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Abstract

We consider the question of why modern machine
learning methods like support vector machines out-
perform earlier nonparametric techniques like k-
NN. Our approach investigates the locality of learn-
ing methods, i.e., the tendency to focus mainly on
the close-by part of the training set when construct-
ing a new guess at a particular location. We show
that, on the one hand, we can expect all consis-
tent learning methods to be local in some sense;
hence if we consider consistency a desirable prop-
erty then a degree of locality is unavoidable. On
the other hand, we also claim that earlier meth-
ods like k-NN are local in a more strict manner
which implies performance limitations. Thus, we
argue that a degree of locality is necessary but that
this should not be overdone. Support vector ma-
chines and related techniques strike a good balance
in this matter, which we suggest may partially ex-
plain their good performance in practice.

1 Introduction
It is commonly seen in practice that modern methods in ma-
chine learning – such as kernel machines and more specifi-
cally support vector machines – outperform older techniques
in nonparametric statistics such as k-NN [for a concrete ex-
ample, see, e.g., Joa98]. The main approaches to explaining
this phenomenon are margin-based bounds on the general-
ization error and that margin maximization in effect mini-
mizes the VC dimension, again, arriving at a favorable bound
on the generalization error [Vap98, STC00]. In this work we
consider an alternative approach to investigating this matter,
in hopes of showing the underlying issues in a different light.

We will focus on local learning, i.e., the property of
a learning method that it uses mainly the close-by part of
the training set to construct new guesses. That is, when
an estimate is generated at a point x using a training set
Sn = {(xi, yi)}i=1..n (i.e., we are trying to guess a corre-
sponding value of y for x, using x and the training set), then
a local method is one that is influenced mostly by the points
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(xi, yi) for which xi is close to x. Many classical meth-
ods in nonparametric statistics are clearly of this sort, e.g.,
k-NN. This is often stated as a detriment of such methods,
in particular since local learning is susceptible to the curse
of dimensionality – in high-dimensional spaces, one needs a
great many points in the training set in order for a sufficient
amount to end up close-by to the point x currently being es-
timated. On the other hand, methods like support vector ma-
chines appear non-local in their definition – the separating
hyperplane is determined by the entire training set, and fur-
thermore does not depend on the particular point we intend
to estimate at – and thus one might suspect that the superior
performance of support vector machines and related tech-
niques is connected to this matter.

However, whether this is the case is not immediately ob-
vious. In fact, we might suspect that many kernel machines
behave locally: consider that a typical kernel machine can
be written as

∑
i αiyik(xi, x), where k is a kernel function,

e.g., the RBF kernel kRBF(x, x′) = exp(−γ||x− x′||2) (we
do not write the sign operation, which would appear here if
our goal is classification and not regression, but the issue is
the same in that case). This appears outwardly similar to
weighted k-NN, whose general form is

P
i yis(xi,x)P
i s(xi,x)

, where
the sum is taken over the K nearest neighbors of x and s is a
similarity measure; in fact, we can take s = kRBF. Also sim-
ilar in form is another classical statistical technique, kernel
estimators, which can be written as

P
i yik(||xi−x||)P
i k(||xi−x||)

where
k : R→ R has compact support. It appears that the main dif-
ference between kernel machines and the earlier techniques
lies in the coefficients; for kernel machines, αi is determined
in a manner based on the entire training set, and not just the
local subset of it. Perhaps, then, this might lead to non-local
behavior of some sort, and in conclusion it is not immedi-
ately obvious whether kernel machines behave locally or not.
We are therefore in need of an analysis to give us an answer.

For convenience, we will from now on refer to kernel ma-
chines as ‘modern methods’; we mean mainly support vec-
tor machines and related techniques, specifically, ones that
use both maximal-margin separation and the ‘kernel trick’
[Vap98], but to a lesser degree also boosting [FS99], which
similarly appears to have good performance due to margin
maximization [SFBL97]. By ‘classical methods’ we will
refer to older techniques studied in the statistical literature,
the prime examples of which are, as mentioned in the previ-
ous paragraph, k-NN and kernel estimators; another example



is local regression [CL95]. Using this terminology, our goal
is to explain, at least in part, the performance advantage of
modern methods over classical ones.

As we have seen, we are in need of an analysis to tell us
whether modern methods behave locally or not. One such
analysis was carried out in [BDR06], with the conclusion
that kernel machines do in fact behave locally in some sense.
If so, then it might appear that being local cannot explain
the performance advantage of modern methods over classi-
cal ones, since apparently both approaches have that prop-
erty. We will argue against this notion, while at the same
time agreeing with the results in [BDR06]. Specifically, we
will first show that indeed both modern and classical meth-
ods behave locally in some sense, but that the underlying
cause is the property of consistency, i.e., that the method is
able to successfully learn given any distribution (we leave a
formal definition to the next section). Importantly, however,
classical methods are local in a far stricter manner, and we
will show that such strict locality implies performance lim-
itations. Thus, a degree of locality is necessary for consis-
tency, but is detrimental if taken to excess. We hypothesize
that modern methods in fact strike a good balance in this mat-
ter, which may help to explain their superior performance.

In more general terms, based on our results we will argue
in the discussion (Section 7) that the challenge in devising
useful learning methods is to combine a local aspect, which
is necessary for consistency, with a global aspect, which is
useful for improving performance; the prime example of such
a performance-improving global aspect is of course maximal-
margin separation. To see this point, consider first that k-NN
is defined in a simple manner that immediately ensures it is
local (from its very definition), which allows it to be consis-
tent, as we will see, with little additional work. However,
it is hard to incorporate into such a local technique a non-
local regularization method like maximal-margin separation.
On the other hand, if we start with a method using maximal-
margin separation then it is not trivial to ensure that it be-
haves locally, which we will see is a precondition for con-
sistency. In other words, we want our learning methods to
(1) be local, so that they may be consistent, and (2) apply
a global regularization method, since this improves perfor-
mance in practice. Devising a method having both of these
properties at the same time is not trivial to achieve, but sup-
port vector machines and related methods do manage to do
so: on the one hand they utilize maximal-margin separation,
while on the other via the ‘kernel trick’ they end up having
sufficiently local behavior in order to be consistent (assum-
ing we choose an appropriate kernel and so forth). We will
discuss this argument more at length in the discussion at the
end of this work.

Technically speaking, the analysis that we conduct in or-
der to arrive at the conclusions just mentioned is based on
definitions inspired by those in [ZR07]. The main differ-
ence from that work is that local behavior was defined there
by comparing a method’s response on the entire training set
to the ‘local training set’, which contains only the close-by
points. This approach has the advantage of having practi-
cal applications in that it can answer what might occur if we
‘localize’, say, a support vector machine (i.e., show it only
close-by points, as done in k-NN). However, the comparison

of a method’s response on two training sets of different size
(the local one is in all reasonable cases smaller) has the dis-
advantage that it is hard to talk about subtle degrees of local-
ity, since the change in the size of the training set introduces
a source of variability. Our goal in the present work is in
fact to speak about such differences of degree. We therefore
define locality differently, by considering changes to far-off
points instead of removing them from the training set, which
keeps the size of the training set fixed. Why this is helpful
will become clear later on.

The structure of the rest of this work is as follows. In
Section 2 we describe the formal setting of the problem and
lay out notation. In Section 3 we define locality and other
concepts and give an overview of our results. In Section 4
we present our results for consistency and its connection to
weak locality. In Section 5 we turn to strict locality and its
drawbacks. In Section 6 we deal with the application of our
results to classification. Finally, in Section 7 we summarize
and discuss our results.

