1, 0), (x3, 0)}, {(x1, 0), (x4, 0)},
{(x1, 0), (x5, 0)}

{x1} {(x1, 1), (x2, 0)}, {(x1, 1), (x5, 0)}
{x3, x4, x5} {(x2, 0), (x3, 1)}, {(x2, 0), (x4, 1)},

{(x2, 0), (x5, 1)}
{x2, x3, x4, x5} {(x1, 0), (x2, 1)}, {(x2, 1), (x4, 1)}
{x1, x2, x5} {(x2, 1), (x3, 0)}, {(x3, 0), (x5, 1)}
{x1, x2, x3, x5} {(x1, 1), (x3, 1)}, {(x3, 1), (x4, 1)}

concept in (C−x5)−x4 TS

∅ {(x1, 0), (x3, 0)}
{x1} {(x1, 1), (x2, 0)}
{x3} {(x2, 0), (x3, 1)}
{x2, x3} {(x1, 0), (x2, 1)}
{x1, x2} {(x2, 1), (x3, 0)}
{x1, x2, x3} {(x1, 1), (x3, 1)}

Table 3: Teaching sets for a class C before and after elimi-
nation of two redundant instances.

Lemma 10 provides a condition on an instance x. If that
instance is eliminated from the instance space then the result-
ing concept class C−x does not only have the same teaching
dimension as C but, even more, for each of its concepts c the
teaching sets are exactly those that are teaching sets for c in
C and do not contain an example involving the eliminated
instance x. Note that even though several instances might
meet that condition at the same time, only one at a time may
be removed. For the remaining instances it has to be checked
whether the condition still holds after elimination of the first
redundant instance.

So one legitimate redundancy condition for instances—
considering teaching sets—is the one given in the premise of
Lemma 10.

This condition can be extended to a redundancy condi-
tion with respect to subset teaching sets.

Theorem 11 Let C be a concept class over X and x ∈ X .
If for all k ∈ N, for all c ∈ C, and for all S ∈ STSk(c, C)

(x, c(x)) ∈ S ⇒
∃y 6= x [(S \ {(x, c(x))}) ∪ {(y, c(y))} ∈ STSk(c, C)] ,

then for all k ∈ N, for all c ∈ C, and for all samples S

S ∈ STSk(c, C−x)
⇐⇒

[S ∈ STSk(c, C) ∧ (x, c(x)) /∈ S] .

Proof. Note that |C−x| = |C|. We prove the theorem by
induction on k.

For k = 0 this follows immediately from Lemma 10.
So assume that the claim is proven for some k (induction
hypothesis). It remains to show that it then also holds for
k + 1.

For that purpose note that

∀c ∈ C ∀A ∈ STSk(c, C) ∃B ∈ STSk(c, C−x)
[|A| = |B| ∧ A \ {(x, c(x))} ⊆ B] (∗)

by combination of the induction hypothesis with the premise
of the theorem.

Choose an arbitrary c ∈ C.
First assume S ∈ STSk+1(c, C) and (x, c(x)) /∈ S.

By the definition of subset teaching sets, there is an S′ ∈
STSk(c, C) with

S ⊆ S′ . (1)
Using (∗) we can assume without loss of generality that

S′ ∈ STSk(c, C−x) . (2)

Moreover, again by the definition of subset teaching sets,
one obtains S 6⊆ S′′ for every S′′ ∈ STSk(c′, C) with c′ 6=
c. The induction hypothesis then implies

S 6⊆ S′′ for every S′′ ∈ STSk(c′, C−x) with c′ 6= c . (3)

Due to (1), (2), (3) we get either S ∈ STSk+1(c, C−x)
or |S| > STDk+1(c, C−x). In the latter case there would be
a set T ∈ STSk+1(c, C−x) with |T | < |S|. T is a subset
of some set in STSk(c, C−x) and thus also of some set in
STSk(c, C) by induction hypothesis. If T was contained in
some T ′ ∈ STSk(c′, C) for some c′ 6= c then we could again
assume without loss of generality, using (∗) and (x, c(x)) /∈
T , that T is contained in some set in STSk(c′, C−x)—in
contradiction to T ∈ STSk+1(c, C−x). Therefore T ∈
STSk+1(c, C) and so |T | = |S|—a contradiction. This im-
plies S ∈ STSk+1(c, C−x).

Second assume that S ∈ STSk+1(c, C−x). Obviously,
(x, c(x)) /∈ S, so that it remains to show S ∈ STSk+1(c, C).

