
An Efficient Reduction of Ranking to Classification

Nir Ailon
Google Research

76 Ninth Ave, 4th Floor
New York, NY 10011
nailon@google.com

Mehryar Mohri
Courant Institute and Google Research

251 Mercer Street
New York, NY 10012
mohri@cims.nyu.edu

Abstract

This paper describes an efficient reduction of the
learning problem of ranking to binary classifica-
tion. The reduction is randomized and guarantees
a pairwise misranking regret bounded by that of
the binary classifier, improving on a recent result
of Balcan et al. (2007) which ensures only twice
that upper-bound. Moreover, our reduction applies
to a broader class of ranking loss functions, admits
a simple proof, and the expected time complexity
of our algorithm in terms of number of calls to a
classifier or preference function is also improved
from Ω(n2) to O(n log n). In addition, when the
top k ranked elements only are required (k � n),
as in many applications in information extraction
or search engine design, the time complexity of our
algorithm can be further reduced to O(k log k+n).
Our reduction and algorithm are thus practical for
realistic applications where the number of points
to rank exceeds several thousands. Much of our
results also extend beyond the bipartite case pre-
viously studied. To further complement them, we
also derive lower bounds for any deterministic re-
duction of ranking to binary classification, proving
that randomization is necessary to achieve our re-
duction guarantees.

1 Introduction
The learning problem of ranking arises in many modern ap-
plications, including the design of search engines, informa-
tion extraction, and movie recommendation systems. In these
applications, the ordering of the documents or movies re-
turned is a critical aspect of the system.

The problem has been formulated within two distinct set-
tings. In the score-based setting, the learning algorithm re-
ceives a labeled sample of pairwise preferences and returns a
scoring function f :U → R which induces a linear ordering
of the points in the set U . Test points are simply ranked ac-
cording to the values of f for those points. Several ranking
algorithms, including RankBoost (Freund et al., 2003; Rudin
et al., 2005), SVM-type ranking (Joachims, 2002), and other
algorithms such as PRank (Crammer & Singer, 2001; Agar-
wal & Niyogi, 2005), were designed for this setting. Gener-

alization bounds have been given in this setting for the pair-
wise misranking error (Freund et al., 2003; Agarwal et al.,
2005), including margin-based bounds (Rudin et al., 2005).
Stability-based generalization bounds have also been given
in this setting for wide classes of ranking algorithms both in
the case of bipartite ranking (Agarwal & Niyogi, 2005) and
the general case (Cortes et al.2007b; 2007a).

A somewhat different two-stage scenario was considered
in other publications starting with (Cohen et al., 1999), and
later (Balcan et al., 2007), which we will refer to as the
preference-based setting. In the first stage of that setting, a
preference function h : U×U 7→ [0, 1] is learned, where val-
ues of h(u, v) closer to one indicate that u is ranked above
v and values closer to zero the opposite. h is typically as-
sumed to be the output of a classification algorithm trained
on a sample of labeled pairs, and can be for example a con-
vex combination of simpler preference functions as in (Co-
hen et al., 1999). A crucial difference with the score-based
setting is that, in general, the preference function h may
not induce a linear ordering. The relation it induces may
be non-transitive, thus we may have for example h(u, v) =
h(v, w) = h(w, u) = 1 for three distinct points u, v, and w.
To rank a test subset V ⊆ U , in the second stage, the algo-
rithm orders the points in V by making use of the preference
function h learned in the first stage. The subset ranking set-
up examined by Cossock and Zhang (2006), though distinct,
also bears some resemblance with this setting.

This paper deals with the preference-based ranking set-
ting just described. The advantage of this setting is that the
learning algorithm is not required to return a linear ordering
of all points in U , which may be impossible to achieve fault-
lessly in accordance with a general possibly non-transitive
pairwise preference labeling. This is more likely to be achiev-
able exactly or with a better approximation when the algo-
rithm is requested instead, to supply a linear ordering, only
for limited subsets V ⊆ U .

When the preference function is obtained as the output
of a binary classification algorithm, the preference-based set-
ting can be viewed as a reduction of ranking to classification.
The second stage specifies how the ranking is obtained using
the preference function.

Cohen et al. (1999) showed that in the second stage of
the preference-based setting, the general problem of finding
a linear ordering with as few pairwise misrankings as possi-
ble with respect to the preference function h is NP-complete.
The authors presented a greedy algorithm based on the tour-

nament degree, that is, for a given element u, the difference
between the number of elements it is preferred to versus the
number of those preferred to u. The bound proven by the au-
thors, formulated in terms of the pairwise disagreement loss
l with respect to the preference function h, can be written as
l(σgreedy, h) ≤ 1/2 + l(σoptimal, h)/2, where l(σgreedy, h)
is the loss achieved by the permutation σgreedy returned by
their algorithm and l(σoptimal, h) the one achieved by the
optimal permutation σoptimal with respect to the preference
function h. This bound was given for the general case of
ranking, but, in the particular case of bipartite ranking, a
random ordering can achieve a pairwise disagreement loss
of 1/2 and thus the bound is not informative. Note that the
algorithm can be viewed as a derandomization technique.

More recently, Balcan et al. (2007) studied the bipartite
ranking problem. In this particular case, the loss of an output
ranking is measured by counting pairs of ranked elements,
one of which is positive and the other negative (based on
some ground truth). They showed that sorting the elements
of V according to the same tournament degree used by Co-
hen et al. (1999) guarantees a regret of at most 2r using a
binary classifier with regret r. (The regret is defined as a
calibration of the loss function that aligns a theoretical op-
timum with 0.) However, due to the quadratic nature of the
definition of the tournament degree, their algorithm requires
Ω(n2) calls to the preference function h, where n = |V | is
the number of objects to rank.

We describe an efficient randomized algorithm for the
second stage of preference-based setting and thus for reduc-
ing the learning problem of ranking to binary classification.
We improve on the recent result of Balcan et al. (2007), by
guaranteeing a pairwise misranking regret of at most r using
a binary classifier with regret r, thereby improving the bound
by a factor of 2. Our reduction applies, with different con-
stants, to a broader class of ranking loss functions, admits a
simple proof, and the expected running time complexity of
our algorithm in terms of number of calls to a classifier or
preference function is improved from Ω(n2) to O(n log n).
Furthermore, when the top k ranked elements only are re-
quired (k � n), as in many applications in information ex-
traction or search engines, the time complexity of our algo-
rithm can be further reduced to O(k log k + n). Our reduc-
tion and algorithm are thus practical for realistic applications
where the number of points to rank exceeds several thou-
sands. The price paid for this improvement is in resorting
to nondeterminism. Indeed, our algorithms are randomized,
but this turns our to be necessary. We give a simple proof
of a lower bound of 2r for any deterministic reduction of
ranking to binary classification with classification regret r,
thereby generalizing to all deterministic reductions a lower
bound result of Balcan et al.(2007).

