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Abstract

Hausdorff accurate estimation of density level sets
is relevant in applications where a spatially uni-
form mode of convergence is desired to ensure that
the estimated set is close to the target set at all
points. The minimax optimal rate of error con-
vergence for the Hausdorff metric is known to be
(n/logn)~1/(4+22) for level sets with boundaries
that have a Lipschitz functional form, and where
the parametery characterizing the regularity of
the density around the level of interest is known.
Thus, all previous work is non-adaptive to the den-
sity regularity and assumes knowledge of the reg-
ularity parametetv. Moreover, the estimators pro-
posed in previous work achieve the minimax op-
timal rate for rather restricted classes of sets (for
example, the boundary fragment and star-shaped
sets) that effectively reduce the set estimation
problem to a function estimation problem. This
characterization precludes level sets with multi-
ple connected components, which are fundamental
to many applications. This paper presents a fully
data-driven procedure that is adaptive to unknown
local density regularity, and achieves minimax op-
timal Hausdorff error control for a class of level
sets with very general shapes and multiple con-
nected components.

1 Introduction

nowak@ngr.w sc. edu

Clayton D. Scott
University of Michigan - Ann Arbor, USA
cscott @ecs. umi ch. edu

The goal of the density level set estimation problem is to
generate an estimage of the level set based on theobser-

vations{ X;}?_,, such that the error between the estimate
and the target sét”, as assessed by some performance mea-
sure which gauges the closeness of the two sets, is small.

Most literature available on level set estimation [SHSO05,
SNO06, SD07, WNO7, KT93, Tsy97, Pol95, RVO6] considers
global error measures related to the symmetric set difteren
However some applications may need a more local or spa-
tially uniform error measure as provided by the Hausdorff
metric, for example, to ensure robustness to outliers or pre
serve topological properties of the level set. The Hau$dorf
error metric is defined as follows between two non-empty
sets:

doo(G1,G2) = max{sup p(z,G1), sup p(z,G2)}

z€G2 z€G1

wherep(z,G) = inf e ||z — yl|, the smallest Euclidean
distance of a point i+ to the pointz. If G; or Gz is empty,
then letd(G1,G2) be defined as the largest distance be-
tween any two points in the domain. Control of this error
measure provides a uniform mode of convergence as it im-
plies control of the deviation of a single point from the de-
sired set. A symmetric set difference based estimator may
not provide such a uniform control as it is easy to see that
a set estimate can have very small symmetric difference er-
ror but large Hausdorff error. Conversely, as long as the set
boundary is not space-filling, small Hausdorff error implie
small symmetric difference error.

Existing results pertaining to nonparametric level set es-
timation using the Hausdorff metric [KT93, Tsy97, Cav97]

Density level sets provide useful summaries of a density focus on rather restrictive classes of level sets (for examp

function for many applications including clustering [H&r7

the boundary fragment and star-shaped set classes). These

Stu03], anomaly detection [SHS05, SN06, VVO06], and data restrictions, which effectively reduce the set estimagioob-

ranking [LPS99]. In practice, however, the density functio
itself is unknown a priori and only a finite number of ob-
servations from the density are available. Dét, ..., X,
be independent, identically distributed observationsvdra
from an unknown probability measure, having densityf

lem to a boundary function estimation problem (in rectan-
gular or polar coordinates, respectively), are typicaltyt n
met in practical applications. In particular, the characte
ization of level set estimation as a boundary function es-
timation problem precludes level sets with multiple con-

with respect to the Lebesgue measure, and defined on the donected components, which are fundamental to many appli-

mainX C R?. Given a desired density leve| consider the
~-level set of the density

G ={reX: f(x) >}
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cations. Moreover, the estimation techniques proposed in
[KT93, Tsy97, Cav97] require precise knowledge of the lo-

cal regularity of the distribution (quantified by the paraene

«, to be defined below) in the vicinity of the desired level set

in order to achieve minimax optimal rates of convergence.
Such prior knowledge is unavailable in most practical ap-



plications. Recently, a plug-in method based on sup-norm [B] Level set regularity:There exist constants, > 0 and
density estimation was put forth in [CMCO06] that can han- C3 > 0 such that for alle < ¢, Z.(G%) # 0 and
dle more general classes than boundary fragments or star- p(x,zg((;;)) < Cseforallz € oG,

shaped sets, however sup-norm based methods require global

smoothness assumptions on the density to ensure that the

density estimate is good everywhere. Also, the method only
deals with a special case of the density regularity condlitio
considered in this papen(= 1), and is therefore not adap-
tive to unknown density regularity.

In this paper, we propose a plug-in procedure based
on a regular histogram partition that can adaptively achiev
minimax optimal rates of Hausdorff error convergence over

a broad class of level sets with very general shapes and

multiple connected components, without assunangiori
knowledge of the density regularity parameterAdaptivity

is achieved by a new data-driven procedure for selecting the
histogram resolution. The procedure is specifically design
for the level set estimation problem and only requires local
regularity of the density in the vicinity of the desired leve

2 Density assumptions

In this paper, we assume that the dengitis supported on
the unit hypercube id-dimensions, that i’ = [0, 1]¢, and
is bounded with rang®, fi,.x]. Controlling the Hausdorff

accuracy of level set estimates also requires some smooth-
ness assumptions. The most crucial assumption is the first,

which characterizes the relationship between distancds an
changes in density. The last two are topological assumgtion
on the level set and essentially generalize the notion of Lip
schitz functions to closed hypersurfaces.

Here we define arc-ball centered at a point: as
B(z,e) = {y € X : [lz —y|| < e}, where|| - || denotes
the Euclidean distance. Also, amer e-coverof a setG is
defined as the union of adtballs contained iriz. Formally,

Ié(G) = Um:B(m,e)gG B(SE, 6)'

[A] Local density regularity: The density isa-regular
around they-level set,0 < a < oo andy < fiax
if there exist constant€’s > C; > 0 anddg,d; > 0
such that

Crp(x,0G7)* < [f(x) — | < Cop(x, 0GT)"

for all z € & with |f(z) — | < do, wheredGs

is the boundary of the true level s And there
existsyo € OGZ such that for allx € B(yo,01),
|f(x) =~ < do.

