
Learning coordinate gradients with multi-task kernels

Yiming Ying and Colin Campbell∗

Department of Engineering Mathematics, University of Bristol
Queens Building, University Walk, Bristol, BS8 1TR, UK.

{enxyy, C.Campbell}@bris.ac.uk

Abstract

Coordinate gradient learning is motivated by the
problem of variable selection and determining vari-
able covariation. In this paper we propose a novel
unifying framework for coordinate gradient learn-
ing (MGL) from the perspective of multi-task learn-
ing. Our approach relies on multi-task kernels to
simulate the structure of gradient learning. This
has several appealing properties. Firstly, it allows
us to introduce a novel algorithm which appropri-
ately captures the inherent structure of coordinate
gradient learning. Secondly, this approach gives
rise to a clear algorithmic process: a computational
optimization algorithm which is memory and time
efficient. Finally, a statistical error analysis en-
sures convergence of the estimated function and
its gradient to the true function and true gradient.
We report some preliminary experiments to vali-
date MGL for variable selection as well as deter-
mining variable covariation.

1 Introduction
Let X ⊆ Rd be compact, Y ⊆ R, Z = X × Y , and
Nn = {1, 2 . . . , n} for any n ∈ N. A common theme in
machine learning is to learn a target function f∗ : X → Y
from a finite set of input/output samples z = {(xi, yi) : i ∈
Nm} ⊆ Z. However, in many applications, we not only wish
to learn the target function, but also want to find which vari-
ables are salient and how these variables interact with each
other. This problem has practical motivations: to facilitate
data visualization and dimensionality reduction, for exam-
ple. Such a motivation is important when there are many
redundant variables and we wish to find the salient features
among these. These problems can occur in many contexts.
For example, with gene expression array datasets, the vast
majority of features may be redundant to a classification task
and we need to find a small set of genuinely distinguishing
features. These motivations have driven the design of vari-
ous statistical and machine learning models [8, 11, 21, 22]
for variable (feature) selection.
Here, we build on previous contributions [15, 16, 17] by ad-
dressing coordinate gradient learning and its use for variable

∗We acknowledge support from EPSRC grant EP/E027296/1.

selection and covariation learning, the interaction between
variables. Specifically, for any x ∈ X , we denote x by
(x1, x2, . . . , xd). The target is to learn the gradient of f∗
(if it exists) denoted by a vector-valued function ∇f∗(x) =(

∂f∗
∂x1 , . . . , ∂f∗

∂xd

)
. The intuition behind gradient learning for

variable selection and coordinate covariation is the follow-
ing. The inner product between components of ∇f∗ indi-
cates the interaction between coordinate variables. Specific
norms of ∂f∗

∂xp can indicate the salience of the p-th variable:
the smaller the norm is, the less important this variable will
be.
In this paper we propose a novel unifying formulation of co-
ordinate gradient learning from the perspective of multi-task
learning. Learning multiple tasks together has been exten-
sively studied both theoretically and practically in several
papers [1, 2, 5, 7, 13, 14]. One way to frame this problem
is to learn a vector-valued function where each of its compo-
nents is a real-valued function and corresponds to a particu-
lar task. A key objective in this formulation is to capture an
appropriate structure among tasks so that common informa-
tion is shared across tasks. Here we follow this methodol-
ogy and employ a vector-valued function −→f = (f1,

−→
f2) =

(f1, f2, . . . , fd+1), where f1 is used to simulate f∗, and −→f2

is used to simulate its gradient ∇f∗. We assume that −→f
comes from a vector-valued reproducing kernel Hilbert space
(RKHS) associated with multi-task (matrix-valued) kernels,
see [14]. The rich structure of RKHS space reflects the latent
structure of multi-task gradient learning, i.e. the pooling of
information across components (tasks) of ∇f∗ using multi-
task kernels.
The paper is organized as follows. In Section 2, we first re-
view the definition of multi-task kernels and vector-valued
RKHS. Then, we propose a unifying formulation of coor-
dinate gradient learning from the perspective of multi-task
learning which is referred to as multi-task gradient learning
(MGL). The choices of multi-task kernels motivate different
learning models [11, 15, 16, 17]. This allows us to introduce
a novel choice of multi-task kernel which reveals the inherent
structure of gradient learning. Kernel methods [19, 20] usu-
ally enjoy the representer theorem which paves the way for
designing efficient optimization algorithms. In Section 3 we
explore a representer theorem for MGL algorithms. Subse-
quently, in Section 4 we discuss computational optimization
approaches for MGL algorithms, mainly focusing on least
square loss and the SVM counterpart for gradient learning.



A statistical error analysis in Section 5 ensures the conver-
gence of the estimated function and its gradient to the true
function and true gradient. Finally, in Section 6 preliminary
numerical experiments are reported to validate our proposed
approach.

1.1 Related work

A number of machine learning and statistical models have
been proposed for variable (feature) selection. Least abso-
lute shrinkage and selection operator (LASSO) [21] and ba-
sis pursuit denoising [8] suggest use of `1 regularization to
remove redundant features. Weston et al [22] introduced a
method for selecting features by minimizing bounds on the
leave-one-out error.
Guyon et al [11] proposed recursive feature elimination (RFE)
which used a linear kernel SVM: variables with least influ-
ence on the weights 1

2‖w‖2 are considered least important.
Although these algorithms are promising, there remain un-
resolved issues. For example, they do not indicate variable
covariation and the extension of these algorithms to the non-
linear case was marginally discussed. Our method outlined
here covers variable covariation and nonlinear feature selec-
tion. As such, in Section 2, we show that RFE-SVM is a
special case of our multi-task formulation.
Motivated by the Taylor expansion of a function at samples
{xi : i ∈ Nm}, Mukherjee et al [15, 16, 17] proposed an
algorithm for learning the gradient function. They used the
norm of its components for variable (feature) selection and
spectral decomposition of the covariance of the learned gra-
dient function for dimension reduction [16]. Specifically, let
HG be a scalar RKHS (see e.g. [3]) and use f1 ∈ HG to sim-
ulate f∗. For any p ∈ Nd, a function fp+1 ∈ HG is used to
learn ∂f∗/∂xp. The results presented by Mukherjee et al are
quite promising both theoretically and practically, but there
is no pooling information shared across the components of
the gradient. This may lead to less accurate approximation
to the true gradient. We will address all these issues in our
unifying framework.

2 Multi-task kernels and learning gradients

In this section we formulate the gradient learning problem
from the perspective of multi-task learning. Specifically, we
employ a vector-valued RKHS to simulate the target func-
tion and its gradient. The abundant structure of vector-valued
RKHS enables us to couple information across components
of the gradient in terms of multi-task kernels.

2.1 Multi-task model for gradient learning

We begin with a review of the definition of multi-task kernels
and introduce vector-valued RKHS (see [14] and the refer-
ence therein). Throughout this paper, we use the notation
〈·, ·〉 and ‖ · ‖ to denote the standard Euclidean inner product
and norm respectively.

Definition 1 We say that a function K : X ×X → Rd+1 ×
Rd+1 is a multi-task (matrix-valued) kernel on X if, for any
x, t ∈ X ,K(x, t)T = K(t, x), and it is positive semi-definite,
i.e., for any m ∈ N, {xj ∈ X : j ∈ Nm} and {yj ∈ Rd+1 :

j ∈ Nm} there holds
∑

i,j∈Nm

〈yi,K(xi, xj)yj〉 ≥ 0. (1)

In the spirit of Moore-Aronszjain’s theorem, there exists a
one-to-one correspondence between the multi-task kernel K
with property (1) and a vector-valued RKHS of functions−→
f : X → Rd+1 with norm 〈·, ·〉K denoted by HK, see e.g.
[14]. Moreover, for any x ∈ X , y ∈ Rd+1 and −→f ∈ HK,
we have the reproducing property

〈−→f (x),y〉 = 〈−→f ,Kxy〉K (2)

where Kxy : X → Rd+1 is defined, for any t ∈ X , by
Kxy(t) := K(t, x)y.
In the following we describe our multi-task kernel-based frame-
work for gradient learning. Following Mukherjee et al [15,
17], the derivation of gradient learning can be motivated by
the Taylor expansion of f∗: f∗(xi) ≈ f∗(xj)+∇f∗(xj)(xi−
xj)T . Since we wish to learn f∗ with f1 and ∇f∗ with −→f2 ,
replacing f∗(xi) by yi, the error1

yi ≈ f1(xj) +−→
f2(xj)(xi − xj)T

is expected to be small whenever xi is close to xj . To enforce
the constraint that xi is close to xj , we introduce a weight
function produced by a Gaussian with deviation s defined by

wij = 1
sd+2 e

−‖xi−xj‖2
2s2 . This implies that wij ≈ 0 if xi is far

away from xj .
We now propose the following multi-task formulation for
gradient learning (MGL):

−→
fz = arg min−→

f ∈HK

{ 1
m2

∑

i,j

wijL(yi,

f1(xj) +−→
f2(xj)(xi − xj)T ) + λ‖−→f ‖2K

}
.

