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Abstract

Hausdorff accurate estimation of density level sets
is relevant in applications where a spatially uni-
form mode of convergence is desired to ensure that
the estimated set is close to the target set at all
points. The minimax optimal rate of error con-
vergence for the Hausdorff metric is known to be
(n/ log n)−1/(d+2α) for level sets with boundaries
that have a Lipschitz functional form, and where
the parameterα characterizing the regularity of
the density around the level of interest is known.
Thus, all previous work is non-adaptive to the den-
sity regularity and assumes knowledge of the reg-
ularity parameterα. Moreover, the estimators pro-
posed in previous work achieve the minimax op-
timal rate for rather restricted classes of sets (for
example, the boundary fragment and star-shaped
sets) that effectively reduce the set estimation
problem to a function estimation problem. This
characterization precludes level sets with multi-
ple connected components, which are fundamental
to many applications. This paper presents a fully
data-driven procedure that is adaptive to unknown
local density regularity, and achieves minimax op-
timal Hausdorff error control for a class of level
sets with very general shapes and multiple con-
nected components.

1 Introduction
Density level sets provide useful summaries of a density
function for many applications including clustering [Har75,
Stu03], anomaly detection [SHS05, SN06, VV06], and data
ranking [LPS99]. In practice, however, the density function
itself is unknown a priori and only a finite number of ob-
servations from the density are available. LetX1, . . . , Xn

be independent, identically distributed observations drawn
from an unknown probability measureP , having densityf
with respect to the Lebesgue measure, and defined on the do-
mainX ⊆ R

d. Given a desired density levelγ, consider the
γ-level set of the densityf

G∗
γ := {x ∈ X : f(x) ≥ γ}.
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The goal of the density level set estimation problem is to
generate an estimatêG of the level set based on then obser-
vations{Xi}n

i=1, such that the error between the estimateĜ
and the target setG∗

γ , as assessed by some performance mea-
sure which gauges the closeness of the two sets, is small.

Most literature available on level set estimation [SHS05,
SN06, SD07, WN07, KT93, Tsy97, Pol95, RV06] considers
global error measures related to the symmetric set difference.
However some applications may need a more local or spa-
tially uniform error measure as provided by the Hausdorff
metric, for example, to ensure robustness to outliers or pre-
serve topological properties of the level set. The Hausdorff
error metric is defined as follows between two non-empty
sets:

d∞(G1, G2) = max{ sup
x∈G2

ρ(x, G1), sup
x∈G1

ρ(x, G2)}

whereρ(x, G) = infy∈G ||x − y||, the smallest Euclidean
distance of a point inG to the pointx. If G1 or G2 is empty,
then letd∞(G1, G2) be defined as the largest distance be-
tween any two points in the domain. Control of this error
measure provides a uniform mode of convergence as it im-
plies control of the deviation of a single point from the de-
sired set. A symmetric set difference based estimator may
not provide such a uniform control as it is easy to see that
a set estimate can have very small symmetric difference er-
ror but large Hausdorff error. Conversely, as long as the set
boundary is not space-filling, small Hausdorff error implies
small symmetric difference error.

Existing results pertaining to nonparametric level set es-
timation using the Hausdorff metric [KT93, Tsy97, Cav97]
focus on rather restrictive classes of level sets (for example,
the boundary fragment and star-shaped set classes). These
restrictions, which effectively reduce the set estimationprob-
lem to a boundary function estimation problem (in rectan-
gular or polar coordinates, respectively), are typically not
met in practical applications. In particular, the character-
ization of level set estimation as a boundary function es-
timation problem precludes level sets with multiple con-
nected components, which are fundamental to many appli-
cations. Moreover, the estimation techniques proposed in
[KT93, Tsy97, Cav97] require precise knowledge of the lo-
cal regularity of the distribution (quantified by the parameter
α, to be defined below) in the vicinity of the desired level set
in order to achieve minimax optimal rates of convergence.
Such prior knowledge is unavailable in most practical ap-



plications. Recently, a plug-in method based on sup-norm
density estimation was put forth in [CMC06] that can han-
dle more general classes than boundary fragments or star-
shaped sets, however sup-norm based methods require global
smoothness assumptions on the density to ensure that the
density estimate is good everywhere. Also, the method only
deals with a special case of the density regularity condition
considered in this paper (α = 1), and is therefore not adap-
tive to unknown density regularity.