To appreciate our improvement of the reduction bound
from a factor of 2 to 1, consider the case of a binary classi-
fier with an error rate of just 25%, which is quite reasonable
in many applications. Assume that the Bayes error is close to
zero for the classification problem and similarly that for the
ranking problem that the regret and loss approximately coin-
cide. Then, the bound of Balcan et al. (2007) guarantees for
the ranking algorithm a pairwise misranking error of at most
50%. But, since a random ranking can achieve 50% pairwise

misranking error, the bound turns out not to be informative
in that case. Instead, with a factor of 1, the bound ensures a
pairwise misranking of at most 25%.

Much of our results also extend beyond the bipartite case
previously studied by Balcan et al.(2007) to the general case
of ranking. A by-product of our proofs is a bound on the pair-
wise disagreement loss with respect to the preference func-
tion h that we will compare to the result given by Cohen et al.
(1999).

The algorithm used by Balcan et al. (2007) to produce a
ranking based on the preference function is known as sort-
by-degree and has been recently used in the context of mini-
mizing the feedback arcset in tournaments (Coppersmith et al.,
2006). Here, we use a different algorithm, QuickSort, which
has also been recently used for minimizing the feedback arc-
set in tournaments (Ailon et al.2005; 2007). The techniques
presented build upon earlier work by Ailon et al.(2005; 2007)
on combinatorial optimization problems over rankings and
clustering.

The remainder of the paper is structured as follows. In
Section 2, we introduce the definitions and notation used in
future sections and introduce a general family of loss func-
tions for ranking. Section 3 describes a simple and effi-
cient algorithm for reducing ranking to binary classification,
proves several bounds guaranteeing the quality of the rank-
ing produced by the algorithm, and analyzes the running-
time complexity of our algorithm. In Section 4, we derive
a lower bound for any deterministic reduction of ranking to
binary classification. In Section 5, we discuss the relation-
ship of the algorithm and its proof with previous related work
in combinatorial optimization, and discuss key assumptions
related to the notion of regret in this context.

2 Preliminaries

This section introduces several preliminary definitions nec-
essary for the presentation of our results. In what follows,
U will denote a universe of elements, e.g., the collection of
all possible query-result pairs returned by a web search task,
and V ⊆ U will denote a small subset thereof, e.g., a prelim-
inary list of relevant results for a given query. For simplicity
of notation we will assume that U is a set of integers, so that
we are always able to choose a minimal canonical element
in a finite subset, as we do in (9) below. This arbitrary order-
ing should not be confused with the ranking problem we are
considering.

2.1 General Definitions and Notation
We first briefly discuss the learning setting and assumptions
made here and compare them with those of Balcan et al.
(2007) and Cohen et al.(1999).

In what follows, V ⊆ U represents a finite subset ex-
tracted from some arbitrary universe U , which is the set we
wish to rank at each round. The notation S(V) denotes the
set of rankings on V , that is the set of injections from V to
[n] = {1, . . . , n}, where n = |V |. If σ ∈ S(V) is such a
ranking, then σ(u) is the rank of an element u ∈ V , where
lower ranks are interpreted as preferable ones. More pre-
cisely, we say that u is preferred over v with respect to σ if
σ(u) < σ(v). For convenience, and abusing notation, we

also write σ(u, v) = 1 if σ(u) < σ(v) and σ(u, v) = 0 oth-
erwise. We let

(
V
k

)
denote the collection of all subsets of size

exactly k of V . To distinguish between functions taking or-
dered vs. unordered arguments in what follows, we will use
the notation Fu1u2...uk

to denote k unordered arguments for
a function F defined on

(
V
k

)
and F (u1, u2, . . . , uk) to denote

k ordered arguments for a function F defined on V × · · · × V︸ ︷︷ ︸
k

.

2.2 Ground truth
As in standard learning scenarios, at each round, there is an
underlying unknown ground truth which we wish the output
of the learning algorithm to agree with as much as possible.
The ground truth is a ranking that we denote by σ∗ ∈ S(V),
equipped with a function ω assigning different importance
weight to pairs of positions. The combination (σ∗, ω) is ex-
tremely expressive, as we shall see below in Section 2.5. It
can encode in particular the standard average pairwise mis-
ranking or AUC loss assumed by Balcan et al. (2007) in a
bipartite setting, but also more sophisticated ones capturing
misrankings among the top k, and other losses that are close
but distinct from those considered by Clémençon and Vayatis
(2007).

2.3 Preference function
As with both (Cohen et al., 1999) and (Balcan et al., 2007),
we assume that a preference function h : U × U → [0, 1]
is learned in a first learning stage. The convention is that
the higher h(u, v) is, the more our belief that u should be
preferred to v. The function h satisfies pairwise consistency:
h(u, v) + h(v, u) = 1, but need not even be transitive on 3-
tuples (cycles may be induced). The second stage uses h to
output a proper ranking σ, as we shall further discuss below.
The running time complexity of the second stage is measured
with respect to the number of calls to h.

2.4 Output of Learning Algorithm
The final output of the second stage of the algorithm, σ, is a
proper ranking of V . Its cost is measured differently in (Bal-
can et al., 2007) and (Cohen et al., 1999). In the former, it is
measured against the unknown ground truth and compared to
the cost of h against the ground truth. The rationale is that the
information encoded in h contains all pairwise preference in-
formation using the state-of-the-art binary classification. In
(Cohen et al., 1999), σ is measured against the given prefer-
ence function h, and compared to the theoretically best one
can obtain. Thus, there h plays the role of a known ground
truth.

2.5 Loss Functions
We are now ready to define the loss functions used to mea-
sure the quality of an output ranking σ either with respect
to σ∗, as in (Balcan et al., 2007), or with respect to h, as in
(Cohen et al., 1999).

The following general loss function Lω measures the qual-
ity of a ranking σ with respect to a desired one σ∗ using a
weight function ω (described below):

Lω(σ, σ∗) =
(

n

2

)−1∑
u 6=v

σ(u, v)σ∗(v, u)ω(σ∗(u), σ∗(v)).

The sum is over all pairs u, v in the domain V of the rank-
ings σ, σ∗. It counts the number of inverted pairs u, v ∈
V weighed by ω, which assigns importance coefficients to
pairs, based on their positions in the ground truth σ∗. The
function ω must satisfy the following three natural axioms,
which will be necessary in our analysis:

(P1) Symmetry: ω(i, j) = ω(j, i) for all i, j;

(P2) Monotonicity: ω(i, j) ≤ ω(i, k) if either i < j < k or
i > j > k;

(P3) Triangle inequality: ω(i, j) ≤ ω(i, k) + ω(k, j).

This definition is very general and encompasses many useful,
well studied distance functions. Setting ω(i, j) = 1 for all
i 6= j yields the unweighted pairwise misranking measure or
the so-called Kemeny distance function.

For a fixed integer k, the following function

ω(i, j) =
{

1 if ((i ≤ k) ∨ (j ≤ k)) ∧ (i 6= j)
0 otherwise,

(1)

can be used to emphasize ranking at the top k elements. Mis-
ranking of pairs with one element ranked among the top k is
penalized by this function. This can be of interest in applica-
tions such as information extraction or search engines where
the ranking of the top documents matters more. For this em-
phasis function, all elements ranked below k are in a tie. In
fact, it is possible to encode any tie relation using ω.