(3)

where L : R × R → [0,∞) is a prescribed loss function
and λ is usually called the regularization parameter. The
minimum is taken over a vector-valued RKHS with multi-
task kernel K. The first component f1,z of the minimizer −→fz

of the above algorithm is used to simulate the target function
and the other components −→f2z := (f2,z, . . . , fd+1,z) to learn
its gradient function. In Section 6, we will discuss how to use
the solution −→fz for variable selection as well as covariation
measurement.
Different choice of loss functions yield different gradient
learning algorithms. For instance, if the loss function L(y, t) =
(y − t)2 then algorithm (3) leads to the least-square multi-
task gradient learning (LSMGL):

arg min−→
f ∈HK

{ 1
m2

∑

i,j∈Nm

wij

[
yi − f1(xj)

−−→f2(xj)(xi − xj)T
]2 + λ‖−→f ‖2K

}
.

(4)

In classification, the choice of loss function L(y, t) = (1 −
yt)+ in algorithm (3) yields the support vector machine for
multi-task gradient learning (SVMMGL):

1Our form of Taylor expansion is slightly different from that
used in [15, 17]. However, the essential idea is the same.



arg min−→
f ∈HK

b∈R

{ 1
m2

∑
i,j∈Nm

wij

[
1− yi(f1(xj)

+b +−→
f2(xj)(xi − xj)T )

]
+

+ λ‖−→f ‖2K
}

.

(5)

Here, f1(x) + b is used to learn the target function and −→f2 ,
simulating the gradient of the target function. Hence b plays
the same role of offset as in the standard SVM formulation.
In this case, at each point xi the error between the output yi

and f(xi) is now replaced by the error between yi and the
first order Taylor expansion of f(xi) at xj , i.e., f1(xj) +−→
f2(xj)(xi − xj)T .

2.2 Choice of multi-task kernels
We note that if K is a diagonal matrix-valued kernel, then
each component of a vector-valued function in the associ-
ated RKHS of K can be represented, independently of the
other components, as a function in the RKHS of a scalar ker-
nel. Consequently, for a scalar kernel G if we choose the
multi-task kernel K given, for any x, t ∈ X , by K(x, t) =
G(x, t)Id+1 then the MGL algorithm (3) is reduced to the
gradient learning algorithm proposed in [15, 16, 17] using
(d + 1)-folds of scalar RKHS. There, under some condi-
tions on the underlying distribution ρ, it has been proven
that f1,z → f∗ and −→f2z → ∇f∗ when the number of sam-
ples tends to infinity. Although their results are promising
both theoretically and practically, a more inherent structure
would be −→f2z = ∇f1,z. In our MGL framework (3), we can
recover this structure by choosing the multi-task kernel ap-
propriately.
Our alternative choice of multi-task kernel is stimulated by
the Hessian of Gaussian kernel proposed in [7]. For any
scalar kernel G and any x, t ∈ X , we introduce the func-
tion

K(x, t) =
(

G(x, t), (∇tG(x, t))T

∇xG(x, t) ∇2
xtG(x, t)

)
(6)

which we will show to be a multi-task kernel. To see this,
let `2 be the Hilbert space with norm ‖w‖2`2 =

∑∞
j=1 w2

j .

Suppose that G has a feature representation, i.e., G(x, t) =
〈φ(x), φ(t)〉`2 and, for any f ∈ HG, there exits a vector
w ∈ `2 such that f(x) = 〈w, φ(x)〉`2 and

‖f‖G = ‖w‖`2 .

Indeed, if the input space X is compact and G : X ×X →
R is a Mercer kernel, i.e., it is continuous, symmetric and
positive semi-definite, then, according to Mercer theorem, G
always has the above feature representation (see e.g. [9]).
Now we have the following proposition about K defined by
equation (6). Let ẽp be the p-th coordinate basis in Rd+1.

Theorem 2 For any smooth scalar Mercer kernel G, define
function K by equation (6). Then, K is a multi-task kernel
and, for any −→f = (f1,

−→
f2) ∈ HK there holds

−→
f2 = ∇f1. (7)

Proof: Since G is a scalar kernel, for any x, t ∈ X we have
that G(x, t) = G(t, x). Therefore, K(x, t)T = K(t, x).
Moreover, G is assumed to be a Mercer kernel which implies
that it has a feature representation G(x, t) = 〈φ(x), φ(t)〉`2 .
Consequently,∇tG(x, t) = (φ(x),∇φ(t)) and∇xG(x, t) =
(∇φ(x), φ(t)), and ∇2

xtG(x, t) = 〈∇φ(x),∇φ(t)〉`2 . Then,
we introduce, for any w ∈ `2, x ∈ X,y ∈ Rd+1, the feature
map Φ(x) : `2 → Rd+1 defined by

Φ(x)w := (〈φ(x), w〉`2 , 〈∂1φ(x), w〉`2 , . . . , 〈∂dφ(x), w〉`2)T
.

Its adjoint map Φ∗ is given, for any t ∈ X and y ∈ Rd+1, by
Φ∗(t)y := φ(x)y1+

∑
p∈Nd

∂pφ(x)yp+1. Hence,K(x, t)y =
Φ(x)Φ∗(t)y. Consequently, for any m ∈ N, any i, j ∈ Nm

and yi,yj ∈ Rd+1, it follows
∑

i,j∈Nm
〈yi,K(xi, xj)yj〉 =

‖∑
i∈Nm

Φ∗(xi)yi‖2`2 is nonnegative which tells us that K
is a multi-task kernel.
We turn to the second assertion. When −→f is in the form of a
finite combination of kernel section {Kxy : y ∈ Rd+1, x ∈
X}, the second assertion follows directly from the definition
of K. For the general case, we use the fact that the vector-
valued RKHS is the closure of the span of kernel sections,
see [14]. To this end, assume that there exists a sequence
{−→fj = (f j

1 , f j
2 , . . . , f j

d+1)} of finite combination of kernel
sections such that −→fj → −→

f ∈ HK w.r.t. the RKHS norm.
Hence, by the reproducing property (2), for any x ∈ X and
p ∈ Nd, |f j

p+1(x) − fp+1(x)| = |〈ẽp+1,
−→
fj (x) − −→f (x)〉| =

|〈−→fj − −→
f ,Kxẽp+1〉K| ≤ ‖−→fj − −→

f ‖K
√

ẽT
p+1K(x, x)ẽp+1

which tends to zeros as j tends to infinity. Consequently, it
follows, for any x ∈ X ,

f j
p+1(x) → fp+1(x), as j →∞. (8)

Let δp ∈ Rd be a vector with its p-th component δ > 0
and others equal zero. Applying the reproducing property
(2) yields that

∣∣∣ [fj
1 (x+δp)−fj

1 (x)]−[f1(x+δp)−f1(x)]
δ

∣∣∣
=

∣∣∣ 1
δ 〈
−→
fj −−→f ,Kx+δp

ẽ1 −Kxẽ1〉K
∣∣∣

≤ ‖−→fj −−→f ‖K〈ẽ1,
1
δ2

[K(x + δp, x + δp)
+K(x, x)−K(x, x + δp)−K(x + δp, x)

]
ẽ1〉 1

2

= ‖−→fj −−→f ‖K
(

1
δ2

[
G(x + δp, x + δp)

G(x, x)−G(x, x + δp)−G(x + δp, x)
]) 1

2
.

Since G is smooth and X is compact there exists an absolute
constant c̃ > 0 such that, for any δ > 0, the above equation
is furthermore bounded by

∣∣∣ [fj
1 (x+δp)−fj

1 (x)]−[f1(x+δp)−f1(x)]
δ

∣∣∣
≤ c̃ ‖−→fj −−→f ‖K.

Consequently, letting δ → 0 in the above equation it follows
|∂pf

j
1 (x) − ∂pf1(x)| → 0 as j tends to infinity. Combining

this with equation (8) and the fact that f j
p+1(x) = ∂pf

j
1 (x)

implies that ∂pf1(x) = fp+1(x) which completes the theo-
rem.



The scalar kernel G plays the role of a hyper-parameter to
produce the multi-task kernel K given by equation (6). By
the above theorem, if we choose K to be defined by equation
(6) then any solution fz = (f1,z,

−→
f2z) of algorithm (3) enjoys

the structure −→f2z = ∇f1,z.
Further specifying the kernel G in the definition (6) of multi-
task kernel K, we can recover the RFE feature ranking algo-
rithm for a linear SVM [11]. To see this, let G be a linear ker-
nel. In the next section, we will see that, for any solution −→fz

of MGL algorithm (3), there exists {cj,z ∈ Rd+1 : j ∈ Nm}
such that −→fz =

∑
j∈Nm

Kxj
cj,z. Since G is linear, com-

bining this with Theorem 2 we know that f1,z(x) = WT
z x

with Wz =
∑

j(x
T
j , 1)cj,z ∈ R and −→f2z = ∇f1,z = WT

z .
Consequently, in the case we have that

f1,z(xj) +−→
f2z(xj)(xi − xj) = WT

z xi = f1,z(xi).

Moreover, by the reproducing property (2) we can check that

‖−→fz‖2K = ‖f1,z‖2G = ‖Wz‖2.
Putting the above equations together, in this special case we
know that the SVMMGL algorithm (5) is reduced, with the
choice of wij = 1, to the classical learning algorithm:

min
W∈Rd

{ 1
m

∑

i∈Nm

(1− yi(WT xi + b))+ + λ‖W‖2
}

.