Because of S ∈ STSk+1(c, C−x) there exists some set
S′ ∈ STSk(c, C−x) such that

S ⊆ S′ . (4)

The induction hypothesis implies

S′ ∈ STSk(c, C) . (5)

Moreover, by the definition of subset teaching sets, one
obtains S 6⊆ S′′ for every S′′ ∈ STSk(c′, C−x) with c′ 6=
c. If there was a set S′′ ∈ STSk(c′, C) with c′ 6= c and
S ⊆ S′′ then (∗) would imply that without loss of generality
S′′ ∈ STSk(c′, C−x). So we have

S 6⊆ S′′ for every S′′ ∈ STSk(c′, C) with c′ 6= c . (6)



Combining (4), (5), (6) we get either S ∈ STSk+1(c, C)
or |S| > STDk+1(c, C). In the latter case there would be
a set T ∈ STSk+1(c, C) with |T | < |S|. T is a subset of
some set T ′ ∈ STSk(c, C). We can assume without loss of
generality, using (∗), that T ′ ∈ STSk(c, C−x). If T was
contained in some set in STSk(c′, C−x) for some c′ 6= c
then by induction hypothesis T would be contained in some
set in STSk(c′, C) for some c′ 6= c. This is a contradiction
to T ∈ STSk+1(c, C). So T ∈ STSk+1(c, C−x) and hence
|T | = |S|—a contradiction. Thus S ∈ STSk+1(c, C).

4.2 The reason for nonmonotonicity

The idea about why the teaching dimension can decrease
when a concept class increases is best illustrated by an ex-
ample in which the addition of a single concept has this ef-
fect. In a simple such example, the instance space consists
of three elements α, β, γ. First, consider the four distinct
concepts that all contain γ, c001 = {γ}, c011 = {β, γ},
c101 = {α, γ}, c111 = {α, β, γ}. When these four concepts
are the only ones in the class the teaching sets for them all
are necessarily size two—elements α and β and their respec-
tive labels—because γ is a member of all of them, it cannot
be part of any teaching set. If one more concept is added to
the class the subset teaching sets all become size 1. Table 4
shows the computation when c000 = ∅ is added.

concept STS0 STS1

∅ {(γ, 0)} {(γ, 0)}
{γ} {(α, 0), (β, 0), (γ, 1)} {(γ, 1)}
{β, γ} {(α, 0), (β, 1)} {(α, 0), (β, 1)}
{α, γ} {(α, 1), (β, 0)} {(α, 1), (β, 0)}
{α, β, γ} {(α, 1), (β, 1)} {(α, 1), (β, 1)}

concept STS2 STS3

∅ {(γ, 0)} {(γ, 0)}
{γ} {(γ, 1)} {(γ, 1)}
{β, γ} {(α, 0)} {(α, 0)}
{α, γ} {(β, 0)} {(β, 0)}
{α, β, γ} {(α, 1), (β, 1)} {(β, 1)}

Table 4: Illustration of the nonmonotonicity of STD .

From a more general point of view, it is not obvious how
to explain why a teaching dimension resulting from a coop-
erative model should be nonmonotonic.

First of all, this is a counter-intuitive observation when
considering STD as a notion of complexity—intuitively any
subclass of C should be at most as complex for teaching and
learning as C.

However, there is in fact an intuitive explanation for the
nonmonotonicity of the complexity in cooperative teaching
and learning: when teaching c ∈ C, instead of providing
examples that eliminate all concepts in C \ {c} (as is the
idea underlying minimal teaching sets) cooperative teach-
ers would rather pick only those examples that distinguish
c from its “most similar” concepts in C. Similarity here is
measured by the number of instances on which two concepts
agree (i.e., dissimilarity is given by the Hamming distance
between the concepts, where a concept c is represented as a

bit vector (c(x1), . . . , c(xn))). This is reflected in the subset
teaching sets in all illustrative examples considered above.

Considering a classC = Cu
0/1, one observes that a subset

teaching set for a concept cs,0 contains only the negative ex-
ample (xu+1+int(s), 0) distinguishing it from cs,1 (its nearest
neighbor in terms of Hamming distance). A learner will rec-
ognize this example as the one that separates only that one
pair (cs,0, cs,1) of nearest neighbors. In contrast to that, if
we consider only the subclass C ′ = {cs,0 | s ∈ {0, 1}u},
the nearest neighbors of each cs,0 are different ones, and ev-
ery single example separating one nearest neighbor pair also
separates other nearest neighbor pairs. Thus no single exam-
ple can be recognized by the learner as a separating example
for one unique pair of concepts.