2 Formal Setting
We now complete the formal description of the setting. We
are given an i.i.d sample Sn = {(xi, yi)}i=1..n from some
distribution P ; then a new (independent) pair (x, y) is drawn
from the same P and our goal is to predict y when shown
only x. Our prediction (also called estimate, or guess) of y
is written f(Sn, x), some measurable function that depends
both on the training set and the point to be estimated (note
that this notation, where the training set and new observation
are of equal standing as inputs to f , is slightly atypical, but
is very convenient in our setting, as will become clear later).
We call f a learning method (sometimes method or estima-
tor); note that it can produce guesses for any size training
set and any x. One specific context is that of classification
(also called pattern recognition) where y ∈ {−1,+1}; we
call learning methods in this context classifiers and call y the
class. While our results apply to classification, we will not
focus on it in most of this work, since a regression-type set-
ting is simpler to deal with. Later on, in Section 6, we will
show how to apply our results to classification.

Our goal is to estimate f∗(x) = E(y|x), that is, the ex-
pected value of y conditioned on x, or the regression of y on
x. Our hope is that f(Sn, x) is close to f∗(x). We say that f
is consistent on a distribution P iff

Ln,P (f) ≡ ESn,x∼P |f(Sn, x)− f∗(x)| −→
n→∞

0

where the expected value is taken over all training sets Sn
and observations x both distributed according to P . We will
omit P from Ln,P when the distribution is clear from the
context, and we will generally further shorten our notation
to write expressions of the form

Ln(f) ≡ ESn,x |f(Sn, x)− f∗(x)|
when, again, the distribution is clear from the context. (Note
that the choice of the absolute value in the Ln loss – i.e., the
L1 norm – is only for convenience; our results hold in the
more typical L2 norm as well.)

If a method is consistent on all P then we call it con-
sistent (this is sometimes called universal consistency). Im-
portantly for us, methods like support vector machines and



boosting are consistent [Ste02, Zha04], or at least can be if
the parameters are chosen accordingly. In fact such choices
often turn out to lead to good performance in practice, and
therefore we are interested in consistent versions of modern
methods. We will return to this matter in the discussion.

The following notation will be used. Denote by µP (or
just µ, if P is clear from the context) the marginal measure
on x of a distribution P . We denote random variables by, for
example, (x, y) ∼ P and Sn ∼ P where the latter indicates
a random i.i.d sample of n elements from the distribution P .
We will often abbreviate and write x ∼ P where we mean
x ∼ µP . To prevent confusion we always use x and y to
indicate a pair (x, y) sampled from P .

As already implied, we write expected values in the form
Ev∼VH(v) where v is a random variable distributed accord-
ing to V . We denote probabilities by, e.g., Pv∼V (U(v)),
which is the probability of an event U(v) taken over a ran-
dom variable v. In both cases we will omit V when it is clear
from the context.

For any set B ⊆ X , denote by PB the conditioning of P
on B, that is, the conditioning of µP on B (and the limiting
of f∗’s domain to B). We denote Bx,r = {x′ ∈ Rd :
||x − x′|| ≤ r}, the ball of radius r around x (using the
Euclidean norm). Let Px,r = PBx,r .

Finally, we make the following assumptions which are
mainly for convenience. Our distributions P are on (X,Y )
where X ⊂ Rd, Y ⊂ R (i.e., we work in Euclidean spaces).
We assume that X,Y are bounded

sup
x∈X
||x|| , sup

y∈Y
|y| ≤M1

for some M1 > 0 which is the same for all distributions.
Thus, when we say ‘all distributions’ we mean all distri-
butions bounded by the same value of M1. We also as-
sume that our learning methods return bounded responses,
|f(Sn, x)| ≤ M2 for some M2 > 0.1 Let M be a constant
fulfilling M ≥M1,M2.

3 Definitions and Overview
We will now define the main concepts that concern us, start-
ing first with some convenient notation. For any training set
Sn = {(xi, yi)} and values x ∈ X , r ≥ 0 , {ỹi} ∈ Y n, let

Sn(x, r, {ỹi}) ={ (
xi , 1{||x− xi|| ≤ r}yi + 1{||x− xi|| > r}ỹi

) }
That is, Sn(x, r, {ỹi}) does not change the locations xi, and
has the original y values yi close-by to x (up to distance r),
while replacing far-off labels with ỹi. We can now define one
sense of locality: we call a method f local on a distribution
P iff there exists a sequence {Rn}, Rn ↘ 0, for which

E{xi},x sup
{yi},{eyi} |f(Sn, x)− f(Sn(x,Rn, {ỹi}), x)| −→

n→∞
0

1Note that this is a minor assumption since for essentially all
modern and classical methods we have supx |f(Sn, x)| ≤ C ·
maxi |yi| for some C > 0, and the yi values are already assumed to
be bounded. Furthermore, we are concerned with consistent meth-
ods, i.e., that behave similarly to f∗ in the limit, and f∗ is bounded.

(Here Sn = {(xi, yi)}, following our usual notation, i.e., Sn
is constructed from {xi} in the expectation and {yi} in the
sup.)

This definition is fairly straightforward: a method is lo-
cal if, asymptotically speaking, it returns very similar re-
sults when we change far-off labels. Thus, the method is
influenced mainly by the close-by part of the training set,
which is the intuition behind a local method. Note that, since
Rn → 0, in effect the method is influenced only by the lo-
cal part of the training set in a strong sense. Note also that
the definition speaks of locality on a single distribution P ; as
with consistency, if a method f is local on all P then we say
that f is local (i.e., if P is not specified, we mean all P ). We
will use this convention with other definitions as well.

It turns out that there are more useful ways to define lo-
cality, for reasons which we will see later. One such defini-
tion of locality is weaker than that given before, and one is
stronger. We start with the weaker:

Definition 1 Call a method f weakly local on a distribution
P iff, for every distribution P̃ for which µP = µ eP , there
exists a sequence {Rn}, Rn ↘ 0 for which

E{xi},xE{yi}∼P | {xi} , {eyi}∼ eP | {xi}
|f(Sn, x)− f(Sn(x,Rn, {ỹi}), x)| −→

n→∞
0

(Here {yi} ∼ P | {xi} means that each yi has distribution
P conditioned on xi.)

Thus, a weakly local method is one which, if we replace
far-off labels with labels from another distribution, is asymp-
totically not influenced by that change (note that we keep µ,
the measure on x, fixed; we care only about changes to y
values). This definition is weaker than the one given before
in that instead of the supremum over all y, we sample alter-
nate y values from a fixed distribution. However, since we
require that this property occur for all distributions P̃ , we
still have the essential behavior of being most influenced by
the close-by part of the training set.

In one of our main results we will see that all consistent
learnings methods are in fact very close to being weakly lo-
cal (we will require a minor technical relaxation of the defini-
tion given above). Hence this is true for, e.g., support vector
machines, assuming the kernel and parameters ensure con-
sistency.

It is obvious that classical methods like k-NN and kernel
estimators are weakly local, both because they are consistent
[see DGKL94, GKP84, respectively], and by direct inspec-
tion, see Section 5. However, they seem to be local in a
stronger sense than that appearing in weak locality. In fact
they have the following stronger property:

Definition 2 Call a method f strictly local on a distribution
P iff there exists a sequence {Rn}, Rn ↘ 0, for which

P{xi},x

(
∀{yi}, {ỹi} f(Sn, x) = f(Sn(x,Rn, {ỹi}), x)

)
−→
n→∞

1

Thus, a strictly local estimator is one for which we can re-
place far-off labels and this, with probability going to 1,
will not affect our estimates at all (this is easily seen to be



stronger than the original definition of locality due to the
boundedness assumption on f ). Note that we can consider
stricter notions of locality, however, this definition is strict
enough, since classical methods fulfill it.