Hence, our formulation of gradient learning (3) can be re-
garded as a generalization of RFE-SVM [11] to the nonlinear
case.
In the subsequent sections we discuss a general representa-
tion theorem and computational optimization problems mo-
tivated by MGL algorithms.

3 Representer theorem
In this section we investigate the representer theorem for the
MGL algorithm (3). This forms a foundation for the deriva-
tion of a computationally efficient algorithm for MGL in
Section 4.
Recall that ẽp is the p-th coordinate basis in Rd+1 and, for
any x ∈ Rd, denote the vector x̃T by (0, xT ). By the repro-
ducing property (2), we have that f1(xj) = 〈−→f (xj), ẽ1〉 =
〈−→f ,Kxj ẽ1〉K and likewise,−→f2(xj)(xi−xj)T = 〈−→f (xj), x̃i−
x̃j〉 = 〈−→f ,Kxj (x̃i − x̃j)〉K. Then, the algorithm (3) can be
rewritten by

arg min−→
f ∈HK

{
1

m2

∑
i,j∈Nm

wijL
(
yi, 〈−→f ,

Kxj (ẽ1 + x̃i − x̃j)〉K
)

+ λ‖−→f ‖2K
}

.

(9)

In analogy with standard kernel methods [19, 20], we have
the following representer theorem for MGL by using the prop-
erties of multi-task kernels.

Theorem 3 For any multi-task kernel K, consider the gra-
dient learning algorithm (3). Then, there exists representer
coefficients {cj,z ∈ Rd+1 : j ∈ Nm} such that

−→
fz =

∑

j∈Nm

Kxj
cj,z

and, for every j ∈ Nm, the representer coefficient cj,z ∈
span{ẽ1, x̃i : i ∈ Nm}.

Proof: We can write any minimizer−→fz ∈ HK as−→fz = −→
f ‖+

−→
f ⊥ where −→f ‖ is in the span

{Kxj
ẽ1,Kxj

x̃i, i, j ∈ Nm

}

and −→f ⊥ is perpendicular to this span space. By the repro-
ducing property (2), we have that 〈−→f (xj), ẽ1 + x̃i − x̃j〉 =
〈−→f ,Kxj

(ẽ1 + x̃i − x̃j)〉K = 〈−→f ‖,Kxj
(ẽ1 + x̃i − x̃j)〉K.

Hence, −→f ⊥ makes no contribution to the loss function in
the MGL algorithm (9) (i.e. algorithm (3)). However, the
norm ‖−→f ‖2K = ‖−→f ‖‖2K + ‖−→f ⊥‖2K > ‖f‖‖2K unless f⊥ =
0. This implies, any solution −→fz belongs to the span space{Kxj

ẽ1,Kxj
x̃i, i, j ∈ Nm

}
and the corresponding represen-

ter coefficients belong to the span of {ẽ1, x̃i : i ∈ Nm}.

The representer theorem above tells us that the optimal so-
lution −→fz of algorithm (3) lives in the finite span of training
samples which paves the way for designing efficient opti-
mization algorithms for multi-task gradient learning.

4 Optimization and solution
In this section, by the above representer theorem, we ex-
plore efficient algorithms for computing the representer coef-
ficients. For clarity, we mainly focus on least-square multi-
task gradient learning algorithms (LSMGL). At the end of
this section, the support vector machine for gradient learning
(SVMMGL) in classification will be briefly discussed. One
can apply the subsequent procedures to other loss functions.

4.1 Computation of representer coefficients
To specify the solution of LSMGL, we denote the column
vector Cz ∈ Rm(d+1) by consecutively catenating all col-
umn vectors {cj,z ∈ Rd+1 : j ∈ Nm} and, likewise we
define a column vector Y ∈ Rm(d+1) by catenating column
vectors {yi ∈ Rd+1 : i ∈ Nm}. Moreover, we introduce an
m(d+1)×m(d+1) matrix by catenating all (d+1)×(d+1)
matrix K(xi, xj) denoted by

Kx = (K(xi, xj))i,j∈Nm
.

Finally, we introduce a system of equations

m2λcj + Bj

∑
l∈Nm

K(xj , xl)cl = yj , ∀j ∈ Nm (10)

where Bj =
∑

i∈Nm
wij(ẽ1+x̃i−x̃j)(ẽ1+x̃i−x̃j)T , yj =∑

i∈Nm
wijyi(ẽ1 + x̃i − x̃j).

We now can solve the LSMGL algorithm by the following
theorem.

Theorem 4 For any j ∈ Nm, the vectors Bj ,yj be defined
by equation (10). Then, the representer coefficients Cz for
the solution of the LSMGL algorithm are given by the fol-
lowing equation

Y =
(
m2λIm(d+1) + diag

(
B1, . . . , Bm

)Kx

)m

i,j=1

)
Cz.

(11)

Proof: By Theorem 3, there exists {cj,z ∈ Rd+1 : j ∈
Nm} such that −→fz =

∑
j∈Nm

Kxj
cj,z. However, taking the



functional derivative of algorithm (3) with respective to f

yields that 1
m2

∑
i,j∈Nm

wij

(〈−→fz,Kxj
(ẽ1 + x̃i − x̃j)〉K −

yi

)Kxj
(ẽ1 + x̃i − x̃j) + λ

−→
fz = 0 which means that cj,z =

1
m2λ

∑
i∈Nm

wij(yi− 〈−→fz,Kxj
(ẽ1 + x̃i− x̃j)〉K)(ẽ1 + x̃i−

x̃j). Equivalently, equation (10) holds true, and hence com-
pletes the assertion.

Solving equation (11) involves the inversion of an m(d +
1) × m(d + 1) matrix whose time complexity is usually
O((md)3). However, it is computationally prohibitive since
the coordinate (feature) dimension d is very large in many
applications. Fortunately, as suggested in Theorem 3, the
representer coefficients {cj,z : j ∈ Nm} can be represented
by the span of column vectors of matrix

M̃x = {ẽ1, x̃1, . . . , x̃m−1, x̃m}.
This observation suggests the possibility of reduction of the
original high dimensional problem in Rd+1 to the low di-
mensional space spanned by M̃x. This low dimensional space
can naturally be introduced by singular vectors of M̃x.
To this end, we consider the representation of the matrix M̃x

by its singular vectors. It will be proven to be useful to
represent matrix M̃x from the singular value decomposition
(SVD) of the data matrix defined by

Mx =
[
x1, x2, . . . , xm−1, xm

]
.

Apparently, the rank s of Mx is at most min(m, d). The
SVD of Mx tells us that there exists orthogonal matrices
Vd×d and Um×m such that

Mx = [V1, . . . , Vd] Σ




U1

...
Um




T

= [V1, . . . , Vs] (β1, . . . , βm)

(12)

Here, the d×m matrix Σ =
[

diag
{
σ1, . . . , σs

}
0

0 0

]
. For

any j ∈ Nm, we use the notation Uj = (U1j , . . . , Umj) and
βT

j = (σ1U1j , σ2U2j , . . . , σsUsj) ∈ Rs. From now on we
also denote

V = [V1, . . . , Vs] (13)
Hence, we have, for any j ∈ Nm, that xj = Vβj .

We are now ready to specify the representation of M̃x from
the above SVD of Mx, To see this, for any l ∈ Ns and j ∈
Nm, let Ṽ T

l = (0, V T
l ), β̃T

j = (0, βT
j ). In addition, we

introduce the (d + 1)× (s + 1) matrix

Ṽ =
(

1 0
0 V

)
=

[
ẽ1, Ṽ1, . . . , Ṽs

]
(14)

which induces a one-to-one mapping Ṽ : Rs+1 → Rd+1

defined, for any β ∈ Rs+1, by x = Ṽβ ∈ Rd+1 since column
vectors in Ṽ are orthogonal to each other. Consequently, it
follows that

M̃x = Ṽ [e1, β̃1, . . . , β̃m],
where e1 is the standard first coordinate basis inRs+1. Equiv-
alently, for any i, j ∈ Nm,

ẽ1 = Ṽe1, x̃j = Ṽβ̃j . (15)

We now assemble all material to state the reduced system
associated with equation (11). For this purpose, firstly we
define the kernel K̃, for any x, t ∈ X , by

K̃(x, t) := ṼTK(x, t)Ṽ,

and introduce the m(s+1)×m(s+1) matrix by catenating
all (s + 1)× (s + 1) matrices K̃(xi, xj):

K̃x =
(K̃(xi, xj)

)
i,j∈Nm

. (16)

Secondly, for any j ∈ Nm, set Bj =
∑

i∈Nm
wij(e1 + β̃i −

β̃j)(e1 + β̃i − β̃j)T and Yj =
∑

i∈Nm
wijyi(e1 + β̃i − β̃j).