This intuitive idea of subset teaching sets being used for
distinguishing a concept from its nearest neighbors has to
be treated with care though. The reason is that the concept
class may contain “redundant” instances, i.e., instances that
could be removed from the instance space according to The-
orem 11.

Such redundant instances might on the other hand affect
Hamming distances and nearest neighbor relations. Only af-
ter their elimination the notion of nearest neighbors in terms
of Hamming distance becomes well-defined. Consider for
instance Table 3. In the concept class C over 5 instances the
only nearest neighbor of ∅ is {x1} and an example distin-
guishing ∅ from {x1} would be (x1, 0). Moreover, no other
concept is distinguished from its nearest neighbors by the
instance x1. According to the intuition explained here, this
would suggest {(x1, 0)} being a subset teaching set for ∅ al-
though the subset teaching sets here equal the teaching sets
and are all of cardinality 2.

After instance elimination of x4, x5 there is only one sub-
set teaching set for ∅, namely {(x1, 0), (x3, 0)}. This is still
of cardinality 2 but note that now ∅ has two nearest neigh-
bors, namely {x1} and {x3}. The two examples in the sub-
set teaching set are those that distinguish ∅ from its nearest
neighbors. Note that either one of these two examples is not
unique as an example used for distinguishing a concept from
its nearest neighbors: (x1, 0) would be used by {x2, x3} for
distinguishing itself from its nearest neighbor {x1, x2, x3};
(x3, 0) would be used by {x1, x2} for distinguishing itself
from its nearest neighbor {x1, x2, x3}. So the subset teach-
ing set for ∅ has to contain both examples.

This shows that in general a subclass of a class C can
have a higher complexity than C if crucial nearest neighbors
of some concepts are missing.

To summarize,

• nonmonotonicity has an intuitive reason and is not an
indication for an ill-defined version of the teaching di-
mension,

• nonmonotonicity is in fact required if we want to cap-
ture the idea that the existence of specific concepts to
distinguish a target concept from is beneficial for teach-
ing and learning.

So, the STD captures certain intuitions about teaching
and learning that monotonic dimensions cannot capture; at
the same time monotonicity might in other respects itself be



an intuitive property of teaching and learning which then the
STD cannot capture.

In particular there are two underlying intuitive proper-
ties that seem to not be satisfiable by a single variant of the
teaching dimension.

So in contrast one may wish to have a cooperative teach-
ing and learning model going along with a monotonic com-
plexity measure. It is not hard to show that BTD in fact is
monotonic, see Theorem 12.

Theorem 12 If C is a concept class and C ′ ⊆ C a subclass
of C, then BTD(C ′) ≤ BTD(C).

Proof. Fix C and C ′ ⊆ C. We will prove by induction on k
that

BTDk(c, C ′) ≤ BTDk(c, C) for all c ∈ C (7)

for all k ∈ N.
k = 0: Property (7) holds because of BTD0(c, C ′) =

TD(c, C ′) ≤ TD(c, C) = BTD0(c, C) for all c ∈ C.
Induction hypothesis: assume (7) holds for a fixed k.
k  k + 1: First, observe that

Conssize(S,C ′, k)
= {c ∈ Cons(S,C ′) | BTDk(c, C ′) ≥ |S|}
⊆ {c ∈ Cons(S,C ′) | BTDk(c, C) ≥ |S|} (ind. hyp.)

⊆ {c ∈ Cons(S,C) | BTDk(c, C) ≥ |S|}
= Conssize(S,C, k)

Second, for all c ∈ C we obtain

BTDk+1(c, C ′)
= min{|S| | Conssize(S,C ′, k) = {c} }
≤ min{|S| | Conssize(S,C, k) = {c} }
≤ BTDk+1(c, C)

This completes the proof.

So, on the one hand, we have the teaching framework
based on the subset teaching dimension which results in a
nonmonotonic dimension, and on the other hand we have a
monotonic dimension in the BTD framework, which unfor-
tunately does not always meet our idea of a best possible
cooperative teaching and learning protocol. That raises the
question whether nonmonotonicity is necessary to achieve
certain positive results. In fact, the nonmonotonicity con-
cerning the class Cu

0/1 is not counter-intuitive, but would a
dimension that is monotonic also result in a worse sample
complexity than the STD in general, such as, e.g., for the
monomials?