We will see later in Section 5 that, unlike classical meth-
ods, many (if not all) modern methods are not strictly local,
and that this has potentially important consequences, since
strictly local methods have performance limitations.

In [ZR07] similar definitions appeared. In that work, lo-
cal behavior was defined by comparing f ’s response to the
response it would have given had far-off points been removed
from the training set, whereas in the definitions given above
we consider changes to their y values instead. As mentioned
in the introduction, the reason for this is the need to consider
varying degrees of locality. In our definitions, we can either
change the y values to values sampled from a fixed distribu-
tion (weak locality) or consider all possible changes (local-
ity, and, in a stronger sense, strict locality). We will see that
these differences can in fact be of importance. A further rea-
son for preferring our definitions over ones in which far-off
examples are removed is that the latter approach changes the
size of the training set, and in a data-dependent manner. This
introduces a source of variability which then makes it hard to
talk about concepts like strict locality, where we require that
with high probability there be no change in the response; if n
changes, this itself may cause an alteration (e.g., this occurs
in the common case where a regularization constant is used
whose value depends on n). Alternatively, we might have re-
moved a fixed number of far-off observations depending on
n (as in k-NN, in fact), but this causes other inconveniences
in that the radius in which the remaining observations lie is
now a random variable (which is, as before, a source of vari-
ability). Replacing far-off y values, as we have chosen to do,
therefore seems the most productive choice.

We now survey other related work. Research regarding
locality was done in the context of learning methods that
work by minimizing a loss function. Such loss functions can
be ‘localized’ by re-weighting them so that close-by points
are more influential; see [BV92], [VB93] for such an ap-
proach in the setting of Empirical Risk Minimization [ERM;
Vap98] and [CL95] and references therein for the specific
case of linear regression; see [AMS97] for a survey of appli-
cations in this area. The approach we follow differs from this
one in that we focus on consistency in the sense of asymptot-
ically arriving at the lowest possible loss achievable by any
measurable function – i.e., in the nonparametric sense – and
not in the sense of minimizing the loss within a set of finite
VC dimension. The nonparametric sense is, we believe, the
one most relevant to locality, and the best context in which
to compare modern and classical methods.

We now briefly summarize our two main results. First,
regarding the connection between consistency and weak lo-
cality, let us consider now a property weaker than consis-
tency. Define the means of f and f∗ by

En(f) ≡ En,P (f) ≡ ESn,xf(Sn, x)

E(f∗) ≡ EP (f∗) ≡ Exf∗(x) = ExE(y|x) = Ey

the latter expression which is just the global mean of y, and
define f, f∗’s Mean Absolute Deviations (MADs) by

MADn(f) ≡ MADn,P (f) ≡ ESn,x |f(Sn, x)− En(f)|
MAD(f∗) ≡ MADP (f∗) ≡ Ex |f∗(x)− E(f∗)|

(we prefer the MAD over the variance due to the choice of
the L1 norm). We define

Definition 3 Call a method f Weakly Consistent in Mean
(WCM) iff there exists a function H : R → R, H(0) = 0,
limt→0H(t) = 0, for which, ∀P ,{

lim supn→∞ |En(f)− E(f∗)|
lim supn→∞MADn(f)

}
≤ H (MAD(f∗))

(Note that the same H is used for all P .)
A WCM learning method is required only to do ‘reason-

ably’ well in estimating the global properties of the distri-
bution – the mean and MAD, which are two scalar values –
in a way that depends on the MAD, i.e., on the difficulty;
we only require that performance be good when the learn-
ing task is overall quite easy, in the sense of f∗(x) being
almost constant. Note that when H(MAD(f∗)) ≥ 2M we
require nothing of f for such f∗ (since |f |, |f∗| ≤ M ), and
that also for small MAD(f∗) we may allow the MAD of f to
be significantly larger than that of f∗ (consider, for example,
H(t) = c · (

√
t+ t) for large c > 0).

It is easy to see that WCM is weaker than consistency
and implied by it. Assuming consistency,

|En(f)− E(f∗)| =
∣∣ESn,x(f(Sn, x)− f∗(x)

)∣∣
≤
∣∣ESn,x |f(Sn, x)− f∗(x)|

∣∣ (1)

= |Ln(f)| → 0

(note that here even H(t) ≡ 0 would have worked), and

lim sup
n

MADn(f) = lim sup
n

ESn,x |f(Sn, x)− En(f)|

≤ lim sup
n

{
ESn,x |f(Sn, x)− f∗(x)|

+ Ex |f∗(x)− E(f∗)|

+ |E(f∗)− En(f)|
}

= MAD(f∗)

using the consistency of f and (1); thus, H(t) = t shows
that the WCM property holds for all consistent methods.

We can now ask, what is missing in WCM that is present
in consistency? Since WCM is a ‘global’ property (con-
cerned only with two scalar values that are functions of the
entire space), it seems apparent that what is missing in WCM
is some ‘local’ aspect, i.e., of correctly learning in each small
area separately. We will see that in fact a property very sim-
ilar to weak locality can fill that role; we will call that def-
inition Uniform Approximate Weak Locality (UAWL). We
will then prove that consistency is logically equivalent to
the combination of UAWL and WCM. From our definitions
it will be easy to see that the UAWL and WCM properties
are ‘independent’ in the sense that neither implies the other.
Thus, we can see consistency as comprised of two indepen-
dent properties, which might be presented as

Consistency ⇐⇒ UAWL ⊕WCM



Thus, our first conclusion is that a form of local behavior is
fundamental to consistency; any consistent method must be
in a sense local, no matter how it is defined. In fact, the dif-
ference between consistency and locality comes down to the
additional requirement in consistency that we also are not far
from estimating global properties of the distribution, as for-
malized by the WCM property.2 This means that if we start
with a method defined in an explicitly local manner, like k-
NN, then we get ‘for free’ the property of UAWL. Then all
we need to do to get consistency is to ensure the WCM prop-
erty, which is relatively simple (we just need the scalar value
representing our global mean to converge to the accurate one,
and our MAD to not be too large). Since consistency is a de-
sirable property, this explains some of the attractiveness of
classical methods: achieving consistency with them is rela-
tively simple.

Our second main result will show the drawbacks of this
simplicity of classical methods, and will concern strict local-
ity. To show the limitations of strict locality, we define the
following property: call a method g preferable to another
method f , over a set of distributions P , iff, for every P ∈ P ,

Ln(g) < Ln(f)

for large enough n (possibly depending on P ). That is, no
matter what the true distribution is out of those in P , g is
eventually better than f . Our claim is then that, for ev-
ery strictly local method f , we can always construct a non-
strictly local g which is preferable to f . For convenience we
will show this on a specific example, but argue that the result
is a quite general one.

4 Weak Locality and Consistency
As hinted at before, it turns out that a slight complication
of our definition of weak locality is necessary. To present
the improved definition, we start with some preparatory no-
tation. For any q ≥ 0 and distribution P , let

f̄q(Sn, x) = Ex′∼Px,qf(Sn, x′)

That is, f̄q applies a ‘smoothing’ operation performed around
the x being estimated (recall that Px,q is P conditioned on
the ball of radius q around x). Note that if q = 0 then we
interpret the expected value as a delta function and we get
f̄0 = f . Note also that we require the actual unknown dis-
tribution P in the definition of f̄q , i.e., f̄q cannot be directly
implemented in practice – f̄q is a construction for theoretical
purposes.

We define the following set of sequences:

T = {{Tn} : Tn ↘ 0}

and, for any sequence T = {Tn} ∈ T , we define the set of
its infinite subsequences and selection functions on them by

R(T ) = {{Rn} : {Rn} ⊆ T , Rn ↘ 0}

Q(T ) = {Q : T → T : Q(Tn) = o(Tn)}
2Note that we need both the mean and the MAD to behave in an

appropriate way, as appearing in the definition of the WCM prop-
erty, because if only the mean is accurate then due to the variance
we may estimate the global properties very poorly.