This assumption is similar to the one used in [Tsy97,
Cav97] (we elaborate on the differences later on). The
regularity parameter determines the rate of error con-
vergence for level set estimation. Accurate estimation
is more difficult at levels where the density is relatively
flat (large«), as intuition would suggest. In this pa-
per, we do not assume knowledgecofinlike previous
investigations into Hausdorff accurate level set estima-
tion [KT93, Tsy97, Cav97, CMCO06]. Therefore, here

This assumption states that the level set is not arbitrarily
narrow anywhere. It precludes features like cusps and
arbitrarily thin ribbons, as well as connected compo-
nents of arbitrarily small size. This condition is neces-
sary since arbitrarily small features cannot be detected
and resolved from a finite sample. However, from a
practical perspective, if the assumption fails to hold
then it simply means that it is not possible to theoret-
ically guarantee that such small features will be recov-
ered.

[C] Level set boundary dimensioithere exists a constant
C4 > 0 such that for all- € G and alle, 6 such that
0 < 0 < ¢, the minimum number of—balls required
to coveroG: N B(x,e) is < Cy(6/€)~(@=1,

This assumption is related to the box-counting dimen-
sion [Fal90] of the boundary of the level set. It es-
sentially says that, at any scale, the boundary behaves
locally like a (d — 1)-dimensional surface in thé -
dimensional domain and is not space-filling. This con-
dition is not restrictive since the Hausdorff error itself
is inappropriate for space-filling curves, and in fact it
is not required if the density regularity parameteis
known. However, the condition is needed to achieve
adaptivity using the proposed method, as we shall dis-
cuss later.

Let F; (o) denotes the class of densities satisfying as-
sumptiondA, B], andF; («) denotes the class of densities
satisfying assumption#\, B, C]. The dependence on other
parameters is omitted as these do not influence the minimax
optimal rate of convergence. The clasggg«), F; («) are
a generalization of the Lipschitz boundary fragments ar sta
shaped sets considered in [KT93, Tsy97, Cav97] since as-
sumptions[B, C] basically imply that the boundary looks
locally like a Lipschitz function. In fact assumptiof, C]
are satisfied by a Lipschitz boundary fragment or star-sthape
set; please refer to Section 5.3 for a formal proof. However,
there is a slight difference between the upper bound of as-
sumption[A] here and that employed in [Tsy97, Cav97].
The upper bound assumption in [Tsy97, Cav97] only re-
quires thatthe st : |f(z) —7| < do} be non-empty. So as
long as there is at least one point on the boundary where the
density regularity assumptid] holds, this determines the
complexity of the class. Our assumption requires the dgnsit
regularity to hold for an open neighborhood about at least
one point on the boundary. This is necessary for adaptivity
since a procedure cannot sense the regularity as character-
ized bya unless the regularity holds in a region with positive
measure.

In [Tsy97], Tsybakov established a minimax lower
bound of (n/ logn)’dfﬁ for the class of Lipschitz star-

shaped sets, which satisfy our assumpti@<C] (see Sec-
tion 5.3) and the slightly modified version of assumpfiam,

the assumption simply states that there is a relationshipas discussed above. His proof uses Fano'’s lemma to derive
between distance and density level, but the precise na-the lower bound for a discrete subset of densities from this
ture of the relationship is unknown. class. It is easy to see that the discrete subset of densities



used in his construction also satisfy our form of assump- factor. Hence the proposed estimator can achieve near min-
tion [A]. Hence, the same lower bound holds for the classesimax optimal rates, given knowledge of the density regular-
Fi () and F5 («) under consideration as well and we have ity. We would like to point out that if the paramet&y char-

the following proposition. Her& denotes expectation with
respect to the random data sample.

Proposition 1 There existg > 0 such that

inf sup ]E[doo(énaGi;)]

> inf sup E[do(Gn, ;)]
Gn fEF] (o)

Gn fEF; ()

1
n d42a
C .
(logn>

Here theinf is taken over all possible set estimat@g.

Y

In the paper, we present a method that achieves this min-

imax lower bound for the clas&; («), given knowledge
of the density regularity parameter We also extend the
method to achieve adaptivity te for the classF; () under
the additional assumptid&], while preserving the minimax
optimal rate of convergence.

3 Proposed method

acterizing assumptiopA] and the density bound,,., are
also known, then the appropriate resolution can be chosen
asj = |log, (c7*(n/logn)'/(@+22)) |, where the constant

¢ = ¢(do, fmax). With this choice, the optimal sidelength
scales a8~/ = (n/logn)~1/(4+22) and the estimatof;
exactly achieves the minimax optimal rate.

3.1 Adaptivity to unknown local density regularity

In this section we present a procedure that automatically se
lects the appropriate resolutighwithout prior knowledge

of a. The selected resolution needs to be adapted to the lo-
cal regularity of the density around the level of interest. T
achieve this, we propose the followingrnier.

Iy — F(A").

V,;j = min max
T ACA; A€ A NA
Heref(A) = P(A)/u(A), andj’ = |j+log, s, |, wheres,,
is a slowly diverging monotone sequence, for exanpier,
loglogn, etc. Henced,;, N A denotes the collection of sub-

cells with sidelengtR 7" € [277/s,,, 27711 /s,,) within the

In this section, we propose a plug-in level set estimatar tha Cell A. The vernier focuses on cell$ at resolution; that
is based on a regular histogram. The histogram resolutionintersect the boundary (have smallest density deviatiom fr
is adaptively selected in a purely data-driven way without the desired leve}), and then evaluates the deviation in av-

assuming knowledge of the local density regularity.

erage density within subcells of to judge whether or not

Let A, denote the collection of cells in a regular partition the density is uniformly close tg over the cell. Thus, the

of [0, 1]¢ into hypercubes of dyadic sidelength’, where;
is a non-negative integer. The estimator at this resolugon
given as

Gy ={AeA;: f(A) >~} (1)
Heref(A) = P(A)/u(A), whereP(A) = L S Ty e 4
denotes the empirical probability of an observation odogrr
in A andy is the Lebesgue measure.

vernier is sensitive to the local density regularity in then

ity of the desired level and in fact minimizing the vernier
leads to selection of the appropriate resolution adaptéteto
unknown density regularity parameter By choosings,,

with arbitrarily slow divergence, it is possible to get drai-

ily close to the optimal rate of convergence in the Hausdorff
sense. However, note that the vernier may not function prop-
erly if the boundary oiGGZ passes through every subcell of

Our first result shows that, if the density regularity pa- A (since then the subcell averages may be arbitrarily close
rametera is known, then the correct resolution can be cho- 0 7 irrespective of the density regularity). Assumpti@y
sen (as in [Tsy97, Cav97]), and the corresponding estimatorPrecludes this possibility at sufficiently high resoluton

achieves near minimax optimal rate over the class of densi-

ties given byF;(«). HereE denotes expectation with re-

SinceV, ; requires knowledge of the unknown probabil-
ity measure, we must work with the empirical version, de-

spect to the random data sample. We introduce the notationfined analogously as:

an = by, to denote that,, = O(b,,) andb,, = O(a,,).