Bipartite Ranking. In a bipartite ranking scenario, V
is partitioned into a positive and negative set V + and V − of
sizes m+ and m− respectively, where m++m− = |V | = n.
For this scenario (Balcan et al., 2007; Hanley & McNeil,
1982; Lehmann, 1975), we are often interested in the AUC
score of σ ∈ S(V) defined as follows:

1− AUC(V +, V −, σ) =
1

m−m+

X
u,v∈V

1(u,v)∈V +×V −σ(v, u).

This expression measures the probability given a random
crucial pair of elements, one of which is positive and the
other negative, that the pair is misordered in σ. It is immedi-
ate to verify that this is equal to Lω(σ, σ∗), where σ∗ is any
ranking placing V + ahead of V −, and

ω(i, j) =

(
n
2

)
m−m+

1 (i ≤ m+) ∧ (j > m+)
1 (j ≤ m+) ∧ (i > m+)
0 otherwise.

(2)

Simplified notation. To avoid carrying σ∗ and ω, we
will define for convenience

τ∗(u, v) = σ∗(u, v)ω(σ∗(u), σ∗(v))

and

L(σ, τ∗) := Lω(σ, σ∗) =
(

n

2

)−1∑
u 6=v

σ(u, v)τ∗(v, u) .

We will formally call τ∗ a generalized ranking, and it will
take the role of the ground truth. If ω is obtained as in (2) for
some integers m+,m− satisfying m+ + m− = n then we
will say that the corresponding τ∗ is bipartite.

It is immediate to verify from the properties of the weight
function ω that for all u, v, w ∈ V ,

τ∗(u, v) ≤ τ∗(u, w) + τ∗(w, v) . (3)

If τ∗ is bipartite, then additionally,

τ∗(u, v) + τ∗(v, w) + τ∗(w, u) =
τ∗(v, u) + τ∗(w, v) + τ∗(u, w) . (4)

2.6 Preference Loss Function
We need to extend the definition to measure the loss of a
preference function h with respect to σ∗. In contrast with
the loss function just defined, we need to define a preference
loss measuring a generalized ranking’s disagreements with
respect to a preference function h when measured against
τ∗. We can readily extend the loss definitions defined above
as follows:

L(h, τ∗) = Lω(h, σ∗) =
∑
u 6=v

h(u, v)τ∗(v, u) .

As explained above, L(h, τ∗) is the ideal loss the learning
algorithm will aim to achieve with the output ranking hy-
pothesis σ.

2.7 Input Distribution
The set V we wish to rank together with the ground truth τ∗

are drawn as pair from a distribution we denote by D. In
other words, τ∗ may be a random function of V . For our
analysis of the loss though, it is convenient to think of V
and τ∗ as fixed, because our bounds will be conditioned on
fixed V, τ∗ and will easily generalize to the stochastic set-
ting. Finally, we say that D is bipartite if τ∗ is bipartite with
probability 1.

2.8 Regret Functions
The notion of regret is commonly used to measure the dif-
ference between the loss incurred by a learning algorithm
and that of some best alternative. This section introduces
the definitions of regret that we will be using to quantify the
quality of a ranking algorithm in this context. We will de-
fine a notion of weak and strong regret for both ranking and
classification losses as follows.

To define a strong ranking regret, we subtract from the
loss function the minimal loss that could have been obtained
from a global ranking σ̃ of U . More precisely, we define:

Rrank(A,D) = EV,τ∗,s[L(As(V), τ∗)]
− min

σ̃∈S(U)
EV,τ∗ [L(σ̃|V , τ∗)] ,

where σ̃|V ∈ S(V) is defined by restricting the ranking σ̃ ∈
S(U) to V in a natural way, and A is a possibly randomized
algorithm using a stream of random bits s (and a pre-learned
preference function h) to output a ranking As(V) in S(V).

As for the strong preference loss, it is natural to subtract
the minimal loss over all, possibly cyclic, preference func-
tions on U .

More precisely, we define:

Rclass(h, D) = EV,τ∗ [L(h|V , τ∗)]−min
h̃

EV,τ∗ [L(h̃|V , τ∗)] ,

where the minimum is over h̃, a preference function over
U , and ·|V is a restriction operator on preference functions
defined in the natural way.

The weak ranking and classification regret functionsR′
rank

and R′
class are defined as follows:

R′
rank(A,D) = EV,τ∗,s[L(As(V), τ∗)]

− EV min
σ̃∈S(V)

Eτ∗|V [L(σ̃, τ∗)] (5)

R′
class(h, D) = EV,τ∗ [L(h|V , τ∗)]

− EV min
h̃

Eτ∗|V [L(h̃, τ∗)] , (6)

where τ∗|V is the random variable τ∗ conditioned on fixed
V . The difference between R and R′ for both ranking and
classification is that in their definition the min operator and
the EV operator are permuted.

The following inequalities follow from the concavity of
min and Jensen’s inequality:

R′
rank(A,D) ≥ Rrank(A,D) and

R′
class(A,D) ≥ Rclass(A,D).

(7)

For a fixed V and any u, v ∈ V , let

e(u, v) = Eτ∗|V [τ∗(u, v)] . (8)

The reason we work with R′
class is because the preference

function h̃ over U obtaining the min in the definition of
R′

class can be determined locally for any u, v ∈ U by

h̃(u, v) =

1 e(u, v) > e(v, u)
0 e(v, u) > e(u, v)
1u>v otherwise .

(9)

Also, equation (3) holds true with e replacing τ∗, and sim-
ilarly for (4) if D is bipartite (by linearity of expectation).
We cannot do a similar thing when working with the strong
regret function Rclass.

The reason we work with weak ranking regret is for com-
patibility with our choice of weak classification regret, al-
though our upper bounds on R′

rank trivially apply to Rrank

in virtue of (7).
In Section 5.4, we will discuss certain assumptions under

which our results work for the notion of strong regret as well.
Note that Balcan et al. (2007) also implicitly use such an as-
sumption in deriving their regret bounds. Our regret bounds
(second part of Theorem 2) hold under the same assumption.
Our result is thus exactly comparable with theirs.

3 Algorithm for Ranking Using a Preference
Function

This section describes and analyzes an algorithm for obtain-
ing a global ranking of a subset using a prelearned prefer-
ence function h, which corresponds to the second stage of
the preference-based setting. Our bound on the loss will be
derived using conditional expectation on the preference loss
assuming a fixed subset V ⊆ U , and fixed ground truth τ∗.

To further simplify the analysis, we assume that h is bi-
nary, that is h(u, v) ∈ {0, 1} for all u, v ∈ U .

3.1 Description
One simple idea to obtain a global ranking of the points in V
consists of using a standard comparison-based sorting algo-
rithm where the comparison operation is based on the pref-
erence function. However, since in general the preference
function is not transitive, the property of the resulting per-
mutation obtained is unclear.