We now motivate these definitions. First, regarding T :
instead of allowing any possible value in [0,∞) for Rn and
Q, we limit them to a countable set T . The reason for this is
that due to [0,∞) being an uncountable set it is not clear to
the authors if additional conditions are not required to prove
our results in that case. In any event, a countable set of pos-
sible values is of sufficient interest for any practical learning-
theoretical purpose, since we end up using only a countable
number of Rn, Q values (since n ∈ N). Note that the set
of possible values T can be chosen in whatever manner is
desired, so long as this is done in advance.
R(T ) contains localizing sequences, sequences of radii

that determine how far off we alter the data shown when we
perform Sn(x,Rn, {ỹi}). We require thatRn ↘ 0, as we are
interested in learning methods that focus on the truly local
part of the training set, i.e., having radius 0 asymptotically.
Q(T ) contains functions of the possible values T that

become negligibly small when Tn is small. We will use the
values Q(Rn) to determine radii on which to smooth, via
Q(Rn), which we might call the smoothing radius; note
that since Q(Rn) = o(Rn), we smooth on a radius much
smaller than Rn, hence this is a fairly minor operation.

Finally, we define

R+(T ) = {{Rn} : {Rn} ⊆ T}

Q+(T ) = {Q : T → T}
which are the same as before, but without the requirement
of converging to 0. We now arrive at our main definition for
this section, whose description is unavoidably technical:

Definition 4 Call a learning method f Uniformly Approxi-
mately Weakly Local (UAWL) iff

∀P , P̃ , µP = µ eP
∀T ∈ T
∃Q ∈ Q(T )

∀Q′ ∈ Q+(T ) , Q′ ≥ Q
∃{Rn} ∈ R(T )

∀{R′n} ∈ R+(T ) , R′n ≥ Rn
E{xi},xE{yi}∼P | {xi} , {eyi}∼ eP | {xi}
|f(Sn, x)− f̄Q

′(R′
n)(Sn(x,R′n, {ỹi}), x)| −→

n→∞
0

(Here the expression R′n ≥ Rn simply implies an inequality
for the entire series, i.e., for all n. Q′ ≥ Q impliesQ′(Tk) ≥
Q(Tk) for all k.)

Thus, a UAWL method returns similar values even when
we replace far-off data with different values of y; essentially
the same idea as with weak locality, but allowing for mi-
nor smoothing, and requiring uniformity in Q,Rn. With
a UAWL method, loosely speaking, for any large enough
Q,Rn we get local behavior. Note that the notion of Rn
being large enough is a natural one since taking Rn to 0 very
quickly is problematic (doing so may lead to us getting few
or no points in radius Rn, i.e., few or no points from the
important distribution).

The reason for including smoothing in this definition is
that, if all we assume is that learning methods are measurable



(and not smooth in some strong sense), then odd counterex-
amples exist to the connection between locality and consis-
tency; see [ZR07] for details. By incorporating smoothing
in our definition we remove the need to require it of the
learning methods we consider, which lets us apply our re-
sults to any method known to be consistent. The reason for
the second new aspect in this definition, that of allowing all
large-enough Q′, R′n, is that this leads to an exact equiva-
lence with consistency, as we will see in Theorem 5; further-
more, it would be odd for the locality of a method to depend
much on the specific Q,Rn used for it. To make the mat-
ter concrete, note that the proof of Theorem 5 requires using
the same Q,Rn over multiple distributions; without allow-
ing all large-enough Q′, R′n there exist odd counterexamples
in which each distribution has some appropriate Q,Rn but
none exist that are appropriate for all of them simultaneously.

Our result for consistency is the following:

Theorem 5 A learning method f is consistent iff f is both
UAWL and WCM.

We prove the ⇐ direction, that UAWL and WCM im-
ply consistency, in Appendix A. Note that it is clear from
the proof that we can replace P̃ in the definition of UAWL
with all distributions having y constant, but we believe the
definition given before is clearer.

For the⇒ direction, that consistency implies UAWL and
WCM, it is immediately obvious that consistency implies
WCM. Regarding UAWL, a proof of a slightly simpler claim
(without uniformity inRn, Q) appears in [ZR07]; using meth-
ods from other proofs in [ZR07], it is trivial to extend the
proof to showing uniformity as well. For completeness we
give a brief sketch of the proof appearing there: for fixed r, q
instead of Rn, Q, we can use the consistency of f on the ef-
fective distributions seen (i.e., distributions that are altered
to P̃ far away from x) to see that the appropriate loss con-
verges to 0, for every x separately. Since, again for every x,
the overall loss converges to 0, this also occurs in the area
with radius q, which is the one relevant to us. We then take
Rn, Q to 0 slowly enough to complete the proof.

Theorem 5 can be summarized as follows:
Consistency ⇐⇒ UAWL ⊕WCM

Here we use the symbol⊕ because each of the two properties
UAWL and WCM can exist without the other: consider the
following two methods,

fy(Sn, x) =
1
n

n∑
i=1

yi f0(Sn, x) = 0

fy (called thus because it considers only the y values) is
WCM, since En(fy) → E(f∗) and clearly fy’s MAD con-
verges to 0. (In fact, fy is WCM with H ≡ 0, i.e., in the
strongest sense. That is, there are even ‘weaker’ methods that
are WCM.) On the other hand, fy is clearly not UAWL (con-
sider, e.g., two distributions having f∗(x) ≡ −1, f∗(x) ≡
+1). On the other hand, f0 is trivially UAWL, but not WCM.

5 Strict Locality
In this section we will deal with strict locality and its conse-
quences.

It is immediately clear that kernel estimators are strictly
local (use Rn equal to the bandwidth, and recall that k has
compact support). For k-NN things are less obvious, but still
fairly simple: k-NN is consistent if the number of neighbors
kn fulfills kn → ∞, knn → 0 [DGKL94]. From inspecting
the proof of consistency it is clear that these conditions en-
sure that the kn neighbors will fall in an area of radius going
to zero, with probability going to 1. Thus (unsurprisingly) k-
NN is strictly local: just like kernel estimators, it completely
ignores far-off points, but it does so with very high probabil-
ity instead of certainty (since there is always a chance, even
though it becomes negligibly small, that we will need to look
far for the kn nearest neighbors).

We have seen that any consistent method must be in some
sense local, specifically, UAWL. We can now ask, must a
consistent method also be strictly local? It turns out that the
answer is no. Consider, for example, kernel ridge regression
[SGV98], which can be written in the kernel-induced space
(via a transformation φ) as

L(w) =
1
n

∑
i

(w′φ(xi)− yi)2 + λ||w||2 (2)

It is clear that under mild regularity conditions we will not
get strict locality, since any change to the yi values can cause
a change to the resulting w, as is obvious from looking at the
solution to (2); thus, kernel ridge regression is not strictly
local. It appears clear that a similar phenomenon occurs for
other types of kernel machines, as well as methods such as
boosting (but we do not supply a formal proof), simply be-
cause there is always the possibility of influence by far-off
points (as is also clear from these methods minimizing a
global loss function which is an average of losses at individ-
ual points; any change to a point influences the overall loss,
with potential consequences on the entire space). While the
influence of far-off points wanes as n converges to infinity –
which is necessary, as we have seen, in order for the method
to be consistent – the far-off points are not simply ignored as
with classical methods like k-NN. There is always the possi-
bility of being influenced by the farther points, even if this is
a rare occurrence.