Theorem1 Assume that the local density regularity
a is known. Pick resolution; such that277 =

1 . . .
sn(n/logn)” @F=) | wheres,, is a monotone diverging se-
guence. Then

E[deo(G;,G)] < C (”)d%
sup le%e) K . S Sp |\ ——
fEF () e logn

for all n, whereC' = C(C4, Cs, €5, fmax, 0,d, ) > 0lis a
constant.

The proofis given in Section 5.1.

Y, = mi — (A"

Vo.j jrellAnj A/gf]f(mA Iy — f(A)]
We propose a complexity regularization scheme wherein the
empirical vernie/, ; is balanced by a penalty term:

\I/j/ =

max
AG.Aj/

log(25218) (o log(25H10)
§—= 0 Jax | f(A),8—— 20~
ey Ty

where0 < § < 1is a confidence parameter, apdA) =
2-4'd_Notice that the penalty is computable from the given
observations. The precise form @fis chosen so that min-
imizing the empirical vernier plus penalty provides cohtro

Theorem 1 provides an upper bound on the Hausdorff error o\ e the true vernier (refer to Section 5.2 for a formal pjoof

of our estimate. Ifs,, is slowly diverging, for example if
sn = (logn)® wheree > 0, this upper bound agrees with
the minimax lower bound of Proposition 1 up tdlagn)©

The final level set estimate is given by

G=G; )



where

J = arg min, {V'm' + ‘I’j/} 3

straightforward consequence of assuming a functional form
for the boundary. We would also like to comment that while
we only addressed the density level set problem in this paper

Thus the search is focused on regular partitions of dyadic extensions to general regression level set estimationldhou

sidelength2=7, j € {0,1,...,J}. The choice ofJ will

be specified below. Observe that the value of the empirical

vernier decreases with increasing resolution as betteoapp
imations to the true level are available. On the other hdred, t

be possible using a similar approach.

The complexity regularization approach (Eg. 3) based on
the vernier is similar in spirit to the so-called Lepski nedb
(for example, [LMS97]) for function estimation which are

penalty is designed to increase with resolution to penalize spatially adaptive bandwidth selectors, however the eerni

high complexity estimates that might overfit the given sam-

focuses on cells close to the desired level and thus is specif

ple of data. Thus, the above procedure chooses the appropriically tailored to the level set problem. The vernier prasd

ate resolution automatically by balancing these two terms.
We now establish that our complexity penalized proce-

dure leads to minimax optimal rates of convergence without

requiring prior knowledge of any parameters.

Theorem 2 Pick J J(n) such that 277/
sn(n/logn)~7, wheres, is a monotone diverging se-
guence. Lej denote the resolution chosen by the complexity

penalized method as given by Eq. (3), #idenote the final
estimate of Eq. (2). Then with probability at ledst 3/n,
for all densities in the clas$; («),

~
~

7d+;2
~ d [e%
<277 < sy —
logn

for n large enough (so that, > ¢(Cjy, d)), wherecy, co > 0
are constants. In addition,

_ o\ T
sup E[d(G,GY)] < Cs? ( >
reF3(@) logn
for all n, where C =

C(OlaCQa037047607fma)(3507517d7a) > 0 is a con-
stant.

The proofis given in Section 5.2.

The maximum resolutiod’ = s;!(n/logn)7 can be eas-
ily chosen, based only om, and allows the optimal resolu-
tion for any« to lie in the search space. Observe that by ap-
propriate choice of,,, for examples,, = (logn)</? with ¢ a
small number> 0, the bound of Theorem 2 matches the min-
imax lower bound of Proposition 1, except for an additional
(logn)© factor. Hence our methaadaptivelyachieves near
minimax optimal rates of convergence for the cl&3«).

4 Concluding Remarks

In this paper, we propose a Hausdorff accurate level set esti . =
mation method that is adaptive to unknown local density reg- £(4) < P(A) + e\/ P(4)

P(A) < P(A)+¢\/P(A) = P(A) < 2max(P(A),2¢%).

ularity and achieves minimax optimal rates of error conver-

gence over a very general classes of level sets. The analysi

in this paper assumes> 0, however the case > 0 that al-

the key to achieve adaptivity while requiring only local +eg
ularity of the density in the vicinity of the desired level.

In this paper, we assume that the density regularity is the
same everywhere along the level set. This might be some-
what restrictive, particularly if the level set consistsnadil-
tiple components. Adaptivity to spatial variations in themd
sity regularity can be achieved using a spatially adapted pa
tition instead of a regular histogram partition. This mighbt
possible by developing a tree-based approach or a modified
Lepski method, and is the subject of current research.

5 Proofs

Before proceeding to the proofs, we establish two lemmas
that are used throughout. The first one establishes a bound
on the deviation of true and empirical density averages.

Lemmal Consider0 < § < 1. With probability at least
1 — 4, the following is true for all dyadic resolutions

max | f(4) - FA) < v,

Proof: The proof relies on a pair of VC inequalities (See
[DLO1] Chapter 3) that bound thelative deviation of true
and empirical probabilities. For the collectioly with shat-
ter coefficient bounded bg’?, the relative VC inequalities
state that for any > 0

P | sup w >e| <4 9id,—ne?/4
AEAj P(A)
and
P | sup P(4) - P(4) >e| <4 9idg—ne*/d
AcA; P(A)

Also observe that

— P(A) < 2max(P(4),2¢?)