This section shows however that the permutation gener-
ated by the standard QuickSort algorithm provides excellent
guarantees.1 Thus, the algorithm we suggest is the following.
Pick a random pivot element u uniformly at random from V .
For each v 6= u, place v on the left2 of u if h(v, u) = 1, and
to its right otherwise. Proceed recursively with the array to
the left of u and the one to its right and return the concatena-
tion of the permutation returned by the left recursion, u, and
the permutation returned by the right recursion.

We will denote by Qh
s (V) the permutation resulting in

running QuickSort on V using preference function h, where
s is the random stream of bits used by QuickSort for the se-
lection of the pivots. As we shall see in the next two sec-
tions, this algorithm produces high-quality global rankings
in a time-efficient manner.

3.2 Ranking Quality Guarantees
The following theorems bound the ranking quality of the al-
gorithm described, for both loss and regret, in the general
and bipartite cases.

Theorem 1 (Loss bounds in general case) For any fixed sub-
set V ⊆ U , preference function h on V , and generalized
ranking τ∗ on V , the following bound holds:

E
s
[L(Qh

s (V), τ∗)] ≤ 2L(h, τ∗) . (10)

Taking the expectation of both sides, this implies immedi-
ately that

E
V,τ∗,s

[L(Qh
s (V), τ∗)] ≤ 2EV,τ∗ [L(h, τ∗)], (11)

where h could depend on V .

Theorem 2 (Loss and regret bounds in bipartite case) For
any fixed V ⊆ U , preference function h over V , and bipar-
tite generalized ranking τ∗, the following bound holds:

E
s
[L(Qh

s (V), τ∗] = L(h, τ∗) (12)

R′
rank(Qh

s (·), D) ≤ R′
class(h, D) . (13)

Taking the expectation of both sides of Equation 12, this im-
plies immediately that if (V, τ∗) is drawn from a bipartite
distribution D, then

E
V,τ∗,s

[L(Qh
s (V), τ∗)] = EV,τ∗ [L(h, τ∗)], (14)

where h can depend on V .
To present the proof of these theorems, we need some

tools helpful in the analysis of QuickSort, similar to those
originally developed by Ailon et al.(2005). The next section
introduces these tools.

1We are not assuming here transitivity as in standard textbook
presentations of QuickSort.

2We will use the convention that ranked items are written from
left to right, starting with the most preferred ones.

3.3 Analysis of QuickSort
Assume V is fixed, and let Qs = Qh

s (V) be the (random)
ranking output by QuickSort on V using the preference func-
tion h. During the execution of QuickSort, the order between
two elements u, v ∈ V is determined in one of two ways:

• Directly: u (or v) was selected as the pivot with v (resp.
u) present in the same sub-array in a recursive call to
QuickSort. We denote by puv = pvu the probability of
that event. In that case, the algorithm orders u and v
according to the preference function h.

• Indirectly: a third element w ∈ V is selected as pivot
with w, u, v all present in the same sub-array in a recur-
sive call to QuickSort, u is assigned to the left sub-array
and v to the right (or vice-versa).
Let puvw denote the probability of the event that u, v,
and w are present in the same array in a recursive call
to QuickSort and that one of them is selected as pivot.
Note that conditioned on that event, each of these three
elements is equally likely to be selected as a pivot since
the pivot selection is based on a uniform distribution.
If (say) w is selected among the three, then u will be
placed on the left of v if h(u, w) = h(w, v) = 1, and
to its right if h(v, w) = h(w, u) = 1. In all other
cases, the order between u, v will be determined only
in a deeper nested call to QuickSort.

Let X, Y : V × V → R be any two functions on ordered
pairs u, v ∈ V , and let Z :

(
V
2

)
→ R be a function on un-

ordered pairs. We define three functions α[X, Y] :
(
V
2

)
→ R,

β[X] :
(
V
3

)
→ R and γ[Z] :

(
V
3

)
→ R as follows:

α[X, Y]uv = X(u, v)Y (v, u) + X(v, u)Y (u, v),
β[X]uvw =

1
3
(h(u, v)h(v, w)X(w, u) + h(w, v)h(v, u)X(u, w))+

1
3
(h(v, u)h(u, w)X(w, v) + h(w, u)h(u, v)X(v, w))+

1
3
(h(u, w)h(w, v)X(v, u) + h(v, w)h(w, u)X(u, v)),

γ[Z]uvw =
1
3
(h(u, v)h(v, w) + h(w, v)h(v, u))Zuw+

1
3
(h(v, u)h(u, w) + h(w, u)h(u, v))Zvw+

1
3
(h(u, w)h(w, v) + h(v, w)h(w, u))Zuv .

Lemma 3 (QuickSort Decomposition)

1. For any Z :
(
V
2

)
→ R,∑

u<v

Zuv =
∑
u<v

puvZuv +
∑

u<v<w

puvwγ[Z]uvw .

2. For any X : V × V → R,

Es[
∑
u<v

α[Qs, X]uv] =∑
u<v

puvα[h, X]uv +
∑

u<v<w

puvwβ[X]uvw .

Proof: To see the first part, notice that for every unordered
pair u < v the expression Zuv is accounted for on the RHS
of the equation with total coefficient:

puv +
∑

w 6∈{u,v}

1
3
puvw(h(u, w)h(w, v) + h(v, w)h(w, u)) .

Now, puv is the probability that the order of (u, v) is deter-
mined directly (by definition), and

1
3
puvw(h(u, w)h(w, v) + h(v, w)h(w, u))

is the probability that their order is determined indirectly via
w as pivot. Since each pair’s ordering is accounted for ex-
actly once, these probabilities are for pairwise disjoint events
that cover the probability space. Thus, the total coefficient of
Zuv on the RHS is 1, as is on the LHS. The second part is
proved similarly.

3.4 Loss Bounds
This section proves Theorem 1 and the first part of Theo-
rem 2. For a fixed τ∗, the loss incurred by QuickSort is
L(Qs, τ

∗) =
(
n
2

)−1∑
u<v α[Qs, τ

∗]uv . By the second part
of Lemma 3, the expected loss is therefore

E
s
[L(Qs, τ

∗)] =(
n

2

)−1
(∑

u<v

puvα[h, τ∗]uv +
∑

u<v<w

puvwβ[τ∗]uvw

)
.

Also, the following holds by definition of L:

L(h, τ∗) =
(

n

2

)−1∑
u<v

α[h, τ∗]uv .

Thus, by the first part of Lemma 3,

L(h, τ∗) =(
n

2

)−1
(∑

u<v

puvα[h, τ∗]uv +
∑

u<v<w

γ[α[h, τ∗]]uvw

)
.

To complete the proof, it suffices to show that for all u, v, w,

β[τ∗]uvw ≤ 2γ[α[h, τ∗]]uvw , (15)

and that if τ∗ is bipartite, then

β[τ∗]uvw = γ[α[h, τ∗]]uvw . (16)

Up to symmetry, there are two cases to consider. The first
case assumes that h induces a cycle on u, v, w, the second
assumes that it doesn’t.

1. Without loss of generality, assume h(u, v) = h(v, w) =
h(w, u) = 1. Plugging in the definitions leads to

β[τ∗]uvw =
1

3
(τ∗(u, v)+ τ∗(v, w)+ τ∗(w, u)), and (17)

γ[α[h, τ∗]]uvw =
1

3
(τ∗(v, u) + τ∗(w, v) + τ∗(u, w)) .