We will now see that the property of potentially being
influenced by far-off points can, in fact, be important. The
reason is that strictly local methods have performance limi-
tations. As is well known, to talk in a meaningful way about
performance, we cannot make comparisons on the set of all
distributions [see, e.g., DGL96]. We therefore consider lim-
ited sets of distributions, as is done in the minimax setting in
statistics. We first begin with a brief reminder of the setting
and how minimax losses can be achieved.

Assume for simplicity a Lipschitz set of functions f∗ ∈
L(L) on [0, 1]d,

|f∗(x1)− f∗(x2)| ≤ L · ||x1 − x2||
and take x uniform on X = [0, 1]d; let y = f∗(x) + ε, ε ∼
N(0, σ2). Consider a simple kernel estimator with radius r,

f(Sn, x) =
∑
i 1{||xi − x|| ≤ r}yi∑
i 1{||xi − x|| ≤ r}

For every x0, we receive on average on the order of nrd
points in radius r to estimate f∗(x0), so we can estimate



Ef∗(x) in that area up to precision σ√
nrd

. It is also clear that
Ef∗(x) differs from f∗(x0) by up to Lr, giving us roughly
Ln(f) ≤ σ√

nrd
+ Lr, an example of a bias-variance trade-

off (the bias is due to estimating Ef∗(x) on Bx0,r and not
f∗(x0) directly, and the variance is due to having only the
order of nrd points). From this simple analysis it can be
concluded that a choice of r = rn = O(n−1/(d+2)) is appro-
priate, and that this will give us a loss ofO(n−1/(d+2)). This
is in fact the minimax rate, i.e., the best-possible achievable
rate, as shown in [Sto80, Sto82].

Importantly, notice how we must consider close-by points
in order to arrive at the rate: if we look only at points at dis-
tance r or more, then f∗(x0) may differ by up to Lr and
we would not be able to overcome this issue in a minimax
sense. Furthermore, it is also obvious from the analysis that
the close-by points are enough in order to achieve the rate,
i.e., to be up to a constant factor of the actual minimax loss.
This can be directly seen by the equality of the bias and vari-
ance factors when we minimize their sum.

Thus, even a strictly local method like kernel estimators
can achieve the minimax rate; in that sense, there is nothing
to improve upon. In the example above the rate is n−1/(d+2),
and kernel estimators can achieve it, but we have no assur-
ance that they do so with a low constant factor; since such
constant factors are hard to analyze, they are for the most part
ignored in statistics. While this is reasonable in the sense that
the rate is arguably the most important aspect in an asymp-
totic analysis, in actual practice – i.e., when working with
some fixed finite n – the constant factor can be critical, since
for fixed finite nwe do not care about the asymptotic rate but
only about the actual value of Ln. We will now make such a
comparison of the actual values of Ln and claim that strictly
local methods are limited in their ability to minimize it.

As defined previously, call a method g preferable to an-
other method f , over a set of distributions P , iff, for every
P ∈ P ,

Ln(g) < Ln(f)

for large enough n (possibly depending on P ). We will now
see that in fact it is simple to construct a method preferable
to any strictly local method, thus showing that strict local-
ity brings with it performance limitations. The reason for
the limitation is easy to see: by completely ignoring far-
off points, there is no ability to adapt to rare occurrences in
which those far-off points are in fact necessary for good per-
formance. In statistical terms, while we have lower bias with
the close-by points, we have lower variance with the farther-
off ones due to their greater number. On average we prefer to
balance these two out, as shown above, but in specific cases
we can do better than such an average; consider, for exam-
ple, the unlikely but possible case where the close-by points
have bizarre values (e.g., their empirical variance is much
larger than σ2 in the example above); in such a case, based
on the empirical sample we can tell that it would probably be
better to focus on slightly farther off points. That is, while
on average the close-by points are most relevant, there is a
minority of cases in which they are in fact misleading, and in
at least some of those cases we can tell when they occur, at
least with high probability. We will now formalize this no-
tion in a concrete result in a specific setting. While only one

example, the underlying issue just mentioned should hold in
a wide range of cases.

The following definition will make our result easier to
state: call a method f reasonable iff, when all yi in Sn have
the same value, f returns that value. Note that practically
every existing learning method has this property, including
those of interest to us, and that in fact all consistent methods
must have this property in an asymptotic sense in order to
be consistent on distributions having a constant value of y.
Then we claim the following:

Proposition 6 Let L be the following set of distributions.
Assume X = [0, 1] and that µ is uniform on X . Let Y =
{−1,+1}, assume that all f∗(x) are Lipschitz with constant
≤ L, and that

µ
(
f∗(x) ∈ {−1, 0,+1}

)
= 0 (3)

Assume that f is a strictly local method and that f is reason-
able. Then there exists a reasonable method g for which, for
every P ∈ L, for large enough n we have

Ln(g) < Ln(f)

That is, g is preferable to f .

(Note that the assumption (3) is for convenience, and leaves
us to deal with the most interesting cases.) The proof of the
proposition appears in Appendix B.

Thus, any strictly local method can be improved upon
due to its ignorance of far-off points. Given that support vec-
tor machines and other techniques used in machine learning
are in fact local but not strictly local, there is the possibility
(which we concede that we only argue towards, but do not
prove) that this helps to explain their performance advantage
over classical methods which are strictly local.

6 Classification
We will now show how our results apply to classification.
First, we note that many theoretical analyses of classifica-
tion methods such as support vector machines and boosting
in fact work on the real-valued response of such methods,
i.e., before the sign operation; see, e.g., [Zha04, BJM06]. In
that sense these classification methods are treated similarly
to regression estimators, and our results are of relevance to
them. However, this connection is only an informal one, and
therefore in this section we will show how it can be formal-
ized.

In classification [see, e.g., DGL96] we deal with learning
methods c(Sn, x) which return values in {−1,+1}. The loss
of interest is the 0-1 loss,

R0−1(c) = P (c(Sn, x) 6= y) = ESn,(x,y)1{c(Sn, x) 6= y}

which is usually compared to the lowest possible loss (also
known as the Bayesian loss), giving the excess loss, which is
well-known to be equivalent to

L̃n(c) ≡ ESn,x|c(Sn, x)− c∗(x)| · |2η(x)− 1|

where η(x) = P (y = 1|x) and c∗(x) = sign(f∗(x)). This
differs from the loss Ln studied in the main part of this work,



but as shown in [ZR07], consistency-related results such as
Theorem 5 can be adapted to classification, using a method
that we now briefly summarize. The idea is to note that

L̃n(c) ≡ ESn,x|c(Sn, x)− c∗(x)| · |2η(x)− 1|
= ESn,x|c(Sn, x)− c∗(x)| · |f∗(x)|

= ESn,x

∣∣∣c(Sn, x) · |f∗(x)| − f∗(x)
∣∣∣ (4)

≡ ESn,x|f∗c (Sn, x)− f∗(x)|
= Ln(f∗c )

where we define f∗c (Sn, x) ≡ c(Sn, x) · |f∗(x)|. Now, a
classifier c can be seen as estimating sign(f∗). For every
such c we define a learning method fc that estimates f∗, by

fc(Sn, x) = c(Sn, x)f| |(Sn, x)

where f| | is the absolute value of some pre-determined con-
sistent method, i.e., a consistent estimator of |f∗| (that is, c
estimates the sign of f∗ and f| | estimates the absolute value;
together they estimate f∗). It is then straightforward to show
that c is consistent (as a classifier) on a set of distributions
precisely when fc is consistent (as a regression-type estima-
tor) on that same set, since fc is asymptotically equivalent to
f∗c , and using L̃n(c) = Ln(f∗c ) from (4).