To see the first statement, considerﬁi)A) < 4€? - The

lows jumps in the density can also be handled (see [SSNO7]),statement is obvious. AY(A) > 4e2 - This gives a bound

but is omitted here to keep the presentation and proofs sim-

pler. Also, this paper considers locally Lipschitz bound-

aries, however extensions to additional boundary smooth-

ness (for example, Holder regularityl) may be possible in

on ¢, which impliesP(4) < P(A) + P(A)/2 and hence
P(A) <2P(A). The second statement follows similarly.
Using these statements and the relative VC inequalities

the proposed framework using techniques such as wedgelet£0r the collectionA;, we have: With probability> 1 — 8 -

[Don99] or curvelets [CD99]. The earlier work on Hausdorff

2ide—n<"/4 YA € A; both

accurate level set estimation [KT93, Tsy97, Cav97] does ad-
dress higher smoothness of the boundary but that follows as a

P(A) - P(4) < ey/P(A) < e1/2 max(P(4), 2¢2)



and
P(A) — P(4) < e/ P(4) < ey/2max(P(4), 2¢2)

Settinge = /41og(2748/4;)/n, we have with probability
>1-6;,VAe A

|P(4) - P(A)
< \/8710g(2jd8/6j) max (ﬁ(A), 8710g(2jd8/5j))

n n

The result follows by dividing the result by(A), setting
§; = 62~U*Y and taking union bound. |

The next lemma states how the density deviation bound
or penaltyV; scales with resolution. This will be used to
derive rates of convergence.

Lemma2 For all resolutions such that 27 =
O((n/logn)e), there exist constantgs,cs = c4(fmax,
d) > 0 such that for alln, with probability at least — 1/n,

logn logn

27d

< W, < eqy/2d
n n

Proof: The lower bound follows by observing that

< | = _ 7 =
1= E P maxP( Vx| A = m%‘lxj ) Hlanf(A)

and using$ = 1/n,j > 0 andu(A) = 2774

To get an upper bound, using the same arguments as in

proof of Lemma 1 based on the relative VC inequality it fol-
lows that [SSNO7] with probability- 1 —§;, forall A € A;

P(A) < 2max (P(A),sw) :

n

Dividing by x(A) = 2779, using density boungf,,,., set-
ting 6, = §2~U*Y and taking union bound, we have with
probability> 1 — ¢, for all dyadic resolutiong

j(d+1)
max f( ) < 2max <fmaxa2jd M)
A€A; n

This implies the upper bound using = 1/n and2/ =
O((n/logn)/%). |

5.1 Proof of Theorem 1

The proof relies on the following lemma that will also be
used in the proof of Theorem 2.

Lemma 3 Consider densities satisfying assumptidrg
and [B]. Then for all resolutions such tha®’ =
O(s;*(n/logn)a), wheres, is a monotone diverging se-
quence, andh > ng = 1o (fmax; d, 0, €0, C1, ) With prob-
ability at leastl — 3/n

N T\ & _
dso (G}, G2) < max(2C5+3,8Vde, ') [<FJ> + \/Ew].
1

Proof: Let.J, = [log, 4v/d/e,], wheree, is as defined in
assumptioriB]. Also define

(g—i) ' + \/Ez—j] .

€5 1=

Consider two cases:

. j < Jo.
For this case, since the domath= [0, 1]¢, we use the
trivial bound

doo (G, G2) < Vd < 270(Vd277) < 8Vde e

The last step follows by choice of, and since
\I/j, C1 > 0.

. 5> Jo.
Observe that assumptidiB] implies thatG? is not
empty sinceG? D Z.(G%) # 0 for e < €,. We will
show that for’ large enough with h|gh probability,
G NG% # O forj > Jo and hence”} is not empty.
Thus the Hausdorff error is given as

doo(éj,G;) = max{ sup p(x,@j), sup p(z,GY)},
zeGY zeGj
(4)

and we need bounds on the two terms in the right hand

side.

We now prove that7; is not empty and obtain bounds
on the two terms in the Hausdorff error. Towards this
end, we establish two propositions. The first proposi-
tion proves that for large enough with high proba-
bility, the distance of all points that are erroneously ex-
cluded or included in the level set estimate, from the
true set boundary is bounded by Notice that, ifG; is

non-empty, this provides an upper bound on the second

term of the Hausdorff error (Eq. 4). The second propo-
sition establishes that, for large enougland; > Jy,
2¢; < ¢, and hence the inner covés,, (G*) is not
empty. And using the first proposition, with high prob-
ability, Z,.,(G%) contains points that are correctly in-

cludedin the level set estimate and Iie@gmG;. Thus

@j is not empty. Further, along with assumptisi,
this provides a bound af; on the distance of any point
in GZ from the estimaté€;, thus bounding the first term
of the Hausdorff error (Eq. 4).

We end the proof of the two propositions with a white
box [0 to indicate that these propositions are included
within the proof of Lemma 3, and do not signify end of
the proof of Lemma 3.

Proposition 2 If @JAG; = (), then for resolutions sat-
isfying2/ = O(s;'(n/logn)"/%) andn > n1(fmax,
d, §) with probability at leastl — 2/n

\IJ 1/a .
sup  p(x,0G7) < <—> +Vd277 =¢j.

2€G;AGY, G



Proof: Since by assumptio@AG; # (), considerr € 2(W;/C1)* < ¢,/2 with probability at least — 1/n.

GjAGE. Let A, € A; denote the cell containing at Therefore for allj > Jo andn > na, 2¢; < ¢
resolutionj. Consider two cases: with proba}bmty at least - 1/n and henc§2€j.5£ 0.

_ o Now consider anye;-ball in Z,.,. Then the distance
(i) A, NOG? # 0. This implies that of all points in the ‘interior of the concentrig;-ball

. from the boundary of,;, and hence from the bound-

p(x,0G%) < Vd2™. ary of G* is greater tham;. As per Proposition 2 for

(i) A, NOG: = 0. Sincex € G AG?, it is erro- n = no = max(ny,nz), with probability> 1 = 3/n,
neously mcluded or excluded fror% the level set none of these points can lie &; AG?, and hence must

estlmateGJ. Therefore, lff( .) > 7, then lieinG; N G, since they are iffy., C G*. Therefore,

f(AI) < 7 otheryvise if f(A:) < v, then Gi#0 and  sup p(e.G;NGE) < e
f(Ay) > ~. This implies thatly — f(A,)| < 2€Ty, -~

f(AL) — f(AL)]. Using Lemma 1, we gety —

f(Az)] < ¥; with probability at least — 4.