Thirdly, associated with the system (10), for any j ∈ Nm and
γj ∈ Rs+1, we define the system in reduced low dimensional
space Rs+1

m2λγj + Bj

∑

l∈Nm

K̃(xj , xl)γl = Yj . (17)

Finally, in analogy with the notation Y, the column vector
Y ∈ Rm(s+1) is defined by successively catenating column
vectors {Yi ∈ Rs+1 : i ∈ Nm}. Likewise we can define γz

by catenating column vectors {γj,z ∈ Rs+1 : j ∈ Nm}.
With the above preparation we have the following result.

Theorem 5 If the {γj,z ∈ Rs+1 : j ∈ Nm} is the solution
of system (17), i.e.,

Y =
(
m2λIm(s+1) + diag

(
B1, . . . ,Bm

)K̃x

)
γ, (18)

then the coefficient Cz defined, for any j ∈ Nm, by cj,z =
Ṽγj,z is one of the solution of system (11), and thus yields
representation coefficients of the solution−→f z for the LSMGL
algorithm (3).

Proof: Let γz is the solution of system (17). Since Ṽ is
orthogonal, the system (17) is equivalent to the following
equation

m2λṼγjz + ṼBj

∑

l∈Nm

K̃(xj , xl)γlz = ṼYj .

Recall, for any j ∈ Nm, that Bj = ṼBjṼT , Ṽe1e1ṼT =
ẽ1ẽ

T
1 , ṼT Ṽ = Is+1, and Yj = ṼYj . Hence, the above sys-

tem is identical to system (11) (i.e. system (10)) with Cj

replaced by Ṽγj,z which completes the assertion.

We end this subsection with a brief discussion of the solu-
tion of the SVMMGL algorithm. Since the hinge loss is not
differentiable, we cannot use the above techniques to derive
an optimization algorithm for SVMMGL. Instead, we can
consider its dual problem. To this end, we introduce slack
variables {ξij : i, j ∈ Nm} and rewrite SVMMGL as fol-
lows:





arg min−→
f ,ξ,b

{ 1
m2

∑

i,j∈Nm

wijξij + λ‖−→f ‖2K
}

s.t. yi(〈−→f ,Kxj
(ẽ1 + x̃i − x̃j)〉K + b) ≥ 1− ξij ,

ξij ≥ 0, ∀i, j ∈ Nm.
(19)



Given a multi-task kernel K produced by scalar kernel G, λ > 0 and inputs {(xi, yi) : i ∈ Nm}
1. Compute projection mapping Ṽ and reduced vector β̃j from equations (12), (13), and (14).
2. Compute K̃(xj , xi) = ṼTK(xj , xi)Ṽ (i.e. equation (16))
3. Solving equation (18) to get coefficient γz, see Theorem 5 (equivalently, equation (25)

when G is linear or RBF kernel, see Theorem 6).
4. Output vector-valued function: −→fz(·) =

∑
j∈Nm

K(·, xj)(Ṽγj,z).
5. Compute variable covariance and ranking variables using Proposition 1 in Section 6.

Table 1: Pseudo-code for least square multi-task gradient learning

Parallel to the derivation of the dual problem of standard
SVM (e.g. [20, 23]), using Lagrangian theory we can ob-
tain the following dual problem of SVMMGL:




arg max
α

∑

i,j∈Nm

αij − 1
4m2λ

∑

i,j,i′,j′∈Nm

αijyiαi′j′yi′

× [
(ẽ1 + x̃i − x̃j)TK(xj , xj′)(ẽ1 + x̃i′ − x̃j′)

]

s.t.
∑

i,j∈Nm
yiαij = 0, 0 ≤ αij ≤ wij , ∀i, j ∈ Nm.

(20)
Moreover, if the solution of dual problem is αz = {αij,z :
i, j ∈ Nm} then the solution of SVMMGL can be repre-
sented by

−→
fz =

1
2m2λ

∑

i,j∈Nm

yiαij,zKxj
(ẽ1 + x̃i − x̃j).

Note that
(
(ẽ1 + x̃i − x̃j)TK(xj , xj′)(ẽ1 + x̃i′ − x̃j′)

)
(i,j),(i′,j′)

is a scalar kernel matrix with double indices (i, j) and (i′, j′).
Then, when the number of samples is small the dual prob-
lem of SVMMGL can be efficiently solved by quadratic pro-
gramming with α ∈ Rm2

.

4.2 Further low dimensional formulation
Consider the multi-task kernel K defined by equation (6)
with scalar kernel G. In this section, by further specify-
ing G we show that LSMGL algorithm (4) with input/output
{(xi, yi) : i ∈ Nm} can be reduced to its low dimensional
formulation with input/output {(βi, yi) : i ∈ Nm}, where βj

is defined by equation (12). This clarification will provide a
more computationally efficient algorithm.
To this end, consider the scalar kernel G defined on Rd ×
Rd. By definition of kernels (called restriction theorem in
[3]), we can see that G is also a reproducing kernel on Rs ×
Rs. Hence, K defined by equation (6) on Rd is also a multi-
task kernel on the underlying space Rs; we use the same
notation K when no confusion arises. Therefore, associated
with the LSMGL algorithm (4) in Rd we have an LSMGL in
low dimensional input space Rs:

−→gz = arg min−→g ∈HK
{

1
m2

∑
i,j

wij

[
yi−

g1(βj)−−→g2(βj)(βi − βj)T
]2 + λ‖−→g ‖2K

}
.

(21)

In analogy with the derivation of the system (10), for any
j ∈ Nm and γj ∈ Rs+1, we know that the representer coeffi-
cients of the LSMGL algorithm (21) in reduced low dimen-
sional space Rs+1 satisfy that

m2λγj + Bj

∑

l∈Nm

K(βj , βl)γl = Yj . (22)

We are now ready to discuss the relation between represen-
ter coefficients of the LSMGL algorithm (4) and those of re-
duced LSMGL algorithm (21). For this purpose, let G to sat-
isfy, for any d× s matrix V , that V T V = Is and β, β′ ∈ Rs,
that

G(V β, V β′) = G(β, β′). (23)
There exists abundant functions G satisfying the above prop-
erty. For instance, linear product kernel G(x, t) = xT t,
Gaussian kernel G(x, t) = e−‖x−t‖2/2σ , and sigmoid kernel
G(x, t) = tanh(axT t + r) with parameters a, r ∈ R. More
generally, kernel G satisfies property (23) if it is produced by
a radial basis function (RBF) h : (0,∞) → R defined, for
any x, t ∈ X , by

G(x, t) = h(‖x− t‖2). (24)
We say a function h : (0,∞) → R is complete monotone if it
is smooth and, for any r > 0 and k ∈ N, (−1)kf (k)(r) ≥ 0.
Here h(k) denotes the k-th derivative of h. According to
the well-known Schoenberg’s theorem [18], if h is complete
monotone then the function G defined by equation (24) is
positive semi-definite, and hence becomes a scalar kernel.
For instance, the choice of h(t) = e

−‖t‖
2σ with standard devi-

ation σ > 0 and h(t) = (σ2 + ‖x − t‖2)−α with parameter
α > 0 yield Laplacian kernel and inverse polynomial kernel
respectively.
Now we are in a position to summarize the reduction the-
orem for multi-task kernels (6) produced by scalar kernels
G satisfying (23). Here we also use the convention that
Kβ =

(K(βi, βj)
)
i,j∈Nm

.

Theorem 6 Let G have the property (23) and K be defined
by equation (6). Suppose {γj,z : j ∈ Nm} are the represen-
ter coefficients of algorithm (21), i.e., γz solves the equation

Y =
(
m2λIm(s+1) + diag

(
B1, . . . ,Bm

)Kβ

)
γz, (25)

Then, the representer coefficients {cj,z : j ∈ Nm} of algo-
rithm (4) are given by

cj,z = Ṽγj,z.



Proof: Suppose the multi-task kernel K is produced by G
with property (23). Recall that VTV = Is with V given by
(14). Then, kernel K satisfies, for any x = Vβ and t = Vβ′
with V , that

K(x, t) = K(Vβi,Vβj)

=
(

G(β, β′), (V∇βi
G(βi, βj))T

V∇βj G(βi, βj), V(∇βi∇βj G(βi, βj))VT

)
.

Hence, it follows, for any xi, xj ∈ X and i, j ∈ Nm, that

K̃(xi, xj) =
(

1 0
0 V

)T

K(xi, xj)
(

1 0
0 V

)
= K(βi, βj).

Therefore, the system (17) is identical to the system (22).
Consequently, the desired assertion follows directly from The-
orem 5.

Equipped with Theorem 6, the time complexity and com-
puter memory can be further reduced by directly computing
m(s + 1) ×m(s + 1) matrix Kβ instead of first computing
m(d + 1)×m(d + 1) matrix Kx and then K̃x in Theorem 5.
Theorem 6 also gives an appealing insight into multi-task
gradient learning framework. Roughly speaking, learning
gradient in the high dimensional space is equivalent to learn-
ing them in the low dimensional projection space spanned by
the input data.

5 Statistical error analysis
In this section we give an error analysis for least square MGL
algorithms. Our target is to show that the learned vector-
valued function from our algorithm statistically converges to
the true function and true gradient.
For the least square loss, denote by ρX(·) the marginal dis-
tribution on X and, for any x ∈ X , let ρ(·|x) to be the con-
ditional distribution on Y . Then, the target function is the
regression function fρ minimizing the generalization error

E(f) =
∫

Z

(y − f(x))2dρ(x, y).