(18)

If τ∗ is bipartite, then by (4) the right hand sides of (17)
and (18) are equal, giving (16). Otherwise we use (3) to
derive

τ∗(u, v) ≤ τ∗(u, w) + τ∗(w, v)
τ∗(v, w) ≤ τ∗(v, u) + τ∗(u, w)
τ∗(w, u) ≤ τ∗(w, v) + τ∗(v, u)

Summing up the three equations, this implies (15).

2. Without loss of generality, assume h(u, v) = h(v, w) =
h(u, w) = 1. Plugging in the definitions gives

β[τ∗]uvw = γ[α[h, τ∗]]uvw = τ∗(w, u)

as required.

We now examine a consequence of Theorem 1 for QuickSort
that can be compared with the bound given by Cohen et al.
(1999) for a greedy algorithm based on the tournament de-
gree. Let σoptimal be the ranking with the least amount of
pairwise disagreement with h:

σoptimal = argmin
σ

L(h, σ) .

Then, the following corollary bounds the expected pairwise
disagreement of QuickSort with respect to σoptimal by twice
that of the preference function with respect to σoptimal.

Corollary 4 For any V ⊆ U and preference function h over
V , the following bound holds:

E
s
[L(Qh

s (V), σoptimal)] ≤ 2 L(h, σoptimal) . (19)

The corollary is immediate since technically any ranking, in
particular σoptimal, can be taken as σ∗ in the proof of Theo-
rem 1.

Corollary 5 Let V ⊆ U be an arbitrary subset of U and let
σoptimal be as above. Then, the following bound holds for
the pairwise disagreement of the ranking Qh

s (V) with respect
to h:

E
s
[L(h, Qh

s (V))] ≤ 3 L(h, σoptimal). (20)

Proof: The result follows directly Corollary 4 and the appli-
cation of the triangle inequality.

This result is in fact known from previous work (Ailon
et al.2005; 2007) where it is proven directly without resort-
ing to the intermediate inequality (19). In fact, a better factor
of 2.5 is known to be achievable using a more complicated
algorithm, which gives hope for a 1.5 bound improving The-
orem 1.

3.5 Regret Bounds for Bipartite case
This section proves the second part of Theorem 2, that is the
regret bound. Since in the definition of R′

rank and R′
class

the expectation over V is outside the min operator, we may
continue to fix V . Let DV denote the distribution over the
bipartite τ∗ conditioned on V . By the definitions of R′

rank
and R′

class, it is now sufficient to prove that

E
τ∗|V,s

[L(Qh
s , τ∗)]−min

σ̃
E

τ∗|V
[L(σ̃, τ∗)]

≤ E
τ∗|V

[L(h, τ∗)]−min
h̃

E
τ∗|V

[L(h̃, τ∗)]. (21)

We let e(u, v) denote Eτ∗|V [τ∗(u, v)], then by the linear-
ity of expectation, Eτ∗|V [L(σ̃, τ∗)] = L(σ̃, e) and similarly
Eτ∗|V [L(h̃, τ∗)] = L(h̃, e). Thus, inequality 21 can be rewrit-
ten as

E
s
[L(Qh

s , e)]−min
σ̃

L(σ̃, e) ≤ L(h, e)−min
h̃

L(h̃, e). (22)

Now let σ̃ and h̃ be the minimizers of the min operators on
the left and right sides, respectively. Recall that for all u, v ∈
V , h̃(u, v) can be taken greedily as a function of e(u, v) and
e(v, u), as in (9):

h̃(u, v) =

1 e(u, v) > e(v, u)
0 e(u, v) < e(v, u)
1u>v otherwise (equality) .

(23)

Using Lemma 3 and linearity, the LHS of (22) can be rewrit-
ten as:(

n

2

)−1
(∑

u<v

puv α[h− σ̃, e]uv

+
∑

u<v<w

puvw(β[e]− γ[α[σ̃, e]])uvw

)
,

and the RHS of (22) as:(
n

2

)−1
(∑

u<v

puv α[h− h̃, e]uv

+
∑

u<v<w

puvwγ[α[h− h̃, e]]uvw

)
.

Now, clearly, for all (u, v) by construction of h̃, we must
have α[h − σ̃, e]uv ≤ α[h − h̃, e]uv . To conclude the proof
of the theorem, we define F :

(
n
3

)
→ R as follows:

F = β[e]− γ[α[σ̃, e]]− (γ[α[h, e]]− γ[α[h̃, e]]) . (24)

It now suffices to prove that Fuvw ≤ 0 for all u, v, w ∈ V .
Clearly F is a function of the values of

e(a, b) : {a, b} ⊆ {u, v, w}
h(a, b) : {a, b} ⊆ {u, v, w}
σ̃(a, b) : {a, b} ⊆ {u, v, w}.

(25)

Recall that h̃ depends on e. By (3) and (4), the e-variables
can take values satisfying the following constraints for all
u, v, w ∈ V :

∀ {a, b, c} = {u, v, w} , e(a, c) ≤ e(a, b) + e(b, c) (26)
e(u, v) + e(v, w) + e(w, u) = e(v, u)+ (27)

e(w, v) + e(u, w)
∀a, b ∈ {u, v, w} , e(a, b) ≥ 0 . (28)

Let P ⊆ R6 denote the polytope defined by (26-28) in the
variables e(a, b) for {a, b} ⊆ {u, v, w}. We subdivide P into
smaller subpolytopes on which the h̃ variables are constant.
Up to symmetries, we can consider only two cases: (i) h̃
induces a cycle on u, v, w and (ii) h̃ is cycle-free on u, v, w.

(i) Without loss of generality, assume h̃(u, v) = h̃(v, w) =
h̃(w, u) = 1. But this implies that e(u, v) ≥ e(v, u),
e(v, w) ≥ e(w, v) and e(w, u) ≥ e(u, w). Together
with (27) and (28), this implies that e(u, v) = e(v, u),
e(v, w) = e(w, v), and e(w, u) = e(u, w). Conse-
quently,

β[e]uvw = γ[α[σ̃, e]]uvw

= γ[α[h, e]]uvw = γ[α[h̃, e]]uvw

=
1
3
(e(u, v) + e(v, w) + e(w, u)) ,

and Fuvw = 0, as required.

(ii) Without loss of generality, assume h̃(u, v) = h̃(v, w) =
h̃(u, w) = 1. This implies that

e(u, v) ≥ e(v, u)
e(v, w) ≥ e(w, v)
e(u, w) ≥ e(w, u) .

(29)

Let P̃ ⊆ P denote the polytope defined by (29) and
(26)-(28). Clearly, F is linear in the 6 e variables when
all the other variables are fixed. Since F is also ho-
mogenous in the e variables, it suffices to prove that
F ≤ 0 for e taking values in P̃ ′ ⊆ P̃ , which is defined
by adding the constraint, say,∑

a,b∈{u,v,w}

e(a, b) = 2 .