In this paper, we propose a plug-in procedure based
on a regular histogram partition that can adaptively achieve
minimax optimal rates of Hausdorff error convergence over
a broad class of level sets with very general shapes and
multiple connected components, without assuminga priori
knowledge of the density regularity parameterα. Adaptivity
is achieved by a new data-driven procedure for selecting the
histogram resolution. The procedure is specifically designed
for the level set estimation problem and only requires local
regularity of the density in the vicinity of the desired level.

2 Density assumptions

In this paper, we assume that the densityf is supported on
the unit hypercube ind-dimensions, that isX = [0, 1]d, and
is bounded with range[0, fmax]. Controlling the Hausdorff
accuracy of level set estimates also requires some smooth-
ness assumptions. The most crucial assumption is the first,
which characterizes the relationship between distances and
changes in density. The last two are topological assumptions
on the level set and essentially generalize the notion of Lip-
schitz functions to closed hypersurfaces.

Here we define anǫ-ball centered at a pointx as
B(x, ǫ) = {y ∈ X : ||x − y|| ≤ ǫ}, where|| · || denotes
the Euclidean distance. Also, aninner ǫ-coverof a setG is
defined as the union of allǫ-balls contained inG. Formally,
Iǫ(G) =

⋃
x:B(x,ǫ)⊆G B(x, ǫ).

[A] Local density regularity: The density isα-regular
around theγ-level set,0 < α < ∞ andγ < fmax,
if there exist constantsC2 > C1 > 0 andδ0, δ1 > 0
such that

C1ρ(x, ∂G∗
γ)α ≤ |f(x) − γ| ≤ C2ρ(x, ∂G∗

γ)α

for all x ∈ X with |f(x) − γ| ≤ δ0, where∂G∗
γ

is the boundary of the true level setG∗
γ . And there

exists y0 ∈ ∂G∗
γ such that for allx ∈ B(y0, δ1),

|f(x) − γ| ≤ δ0.

This assumption is similar to the one used in [Tsy97,
Cav97] (we elaborate on the differences later on). The
regularity parameterα determines the rate of error con-
vergence for level set estimation. Accurate estimation
is more difficult at levels where the density is relatively
flat (largeα), as intuition would suggest. In this pa-
per, we do not assume knowledge ofα unlike previous
investigations into Hausdorff accurate level set estima-
tion [KT93, Tsy97, Cav97, CMC06]. Therefore, here
the assumption simply states that there is a relationship
between distance and density level, but the precise na-
ture of the relationship is unknown.

[B] Level set regularity:There exist constantsǫo > 0 and
C3 > 0 such that for allǫ ≤ ǫo, Iǫ(G

∗
γ) 6= ∅ and

ρ(x, Iǫ(G
∗
γ)) ≤ C3ǫ for all x ∈ ∂G∗

γ .

This assumption states that the level set is not arbitrarily
narrow anywhere. It precludes features like cusps and
arbitrarily thin ribbons, as well as connected compo-
nents of arbitrarily small size. This condition is neces-
sary since arbitrarily small features cannot be detected
and resolved from a finite sample. However, from a
practical perspective, if the assumption fails to hold
then it simply means that it is not possible to theoret-
ically guarantee that such small features will be recov-
ered.

[C] Level set boundary dimension:There exists a constant
C4 > 0 such that for allx ∈ ∂G∗

γ and allǫ, δ such that
0 < δ ≤ ǫ, the minimum number ofδ−balls required
to cover∂G∗

γ ∩ B(x, ǫ) is ≤ C4(δ/ǫ)−(d−1).

This assumption is related to the box-counting dimen-
sion [Fal90] of the boundary of the level set. It es-
sentially says that, at any scale, the boundary behaves
locally like a (d − 1)-dimensional surface in thed -
dimensional domain and is not space-filling. This con-
dition is not restrictive since the Hausdorff error itself
is inappropriate for space-filling curves, and in fact it
is not required if the density regularity parameterα is
known. However, the condition is needed to achieve
adaptivity using the proposed method, as we shall dis-
cuss later.