Specifically, the regression function is defined, for any x ∈
X , by

fρ(x) = arg min
t∈R

∫

Y

(y − t)2ρ(y|x) =
∫

Y

ydρ(y|x).

Hence, in this case the purpose of error analysis is to show
that solution −→fz of LSMGL algorithm (4) statistically con-
verges to −→fρ = (fρ,∇fρ) as m → ∞, s = s(m) → 0 and
λ = λ(m) → 0.
To this end, we introduce some notations and the follow-
ing hypotheses are assumed to be true throughout this sec-
tion. Firstly, we assume that Y ⊆ [−M, M ] with M > 0.
Since X is compact the diameter of X denoted by D =
supx,u∈X ‖x − u‖2 is finite. Secondly, denote by L2

ρX
the

space of square integral functions −→f : X → Rd+1 with
norm ‖−→f ‖2ρX

=
∫

X
‖−→f (x)‖2dρX(x). Finally, denote the

boundary of X by ∂X . We assume, for some constant cρ >
0, that the marginal distribution satisfies that

ρX

(
x ∈ X : dist(x, ∂X) < s

)
≤ cρs, ∀0 < s < D. (26)

and, for some parameter 0 < θ ≤ 1, the density function
p(x) of ρX satisfies θ-Hölder continuous condition, i.e., for
any x, u ∈ X there holds

|p(x)− p(u)| ≤ cρ‖x− u‖θ, ∀x, u ∈ X. (27)

Of course, p is a bounded function on X since it is contin-
uous and X is compact. For instance, if the boundary of X
is piecewise smooth and ρX is the uniform distribution over
X then the marginal distribution ρX satisfies conditions (26)
and (27) with parameter θ = 1.
We are ready to present our statistical error analysis of LSMGL
algorithms. Recall here we used the notation−→fρ = (fρ,∇fρ).

Theorem 7 Suppose that the marginal distribution ρX sat-
isfies (26) and (27). For any multi-task kernel K, let −→fz be
the solution of LSMGL algorithm. If −→fρ ∈ HK then there
exists a constant c such that, for any m ∈ N, with the choice
of λ = s2θ and s = m− 1

3(d+2)+4θ , there holds

E
[‖−→fz −−→fρ‖2ρX

] ≤ cm− θ
3(d+2)+4θ .

If moreover ρX is a uniform distribution then, choosing λ =
sθ and s = m− 1

3(d+2)+5θ , there holds

E
[‖−→fz −−→fρ‖2ρX

] ≤ cm− θ
3(d+2+θ) .

The proof of this theorem needs several steps which are post-
poned to the appendix. More accurate error rates in terms of
probability inequality are possible using techniques in [17,
15]. It would also be interesting to extend this theorem to
other loss functions such as the SVMMGL algorithm.

6 Experimental validation
In this section we will only preliminarily validate the MGL
algorithm (3) on the problem of variable selection and co-
variance measurement.
By the representer Theorem 3 in Section 3, the solution of
MGL denoted by−→fz = (f1,z,

−→
f2z) = (f1,z, f2,z, . . . , fd+1,z)

can be rewritten as −→fz =
∑

j∈Nm
Kxj

cj,z. Since it only be-
longs to a vector-valued RKHS HK, we need to find a com-
mon criterion inner product (norm) 〈·, ·〉r to measure each
component of the learned gradient −→f2z = (f2,z, . . . , fd+1,z).
Once we find the criterion inner product 〈·, ·〉r, we can use
the coordinate covariance

Cov(−→f2z) =
(
〈fp+1,z, fq+1,z〉r

)
p,q∈Nd

(28)

to measure how the variables covary. Also, the variable (fea-
ture) ranking can be done according to the following relative
magnitude of norm of each component of −→f2z:

sp =
‖fp+1,z‖r

(
∑

q∈Nd
‖fq+1,z‖2r)1/2

. (29)

If the scalar kernel G is a linear kernel then every component
of −→f2z is a constant. In this case, we can choose the stan-
dard Euclidean inner product to be the criterion inner prod-
uct (norm). When the kernel G is an RBF kernel, we show
in the following proposition that we can select the criterion
inner product 〈·, ·〉r to be the RKHS inner product 〈·, ·〉G in
HG. The computation is summarized in the following propo-
sition.



Proposition 1 Suppose the scalar kernel G has a feature
representation and the multi-task kernelK is defined by equa-
tion (6). Then, for any solution −→fz =

∑
j∈Nm

Kxj
cj,z ∈ HK

of MGL algorithm (3), the following hold true.
1. If G is a linear kernel then the coordinate covariance is
defined by

Cov(−→f2z) = −→
f2z

T−→
f2z =

∑

i,j∈Nm

(xi, Id)ci,zc
T
j,z(xj , Id)T .

Moreover, for LSMGL algorithm the above equation can be
more efficiently computed by

Cov(−→f2z) = V
[ ∑

i,j∈Nm

(βi, Is)γiγ
T
j (βj , Is)T

]
VT .

2. If G is a smooth RBF kernel then fp+1,z ∈ HG and the
coordinate covariance Cov(−→f2z) =

(〈(fp+1,z, fq+1,z〉G
)
p,q∈Nd

can be computed by

〈fp+1,z, fq+1,z〉G = CT
z (Kpq(xi − xj))m

i,j=1Cz, (30)

where the kernel matrix Kpq(xi − xj) defined, for any i, j ∈
Nm, by

( −(∂2
pqG)(xi − xj), ((∇∂2

pqG)(xi − xj))T

−(∇∂2
pqG)(xi − xj), (∇2∂2

pqG)(xi − xj)

)
.

The proof is postponed to the appendix where the computa-
tion of Kpq is also given if G is a Gaussian.
We run our experiment on two artificial datasets and one
gene expression dataset following [17]. In the first experi-
ment, the target function fρ : Rd → R with notation x =
(x1, . . . , xd) ∈ Rd and d = 80. The output y is contami-
nated by a Gaussian noise

y = fρ(x) + ε, ε ∼ N (0, σy).

As depicted in Figure 1 (leftmost), the thirty inputs whose
relevant features are [1, 10]∪ [11, 20]∪ [41, 50] are generated
as follows:
1. For samples from 1 to 10, xp ∼ N (1, 0.05), for p ∈
[1, 10] and xp ∼ N (0, 0.1), for p ∈ [11, 80].
2. For samples from 11 to 30, xp ∼ N (1, 0.05), for p ∈
[11, 20] and xp ∼ N (0, 0.1), for p ∈ [1, 10] ∪ [31, 80].
3. For samples from 11 to 30, features are in the form of
xp ∼ N (1, 0.05), for p ∈ [41, 50], and xp ∼ N (0, 0.1), for
p ∈ [1, 40]

⋃
[51, 80].

We let the regression function fρ to be a linear function.
Specifically, we choose a noise parameter σy = 3 and the
regression function is defined by fρ(xi) = wT

1 xi for i ∈
[1, 10], fρ(xi) = wT

2 xi for i ∈ [11, 20], and fρ(xi) = wT
3 xi

for i ∈ [21, 30], where, wk
1 = 2 + 0.5sin(2πk/10) for k ∈

[1, 10] and otherwise zero, wk
2 = −2 − 0.5sin(2πk/10) for

k ∈ [11, 20] and zero otherwise. The vector w3 is defined
by wk

3 = −2 − 0.5sin(2πk/10) for k ∈ [41, 50] and zero
otherwise.
In this linear case, we use the kernel G(x, t) = xT t as a ba-
sic scalar kernel and the multi-task kernel K defined by (6)
in LSMGL algorithm (4). As in [11, 15], the regularization
parameter λ is set to be a fixed number such as 0.1 (variation

in this parameter made little difference to feature ranking).
The parameter s in the weight coefficients wij is set to be the
median pairwise distance between inputs. In Figure 1, the re-
sult of LSMGL is shown in (b) for variable covariation and
in (c) for feature selection respectively. We also ran the al-
gorithm (3) with the choice of kernel K(x, t) = G(x, t)Id+1

([15, 16, 17]). The results are shown in (d) and (e) of Figure
1. We see that both algorithms worked well. The LSMGL
algorithm works slightly better: the reason maybe be that it
captures the inherent structure of gradient learning as men-
tioned before. We also ran LSMGL algorithm on this dataset;
the result is no essentially different from SVMMGL.

In the second experiment, we use the SVMMGL algorithm
for classification. For this dataset, only the first two features
are relevant to the classification task. The remaining 78 re-
dundant features are distributed according to a small Gaus-
sian random deviate. The distribution for the first two fea-
tures is shown in (f). In SVMMGL, the parameter s and λ
are the same as those in the first example. The scalar kernel is
set to be a Gaussian G(x, t) = e−‖x−t‖2/2σ2

where σ is also
the median pairwise distance between inputs. The feature se-
lection results for the SVMMGL algorithm are illustrated re-
spectively in (g) and (h) with different choices of multi-task
kernels K given by equation (6) and K(x, t) = G(x, t)Id+1.
Both algorithms picked up the two important features.