It is now enough to prove that F ≤ 0 for τ∗ being a
vertex of of P̃ ′. This finite set of cases can be easily
checked to be:

(e(u, v), e(v, u), e(u, w),
e(w, u), e(w, v), e(v, w)) ∈ A ∪B ,

where

A = {(0, 0, 1, 0, 0, 1), (1, 0, 1, 0, 0, 0)}
B ={(.5, .5, .5, .5, 0, 0), (.5, .5, 0, 0, .5, .5),

(0, 0, .5, .5, .5, .5)} .

The points in B were already checked in case (i), which
is, geometrically, a boundary of case (ii). It remains to
check the two points in A.

• case (0, 0, 1, 0, 0, 1): plugging in the definitions,
one checks that:

β[e]uvw =
1
3
(h(w, v)h(v, u) + h(w, u)h(u, v))

γ[α[h, e]]uvw =
1
3
((h(u, v)h(v, w) + h(w, v)h(v, u))h(w, u)

+ (h(v, u)h(u, w) + h(w, u)h(u, v))h(w, v))

γ[α[h̃, e]]uvw = 0 .

Clearly F could be positive only of βuvw = 1,
which happens if and only if either h(w, v)h(v, u) =

1 or h(w, u)h(u, v) = 1. In the former case, we
obtain that

either h(w, v)h(v, u)h(w, u) = 1 (30)
or h(v, u)h(u, w)h(w, v) = 1 , (31)

both implying that γ[α[h, e]]uvw ≥ 1, thus F ≤ 0.
In the latter case,

either h(w, u)h(u, v)h(w, v) = 1 (32)
or h(u, v)h(v, w)h(w, u) = 1 , (33)

both implying again that γ[α[h, e]]uvw ≥ 1 and
thus F ≤ 0.

• case (1, 0, 1, 0, 0, 0): plugging in the definitions,
one checks that:

β[e]uvw =
1
3
(h(w, v)h(v, u) + h(v, w)h(w, u))

γ[α[h, e]]uvw =
1
3
((h(u, v)h(v, w) + h(w, v)h(v, u))h(w, u)

+ (h(u, w)h(w, v) + h(v, w)h(w, u))h(v, u)) .

γ[α[h̃, e]]uvw = 0 .

Now F could be positive if and only if

either h(w, v)h(v, u) = 1 (34)
or h(v, w)h(w, u) = 1 . (35)

In the former case, we obtain that

either h(w, v)h(v, u)h(w, u) = 1 (36)
or h(v, u)h(u, w)h(w, v) = 1 , (37)

both implying that γ[α[h, e]]uvw ≥ 1, and thus
F ≤ 0. In the latter case,

either h(v, w)h(w, u)h(v, u) = 1 (38)
or h(u, v)h(v, w)h(w, u) = 1 , (39)

both implying again that γ[α[h, e]]uvw ≥ 1 and
thus F ≤ 0.

This concludes the proof of the second part of Theorem 2.

3.6 Time Complexity
Running QuickSort does not entail Ω(|V |2) accesses to hu,v .
The following bound on the running time is proven in Sec-
tion 3.6.

Theorem 6 The expected number of times QuickSort accesses
to the preference function h is at most O(n log n). More-
over, if only the top k elements are sought then the bound is
reduced to O(k log k + n) by pruning the recursion.

It is well known that QuickSort on cycle-free tournaments
runs in time O(n log n), where n is the size of the set we
wish to sort. That this holds for QuickSort on general tourna-
ments is a simple extension (communicated by Heikki Man-
nila) which we present it here to keep this presentation self-
contained. The second part of the theorem requires some
more work.

Proof: Let T (n) be the maximum expected running time of
QuickSort on a possibly cyclic tournament on n vertices in
terms of number of comparisons. Let G = (V,A) denote a
tournament. The main observation is that each vertex v ∈
V is assigned to the left recursion with probability exactly
outdeg(v)/n and to the right with probability indeg(v)/n,
over the choice of the pivot. Therefore, the expected size
of both the left and right recursions is exactly (n − 1)/2.
The separation itself costs n− 1 comparisons. The resulting
recursion formula T (n) ≤ n − 1 + 2T ((n − 1)/2) clearly
solves to T (n) = O(n log n).

Assume now that only the k first elements of the output
are sought, that is, we are interested in outputting only ele-
ments in positions 1, . . . , k. The algorithm which we denote
by k-QuickSort is clear: recurse with min {k, nL}-QuickSort
on the left side and max {0, k − nL − 1}-QuickSort on the
right side, where nL, nR are the sizes of the left and right
recursions respectively and 0-QuickSort takes 0 steps by as-
sumption. To make the analysis simpler, we will assume
that whenever k ≥ n/8, k-QuickSort simply returns the out-
put of the standard QuickSort, which runs in expected time
O(n log n) = O(n + k log k), within the sought bound. Fix
a tournament G on n vertices, and let tk(G) denote the run-
ning time of k-QuickSort on G, where k < n/8. Denote the
(random) left and right sub-tournaments by GL and GR re-
spectively, and let nL = |GL|, nR = |GR| denote their sizes
in terms of number of vertices. Then, clearly,

tk(G) = n−1+ tmin{k,nL}(GL)+ tmax{0,k−nL−1}(GR). (40)

Assume by structural induction that for all {k′, n′ : k′ ≤
n′ < n} and for all tournaments G′ on n′ vertices,

E[tk′(G′)] ≤ cn′ + c′k′ log k′

for some global c, c′ > 0. Then, by conditioning on GL, GR,
taking expectations on both sides of (40) and by induction,

E[tk(G) | GL, GR] ≤ n− 1 + cnL+

c′ min{k, nL} log min{k, nL}+ cnR1nL<k−1+

c′ max{k − nL − 1, 0} log max{k − nL − 1, 0}.

By convexity of the function x 7→ x log x,

min{k, nL} log min{k, nL}+
max{k − nL − 1, 0} log max{k − nL − 1, 0}

≤ k log k. (41)

Thus,

E[tk(G) | GL, GR] ≤ n− 1 + cnL+

cnR1nL<k−1 + c′k log k. (42)

By conditional expectation,

E[tk(G)] ≤ n−1+c(n−1)/2+c′k log k+cE[nR1nL<k−1].

To complete the inductive hypothesis, we need to bound the
quantity E[nR1nL<k−1], which is bounded by n Pr[nL <
k−1]. The event {nL < k−1}, equivalent to {nR > n−k},
occurs when a vertex of out-degree at least n− k ≥ 7n/8 is
chosen as pivot. For a random pivot v ∈ V , where V is the
vertex set of G, E[outdeg(v)2] ≤ n2/3 + n/2 ≤ n2/2.9.

Indeed, each pair of edges (v, u1) ∈ A and (v, u2) ∈ A for
u1 6= u2 gives rise to a triangle which is counted exactly
twice in the cross-terms, hence n2/3 which upper-bounds
2
(
n
3

)
/n; n/2 bounds the diagonal. Thus, Pr[outdeg(v) ≥

7n/8] = Pr[outdeg(v)2 ≥ 49n2/64] ≤ 0.46 (by Markov).
Plugging in this value into our last estimate yields
E[tk(G)] ≤ n− 1 + c(n− 1)/2 + c′k log k + 0.46× cn,

which is at most cn + c′k log k for c ≥ 30, as required.