Now sinceG?, and @j are non-empty sets, we bound

Now let zo be any point inA, such that|y — the two terms that contribute to the Hausdorff error
f(zo)| < |y — f(Az)| (Notice that at least one N

such point must exist inl,, since this cell does sup p(z,Gj) and sup p(z, G).
not intersect the boundary). As argued above, z€Cy z€G;

Iy — f(4z)] < T, with probability at least
1—1/n (for 6 = 1/n) and using Lemma 2,
¥; decreases withn for resolutions satisfying
21 = O(s;*(n/logn)a) with probability at least
1—1/n. So for large enough > n1(fimax, d, d0),
W, < 6o and hencéy — f(zo)| < do. Thus, the
density regularity assumptid@] holds atzq with
probability> 1 — 2/n and we have

For this, we will use Propositions 2 and 3, hence
all the following statements will hold for resolutions
satisfying2/ = O(s;;'(n/logn)'/%), j > J, and

n > nyg = no(fmax, d, 00, €0, C1, ), with probability
atleastl — 3/n.

To bound the second term, observe that
() If G;\ G% =0, thensup vc, P, G2) = 0.

~ f(x &
plz0,0G%) < (”CM) (i) If G\ G # 0, it implies thatG,AGY # 0.
! Hence using Proposition 2, we have
< ('7 /(A ) ( ) . sup p(e,G3) = sup p(a,GY)
G zeG; \Gz
Sincer,rg € Ay, p(z,0G%) < p(x0,0G3) + = sup  p(z,0G7)
Vd277. Therefore, €G;\Gy
A < sup p(x,0GY) <€
p(x,aG*) < *J + \/82—7 IGG AG*
v C,

. Thus, for either case
So for both cases, we can say that for resolutions sat-

isfying 27 = O(s;1(n/logn)/4) andn > n1(fumax, sup p(z, G7) < €. (6)
d, 8o) with probability at least — 2/n, Va € G;AG? #€;

To bound the first term, observe that
- (i) If G\ G; = 0, thensup,c. p(x, Gs) = 0
(i) If G%\ @- # (b, we proceed as follows:

U, 1/« .
p(z,0G%) < <Fz) +Vd277 = ¢

Proposition 3 Recall assumptiofiB] and denote the

inner cover ofG with 2¢;-balls, Zy., (G3) = Io;. sup p(z, G i) < sup p(z, G nGy)
For resolutions satisfying’ = O(s;;'(n/logn)/%), veds vey
j 2 JO andn Z ng = no(fmaxada 607607 Claa)v Wlth = maX{ sup p(I G ﬂG*)
probability at leastl — 3/n, w€Ts,
G;#0 and sup p(z,G; NG7) <. sup p(z,G; NG 2}
| z€Tae; z€GK\Iac;
Proof:Observe that forj > J,, 2Vd27 < < max{ej, sup p(z,G;NG 9}

. z€GA\T, €
2v/d2=7 < €,/2. And using Lemma 2 for ’

large enoughn > no = na(eo, fmax, C1, @), The last step follows using Proposition 3.



Now consider any: € G* \ Z,. Then using tri-
angle inequalityyy € 8672 andvz € Iy,
< p(z,y) +p(y, 2) +

sup p(z, @j NG?Y)
zGIzej

p(x,y) + p(y, 2) + €.

The last step follows using Proposition 3. This im-
plies thatvy € 0G=,

IN

p(z,G;NGY) < p(,y) + b Py, 2) +€;
J

p(x,y) + p(y, Lae,;) + €5

p(x,y) + sup p(y,Iae;) +¢;
yEBG,’;

p(z,y) +2C3¢; + €.

Here the last step invokes assumptj&h. This in
turn implies that

IA

IN

inf 205 + 1)e;
yégG;p(I,yH( 3+ 1)e;

2¢; + (203 + 1)6j.

The second step is true far € G \ Iy, Ifit
was not true, thetvy € 9G7, p(z,y) > 2¢; and
hence there exists a closed;-ball aroundx that
isin G This contradicts the fact that¢ T, ;.
Therefore, we have:

p(z, @j NGY) < (205 + 3)e;.

IN

sup
zGGTY\Igej

And going back to the start of case (ii) we get:

sup p(w,éj) < (2C5 + 3)e;.
zeGY

Therefore, for either case we have

sup p(z, G;) < (2C5 + 3)e;. 6)
mEG:;

From Eq. (5) and (6), we have that for all densities

satisfying assumptiori#\, B], for resolutions satisfying

27 = O(s;'(n/logn)'/%), j > Joandn > ng =

1o (fmax, d, 90, €0, C1, @), with probability> 1 — 3 /n,

d(Gj,G%) = max{sup p(z,G;), sup p(z,G})}
z€GY zeGj

S (203 + 3)€j.

And addressing both Case j (< Jy) and Case
N (j > Jo), we finally have that for all densi-
ties satisfying assumptionfA, B], for resolutions sat-
isfying 2/ = O(s;'(n/logn)? and n > ny =
1o (fmax, d, 90, €0, C1, @), with probability> 1 — 3 /n,

doo(G;,G%) < max(2Cs + 3,8Vde, Ve;.

Since the chosen resoluti@n’ < s, (n/log n)_<d+712a>
satisfies conditions of Lemma 3, proof of Theorem 1 now
follows using the bound ot ; from Lemma 2. Lef} denote
the event such that the bounds of Lemma 2 and Lemma 3
hold. Then forn > ng, P(2) < 4/n. Hence for alln,
P(Q)) < max(4,n9)/n. SoVf € Ff(a): (HereC may
denote a different constant from line to line. Explanation f
each step is provided after the equations.)