Let F∗
1 (α) denotes the class of densities satisfying as-

sumptions[A, B], andF∗
2 (α) denotes the class of densities

satisfying assumptions[A, B, C]. The dependence on other
parameters is omitted as these do not influence the minimax
optimal rate of convergence. The classesF∗

1 (α),F∗
2 (α) are

a generalization of the Lipschitz boundary fragments or star-
shaped sets considered in [KT93, Tsy97, Cav97] since as-
sumptions[B, C] basically imply that the boundary looks
locally like a Lipschitz function. In fact assumptions[B, C]
are satisfied by a Lipschitz boundary fragment or star-shaped
set; please refer to Section 5.3 for a formal proof. However,
there is a slight difference between the upper bound of as-
sumption[A] here and that employed in [Tsy97, Cav97].
The upper bound assumption in [Tsy97, Cav97] only re-
quires that the set{x : |f(x)−γ| ≤ δ0} be non-empty. So as
long as there is at least one point on the boundary where the
density regularity assumption[A] holds, this determines the
complexity of the class. Our assumption requires the density
regularity to hold for an open neighborhood about at least
one point on the boundary. This is necessary for adaptivity
since a procedure cannot sense the regularity as character-
ized byα unless the regularity holds in a region with positive
measure.

In [Tsy97], Tsybakov established a minimax lower

bound of (n/ logn)−
1

d+2α for the class of Lipschitz star-
shaped sets, which satisfy our assumptions[B, C] (see Sec-
tion 5.3) and the slightly modified version of assumption[A],
as discussed above. His proof uses Fano’s lemma to derive
the lower bound for a discrete subset of densities from this
class. It is easy to see that the discrete subset of densities



used in his construction also satisfy our form of assump-
tion [A]. Hence, the same lower bound holds for the classes
F∗

1 (α) andF∗
2 (α) under consideration as well and we have

the following proposition. HereE denotes expectation with
respect to the random data sample.

Proposition 1 There existsc > 0 such that

inf
Ĝn

sup
f∈F∗

1 (α)

E[d∞(Ĝn, G∗
γ)] ≥ inf

Ĝn

sup
f∈F∗

2 (α)

E[d∞(Ĝn, G∗
γ)]

≥ c

(
n

log n

)− 1
d+2α

.

Here theinf is taken over all possible set estimatorsĜn.

In the paper, we present a method that achieves this min-
imax lower bound for the classF∗

1 (α), given knowledge
of the density regularity parameterα. We also extend the
method to achieve adaptivity toα for the classF∗

2 (α) under
the additional assumption[C], while preserving the minimax
optimal rate of convergence.

3 Proposed method

In this section, we propose a plug-in level set estimator that
is based on a regular histogram. The histogram resolution
is adaptively selected in a purely data-driven way without
assuming knowledge of the local density regularity.

LetAj denote the collection of cells in a regular partition
of [0, 1]d into hypercubes of dyadic sidelength2−j, wherej
is a non-negative integer. The estimator at this resolutionis
given as

Ĝj = {A ∈ Aj : f̂(A) ≥ γ}. (1)

Heref̂(A) = P̂ (A)/µ(A), whereP̂ (A) = 1
n

∑n
i=1 I{Xi∈A}

denotes the empirical probability of an observation occurring
in A andµ is the Lebesgue measure.

Our first result shows that, if the density regularity pa-
rameterα is known, then the correct resolution can be cho-
sen (as in [Tsy97, Cav97]), and the corresponding estimator
achieves near minimax optimal rate over the class of densi-
ties given byF∗

1 (α). HereE denotes expectation with re-
spect to the random data sample. We introduce the notation
an ≍ bn to denote thatan = O(bn) andbn = O(an).

Theorem 1 Assume that the local density regularity
α is known. Pick resolutionj such that 2−j ≍
sn(n/ log n)−

1
(d+2α) , wheresn is a monotone diverging se-

quence. Then

sup
f∈F∗

1 (α)

E[d∞(Ĝj , G
∗
γ)] ≤ Csn

(
n

log n

)− 1
d+2α

for all n, whereC ≡ C(C1, C3, ǫo, fmax, δ0, d, α) > 0 is a
constant.