Finally, we apply our LSMGL algorithm to a well-studied
expression dataset. This dataset has two classes: acute myeloid
leumekia (AML) and acute lymphoblastic leukemia (ALL),
see e.g. [10]. There are a total of 7129 genes (variables) and
72 patients, split into a training set of 38 examples and a test
set of 34 examples. In the training set, 27 examples belong
to ALL and 11 belong to AML, and the test set is composed
of 20 ALL and 14 AML. Various variable selection algo-
rithms have been applied to this dataset by choosing features
based on training set, and then performing classification on
the test set with the selected features. We ran LSMGL with
the choice of multi-task K given by equation (6) where G is
a linear kernel. The solution −→fz is learned from the training
set for ranking the genes according to the values of sp de-
fined by equation (29). Then, ridge regression is run on the
training set with truncated features to build a classifier to pre-
dict the labels on the test set. The regularization parameter
of LSMGL is fixed to be 0.1 while the regularization param-
eter in ridge regression is tuned using leave-one-out cross-
validation in the training set. The test error with selected top
ranked genes is reported in Table 2. The classification accu-
racy is quite comparable to the gradient learning algorithm
using individual RKHSs [15, 17]. However, [11, 15, 17]
did the recursive techniques to rank features and employed
SVM for classification while our method showed that ridge
regression for classification and non-recursive technique for
feature ranking also worked well in this data set. It would be
interesting to further explore this issue.

The preliminary experiments above validated our proposed
MGL algorithms. However further experiments need to be
performed to evaluate our multi-task framework for gradient
learning.



Sample

C
o

o
rd

in
a

te

Data matrix

 

 

5 10 15 20 25 30

10

20

30

40

50

60

70

80

−0.2

0

0.2

0.4

0.6

0.8

1

Coordinate Covariance for LSMGL

 

 

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80
−4

−2

0

2

4

6

8

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Coordinate

R
e

la
ti
v
e

  
n

o
rm

LSMGL Features ranks Coordinate Covariance LSDGL

 

 

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80 −0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a) (b) (c) (d)

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Coordinate

R
e

la
ti
v
e

  
n

o
rm

LSDGL Features ranks

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

0 10 20 30 40 50 60 70 80
0.11

0.112

0.114

0.116

0.118

0.12

0.122

0.124
MTKGL

Coordinate

R
e

la
ti
v
e

 R
K

H
S

 n
o

rm

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
DFKGL

Coordinate

R
e

la
ti
v
e

 R
K

H
S

 n
o

rm

(e) (f) (g) (h)

Figure 1: LSMGL and SVMMGL feature ranking

genes 10 40 80 100 200 500
test error 2 1 0 0 1 1
genes 1000 2000 3000 4000 6000 7129
test error 2 1 1 1 1 1

Table 2: Number of test error using ridge regression algo-
rithm versus the number of top ranked genes selected by
LSMGL algorithm.

7 Conclusions

In this paper, our main contribution was to provide a novel
unifying framework for gradient learning from the perspec-
tive of multi-task learning. Various variable selection meth-
ods in the literature can be recovered by the choice of multi-
task kernels. More importantly, this framework allows us to
introduce a novel choice of multi-task kernel to capture the
inherent structure of gradient learning. An appealing repre-
senter theorem was presented which facilitates the design of
efficient optimization algorithms, especially for datasets with
high dimension and few training examples. Finally, a statis-
tical error analysis was provided to ensure the convergence
of the learned function to true function and true gradient.
Here we only preliminarily validated the method. A more ex-
tensive benchmark study remains to be pursued. In future we
will explore more experiments on biomedical datasets and
compare our MGL algorithms with previous related meth-
ods for feature selection, such as those in [21, 22] etc. It
will be interesting to implement different loss functions in
the MGL algorithms for regression and classification, apply
the spectral decomposition of the gradient outer products to
dimension reduction (see e.g. [16]), and possible use for net-
work inference from the covariance of the learned gradient

function.

References

[1] R. K. Ando & T. Zhang. A framework for learning pre-
dictive structures from multiple tasks and unlabeled data.
J. Machine Learning Research, 1817–1853, 2005

[2] A. Argyriou, T. Evgeniou, & M. Pontil. Multi-task fea-
ture learning. NIPS, 2006.

[3] N. Aronszajn. Theory of reproducing kernels. Trans.
Amer. Math. Soc. 68: 337–404, 1950.

[4] P. L. Bartlett & S. Mendelson. Rademacher and Gaus-
sian complexities: Risk bounds and structural results. J.
of Machine Learning Research, 3:463–482, 2002.

[5] S. Ben-David & R. Schuller. Exploiting task relatedness
for multiple task learning. COLT, 2003.

[6] D. R. Chen, Q. Wu, Y. Ying, & D. X. Zhou. Support
vector machine soft margin classifiers: Error analysis. J.
of Machine Learning Research, 5:1143–1175, 2004.

[7] A. Caponnetto, C.A. Micchelli, M. Pontil, & Y. Ying.
Universal multi-task kernels, Preprint, 2007.

[8] S.S. Chen, D.L. Donoho & M.A. Saunders. Atomic de-
composition pursuits. SIAM J. of Scientific Computing,
20: 33-61,1999.

[9] F. Cucker & S.Smale. On the mathematical foundations
of learning, Bull. Amer. Math. Soc. 39: 149, 2001.

[10] T. R. Golub et. al. Molecular classification of cancer:
class discovery and class prediction by gene expression
monitoring, Science, 286: 531-537, 1999.

[11] I. Guyon, J.Weston, S. Barnhill, & V. Vapnik. Gene se-
lection for cancer classification using support vector ma-
chines. Machine learning 46: 389–422, 2002.

[12] V.I. Koltchinskii & D. Panchenko. Rademacher pro-
cesses and bounding the risk of function learning. In J.



Wellner E. Gine, D. Mason, editor, High Dimensional
Probability II, pages 443459, 2000.

[13] T. Evgeniou, C. A. Micchelli & M. Pontil. Learning
multiple tasks with kernel methods. J. Machine Learning
Research, 6: 615–637, 2005.

[14] C. A. Micchelli & M. Pontil. On learning vector-valued
functions. Neural Computation, 17: 177-204, 2005.

[15] S. Mukherjee & Q. Wu. Estimation of gradients and
coordinate covariation in classification. J. of Machine
Learning Research 7: 2481-2514, 2006.

[16] S. Mukherjee, Q. Wu, & D. X. Zhou. Learning gradi-
ents and feature selection on manifolds. Preprint, 2007.

[17] S. Mukherjee & D. X. Zhou. Learning coordinate co-
variances via gradients, J. of Machine Learning Research
7: 519-549, 2006.

[18] I. J. Schoenberg. Metric spaces and completely mono-
tone functions, Ann. of Math. 39: 811-841, 1938.

[19] B. Schölkopf & A. J. Smola. Learning with Kernels.
The MIT Press, Cambridge, MA, USA, 2002.

[20] J. Shawe-Taylor and N. Cristianini. Kernel Methods
for Pattern Analysis. Cambridge University Press, Cam-
bridge, 2004.

[21] R. Tibshirani. Regression shrinkage and selection via
the lasso. J. Royal. Statist. Soc B. 58: 267-288, 1996.

[22] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T.
Poggio, & V. Vapnik. Feature selection for SVMs, NIPS,
2001.

[23] V. N. Vapnik. Statistical learning theory. Wiley, New
York, 1998.

Appendix

Let G be a scalar kernel, we use the convention ∂
(2)
p G to

denote the p-th partial derivative of G with respect to the
second argument, and so is the gradient ∇(2)G.

Proof of Proposition 1.
When G is a linear kernel, by the definition (6) of multi-
task kernelK, we have that−→f2z =

∑
j∈Nm

(xj , Id)cj,z which
implies that

Cov(−→f2z) = −→
f2z
−→
f2z

T
=

∑

i,j∈Nm

(xi, Id)ci,zc
T
j,z(xj , Id)T .

For the LSMGL algorithm, in Section 4 we showed that cj,z =
Ṽγj,z and, for any j ∈ Nm, xj = Vβj , the above equation
can be further simplified to the following:

Cov(−→f2z) = V
[ ∑

i,j∈Nm

(βi, Is)γi,zγ
T
j,z(βj , Is)T

]
VT .

When G is an RBF kernel, for any x, t ∈ Rd and p, q ∈ Nd,
G(x, t) = G(x − t) and ∂tq∂xpG(x, t) = −(∂p∂qG)(x, t).
Hence, for any p ∈ Nd and x ∈ Rd, we have that

fp+1,z(x) =
∑

j∈Nm

(−∂(2)
p G(x, xj),−∇(2)∂(2)

p G(x, xj)
)
cj

Since G has a feature representation, i.e., for any x, t ∈ X ,
there holds that G(x, t) = 〈φ(x), φ(t)〉`2 . Also, observe that
∂

(2)
p G(x, xj) = 〈φ(x), (∂pφ)(xj)〉`2 and ∂

(2)
q ∂

(2)
p G(x, xj) =

〈φ(x), (∂p∂qφ)(xj)〉`2 . Denote cj by (c1
j , . . . , c

d+1
j )T . Con-

sequently, for any p ∈ Nd, fp+1,z(·) = 〈wp, φ(·)〉`2 with
wp = −∑

j∈Nm
(∂pφ(xj)c1

j+
∑

q∈Nd
∂q∂pφ(xj)c

q+1
j ). There-

fore, for any p, q ∈ Nd we have that fp+1,z ∈ HG and

〈fp+1,z, fq+1,z〉G = 〈wp, wq〉`2 =
∑

i,j∈Nm

cT
i Kpq(xi−xj)cj

which completes the assertion. ¤

Computation of kernel K.
If G is a Gaussian kernel with standard variation σ, that is,
for any x, t ∈ Rd, G(x, t) = G(x − t) = e−

‖x−t‖2
2σ , the

computation of K is listed as follows.