Elds (G, G2)]
P(Q)E[doo (G, G2)|Q] + P(Q)E[dse (G5, G3)[€)
Eldo (G, G2)|Q] + P(Q)Vd

A\ l/a .
(&) vz 4 YV
C n

1
C max oJd _1og ny 27 l
n ’ ‘n

n 7d+ﬁ
< 0(017037605fmaxaéOadaa)Sn ( ) .
logn

IN

IN

C

IN

The second step follows using the trivial bound&?) <

1 and since the domai®r’ = [0,1]¢, E[dm(@j,G;)@] <

V/d. The third step follows from Lemma 3 and the fourth
one using Lemma 2. The last step follows since the chosen
resolution2 7 = s, (n/ logn)~ @

5.2 Proof of Theorem 2

To analyze the resolution chosen by the complexity penal-
ized procedure of Eq. (3) based on the vernier, we first es-
tablish two results regarding the vernier. Using Lemma 1,

we have the following corollary that bounds the deviation of

true and empirical vernier.

Corollary 1 Consider0 < § < 1. With probability at least
1 — ¢, the following is true for all dyadic resolutiorys

Vo = Vol < Wy
Proof: Let Ay € A; denote the cell achieving the min defin-

ing V, ; andA; € A; denote the cell achieving the min

defining f)w». Also let Aj and A denote the subcells at
resolution;’ within Ay and A, respectively, that have maxi-
mum average density deviation from Similarly, Ietﬁ{) and

ﬁ’l denote the subcells at resolutighwithin Ay and A;,
respectively, that have maximum empirical density dewrati
from ~. Then we have: (Explanation for the steps are given
after the equations.)

Vi =Vyi = b= FAQ - Iy - F(AY)
< =AY = Iy = FAY)]
< |f(A) = F(AY)]
= max{f(4}) — f(4)), F(A}) — F(A})}
< max{f(A}) — f(A)), F(A}) — F(A})}
< max [f(4) - f(4)]

IA
&



The first inequality invokes definition afly, the third in-

equality invokes definitions of the subcel, A, and the
last one follows from Lemma 1. Similarly,

Vyi = Vo Iy — FUAD — Iy — f(
|7—f(A6)A|:|7—f(
F(Ap) — F(Ay)]

Here the first inequality invokes definition of;.
follows as above, considering cell, instead ofA4;.

Ap)]
4p)]

<
<

The rest
[ |

The second result establishes that the vernier is sensitive

to the resolution and density regularity.

Lemma4 Consider densities satisfying assumptidig
and[C]. Recall thatj’ = |j + log, sy |, wheres,, is a mono-
tone diverging sequence. Then for all dyadic resolutipns

min(dy, C1)277* <V, ; < C(Vd279)*

holds forn large enough such that, > 4C467. HereC' =
C(OQ, fmax, 51, Oé)> 0

Proof: We first establish the upper bound. Recall assump-
tion [A] and consider the cell € A; that contains the point
Yo- ThenA N oG # (. Let A’ denote the subcell at resolu-
tion j/ within A that has maximum average density deviation
from ~. Consider two cases:

(i) If the resolution is large enough so thei2—7 < 4,
then the density regularity assumptiph] holdsVx €
A sinceA C B(yo,01), the d;-ball aroundy,. The
same holds also for the subcdll. Hence

v = f(A)] < Co(Vd279)"

(i) If the resolution is not large enough ardi2—7 > §,,
the following trivial bound holds:

- FA o (-
1

) < fmax <

The last step holds sinaéd2—7 > 4;.

Hence we can say for aflthere existsA € A; such that
= F)| < ma (o, L) (e

This yields the upper bound on the vernier:

f“”") (Vd2=)* .= C(Vd277)

whereC = C(C3, fmax, 01, @).

For the lower bound, consider a cell € A;. We will
show that assumptiofC] on the level set boundary dimen-
sion basically implies that the boundary does not intersect
all subcells at resolutiolf within the cell A at resolutionyj.

And in fact for large enough (so that2—7" is small enough,
recall thatj’ = |j+log, s, | wheres,, is a monotone diverg-
ing sequence), there exists at least one subtjet AN A,
such thatvz € AL,

p(z,0G%) > 277",

V,.; < max (Cg,

We establish this statement formally later on, but for now
assume that it holds. The local density regularity condi-
tion [A] now gives that for alle € A, |y — f(z)| >
min(dy, C1277'%) > min(dy, C1)277*. So we have:

by = F(A)] = |y = F(A))] = min(by, C1)2 7"

max
A EAﬁAj/

Since this is true for anyl € A;, in particular, this is true
for the cell achieving the min defining, ;. Hence, the lower
bound on the verniey, ; follows.

We now formally prove that assumpti¢@] on the level

set boundary dimension implies that for large enougdlso
thats,, > 4C46%), 34, € AN Aj st.Vx € A,

p(z,0G%) > 277",

Observe that it suffices to show that for large enough
3A”e AN Aj_ost. A" NG = 0. To prove this last
statement, con5|der two cases:

() AnoG: =0. Fors, > 8, j' —2 > j (recall defini-
tion of /), and sinced does not intersect the boundary,
clearly3A” € AN Ay s.t. A" NIG% = 0.

(i) ANOG: # 0. Letz € ANOG:. Consider = v/d2~

(the diagonal length of a cell), theA C B(z,¢).

Also let § = /d2-('~2) /2 (the choice will be jus-

tified below). Fors, > 4,0 < § < € and using

assumptio C], the minimum number of—balls re-

quired to coverdG? N B(x,e€) is < Cy(5/e)~ (471,

SinceA C B(z,¢), the minimum number of—balls

required to covetGz N A is also< Cy(6/e)~(4=1),

Now consider a umform partltlon of the cellinto sub—

cells of sidelengtt2s /v/d = 2=('~2). Since the diag-

onal length of a subcel/d2~('~2) = 24, this choice
of § implies that a subcell at resoluti@r ¢’ ~2) is in-
scribed within an aligned-ball. Observe that at this
resolution, in d-dim, an unaligneitball can intersect
up to3¢—1 subcells (number of neighbors of any hyper-
cube). Therefore, the number of subcellsdim A,/ _,
that intersect the boundary can be no more than

. —(d—-1)
Vd2—'=2)
39Cy (5 @=0 = 340y |[F——
(097 2V

d
_ Ga6 o(i'=2=j)do—(j'=2—j)
2
d
< 4046 2(j,727j)d
Sn

where the last step uses the fact’ < 2-7+1/s,,. For

sp, > 4C46%, the number of subcells withid at res-
olution 5/ — 2 that intersect the boundary is less than
the total number of subcells withia at that resolution.
ThereforedA” € AN Ay o st. A" NOGE = .