Regarding our result for strict locality, Proposition 6, the
proof can be modified to apply to classification as follows.
First, note that already Y = {−1,+1}, and that if we re-
place f with a classifier c (i.e., a function into {−1,+1})
then g defined in the proof is also a classifier (in fact, the
setting was chosen for its relevance to classification). De-
note d = g to avoid confusion; thus, our goal is to show that
L̃n(d)− L̃n(c) < 0. Now, as shown in (4) we have L̃n(c) =
Ln(f∗c ), so our goal is to evaluate Ln(f∗d ) − Ln(f∗c ). Note
that, when event A occurs as defined in the proof, then in-
stead of a response of 1 for f∗ we now have a response of
1 for c, giving an overall response of f∗c (Sn, x) = |f∗(x)|
(and vice versa for a response of −1), which leads to replac-
ing |1− f∗(x)| with

∣∣∣|f∗(x)| − f∗(x)
∣∣∣ and of | − 1− f∗(x)|

with
∣∣∣− |f∗(x)| − f∗(x)

∣∣∣. In (5) we then get∣∣∣|f∗(x)| − f∗(x)
∣∣∣− ∣∣∣− |f∗(x)| − f∗(x)

∣∣∣ = −2f∗(x)

and −2f∗(x) happens to be the exact same result as in the
original proof. All the rest of the proof can remain as before,
thus proving the claim in the context of classification.

7 Discussion
We have argued that (1) some degree of locality is unavoid-
able in learning, but that (2) if this is taken to an extreme
then it brings with it performance limitations. We speculate
that the superior performance of modern methods over clas-
sical ones may, in part, be due to the former striking a proper
balance in this matter.

Regarding the unavoidability of local learning, this is a
direct result of locality being implied by consistency. In fact,
in consistency we require the ability to do well on all distri-
butions, which includes distributions that only differ in very

small localized ways. Thus, a consistent method must end
up trusting only close-by points. The only way to avoid this
issue is to dismiss consistency as a useful property. While in
theory such an approach might make sense – say, if we know
in advance that the true distribution belongs to some limited
set – in practice many effective methods in machine learning
are useful precisely because they make as few as possible as-
sumptions on the distribution. In fact, this is the reason non-
parametric methods are often more effective on real-world
problems than parametric ones. Thus, generally speaking,
consistency appears to be a property that we cannot easily
discard. Since consistency implies a form of locality, local-
ity is unavoidable as well.

As we have seen, the difference between consistency and
the relevant form of locality, UAWL, turns out to be a fairly
minor property, WCM. This means that if one of our goals
is consistency then it makes sense to focus on achieving the
UAWL property, since it is generally more difficult to en-
sure than WCM (ensuring WCM amounts to checking that
two scalar values are within some reasonable bound). This
may explain the historical appearance of and focus on clas-
sical methods like k-NN and kernel estimators: by defining
them in an explicitly local manner, which is simple to do,
the UAWL property is easily taken care of. Consequently,
defining such local methods is convenient and proving their
consistency relatively easy as well.

Such definitions, however, make the resulting methods
not only local in the necessary sense, but also strictly local.
As we have seen, strict locality is not necessary for consis-
tency and in fact implies some limitations on performance.
Thus, being motivated by convenient definitions and proofs
may lead to deficits in practice.

On the other hand, we can start with improving real-
world performance. The primary method of doing so which
we intend here is maximal-margin separation, which turns
out to be very effective in practice, and has an appealing
geometric intuition (keeping the classes as far apart as pos-
sible). This approach is clearly not a local one, since the
maximal-margin hyperplane depends on the entire training
set. Furthermore, in some sense it is reasonable to expect
an effective regularization technique to in fact be non-local:
if, as in soft-margin support vector machines, we consider
the sum of deviations across the margin (i.e., of observations
on the wrong side of it), then it would be hard to do so in
a local manner. That is, if we expect to allow some total
amount of deviations based on some rationale, it is hard to
enforce this locally; if we do work locally, then we need to
apply the same approach in every area, instead of being able
to accept more deviations in some areas in return for smaller
deviations elsewhere as well as a larger overall margin.

Thus, techniques like maximal-margin separation are ef-
fective and desirable, but non-local in their definition. This
appears problematic if we also want the property of consis-
tency, which as we have seen requires a degree of locality.
Hence, in devising learning methods we come up against
a difficulty: we want our learning methods to (1) be local,
so that they may be consistent, but we also want to (2) ap-
ply some performance-improving technique like maximal-
margin separation, which is non-local.

We can now try to explain the success of modern ma-



chine learning methods by their combining these two prop-
erties in an effective manner: by using the ‘kernel trick’ and
choosing a universal kernel [Ste02] we can get sufficiently
local behavior for consistency, while at the same time we
are still applying the maximal-margin principle in a global
manner, thus improving performance. It is this combined
approach which may be missing from classical methods.3

A Proof of⇐ in Theorem 5
Denote Sn(x, r, a) = Sn(x, r, {ai}) where ai = a, i.e.,
Sn(x, r, a) replaces the y values of all far-off points with a.

Fix some T ∈ T and some r, q ∈ T . For any α ∈ R, we
have the trivial fact that

|f(Sn, x)− f∗(x)| ≤∣∣f(Sn, x)− f̄q(Sn(x, r, α), x)
∣∣

+
∣∣f̄q(Sn(x, r, α), x)− f∗(x)

∣∣
Let A = {αm} be a countable set and let mn be a sequence.
Write
|f(Sn, x)− f∗(x)|

≤ inf
m≤mn

( ∣∣f(Sn, x)− f̄q(Sn(x, r, αm), x)
∣∣

+
∣∣f̄q(Sn(x, r, αm), x)− f∗(x)

∣∣ )
≤ sup
m≤mn

∣∣f(Sn, x)− f̄q(Sn(x, r, αm), x)
∣∣

+ inf
m≤mn

∣∣f̄q(Sn(x, r, αm), x)− f∗(x)
∣∣

and thus
ESn,x |f(Sn, x)− f∗(x)|
≤ ESn,x sup

m≤mn

∣∣f(Sn, x)− f̄q(Sn(x, r, αm), x)
∣∣

+ ESn,x inf
m≤mn

∣∣f̄q(Sn(x, r, αm), x)− f∗(x)
∣∣

≤
∑

m≤mn

ESn,x
∣∣f(Sn, x)− f̄q(Sn(x, r, αm), x)

∣∣
+ ESn,x inf

m≤mn

∣∣f̄q(Sn(x, r, αm), x)− f∗(x)
∣∣

By the UAWL property, for any αm ∈ A we have

ESn,x

∣∣∣f(Sn, x)− f̄Q(Rn)(Sn(x,Rn, αm), x)
∣∣∣→ 0

for appropriate Q,Rn, since Sn(x,Rn, α) can be seen as
sampled from a situation where P̃ in the definition of UAWL
has y constant and equal to α. This is then true in particu-
lar for Q ≡ q,Rn ≡ r, since by keeping these values fixed
they necessarily eventually become appropriate in the sense
of the definition of UAWL (i.e., as constants, they eventu-
ally become larger than the sequences from the definition of
UAWL – both of which tend to 0 – that we compare them
with in order to check if they are appropriate). It is therefore
also clear that there exists a sequence mn →∞ for which∑

m≤mn

ESn,x
∣∣f(Sn, x)− f̄q(Sn(x, r, αm), x)

∣∣→ 0

3Note that an additional advantage of kernel machines is that we
can easily make them non-consistent, by choosing an appropriate
kernel, i.e., a non-universal one.