In other words, is there a teaching/learning framework

• resulting in a monotonic variant of a teaching dimen-
sion and

• achieving similarly good results as the subset teaching
dimension?

At this point of course it is difficult to define what “similarly
good” means. However, we would like to have a constant
dimension for the class of all monomials, as well as, e.g., a

teaching set of size 1 for the empty concept in our often used
concept class C0.

We will now via several steps introduce at least a mono-
tonic variant of the teaching dimension and show that for
most of the examples studied above, it is as low as the subset
teaching dimension. General comparisons will be made in
Section 5, in particular in order to show that this new frame-
work is uniformly at least as efficient as the BTD frame-
work (or better), while sometimes being less efficient than
the STD framework. This reflects to a certain extent that
monotonicity constraints might affect sample efficiency.

4.3 The teaching plan model
We will first define the notion for our variant of teaching di-
mension and show its monotonicity. The nonmonotonicity
of STD is caused by considering every STSk-set for every
concept when computing an STSk+1-set for a single con-
cept. Hence the idea in the following approach is to impose
an order onto the concept class, in terms of the “teaching
complexity” of the concepts. This is what the teaching di-
mension does as well, but our design principle is a recursive
one. After selecting a concept which is “easy to teach” be-
cause of possessing a small minimal teaching set, we elim-
inate this concept from our concept class and consider only
the remaining concepts. Again we determine the one with
the lowest teaching dimension, now however measured with
respect to the class of remaining concepts, and so on. The re-
sulting notion of dimension is therefore called the recursive
teaching dimension.

Definition 13 Let C be a concept class, |C| = N . A teach-
ing plan for C is a sequence p = ((c1, S1), . . . , (cN , SN )) ∈
(C × 2X×{0,1})N such that

1. C = {c1, . . . , cN}.
2. Sj ∈ TS (cj , {cj , . . . , cN}) for 1 ≤ j ≤ N − 1.

3. SN = {(x, 1− b) | (x, b) ∈ SN−1}.5

The order of p is given by ord(p) = max{|Sj | | 1 ≤ j ≤
N}. The recursive teaching dimension of C is defined by
RTD(C) = min{ord(p) | p is a teaching plan for C}.

The desired monotonicity property, see Proposition 14,
follows immediately from the definition.

Proposition 14 If C is a concept class and C ′ ⊆ C is a
subclass of C, then RTD(C ′) ≤ RTD(C).

We can define a set of canonical teaching plans for any
finite concept class C. As it will turn out, their order always
equals RTD(C).

Definition 15 Let C be a concept class, p = ((c1, S1), . . . ,
(cN , SN )) a teaching plan for C. p is called a canonical
teaching plan for C, if for any i, j ∈ {1, . . . , N}:

i < j ⇒ TD(ci, {ci, . . . , cN}) ≤ TD(cj , {ci, . . . , cN}) .

Theorem 16 Let C be a concept class and p a canonical
teaching plan for C. Then ord(p) = RTD(C).

5Note that the cardinality of both SN−1 and SN must be 1.



Proof. LetC and p as in the theorem be given, p = ((c1, S1),
. . . , (cN , SN )). Let p′ = ((c′1, S

′
1), . . . , (c′N , S

′
N )) be any

teaching plan for C. It remains to prove that ord(p) ≤
ord(p′).

For that purpose choose the minimal j ∈ {1, . . . , N}
such that |Sj | = ord(p). By definition of a teaching plan,
TD(cj , {cj , . . . , cN}) = ord(p). Let i ∈ {1, . . . , N} be
minimal such that c′i ∈ {cj , . . . , cN}. Let k ∈ {1, . . . , N}
fulfill ck = c′i. By definition of a canonical teaching plan,
TD(ck, {cj , . . . , cN}) ≥ TD(cj , {cj , . . . , cN}) = ord(p).
This obviously yields ord(p′) ≥ TD(c′i, {c′i, . . . , c′N}) ≥
TD(ck, {cj , . . . , cN}) ≥ ord(p).

To summarize briefly, the recursive teaching dimension
is a monotonic complexity notion which in fact has got some
of the properties we desired; e.g., it is easily verified that
RTD(C0) = 1 (by any teaching plan in which the empty
concept occurs last) and that the RTD of the class of all
monomials equals 2 (see below). Thus the RTD overcomes
some of the weaknesses of BTD , while at the same time
preserving monotonicity.