The proof is given in Section 5.1.

Theorem 1 provides an upper bound on the Hausdorff error
of our estimate. Ifsn is slowly diverging, for example if
sn = (log n)ǫ whereǫ > 0, this upper bound agrees with
the minimax lower bound of Proposition 1 up to a(log n)ǫ

factor. Hence the proposed estimator can achieve near min-
imax optimal rates, given knowledge of the density regular-
ity. We would like to point out that if the parameterδ0 char-
acterizing assumption[A] and the density boundfmax are
also known, then the appropriate resolution can be chosen
asj = ⌊log2

(
c−1(n/ logn)1/(d+2α)

)
⌋, where the constant

c ≡ c(δ0, fmax). With this choice, the optimal sidelength
scales as2−j ≍ (n/ logn)−1/(d+2α), and the estimator̂Gj

exactly achieves the minimax optimal rate.

3.1 Adaptivity to unknown local density regularity

In this section we present a procedure that automatically se-
lects the appropriate resolutionj without prior knowledge
of α. The selected resolution needs to be adapted to the lo-
cal regularity of the density around the level of interest. To
achieve this, we propose the followingvernier:

Vγ,j = min
A∈Aj

max
A′∈Aj′∩A

|γ − f̄(A′)|.

Heref̄(A) = P (A)/µ(A), andj′ = ⌊j+log2 sn⌋, wheresn

is a slowly diverging monotone sequence, for examplelog n,
log log n, etc. HenceAj′ ∩ A denotes the collection of sub-
cells with sidelength2−j′ ∈ [2−j/sn, 2−j+1/sn) within the
cell A. The vernier focuses on cellsA at resolutionj that
intersect the boundary (have smallest density deviation from
the desired levelγ), and then evaluates the deviation in av-
erage density within subcells ofA to judge whether or not
the density is uniformly close toγ over the cell. Thus, the
vernier is sensitive to the local density regularity in the vicin-
ity of the desired level and in fact minimizing the vernier
leads to selection of the appropriate resolution adapted tothe
unknown density regularity parameterα. By choosingsn

with arbitrarily slow divergence, it is possible to get arbitrar-
ily close to the optimal rate of convergence in the Hausdorff
sense. However, note that the vernier may not function prop-
erly if the boundary ofG∗

γ passes through every subcell of
A (since then the subcell averages may be arbitrarily close
to γ irrespective of the density regularity). Assumption[C]
precludes this possibility at sufficiently high resolutions.

SinceVγ,j requires knowledge of the unknown probabil-
ity measure, we must work with the empirical version, de-
fined analogously as:

V̂γ,j = min
A∈Aj

max
A′∈Aj′∩A

|γ − f̂(A′)|.

We propose a complexity regularization scheme wherein the
empirical vernier̂Vγ,j is balanced by a penalty term:

Ψj′ :=

max
A∈Aj′

√√√√8
log(2j′(d+1)16

δ )

nµ(A)
max

(
f̂(A), 8

log(2j′(d+1)16
δ )

nµ(A)

)

where0 < δ < 1 is a confidence parameter, andµ(A) =

2−j′d. Notice that the penalty is computable from the given
observations. The precise form ofΨ is chosen so that min-
imizing the empirical vernier plus penalty provides control
over the true vernier (refer to Section 5.2 for a formal proof).
The final level set estimate is given by

Ĝ = Ĝĵ (2)



where
ĵ = arg min

0≤j≤J

{
V̂γ,j + Ψj′

}
(3)

Thus the search is focused on regular partitions of dyadic
sidelength2−j , j ∈ {0, 1, . . . , J}. The choice ofJ will
be specified below. Observe that the value of the empirical
vernier decreases with increasing resolution as better approx-
imations to the true level are available. On the other hand, the
penalty is designed to increase with resolution to penalize
high complexity estimates that might overfit the given sam-
ple of data. Thus, the above procedure chooses the appropri-
ate resolution automatically by balancing these two terms.

We now establish that our complexity penalized proce-
dure leads to minimax optimal rates of convergence without
requiring prior knowledge of any parameters.