This in turn implies that fom large enough (so that, >
4C46%), 34}, € An Ay such thatvz € A, p(z, 0G%) >

24" ]



We are now ready to prove Theorem 2. Observe that
Lemmas 2, 3 and Corollary 1 hold together with probabil-
ity at leastl — 5/n (takingé = 1/n). Using these lemmas, This establishes the desired boundspn and V.

we will show that for the resolutloylchosen by Eq. (3), both Now we can invoke Lemma 3 to derive the rate of con-
vergence for the Hausdorff error. Consider large enough

V, 5 and¥-, are upper bounded s, T (n/logn)” T, n > n1(Cy,d) so thats, > 4C46%. Also, recall that the
whereC = C(Cg, Jmax, 01,d, &) > 0. If this holds, thenus-  condition of Lemma 3 requires that > n¢(fuax, d, 50, €o,
ing Lemma 4 and the deflnmon of, we have the following (4, ). Pickn > max(ng,n1) and letQ2 denote the event

. . -k d+2a
terms for optimal resolutioe ™7 = s;;‘“" n ) .

logn

upper bound on the sidelength: For > 4C46¢ such that the bounds of Lemma 2, Lemma 3 and Corollary
1 1 hold with§ = 1/n. Then, we haveP(Q2) < 5/n for
9 < g 977 < < Vii )a n > max(ng,n1), or for alln, P(?) < max(5,ng,n1)/n.
- min(do, C1) SoVf € F5(a), we have: (HereC may denote a differ-

.- ent constant from line to line. Explanation for each step is
o8 S;;Ha _n provided after the equations.)
" logn ’ N
wherece = ¢2(Ch, Ca, fmax, 00,01, d, ) > 0. Also notice Eld=(G, G7)] R B R B
that since2’ = s;! (n/logn)/4, we have2’’ < 27" < = P(Q)E[d(G,G2)[Q] + P(Q)E[dw (G, G)|9]
5,27 = (n/logn)/?, and hence Lemma 2 can be used to < A e A
provide a lower bound on the sidelength: < Eldo (G, G)I0] + P(Q)\/E

IN

\I/’T 1/0( - d
-~ S 3/ S \112/ n _% S C (_‘]> + \/82_.7 + £
9-is To—it > °n % Ch n
2 2 cg logn N
-~ 2 -~
__2a 4 < Cmax{(?ﬂdloﬁ> ,2J,l}
2da n d+2a n n n
> cispfsn”
logn logn 1 1
n d+2a n d+2a
= < Csp5% iz (—) < Csi( ) )
_ cls,‘f“" ( n ) +2a logn logn
logn Here C' = C(Cy,Ca,C3,Ci. o, funax 00, 01, 0).  The
wherec; = ¢1(Cs, fmax, 01,d, ) > 0. So we have for  second step follows by observing the trivial bout$2) <
sn > 4046, with probability at least — 5/n, 1 and since the domai’ = [0, 1], E[ds (G, G%)|] <

one from Lemma 2. The last step follows using the upper
) and lower bounds established 1V in Eq. (7).
Hence the automatically chosen resolution behaves as der, 5 Star-shaped sets satisfy assumptions [B] and [C]

sired.

Using Corollary 1 and Eq. (3), we have the foilowing oracle COrresponds to densities bounded above/hy;, satisfying
inequality: a slightly modified form of the local density regularity as-

N sumptionAl:
Vi = Vit

n )ﬁ V/d. The third step follows from Lemma 3 and the fourth

- [A’] Local density regularity: The density isa-regular

= min {vw+qu,} < min {V,;+2¥;} around they-level set,0 < o < oo andy < fmax,

0=j=J 0=j=J if there exist constant§’, > C; > 0 anddy > 0 such

Lemma 4 provides an upper bound on the veriigs, and that
Lemma 2 provides an upper bound on the pendlpy. We

now plug these bounds into the oracle inequality. Here Cip(z, 0G3)* < |f(2) =] < Cap(x,0G75)"

may denote a different constant from line to line. for all z € X with |f(z) — 4| < d, wheredG* is
— 1 'Y
_ logn the boundary of the true level sét;, and the se{z :
. . —Jja 'd .
V,5< V 5+ <001Snj1£1 {2 J& 44 /20 - } |f(z) — 4| < éo} is non-empty.

<(C min
0<i<J

1 and the densities havelevel sets of the form
{max<2jo‘, 27dgd ogn)}

n G ={(r,¢);p € [0,m)" 7 x [0,27),0 <r < g(¢) < R},
e n \ @i where(r, ¢) denote the polar/hyperspherical coordinates and
<Csp T R > 0is a constantyg is a periodic Lipschitz function that

1
oen satisfiegy(¢) > h, whereh > 0 is a constant, and
HereC = C(Cq, fmax, 01,d, ). The second step uses the

definition of ” and the last step follows by balancing the two |g(¢)—g(8)| < L||¢—0||1, Y ¢,0 € [0, 7)4"2x ][0, 27).



HereL > 0 is the Lipschitz constant, arjf- ||, denotes the
£1 norm.

We setR = 1/2 in the definition of the star-shaped set
so that the domain is a subset [6f1/2,1/2]%. With this
domain, the following lemma shows that the level &gtof
a densityf € Fgr, satisfiedB] and[C].

Lemma5 Consider they level setz? of adensityf € Fsr..
ThenG?, satisfies the assumptiof8] and[C] on the level set
regularity and the level set boundary dimension, respebtiv

Proof: We first present a sketch of the main ideas, and then
provide a detailed proof. Consider thelevel setG? of a
density f € Fsr. To see that it satisfieB], divide the
star-shaped sét’, into sectors of width< ¢ so that each sec-
tor contains at Ieast oneball and the inner coveL.(G?)