As it will turn out later, there are some interesting rela-
tions between BTD , STD , and RTD .

A property that might be relevant for establishing these
relations is based on the following definition.

Definition 17 Let C be a concept class, |C| = N . A TS -
teaching plan for C is a sequence

p = ((c1, S1
1), . . . , (cN , SN

1 , . . . , S
N
N ))

such that

1. C = {c1, . . . , cN}.
2. Sj

k ∈ TS (cj , {ck, . . . , cN}) for 1 ≤ k ≤ j ≤ N .

3. Sj
k ⊆ S

j
k−1 for 1 < k ≤ j ≤ N .

The order of p is given by ord(p) = max{|Sj
j | | 1 ≤ j ≤

N}. The recursive TS -teaching dimension ofC is defined by
RTTD(C)=min{ord(p) | p is a TS -teaching plan for C}.

TS -teaching plans differ from original teaching plans in
that they require their sets being built up in stages as subsets
of those in previous stages, starting from teaching sets.

However, as it turns out, concerning the RTD it suffices
to consider this restricted form of teaching plans.

Lemma 18 Let C be a concept class. Then RTTD(C) =
RTD(C). In particular, there is a TS -teaching plan p =
((c1, S1

1), . . . , (cN , SN
1 , . . . , S

N
N )) for C such that ord(p) =

RTD(C) and ((c1, S1
1), . . . , (cN , SN

N )) is a canonical teach-
ing plan for C.

The proof is omitted.

4.4 Monomials revisited
In this subsection, we will pick up the two examples from
Subsection 3.3 again, this time to determine the recursive
teaching dimension.

Theorem 19 Letm ∈ N andC the class of all boolean func-
tions over m variables that can be represented by a mono-
mial. Then RTD(C) = 2.

Proof. Fix m and C. For all i ∈ {0, . . . ,m} let Ci be the
subclass of all c ∈ C that can be represented by a non-
contradictory monomial M that has got i variables. There
is exactly one concept in C not belonging to any subclass Ci

of C, namely the concept c∗ representable by a contradictory
monomial.

The proof is based on the following observation.
Observation. For any i ∈ {0, . . . ,m} and any c ∈ Ci:

TD(c, C ′ ∪ {c∗}) ≤ 2, where C ′ =
⋃

i≤j≤m Cj .
Now it is easily seen that ord(p) ≤ 2 for every teach-

ing plan p = ((c1, S1), . . . , (cN , SN )) for C that meets the
following requirements:

(a) c1 ∈ C0 and cN = c∗.

(b) For any k, k′ ∈ {0, . . . , N−1}: If k < k′, then ck ∈ Ci

and ck′ ∈ Cj for some i, j ∈ {0, . . . ,m} with i ≤ j.

Since obviously TD(c, C) ≥ 2 for all c ∈ C, we obtain
RTD(C) = 2.

For illustration of the case m = 2 see Table 5.

TS

λ C0 {(00,1),(11,1)}
v1 C1 {(10,1),(11,1)}
v1 C1 {(00,1),(01,1)}
v2 C1 {(01,1),(11,1)}
v2 C1 {(00,1),(10,1)}
v1 ∧ v2 C2 {(11,1)}
v1 ∧ v2 C2 {(10,1)}
v1 ∧ v2 C2 {(01,1)}
v1 ∧ v2 C2 {(00,1)}
v1 ∧ v1 {(00,0)}

Table 5: Recursive teaching sets in a teaching plan of order
2 for the class of all monomials over m = 2 variables. λ
denotes the empty monomial.

For the sake of completeness, note RTD(Cm
∨DNF ) = 1

where Cm
∨DNF is the class of boolean functions over m vari-

ables as defined in Subsection 3.3.

Theorem 20 RTD(Cm
∨DNF ) = 1 for all m ∈ N.

Sketch of proof. This follows straightforwardly from the fact
that TD(c, Cm

∨DNF ) = 1 for every concept c corresponding
to a 2-term DNF of form v1 ∨M .

For illustration see Table 2.

5 Comparison of teaching dimension notions
This section provides an analysis of the relationships be-
tween RTD , BTD , and STD .

Theorem 21 1. If C is a concept class then RTD(C) ≤
BTD(C).