(by taking mn →∞ slowly enough, e.g., by keeping mn =
k fixed and raising it to k + 1 only when the sum of the first
k + 1 elements will, for all n′ ≥ n, be smaller than k−1,
which must eventually occur since the sum is of elements
converging to 0). For this mn we therefore have

lim sup
n→∞

ESn,x |f(Sn, x)− f∗(x)|

≤ lim sup
n→∞

ESn,x inf
m≤mn

∣∣f̄q(Sn(x, r, αm), x)− f∗(x)
∣∣

We now pick A = {αm} to be dense in [−M,M ] (recall
that M is a bound on f∗ and f ), and turn to analyzing the
expression on the last line. Fix some x ∈ supp(P ), and
consider the expression corresponding to x in the expected
value. Then for large enough n we can find some m(x) ∈
{1, ...,mn} for which |αm(x) −EPx,r (f∗)| < ε, for any ε >
0 (due to A being dense). Then

ESn inf
m≤mn

∣∣f̄q(Sn(x, r, αm), x)− f∗(x)
∣∣

≤ ESn
∣∣f̄q(Sn(x, r, αm(x)), x)− f∗(x)

∣∣
≤ ESn

∣∣Ex′∼Px,q
[
f(Sn(x, r, αm(x)), x′)− f∗(x′)

]∣∣
+
∣∣Ex′∼Px,qf

∗(x′)− f∗(x)
∣∣

≤ ESnEx′∼Px,q
∣∣f(Sn(x, r, αm(x)), x′)− f∗(x′)

∣∣
+ Ex′∼Px,q |f∗(x′)− f∗(x)|

The expression on the last line converges to 0 (for almost all
x) when q → 0, by the corollary to the following lemma:

Lemma 7 [ [Dev81]; Lemma 1.1] For any distribution P
and measurable g, if Ex∼P |g(x)| <∞ then

lim
q→0

Ex′∼Px,qg(x′) = g(x)

for almost all x.

Corollary 8 For any distribution P and measurable g, if
Ex∼P |g(x)| <∞ then

lim
q→0

Ex′∼Px,q |g(x′)− g(x)| = 0

for almost all x.

Thus, we arrive at

lim sup
n

ESn inf
m≤mn

∣∣f̄q(Sn(x, r, αm), x)− f∗(x)
∣∣

≤ lim sup
n

ESnEx′∼Px,q
∣∣f(Sn(x, r, αm(x)), x′)− f∗(x′)

∣∣
+ ε1

where ε1 > 0 can be made arbitrarily small by picking q
small enough.

Note that we can see Sn(x, r, α) as sampled from the
distribution Px,r,α, by which we mean a distribution having
the same µ as P , equal to P on Bx,r, and having constant y



equal to α elsewhere. Then

ESnEx′∼Px,q
∣∣f(Sn(x, r, αm(x)), x′)− f∗(x′)

∣∣
=

1
µ (Bx,q)

ESn,x′∼P∣∣f(Sn(x, r, αm(x)), x′)− f∗(x′)
∣∣ 1 {x′ ∈ Bx,q}

≤ 1
µ (Bx,q)

ESn,x′∼P
∣∣f(Sn(x, r, αm(x)), x′)− f∗(x′)

∣∣
=

1
µ (Bx,q)

ESn,x′∼Px,r,αm(x)
|f(Sn, x′)− f∗(x′)|

=
1

µ (Bx,q)
ESn,x′∼Px,r,αm(x)∣∣f(Sn, x′)− En(f) + En(f)− E(f∗)+

E(f∗)− f∗(x′)
∣∣

≤ 1
µ (Bx,q)

[
MADn,Px,r,αm(x)

(f)+∣∣∣En,Px,r,αm(x)
(f)− EPx,r,αm(x)

(f∗)
∣∣∣+

MADPx,r,αm(x)
(f∗)

]
where the expected valuesEn(f), E(f∗) on the equation be-
fore last are w.r.t Px,r,αm(x) (the omission is for clarity).

Using the WCM property, we can therefore bound

lim sup
n

ESn inf
m≤mn

∣∣f̄q(Sn(x, r, αm), x)− f∗(x)
∣∣

≤ 1
µ (Bx,q)

[
MADPx,r,αm(x)

(f∗)+

2H
(

MADPx,r,αm(x)
(f∗)

)]
+ ε1

We now turn to consider the MAD of Px,r,,αm(x) . Notice
first that

MAD(Px,r,αm(x)) ≤ MAD(Px,r) + ε

because |αm(x) − EPx,r (f∗)| < ε. Consider now the effect
of changing r. First, by Lemma 7 we have, for almost every
x,

lim
r→0

Ex′∼Px,rf
∗(x′) = f∗(x)

so, for almost every x,

lim
r→0

MADPx,r (f
∗)

= lim
r→0

Ex′∼Px,r |f∗(x′)− Ex′′∼Px,rf
∗(x′′)|

≤ lim
r→0

Ex′∼Px,r |f∗(x′)− f∗(x)|+

|f∗(x)− Ex′′∼Px,rf
∗(x′′)|

= lim
r→0

Ex′∼Px,r |f∗(x′)− f∗(x)|

= 0

using Corollary 7 for the last equality, and thus

lim sup
r→0

MAD(Px,r,αm(x)) ≤ ε

We can pick q to make ε1 arbitrarily small, and then r to
make MAD(Px,r,αm(x)) arbitrarily small as well (note that

we thus counter the 1
µ(Bx,q)

factor), and therefore, for almost
every x,

lim
n→∞

ESn |f(Sn, x)− f∗(x)| = 0

where we also use the continuity of H at 0. This in turn
implies, along with the dominated convergence theorem, that

lim
n→∞

Ln(f) = 0

thus proving that f is consistent.

B Proof of Proposition 6
Denote Sn ∩ B = {(xi, yi) ∈ Sn : xi ∈ B}. Fix some
P ∈ L as in the statement of the proposition. Let Rn be the
radii from the definition of strict locality for f . Note that, by
the definition of strict locality, we can replace Rn with any
R′n ≥ Rn, R′n ↘ 0 and strict locality will still hold. WLOG
we can therefore assume that nRn →∞.

Define R(Sn, x, r) as the property that

∀{yi}, {ỹi} f(Sn, x) = f(Sn(x, r, {ỹi}), x)

That is, R is the property that strict locality in fact occurs; by
the definition of strict locality we know that the probability
of R(Sn, x,Rn) rises to 1.

We define the following additional properties. Denote by
AX = AX(x, r) the property that x ∈ (

√
r, 1−

√
r) (which

makes sense for r ≤ 1/4, and is indeed the case concerning
us as the values replacing r will tend to 0). Denote by A0 =
A0(Sn, x, r) the property that

|Sn ∩Bx,r| ∈ [nr, 3nr]∣∣Sn ∩ (Bx,√r \Bx,r)∣∣ ∈ [n
√
r, 3n

√
r]

and that R(Sn, x, r) holds. Note that A0(Sn, x,Rn) occurs
with probability going to 1, due to the marginal distribution
µ being uniform on [0, 1] (and using Bernstein’s Inequality),
i.e., A0 implies that the number of observations in the re-
gions Bx,Rn , Bx,√Rn are in the ranges of values we would
expect them to be, up to a constant. The additional require-
ment that R(Sn, x,Rn) holds does not change the proba-
bility of A0(Sn, x,Rn) going to 1, since the probability of
R(Sn, x,Rn) goes to 1.

Define alsoA+(Sn, x, r) as the property whereAX(x, r),
A0(Sn, x, r) hold, and in addition we have

(xi, yi) ∈ Sn ∩Bx,r −→ yi = −1

(xi, yi) ∈ Sn ∩
(
Bx,
√
r \Bx,r

)
−→ yi = +1

i.e., the majority of points in Bx,√r have label +1, while the
minority in the smaller enclosed region Bx,r have label −1,
and strict locality occurs. Hence if f were applied to Sn, x,
its response would be −1 (due to f being reasonable), de-
spite the numerous slightly farther-off points with label +1.
Likewise define A−(Sn, x, r) as the same property with re-
versed signs. Finally, let A(Sn, x, r) be the property that ei-
ther A+(Sn, x, r) or A−(Sn, x, r) holds. Note that for small
Rn we expect that the probability of A(Sn, x,Rn) be very
small, i.e., it is an odd occurrence.