The second inequality follows as

1 1
- S o —1
T 6sin <

h—e

o

since - e < 3 by choice ofe, < /3. The
third inequality is true sincein'(z/2) < z for 0 <

z < w/2. The last step follows by choice ef < h/3.

Now from (7) above, each sector contains at least eball.
Consider anyn € {1,..., M}¢~1. We claim that there ex-
ists a pointry, € 0G% N Sm, zm = (9(0), ) for some

6 € [0,m)*? x [0,27), such thatp(zm,Z.(G%)) = 0.
Suppose not. Then one can slide thleall within the sec-

tor towards the periphery and never touch the boundary, im-

touches the boundary at some point(s) in each sector. Nowplying that the setG? is unbounded. This is a contradic-
one can argue that, in each sector, all other points on thetion by the definition of the clas§s,. So now we have,

boundary areD(e) from the inner cover since the bound-
ary is Lipschitz. Since this is true for each sector, we have
Vo € 0G%, p(r,Z.(G%)) = O(e). To see thalG? satis-
fies[C], consider any sector of width ¢ and divide it into
sub-sectors of widtlD(4), 0 < § < e. Since the bound-
ary is Lipschitz, a constant number &balls can cover the
boundary in each sub-sector. Thus, the minimum number
of §-balls needed to cover the boundary in all sub-sectors is
of the order of the minimum number of sub-sectors, that is,
O((e/8)4~1). Hence, the result follows. We now present the
proof in detalil.

To see thatG”, satisfieqB], fix ¢, < h/3. Then for all
€ < €, B(0,¢) C GZ (sinceg(¢) > h > ¢,), and hence
Z.(G%) # 0. We also need to show thdC; > 0 such that
forall z € 9G%, p(z,Z.(G)) < Cse. For this, divideG?

into M7~ sectors indexed byn = (my,ma,...,mg_1)
e{1,..., M}t
Sm={(r.¢): 0< 7 < g(9).

w(m; — 1) ;|

< &, =1,....d—
i _¢1<M,z 1,...,d—2,
2w (mg—1 — 1) 2mmg_1
N < by
M S ¢a-1 < —p }

Where¢ = (¢1, ¢27 ceey ¢d71)' Let

2 sin h—e,

This choice ofM implies that:

(i) There exists ar-ball within Sy, N B(0, k) for every
m € {1,...,M}?"!, and hence within each sector
Sm,. This follows because the minimum angular width
of a sector with radiué required to fit are-ball within
is

o

= M
(i) The angular-width of the sectors scale3s).

1

1
T

P € .
2sin 1—§2sm L
h—e¢ — €

™

M

™

<

-1

T
2sin—1

A=

€ in— €
h—eo 2sin h—eo

€

< 3sin”! < —€
- h—e, — h

€
<6
h—e, —

Vy € 0G% N Sm, y = (9(), @)

Py, Z(GY)) < ply,zm) = |ly — rml|
= |l(g(), ®) — (9(6),0)]]
< lg(é) —9(8)| +2v/9()g(0) -
d—1
i
> sn 2‘
d—1
< gl +Y 1%
dflz_1
= (L+1/2)Z|¢i—9i|
< (L+1/2)d%
< 2%£%122E:C¥

The third step follows using simple algebra (see [SSNO7]),
the fourth step follows by the Lipschitz condition gi-),
g9(-) < R = 1/2 and sincd sin(z)| < |z|. The sixth step
follows sincex,y € Sm and henceg; — 0;| < w/M for
i=1,...,d—2and|¢q—1 — 04-1] < 27/M. The last step
invokes(ii) above. Therefore, we have for alle 9G> N
Sm, p(y,Z. (G;)) < Cs3e. And since the result is true for
any sector, conditiofB] is satisfied by any level s€t’ with
densityf € Fsr.

To see thatw’, satisfieqC], consider € 9G?. Letr =

(9(60), ). Ao let ) min{ : (3(6). ¢) € B(z.))
and¢§2): max{¢; :(9(®), ¢) €B(z,¢)}. Define the sector

SE={(r,¢) : 0<r <g(9),
,d—l}

o) < g <P Wi=1,...
Observe that it < wh/4 < h, the width of S in the*"
coordinate, A¢; = ¢§2) - ¢§1) < 2sin7! g((; ) by con-
0
struction. Sincey(:) > h, we haveA¢; < 2sin™' £ <
4e/h, where the last step follows since for< z < 7/2,
sin~'(z/2) < z. If ¢ > 7wh/4, then use the trivial bound




A¢; <271

1y

m:(ml,..

< 8¢/h. Equivalently, we can say for alland all
Ag; < 8¢/h. (8)
Further subdivideS? into M?~! sub-sectors indexed by
i md*l)
m; — DA i
Sm = {(Taﬁb):o <r< g(gb)v(bgl) + # < 4

Pick M suchéthat for all coordinates, the sub-sector width
i 2
M = (d—1)(L+1/2)’

sub-secto

(1) miA(zSi -
¢, +—— Vi=1,...,d—1
< i M 7 s y }

wherel < ¢ < e. With this choice of
r widthSm N 8G; can be covered by &ball. To

see this, consider two points By, N 9G% - (9(¢), ¢) and

(9(8),0).

l1(g9(o),

Proceeding as before, we have:

d—1

¢) — (9(6),0)] < (L+1/2)) |¢i — b4

=1

d—1
< (L+1/2)Z% < 26.
1=1

Since each sub-sector can be covered byball, the min-
imum number ofé-balls needed to coveB(z,¢) N 0G%,

is equal to the minimum number of sub-sectors needed

(M=),

This corresponds to the smalledf such that

25 o
< (S IESYAIR Therefore, minimum number

of ¢-balls needed to coves(z, ) N G is equal to

(d—1)(L+1/2) max; Ad;

(

)

26
d—1
- ((d—l)(L+;§2)maXiA¢i+1)
. (2(d—1)(2L+1)5+5)d‘1
I 53
2 —
<

( (d 1)(2L+1)+1)‘i1 (E)d—l

5
af5)”

The second inequality follows since from Eq. (8)¢; < 8¢
for all i, and sinced < e. Therefore, any level set” witﬁ

densityf € Fgy, also satisfie$C].
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