4 Lower Bounds
Let r denote the classification regret. Balcan et al. (2007)
proved a lower bound of 2r for the regret of the algorithm
MFAT defined as the solution to the minimum feedback arc-
set problem on the tournament V with an edge (u, v) when
h(u, v) = 1. More precisely, they showed an example of
fixed V , h, and bipartite generalized ranking τ∗ on V , such
that the classification regret of h tends to 1/2 of the ranking
regret of MFAT on V, h. Note that in this case, since τ∗ is
a fixed function of V , the regret and loss coincide both for
classification and for ranking.

Here we give a simple proof of a more general theorem
stating that same bound holds for any deterministic algo-
rithm, including of course MFAT.

Theorem 7 For any deterministic algorithm A taking as in-
put V ⊆ U and a preference function h on V and outputting
a ranking σ ∈ S(V), there exists a bipartite distribution D
on (V, τ∗) such that

Rrank(A,D) ≥ 2Rclass(h, D). (43)

Note that the theorem implies that, in the bipartite case, no
deterministic algorithm converting a preference function into
a linear ranking can do better than a randomized algorithm,
on expectation. Thus, randomization is essentially necessary
in this setting.

The proof is based on an adversarial argument. In our
construction, the support of D is reduced to a single pair
(V, τ∗) (deterministic input), thus the loss and both the weak
and strong regrets coincide and a similar argument applies to
the loss function and the weak regret functions.
Proof: Fix V = {u, v, w}, and let the support of D be
reduced to (V, τ∗), where the bipartite generalized ranking
τ∗ is one that we will select adversarially. Assume a cycle:
h(u, v) = h(v, w) = h(w, u) = 1. Up to symmetry, there
are two options for the output σ of A on V, h.

1. σ(u) < σ(v) < σ(w): in this case, the adversary can
choose τ∗ corresponding to the partition V + = {w}
and V − = {u, v}. Clearly, Rclass(h, D) now equals
1/2 since h is penalized only for misranking the pair
(v, w), but Rrank(A,D) = 1 since σ is misordering
both (u, w) and (v, w).

2. σ(w) < σ(v) < σ(u): in this case, the adversary can
choose τ∗ corresponding to the partition V + = {u}
and V − = {v, w}. Similarly, Rclass(h, D) now equals
1/2 since h is penalized only for misranking the pair
(u, w), while Rrank(A,D) = 1 since σ is misordering
both (u, v) and (u, w).

5 Discussion
5.1 History of QuickSort
The textbook algorithm, by now standard, was originally
discovered by Hoare (1961). Montague and Aslam (Mon-
tague & Aslam, 2002) experimented with QuickSort for in-
formation retrieval (IR) by aggregating rankings from differ-
ent sources of retrieval. They claimed an O(n log n) time
bound on the number of comparisons, although the proof
seemed to rely on the folklore QuickSort proof without ad-
dressing the non-transitivity problem. They proved certain
combinatorial bounds on the output of QuickSort and pro-
vided an empirical justification of its IR merits. Ailon et al.
(2005) also considered the rank aggregation problem and
proved theoretical cost bounds for many ranking problems
on weighted tournaments. They strengthened these bounds
by considering non-deterministic pivoting rules arising from
solutions to certain ranking LP’s. This work was later ex-
tended by Ailon (2007) to deal with rankings with ties, in
particular, top-k rankings. Hedge et al.(2007) and Williamson
and van Zuylen (2007) derandomized the random pivot se-
lection step in QuickSort for many of the combinatorial op-
timization problems studied by Ailon et al..

5.2 The decomposition technique
The technique developed in Lemma 3 is very general and can
be used for a wide variety of loss functions and variants of
QuickSort involving non-deterministic ordering rules (Ailon
et al. 2005; 2007). Such results would typically amount to
bounding β[X]uvw/γ[Z]uvw for some carefully chosen func-
tions X, Z depending on the application.

5.3 Combinatorial Optimization vs. Learning of
Ranking

QuickSort, sometimes referred to as FAS-Pivot in that con-
text, was used by Ailon et al. (2005; 2007) to approximate
certain NP-Hard weighted instances of the problem of min-
imum feedback arcset in tournaments (Alon, 2006). There
is much similarity between the techniques used in that work
and those of the analyses of this work, but there is also a
significant difference that should be noted.

In the minimum feedback arc-set problem, we are given
a tournament G and wish to find an acyclic tournament H on
the same vertex set minimizing ∆(G, H), where ∆ counts
the number of edges pointing in opposite directions between
G, H (or a weighted version thereof). However, the cost we
are considering is ∆(G, Hσ) for some fixed acyclic tourna-
ment Hσ induced by some permutation σ (the ground truth).
In this work, we showed in fact that if G′ is obtained from G
using QuickSort, then E[∆(G′,Hσ)] ≤ 2∆(G, Hσ) for any
σ (Theorem 1). If H is the optimal solution to the (weighted)
minimum feedback arc-set problem corresponding to G, then
it is easy to see that ∆(H,Hσ) ≤ ∆(G, H) + ∆(G, Hσ) ≤
2∆(G, Hσ). However, recovering G is NP-Hard in general.
Approximating ∆(G, H) modulo a constant factor 1 + ε us-
ing an acyclic tournament H ′, as in the combinatorial opti-
mization world, only guarantees a constant factor of 2 + ε:

∆(H ′,Hσ) ≤ ∆(G, H ′) + ∆(G, Hσ) ≤
(1 + ε)∆(G, H) + ∆(G, Hσ) ≤ (2 + ε)∆(G, Hσ) .

Thus, this work also adds a significant contribution to (Ailon
et al., 2005; Ailon, 2007; Kenyon-Mathieu & Schudy, 2007).

5.4 Weak vs. Strong Regret Functions
For the proof of the regret bound of Theorem 2 we used the
fact that the minimizer h̃ in the definition (5-6) of R′

class
could be determined independently for each pair u, v ∈ U ,
using (9). This could also be done for strong regrets if the
distribution D on V, τ∗ satisfied the following pairwise IIA
condition.

Definition 8 A distribution D on subsets V ⊆ U and gener-
alized rankings τ∗ on V satisfies the pairwise independence
on irrelevant alternatives (pairwise IIA) if for all u, v ∈ U
and for any two subsets V1, V2 ⊇ {u, v},

Eτ∗|V1 [τ
∗(u, v)] = Eτ∗|V2 [τ

∗(u, v)] .

Note: We chose the terminology IIA to match that used in
Arrow’s seminal work (Arrow, 1950) to describe a similar
notion.

When pairwise IIA holds, the average ground truth rela-
tion between u and v, conditioned on u, v included in V , is
independent of V .