We define a new method g as follows:

g(Sn, x) =
{
f(Sn, x) ¬A(Sn, x,Rn)
−f(Sn, x) A(Sn, x,Rn)



(i.e., we return one value if the property A(Sn, x,Rn) holds,
and another otherwise). That is, on ‘normal’ training sets g
is the same as f ; however, on odd training sets with property
A, g guesses the opposite of f : it trusts the large number
of points within radius (Rn,

√
Rn) over the smaller num-

ber in radius (0, Rn); g also behaves the same as f for x
close to the boundaries 0, 1 and only changes f ’s behavior
when g takes into account the points in radius Rn and ig-
nores the rest. Note that g is strictly local, like f , albeit with
larger radius. This suffices to prove the proposition and thus
make the claim that strict locality has performance limita-
tions, since it shows that we would always want to raise Rn
to improve performance. In fact we can continue to raise Rn
while the close-by points comprise an ‘odd’ training set in
a sense similar to that mentioned above, which will lead to
a non-strictly local method (since we may end up with large
Rn, even O(1), albeit with small probability).

We will now prove that g has the property described in
the proposition, i.e., that it is preferable to f . Consider some
fixed x ∈ (0, 1), then the corresponding element for x from
the loss Ln(g) = ESn,x|g(Sn, x)− f∗(x)| obeys

ESn |g(Sn, x)− f∗(x)| =
ESn1{A(Sn, x,Rn)}|g(Sn, x)− f∗(x)|
+ ESn1{¬A(Sn, x,Rn)}|g(Sn, x)− f∗(x)|

The last expression is equal to
ESn1{¬A(Sn, x,Rn)}|f(Sn, x)− f∗(x)|

so when comparing Ln(f) to Ln(g) it cancels out. We are
left with evaluating

lx(g) ≡ ESn1{A(Sn, x,Rn)}|g(Sn, x)− f∗(x)|
which we compare to

lx(f) ≡ ESn1{A(Sn, x,Rn)}|f(Sn, x)− f∗(x)|
As mentioned before, when A+(Sn, x, r) holds then f

returns −1, because f considers only the points in radius
r, all of whom have label −1, and because f is reasonable.
Consequently in this case g returns +1, and vice versa for
A−. To consider the difference Ln(g) − Ln(f), which we
want to prove is negative, we can then write

lx(g)− lx(f) (5)
= ESn1{A(Sn, x,Rn)}

(|g(Sn, x)− f∗(x)| − |f(Sn, x)− f∗(x)|)
= ESn1{A+(Sn, x,Rn)}

(|1− f∗(x)| − | − 1− f∗(x)|)
+ ESn1{A−(Sn, x,Rn)}

(| − 1− f∗(x)| − |1− f∗(x)|)
= ESn |1− f∗(x)|

(1{A+(Sn, x,Rn)} − 1{A−(Sn, x,Rn)})
− ESn | − 1− f∗(x)|

(1{A+(Sn, x,Rn)} − 1{A−(Sn, x,Rn)})
= ESn [1{A+(Sn, x,Rn)} − 1{A−(Sn, x,Rn)}]

(|1− f∗(x)| − | − 1− f∗(x)|)

= −2f∗(x)
[
PSn

(
A+(Sn, x,Rn)

)
− PSn

(
A−(Sn, x,Rn)

)]

Our goal is to show that the expected value over x of this
last expression is negative. For convenience we will write
A(Sn, x,Rn) ≡ A,A+(Sn, x,Rn) ≡ A+ and likewise for
A−. Note that, for any x fulfilling 1{AX}, we have that the
probability of A0 converges to 1 as mentioned before. Thus,
we are left to consider the sign of

− Ex1{AX}f∗(x)
[
PSn(A+|A0)− PSn(A−|A0)

]
Denote

Fn(K, k) = PSn(A+|A0,K, k)− PSn(A−|A0,K, k)

where K is the number of observations in radius (Rn,
√
Rn)

and k is the number in (0, Rn), both around x; hence the
relevant set of values for K is [n

√
Rn, 3n

√
Rn], and for k is

[nRn, 3nRn]. Note that Fn depends on x, but we omit it for
clarity for reasons which will soon be obvious.

Let pn(K, k) be the probability of the valuesK, k for any
x fulfilling 1{AX}. Then

− Ex1{AX}f∗(x)
[
PSn(A+|A0)− PSn(A−|A0)

]
= −

∑
K,k

pn(K, k)Ex1{AX}f∗(x)Fn(K, k)

where the sum is over the set of relevant values for K, k as
mentioned before.

We will now show that large enough n we have, for all
relevant K, k, that Ex1{AX}f∗(x)Fn(K, k) > 0; note that
this is enough to finish the proof.

Consider some fixed K, k and some fixed x fulfilling
1{AX}. Assume WLOG that 0 < f∗(x) < 1 (due to the
symmetry in the problem, the other case arrives at the same
result). Using the Lipschitz property of f∗, and since P (y =
1|x) = 1

2 (1+f∗(x)), we can bound the conditional probabil-
ities on A0,K, k (and assuming x fulfills 1{AX}) in the fol-
lowing manner (note that the conditional probabilities only
depend on the behavior of yi values):

PSn(A+|A0,K, k) ≥(
1 + f∗(x)−

√
RnL

)K (1− f∗(x)−RnL)k

2K+k

PSn(A−|A0,K, k) ≤

(1 + f∗(x) +RnL)k
(
1− f∗(x) +

√
RnL

)K
2K+k

Note that these bounds depend only on f∗(x) and not x itself.
Note also that in particular

Fn(K, k) ≥ −
(2 +RnL)k

(
1 +
√
RnL

)K
2K+k

(6)

Now, consider 2K+kEx1{AX}f∗(x)Fn(K, k). We claim
that according to the bounds above, for every x fulfilling
1{AX} we have

inf
K,k

2K+kFn(K, k)→∞ (7)

where the infimum is taken over all relevant K, k. To see
this, recall the assumption that 0 < f∗(x) < 1, and consider



the behavior of the bound for 2K+kPSn(A+|A0,K, k): by
taking the logarithm we get

K log(1 + f∗(x)−
√
RnL) + k log(1− f∗(x)−RnL)

which clearly converges to infinity, even when taking the in-
fimum over K, k, since Rn → 0 and all relevant K con-
verge to infinity faster than all k (recall the ranges of values
of K, k, and that nRn → ∞, so they all converge to in-
finity). Similarly we can see that 2K+kPSn(A−|A0,K, k)
converges to 0, thus showing (7).

In a similar manner we can see that, for every x fulfilling
1{AX}, for large enough n we have

inf
K,k

2K+kFn(K, k) > sup
K,k

(2 +RnL)k
(

1 +
√
RnL

)K
(8)

Note that the RHS is related to the lower bound of Fn(K, k)
as shown in (6).

Taken together, the facts just stated imply that the mea-
sure of points x fulfilling both (7) and (8) converges to 1
(formally, using the dominated convergence theorem on the
identifier function on that set). Due to (6), it is clear that the
values of the other points cannot overcome them from caus-
ing the overall integral to be positive, and we conclude that
Ex1{AX}f∗(x)Fn(K, k) > 0 for large enough n in a man-
ner that does not depend upon K, k (since we have used the
sup, inf over relevant K, k values), proving the result.
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