1. (∂2
pqG)(x) =

[
xpxq

σ2 − δpq

σ

]
G(x)

2. For any q′ ∈ Nd, ∂q′∂p∂qG(x) = [xqσpq′+xpδqq′+xq′δpq

σ2 −
xpxqxq′

σ3 ]G(x). Hence,

∇∂2
pqG(x) =

[
epxq + eqxp

σ2
+

xδpq

σ2
− xpxqx

σ3

]
G(x)

3. For any p′, q′ ∈ Nd, ∂p′∂q′∂
2
pqG(x) = G(x)

[
δpq′δqp′

σ2 +
δpp′δqq′+δp′q′δpq

σ2 − 1
σ3

(
xqxq′σpp′+xpxqδp′q′+xpxq′δp′q

)
+

xp′
σ

(xpxqxq′
σ3 − xqδpq′+xq′δpq+xpδqq′

σ2

)]
. Hence,

∇2∂2
pqG(x) = G(x)

[
eT

q ep+eT
p eq+δpqId

σ2

− 1
σ3

(
xq(epx

T + xeT
p ) + xp(xeT

q + eqx
T )

)

− xpxqId

σ3 + xxT

σ3

(xpxq

σ − σpq

)]
.

Proof of Theorem 7
We turn our attention to the proof of Theorem 7. We begin
with some notations and background materials. First denote
by Erz the empirical loss in LSMGL algorithm, i.e.,

Erz(
−→
f ) = 1

m2

∑
i,j w(xi − xj)

×(yi − f1(xj)−−→f2(xj)(xi − xj)T )2,

and the modified form of its expectation

Er(−→f ) =
∫

Z

∫
X

w(x− u)
[
y − f1(u)

−−→f2(u)(x− u)
]2

dρ(x, y)dρX(u).

Since the Gaussian weight w(x − u) = ws(x − u) is de-
pendent on s, the above definition of Er(−→f ) is depending on
the parameter s. In addition, define the Lipschitz constant∣∣∇fρ

∣∣
Lip to be the minimum constant c such that ‖∇fρ(x+

u) − ∇fρ(x)‖ ≤ c‖u‖, ∀x, u ∈ X. We say that ∇fρ is
Lipschitz continuous if

∣∣∇fρ

∣∣
Lip is finite.

The error analysis here is divided into two main steps moti-
vated by the techniques in [15]. The first step is to bound the
square error ‖−→fz−−→fρ‖2ρX

by the excess error Er(−→fz)−Er(−→fρ).
In the second step, we employ standard error decomposition
[6] and Rademacher complexities [4, 12] to estimate the ex-
cess error. These two steps will be respectively stated in the



following two propositions. Before we do that, we introduce
an auxiliary functional Qs defined by

Qs(
−→
f ,
−→
f ρ) =

∫ ∫
w(x− u)

[
fρ(u)− f1(u)

+(−→f2(u)−∇fρ(u))(u− x)T
]2

dρX(x)dρX(u).

We are ready to present the first step of the error analysis:
bounding the square error ‖−→fz − −→fρ‖2ρX

by the excess error
Er(−→fz)−Er(−→fρ) which is stated as the following proposition.

Proposition 2 If 0 < s, λ < 1 then there exists a constant
c′ρ such that

E
[
‖−→fz −−→fρ‖2ρX

]
≤ c′ρ

(
min

[
s−θ,max

x∈X
p−1(x)

]

×E[
Er(−→fz)− Er(−→fρ)

]

+sθ
(
E

[‖−→fz‖2K
]
+ ‖−→fρ‖∞ +

∣∣∇fρ

∣∣2
Lip

))
.

The proof of this proposition follows directly from the fol-
lowing Lemmas 8 and 9. For this purpose, let the subset Xs

of X be

Xs =
{
u ∈ X : dist(u, ∂X) > s, |p(u)| ≥ (1 + cρ)sθ

}
(31)

and

cp(s) := min{p(x) : ‖u− x‖ ≤ s, u ∈ Xs}.
Recall that ẽ1 is the first coordinate basis in Rd+1 and, for
any x ∈ Rd, x̃T = (0, x)T ∈ Rd+1.

Lemma 8 If 0 < s < 1 then there exists a constant c′ρ such
that

E
[
‖−→fz −−→fρ‖2ρX

]
≤ c′ρ

(
sθ

[
E[‖−→fz‖2K] + ‖−→fρ‖∞

]

+min
[
s−θ,max

x∈X
p−1(x)

]
E

[
Qs(

−→
fz,

−→
fρ)

] )
.

Proof: Write ‖−→fz −−→fρ‖2ρX
by

‖−→fz −−→fρ‖2ρX
=

∫
X\Xs

‖−→fz(u)−−→fρ(u)‖2dρX(u)
+

∫
Xs
‖−→fz(u)−−→fρ(u)‖2dρX(u)

(32)
By the definition of Xs, we have that ρX(X\Xs) ≤ cρs +
cρ(1 + cρ)|X|sθ ≤ c′ρs

θ where |X| is the Lebesgue measure
of X . Hence, the first term of the above equation is bounded
by

2c′ρ(‖−→fz‖2∞ + ‖−→fρ‖2∞)sθ ≤ 2c′ρ(‖−→fz‖2K + ‖−→fρ‖2∞)sθ.

For the second term on the right-hand side of equation (32),
observe that, for any u ∈ Xs, dist(u, ∂X) > s and {u :
‖u− x‖ ≤ s, x ∈ Xs} ⊆ X . Moreover, for any x ∈ X such
that ‖u− x‖ ≤ s, by the definition of Xs there holds

p(x) = p(u)−(p(u)−p(x)) ≥ (1+cρ)sθ−cρ‖u−x‖θ ≥ sθ.

Consequently, it follows that

cp(s) ≥ max(sθ, min
x∈X

p(x)), (33)

and
Qs(

−→
fz,

−→
fρ) =

∫
X

∫
X

w(x− u)
×[

(−→fρ(u)−−→fz(u))(ẽ1 + ũ− x̃)
]2

dρX(x)dρX(u)
≥ ∫

Xs

[ ∫
‖u−x‖≤s

(
(−→fρ(u)−−→fz(u))(ẽ1 + ũ− x̃)

)2

×dρX(x)
]
dρX(u)

≥ cρ(s)
∫

Xs

[ ∫
‖u−x‖≤s

(
(−→fρ(u)−−→fz(u))(ẽ1 + ũ− x̃)

)2

×dx
]
dρX(u).

(34)
The integral w.r.t. x on the right-hand side of the above in-
equality can be written as (−→fρ(u) − −→

fz(u))W (s)(−→fρ(u) −−→
fz(u))T with (d + 1)× (d + 1) matrix W (s) defined by

W (s) =
∫

‖u−x‖≤s

[
(ẽ1 + ũ− x̃)(ẽ1 + ũ− x̃)T

]
dx.

Here, (ẽ1 + ũ− x̃)(ẽ1 + ũ− x̃)T equals that
( 1 (u− x)T

u− x (u− x)(u− x)T

)

Observe that
∫
‖u−x‖≤s

w(x − u)dx = s−2
∫
‖t‖≤1

e−
‖t‖2

2 dt

and
∫
‖u−x‖≤s

w(x− u)(u− x)dx = 0. In addition, for any
p 6= q ∈ Nd,

∫
‖u−x‖≤s

w(x− u)(up − xp)(uq − xq)dx = 0
∫
‖u−x‖≤s

w(x − u)(xp − up)2dx =
∫
‖t‖≤1

e−
‖t‖2

2 (tp)2dt

From the above observations, there exists a constant c such
that
(−→fρ(u)−−→fz(u))W (s)(−→fρ(u)−−→fz(u))T ≥ c‖−→fρ(u)−−→fz(u)‖2.
Recalling the definition of W (s) and substituting this back
into equation (34) implies, for any 0 < s < 1, that

c cρ(s)
∫

Xs

‖−→fz(u)−−→fρ(u)‖2dρX(u) ≤ Qs(
−→
fz,

−→
fρ).

Plugging this into equation (34), the desired estimate follows
from the estimation of cρ(s), i.e., equation (33).

Now we can bound Qs by the following lemma.

Lemma 9 If 0 < s < 1 then there exists a constant c such
that, for any −→f ∈ HK, the following equations hold true.
1. Qs(

−→
f ,
−→
fρ) ≤ c

(
s2

∣∣∇fρ

∣∣2
Lip +

[
Er(−→f )− Er(−→fρ)

])
.