Recall that a bipartite τ∗ is derived from a pair σ∗, ω,
where ω is defined using a term 1/m−m+, for compatibil-
ity with the definition of AUC. The numbers m+ and m−

depend on the underlying size of the positive and negative
sets partitioning of V and therefore cannot be inferred from
(u, v) alone. Thus, in the standard bipartite case, the pair-
wise IIA assumption is not natural. If, however, we replaced
our definitions in the bipartite case and used the following:

ω(i, j) =

1 (i ≤ m+) ∧ (j > m+)
1 (j ≤ m+) ∧ (i > m+)
0 otherwise,

(44)

instead of (2), then it would be reasonable to believe that
pairwise IIA does hold in the bipartite case. In fact, it would
be reasonable to make the stronger assumption that for any
fixed u, v ∈ U and V1, V2 ⊇ {u, v} the distribution of the
random variables τ∗(u, v)|V1 and τ∗(u, v)|V2 are equal. This
corresponds to the intuition that when comparing a pair u, v
in a context of a set V containing them, human labelers are
not as influenced by the irrelevant information V \{u, v} as
they would be by V \{u} if asked to evaluate single elements
u. The irrelevant information in V is often referred to as
anchor in experimental psychology and economics (Ariely
et al., 2008).

Our regret bounds would still hold if we used (44), but
we chose (2) to present our results in terms of the familiar
average pairwise misranking error or AUC loss.

Another possible assumption allowing usage of strong
regrets is to let the preference function learned in the first
stage depend on V . This is the assumption implicitly made
by Balcan et al. (2007) (based on our private communica-
tion). We do not further elaborate on this assumption.

6 Conclusion
We described a reduction of the learning problem of rank-
ing to classification. The efficiency of this reduction makes

it practical for large-scale information extraction and search
engine applications. A finer analysis of QuickSort is likely
to further improve our reduction bound by providing a con-
centration inequality for the algorithm’s deviation from its
expected behavior using the confidence scores output by the
classifier. Our reduction leads to a competitive ranking algo-
rithm that can be viewed as an alternative to the algorithms
previously designed for the score-based setting.

7 Acknowledgments
We thank Alina Beygelzimer and John Langford for helpful
discussions. Mehryar Mohri’s work was partially funded by
the New York State Office of Science Technology and Aca-
demic Research (NYSTAR).

References
Agarwal, S., Graepel, T., Herbrich, R., Har-Peled, S., &

Roth, D. (2005). Generalization bounds for the area under
the roc curve. Journal of Machine Learning Research, 6,
393–425.

Agarwal, S., & Niyogi, P. (2005). Stability and generaliza-
tion of bipartite ranking algorithms. COLT (pp. 32–47).

Ailon, N. (2007). Aggregation of partial rankings, p-ratings
and top-m lists. SODA.

Ailon, N., Charikar, M., & Newman, A. (2005). Aggregat-
ing inconsistent information: ranking and clustering. Pro-
ceedings of the 37th Annual ACM Symposium on Theory
of Computing, Baltimore, MD, USA, May 22-24, 2005 (pp.
684–693). ACM.

Alon, N. (2006). Ranking tournaments. SIAM J. Discrete
Math., 20, 137–142.

Ariely, D., Loewenstein, G., & Prelec, D. (2008). Coherent
arbitrariness: Stable demand curves without stable prefer-
ences. The Quarterly Journal of Economics, 118, 73–105.

Arrow, K. J. (1950). A difficulty in the concept of social
welfare. Journal of Political Economy, 58, 328–346.

Balcan, M.-F., Bansal, N., Beygelzimer, A., Coppersmith,
D., Langford, J., & Sorkin, G. B. (2007). Robust reduc-
tions from ranking to classification. COLT (pp. 604–619).
Springer.

Clémençon, S., & Vayatis, N. (2007). Ranking the best in-
stances. Journal of Machine Learning Research, 8, 2671–
2699.

Cohen, W. W., Schapire, R. E., & Singer, Y. (1999). Learning
to order things. J. Artif. Intell. Res. (JAIR), 10, 243–270.

Coppersmith, D., Fleischer, L., & Rudra, A. (2006). Order-
ing by weighted number of wins gives a good ranking for
weighted tournamnets. Proceedings of the 17th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA).

Cortes, C., Mohri, M., & Rastogi, A. (2007a). An Alterna-
tive Ranking Problem for Search Engines. Proceedings
of the 6th Workshop on Experimental Algorithms (WEA
2007) (pp. 1–21). Rome, Italy: Springer-Verlag, Heidel-
berg, Germany.

Cortes, C., Mohri, M., & Rastogi, A. (2007b). Magnitude-
Preserving Ranking Algorithms. Proceedings of the
Twenty-fourth International Conference on Machine
Learning (ICML 2007). Oregon State University, Corval-
lis, OR.

Cossock, D., & Zhang, T. (2006). Subset ranking using re-
gression. COLT (pp. 605–619).

Crammer, K., & Singer, Y. (2001). Pranking with rank-
ing. Advances in Neural Information Processing Systems
14 [Neural Information Processing Systems: Natural and
Synthetic, NIPS 2001, December 3-8, 2001, Vancouver,
British Columbia, Canada] (pp. 641–647). MIT Press.

Freund, Y., Iyer, R. D., Schapire, R. E., & Singer, Y. (2003).
An efficient boosting algorithm for combining prefer-
ences. Journal of Machine Learning Research, 4, 933–
969.

Hanley, J. A., & McNeil, B. J. (1982). The meaning and use
of the area under a receiver operating characteristic (roc)
curve. Radiology.

Hedge, R., Jain, K., Williamson, D. P., & van Zuylen, A.
(2007). ”deterministic pivoting algorithms for constrained
ranking and clustering problems”. Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms (SODA).

Hoare, C. (1961). Quicksort: Algorithm 64. Comm. ACM,
4, 321–322.

Joachims, T. (2002). Optimizing search engines using click-
through data. KDD ’02: Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discov-
ery and data mining (pp. 133–142). New York, NY, USA:
ACM Press.

Kenyon-Mathieu, C., & Schudy, W. (2007). How to rank
with few errors. STOC ’07: Proceedings of the thirty-ninth
annual ACM symposium on Theory of computing (pp. 95–
103). New York, NY, USA: ACM Press.

Lehmann, E. L. (1975). Nonparametrics: Statistical methods
based on ranks. San Francisco, California: Holden-Day.

Montague, M. H., & Aslam, J. A. (2002). Condorcet fu-
sion for improved retrieval. Proceedings of the 2002
ACM CIKM International Conference on Information and
Knowledge Management, McLean, VA, USA, November
4-9, 2002 (pp. 538–548). ACM.

Rudin, C., Cortes, C., Mohri, M., & Schapire, R. E.
(2005). Margin-based ranking meets boosting in the mid-
dle. Learning Theory, 18th Annual Conference on Learn-
ing Theory, COLT 2005, Bertinoro, Italy, June 27-30,
2005, Proceedings (pp. 63–78). Springer.

Williamson, D. P., & van Zuylen, A. (2007). ”determinis-
tic algorithms for rank aggregation and other ranking and
clustering problems”. Proceedings of the 5th Workshop
on Approximation and Online Algorithms (WAOA) (to ap-
pear).