2. There is a concept class C with RTD(C) < BTD(C).

Proof. Assertion (2) is witnessed by the concept class C0

containing the empty concept and all singletons. Obviously,
RTD(C0) = 1 and BTD(C0) = 2.



To prove Assertion (1), let C be a concept class with
RTD(C) = u. By Theorem 16 there is a canonical teaching
plan p = ((c1, S1), . . . , (cN , SN )) for C with ord(p) = u.
Fix j ≤ N minimal such that |Sj | = u and define C ′ =
{cj . . . , cN}. Obviously, RTD(C ′) = u. Moreover, us-
ing Theorem 12, BTD(C ′) ≤ BTD(C). Thus it suffices to
prove u ≤ BTD(C ′).

To achieve this, we will prove by induction on k that u ≤
BTDk(c, C ′) for all k ∈ N for all c ∈ C ′.

k = 0: BTD0(c, C ′) = TD(c, C ′) ≥ u for all c ∈ C ′.
Induction hypothesis: assume u ≤ BTDk(c, C ′) for all

c ∈ C ′ holds for a fixed k.
k  k + 1: Suppose by way of contradiction that there

is a concept c∗ ∈ C ′ with u > BTDk+1(c∗, C ′). In par-
ticular, there exists a sample S∗ such that |S∗| < u and
Conssize(S∗, C ′, k) = {c∗}.

By induction hypothesis, the set Conssize(S∗, C ′, k) de-
fined by {c ∈ Cons(S∗, C ′) | BTDk(c, C ′) ≥ |S∗|} is
equal to Cons(S∗, C ′). Note that TD(c, C ′) ≥ u for all c ∈
C ′ implies either |Cons(S∗, C ′)| ≥ 2 or Cons(S∗, C ′) = ∅.
We obtain a contradiction to Conssize(S∗, C ′, k) = {c∗}.

This completes the proof.

Comparing the STD to the RTD turns out to be a bit
more complex. We can show that the recursive teaching di-
mension can be arbitrarily larger than the subset teaching di-
mension; it can even be larger than the maximal STD com-
puted over all subsets of the concept class.

Theorem 22 1. For each u ∈ N there is a concept class
C such that STD(C) = 1 and RTD(C) = u.

2. There is a concept class C such that max{STD(C ′) |
C ′ ⊆ C} < RTD(C).

Sketch of proof. Assertion (1) is witnessed by the classes
Cu

0/1 defined in the proof of Theorem 6.
To verify Assertion (2), consider the concept class C =

{c1, . . . , c6} given by c1 = ∅, c2 = {x1}, c3 = {x1, x2},
c4 = {x2, x3}, c5 = {x2, x4}, c6 = {x2, x3, x4}. It is
not hard to verify that TD(c, C) = 2 for all c ∈ C and
thus ord(p) = 2 for every teaching plan p for C. Therefore
RTD(C) = 2. Moreover STD(C ′) = 1 for all C ′ ⊆ C (the
computation of STD(C) is shown in Table 6; further details
are omitted).

concept STS0 STS1 STS2

∅ {(x1, 0), (x2, 0)} {(x1, 0)} {(x1, 0)}
{x1} {(x1, 1), (x2, 0)} {(x1, 1), (x2, 0)} {(x1, 1)}

{(x2, 0)}
{x1, x2} {(x1, 1), (x2, 1)} {(x2, 1)} {(x2, 1)}
{x2, x3} {(x3, 1), (x4, 0)} {(x4, 0)} {(x4, 0)}
{x2, x4} {(x3, 0), (x4, 1)} {(x3, 0)} {(x3, 0)}
{x2, x3, x4} {(x3, 1), (x4, 1)} {(x3, 1), (x4, 1)} {(x3, 1)}

{(x4, 1)}

Table 6: Iterated subset teaching sets for the class C =
{c1, . . . , c6} given by c1 = ∅, c2 = {x1}, c3 = {x1, x2},
c4 = {x2, x3}, c5 = {x2, x4}, c6 = {x2, x3, x4}.

We conjecture moreover that STD(C) ≤ RTD(C) for
all concept classes C, however, we cannot prove that at the

time of writing. However, we can provide a general proof
idea that solely relies on a lemma that we conjecture.

Lemma 23 (Conjecture) Let C be a concept class and p =
((c1, S1), . . . , (cN , SN )) a teaching plan for C. Let j fulfill
ord(p) = |Sj | and STD(cj , C) ≥ ord(p). Then there is a
teaching plan

p = ((c1, S′1), . . . , (cN , S
′
N ))

for C and a sample S ∈ STS (cj , C) such that S′j ⊆ S.