2. Er(−→f )− Er(−→fρ) ≤ c
(
s2

∣∣∇fρ

∣∣2
Lip +Qs(

−→
f ,
−→
fρ)

)
.

Proof: Observe that
[
y − f1(u)−−→f2(u)(x− u)T

]2 =
[
y −

fρ(u) − ∇fρ(u)(x − u)T
]2 + 2

[
y − fρ(u) − ∇fρ(u)(x −

u)T
][

fρ(u)−f1(u)+(−→f2(u)−∇fρ(u))(u−x)T
]
+

[
fρ(u)−

f1(u) + (−→f2(u) − ∇fρ(u))(u − x)T
]2

. Then, taking the
integral of both sides of the above equality and using the fact
that fρ(x) =

∫
Y

ydρX(x) we have that

Er(−→f )− Er(−→fρ) = Qs(
−→
f ,
−→
fρ) + 2

∫
X

∫
X

w(x− u)
[
fρ(x)

−fρ(u)−∇fρ(u)(x− u)T
][

fρ(u)− f1(u)+
(−→f2(u)−∇fρ(u))(u− x)T

]
dρX(x)dρX(u)

≥ Qs(
−→
f ,
−→
fρ)− 2

( ∫
X

∫
X

w(x− u)
[
fρ(x)− fρ(u)

−∇fρ(u)(x− u)T
]2

dρX(x)dρX(u)
) 1

2
(
Qs(

−→
f ,
−→
fρ)|

) 1
2
.



Applying the inequality, for any a, b > 0, that−2a2− 1
2b2 ≤

−2ab, from the above equality we further have that

Er(−→f ) − Er(−→fρ) ≥ 1
2Qs(

−→
f ,
−→
fρ)− 2

∫
X

∫
X

w(x− u)[
fρ(x)− fρ(u)−∇fρ(u)(x− u)T

]2
dρX(x)dρX(u).

(35)
Likewise,

Er(−→f )− Er(−→fρ) = Qs(
−→
f ,
−→
fρ) + 2

∫
X

∫
X

w(x− u)
[
fρ(x)

−fρ(u)−∇fρ(u)(x− u)T
][

fρ(u)− f1(u)+
(−→f2(u)−∇fρ(u))(u− x)T

]
dρX(x)dρX(u)

≤ Qs(
−→
f ,
−→
fρ) + 2

( ∫
X

∫
X

w(x− u)
[
fρ(x)− fρ(u)

−∇fρ(u)(x− u)T
]2

dρX(x)dρX(u)
) 1

2
(
Qs(

−→
f ,
−→
fρ)|

) 1
2
.

Applying the inequality 2ab ≤ a2 + b2 to the above inequal-
ity yields that

Er(−→f ) − Er(−→fρ) ≤ 2Qs(
−→
f ,
−→
fρ) +

∫
X

∫
X

w(x− u)[
fρ(x)− fρ(u)−∇fρ(u)(x− u)T

]2
dρX(x)dρX(u)

(36)
However, |fρ(x)−fρ(u)−∇fρ(u)(x−u)T | = ∣∣∫ 1

0

(∇fρ(tx+

(1−t)u)−∇fρ(u)
)(

x−u
)T

dt
∣∣ ≤ |∇fρ|Lip‖x−u‖2 and the

density p(x) of ρX is a bounded function since we assume it
is θ-Hölder continuous and X is compact. Therefore,

∫
X

∫
X

w(x− u)
[
fρ(x)− fρ(u)−∇fρ(u)(x− u)T

]2
×dρX(x)dρX(u)

≤ ‖p‖∞|∇fρ|2Lip

[ ∫
Rd

1
sd+2 e−

‖x‖2
2s2 ‖x‖4dx

]

≤ c‖p‖∞|∇fρ|2Lip s2.

Putting this into Equations (35) and (36) and arranging the
terms involved yields the desired result.

From Property (1) of Lemma 9, for any −→f ∈ HK we have
that

Er(−→f ) − Er(−→fρ) ≥ −cs2|∇fρ|2Lip. (37)

We now turn our attention to the second step of the error
analysis: the estimation of the excess error Er(−→fz)−Er(−→fρ)+
λ‖−→fz‖2K. To do this, let

−→
fλ = arg inf−→

f ∈HK

{
Er(−→f ) + λ‖−→f ‖2K

}

By the error decomposition technique in [6], we get the fol-
lowing estimation.

Proposition 3 If −→fλ is defined above then there exists a con-
stant c such that

Er(−→fz)− Er(−→fρ) + λ‖−→fz‖2K ≤ S(z)
+c

(
s2

∣∣∇fρ

∣∣2
Lip +A(λ, s)

)
,

where

S(z) = Er(−→fz)− Erz(
−→
fz) + Erz(

−→
fλ)− Er(−→fλ)

is referred to the sample error and

A(λ, s) = inf−→
f ∈HK

{
Qs(

−→
f ,
−→
fρ) + λ‖−→f ‖2K

}

is called the approximation error.

Proof: Note that Er(−→fz) − Er(−→fρ) + λ‖−→fz‖2K =
[
Er(−→fz) −

Erz(
−→
fz) + Erz(

−→
fλ) − Er(−→fλ)

]
+

[(
Erz(

−→
fz) + λ‖−→fz‖2K

) −(
Erz(

−→
fλ)+λ‖−→fλ‖2K

)]
+

[
Er(−→fλ)−Er(−→fρ)+λ‖−→fλ‖2K

]
. By the

definition of −→fz , we know that the second term in parenthe-
sis on the right-hand side of the above equation is negative.
Hence, by the definition of fλ, we get that Er(−→fz)−Er(−→fρ)+
λ‖−→fz‖2K ≤ S(z) + inff∈HK

{
Er(−→f )− Er(−→fρ) + λ‖−→f ‖2K

}
.

By the property (2) in Lemma 9, we also have, for any −→f ∈
HK, that Er(−→f )− Er(−→fρ) ≤ c

(
(s2

∣∣∇fρ

∣∣2
Lip +Qs(

−→
f ,
−→
fρ)

)

which implies that

inf{Er(−→f )−Er(−→fρ)+λ‖−→f ‖2K} ≤ c
(
s2

∣∣∇fρ

∣∣2
Lip+A(λ, s)

)
.

This completes the proposition.

Now it suffice to estimate the sample error S(z). To this
end, observe that Erz(

−→
fz) + λ‖−→fz‖2K ≤ Erz(0) + λ‖0‖2K ≤

M2

sd+2 which implies that ‖−→fz‖K ≤ Ms−(d+2)/2. Likewise,
Er(−→fλ) + λ‖−→fλ‖2K ≤ Er(0) + λ‖0‖2K‖

−→
fλ‖K ≤ M2

sd+2 which
tells us that ‖−→fz‖K ≤ Ms−(d+2)/2. Using these bounds on
‖−→fz‖K + ‖−→fλ‖K, we can use the Rademacher averages (see
e.g. [4, 12]) for its definition and properties) to get the fol-
lowing estimation for the sample error.

Lemma 10 For any 0 < λ < 1, there exists a constant c
such that, for any m ∈ N, there holds

E
[S(z)

] ≤ c
( 1

s2(d+2)λm
+

1
s3(d+2)/2

√
λm

)
.

Since the proof of the above lemma is rather a standard ap-
proach and indeed parallel to the proof of Lemma 26 (replac-
ing r = Ms−(d+2)/2 there) in the appendix of [15], for the
simplicity we omit the details here.

We have assembled all the materials to prove Theorem 7.

Proof of Theorem 7
Since we assume that −→fρ ∈ HK, for any

∣∣∂pfρ(x + u) −
∂p
−→
fρ(u)

∣∣ =
∣∣〈ẽp+1,

−→
fρ(x+u)−−→fρ(u)〉∣∣ =

∣∣〈−→fρ,Kx+uẽp+1−
Kuẽp+1〉K

∣∣ ≤ ‖−→fρ‖K
[
ẽT
p+1

(K(x + u, x + u) + K(u, u) −

K(x+u, u)−K(u, x+u)
)
ẽp+1

] 1
2 ≤ c‖−→fρ‖K‖u‖, and hence

|∇fρ|Lip ≤ c‖−→fρ‖K. Moreover,

A(λ, s) ≤ Q(−→fρ,
−→
fρ) + λ‖−→fρ‖2K = λ‖−→fρ‖2K.

Hence, we know from Proposition 3 and equation (37) that
λ‖−→fz‖2K ≤ S(z) + c′

(
s2 + λ

)
.

Combining the above equations with Propositions 2 and 3,
there exists a constant c such that
E

[‖−→fz −−→fρ‖2ρX

] ≤ c
([

min(s−θ,maxx∈X p−1(x)) + sθ

λ

]

× [
E

[S(z)
]
+ s2 + λ

]
+ sθ

)
.

If we choose λ = s2θ and s = m− 1
3(d+2)+4θ yields the first

assertion.
If ρX is the uniform distribution over X , then we have that
min(s−θ, min

x∈X
p(x)) = 1. Hence, choosing λ = sθ and

s = m− 1
3(d+2)+5θ we have the desired second assertion. This

completes the theorem.