The proof of the following theorem, which helps to sum-
marize the relations between our different variants of teach-
ing dimensions, relies on this lemma—hence in fact the the-
orem is also a conjecture at the time of writing. Note that
its correctness, together with Theorem 21 and Lemma 18,
would imply

STD(C) ≤ RTD(C) = RTTD(C) ≤ BTD(C)

for all concept classes C. Here all inequalities are necessary
since proven to not be equalities.

Theorem 24 (Based on conjecture Lemma 23) Let C be a
concept class. Then STD(C) ≤ RTD(C).

Sketch of proof (relying on Lemma 23). Prove property (Pj)
by induction for all j ≥ 1.

(Pj):
If C is a concept class of at least j concepts and p
is any teaching plan for C (not necessarily canon-
ical), then STD(cj , C) ≤ ord(p) where cj is the
jth concept in the teaching plan p.

For j = 1 this is obvious, because

STD(c1, C) ≤ TD(c1, C) ≤ ord(p) .

The induction hypothesis is that (Pi) holds for all i ≤ j,
j fixed.

To prove (Pj+1), choose a concept class C and a teach-
ing plan p = ((c1, S1), . . . , (cN , SN )) for C. Consider the
j + 1st concept cj+1 in p.

Case 1. |Sj+1| < ord(p).
If |Sj+1| < ord(p), then we swap cj and cj+1 and get a

new teaching plan

p = ((c1, S1), . . . , (cj−1, Sj−1),
(cj+1, T ), (cj , T ′), . . . , (cn, SN ))

for C. Note that |T ′| ≤ |Sj |. Now cj+1 is in jth posi-
tion and its corresponding set T , due to the swap, fulfills
|T | ≤ |Sj+1|+ 1 ≤ ord(p). By induction hypothesis we get
STD(cj+1, C) ≤ ord(p).

Case 2. |Sj+1| = ord(p).
This is the more difficult case. Using Lemma 18 we can

prove that Sj+1 is a subset of a teaching set of cj+1 with
respect to any of the classes {ci, . . . , cN} where i ≤ j + 1.

But in fact we would need Lemma 23 to tell us that Sj+1

is a subset of a subset teaching set of cj+1 with respect to C.
Assume that STD(cj+1, C) > ord(p). This implies that

Sj+1 is a subset of some subset teaching set for cj+1 with-
out being contained in any other subset teaching set for any



other concept. Then Sj+1 would itself be a subset teaching
set for cj+1 in contradiction to its size being smaller than
STD(cj+1, C).

To see why Sj+1 couldn’t be contained in any subset
teaching set for any c 6= cj+1, c ∈ C, note that cj+2, . . . ,
cN are not consistent with Sj+1 and the concepts c1, . . . , cj
by induction hypothesis have a too low subset teaching di-
mension in C.

6 Conclusions and open problems
We have introduced a new model of teaching and learning,
based on what we call subset teaching sets. This model cap-
tures the idea of a teacher and a learner cooperating in order
to learn concepts in finite classes from small samples.

This model avoids coding tricks and provides a generally
applicable procedure for a uniform protocol of cooperative
learning. It achieves results that are, for a specific concept
class, such as the monomials, no less efficient than known
algorithms that are designed especially for that one concept
class (and perform inefficiently in terms of sample size on
others).

The resulting subset teaching dimension turns out to be
nonmonotonic—a fact that is illustrated and explained by the
nature of the underlying definition.

In order to compare this subset teaching dimension to
monotonic variants of teaching dimensions related to coop-
eration in learning, we introduced two equivalent notions of
“recursive teaching dimensions”, being monotonic by defi-
nition. They turn out to be very helpful in providing bounds
for previous notions (they are significantly better than the
original teaching dimension and variants thereof). However,
even though they behave so well, the nonmonotonic subset
teaching dimension in general seems to be better.

Examples have shown that even the recursive teaching
dimensions cannot always compete with the subset teaching
dimension, though our conjecture that the recursive teach-
ing dimension can never be lower than the subset teaching
dimension is still open.

We plan to close this gap in our proof, to find character-
izations for these teaching dimensions, and to provide evi-
dence to another conjecture, namely that, for reasonable def-
initions of the term “coding trick”, there is no teaching and
learning model that avoids coding tricks and is better than
the model based on the subset teaching dimension.
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