Theorem 2 Pick J ≡ J(n) such that 2−J ≍
sn(n/ log n)−

1
d , where sn is a monotone diverging se-

quence. Let̂j denote the resolution chosen by the complexity
penalized method as given by Eq. (3), andĜ denote the final
estimate of Eq. (2). Then with probability at least1 − 3/n,
for all densities in the classF∗

2 (α),

c1s
d

d+2α
n

(
n

log n

)− 1
d+2α

≤ 2−ĵ ≤ c2sns
d

d+2α
n

(
n

log n

)− 1
d+2α

for n large enough (so thatsn > c(C4, d)), wherec1, c2 > 0
are constants. In addition,

sup
f∈F∗

2 (α)

E[d∞(Ĝ, G∗
γ)] ≤ Cs2

n

(
n

log n

)− 1
d+2α

for all n, where C ≡
C(C1, C2, C3, C4, ǫo, fmax, δ0, δ1, d, α) > 0 is a con-
stant.

The proof is given in Section 5.2.

The maximum resolution2J ≍ s−1
n (n/ log n)

1
d can be eas-

ily chosen, based only onn, and allows the optimal resolu-
tion for anyα to lie in the search space. Observe that by ap-
propriate choice ofsn, for examplesn = (log n)ǫ/2 with ǫ a
small number> 0, the bound of Theorem 2 matches the min-
imax lower bound of Proposition 1, except for an additional
(log n)ǫ factor. Hence our methodadaptivelyachieves near
minimax optimal rates of convergence for the classF∗

2 (α).

4 Concluding Remarks

In this paper, we propose a Hausdorff accurate level set esti-
mation method that is adaptive to unknown local density reg-
ularity and achieves minimax optimal rates of error conver-
gence over a very general classes of level sets. The analysis
in this paper assumesα > 0, however the caseα ≥ 0 that al-
lows jumps in the density can also be handled (see [SSN07]),
but is omitted here to keep the presentation and proofs sim-
pler. Also, this paper considers locally Lipschitz bound-
aries, however extensions to additional boundary smooth-
ness (for example, Hölder regularity> 1) may be possible in
the proposed framework using techniques such as wedgelets
[Don99] or curvelets [CD99]. The earlier work on Hausdorff
accurate level set estimation [KT93, Tsy97, Cav97] does ad-
dress higher smoothness of the boundary but that follows as a

straightforward consequence of assuming a functional form
for the boundary. We would also like to comment that while
we only addressed the density level set problem in this paper,
extensions to general regression level set estimation should
be possible using a similar approach.

The complexity regularization approach (Eq. 3) based on
the vernier is similar in spirit to the so-called Lepski methods
(for example, [LMS97]) for function estimation which are
spatially adaptive bandwidth selectors, however the vernier
focuses on cells close to the desired level and thus is specif-
ically tailored to the level set problem. The vernier provides
the key to achieve adaptivity while requiring only local reg-
ularity of the density in the vicinity of the desired level.

In this paper, we assume that the density regularity is the
same everywhere along the level set. This might be some-
what restrictive, particularly if the level set consists ofmul-
tiple components. Adaptivity to spatial variations in the den-
sity regularity can be achieved using a spatially adapted par-
tition instead of a regular histogram partition. This mightbe
possible by developing a tree-based approach or a modified
Lepski method, and is the subject of current research.

5 Proofs

Before proceeding to the proofs, we establish two lemmas
that are used throughout. The first one establishes a bound
on the deviation of true and empirical density averages.

Lemma 1 Consider0 < δ < 1. With probability at least
1 − δ, the following is true for all dyadic resolutionsj:

max
A∈Aj

|f̄(A) − f̂(A)| ≤ Ψj .

Proof: The proof relies on a pair of VC inequalities (See
[DL01] Chapter 3) that bound therelative deviation of true
and empirical probabilities. For the collectionAj with shat-
ter coefficient bounded by2jd, the relative VC inequalities
state that for anyǫ > 0

P

(
sup

A∈Aj

P (A) − P̂ (A)√
P (A)

> ǫ

)
≤ 4 · 2jde−nǫ2/4

and

P



 sup
A∈Aj

P̂ (A) − P (A)√
P̂ (A)

> ǫ



 ≤ 4 · 2jde−nǫ2/4.

Also observe that

P̂ (A) ≤ P (A) + ǫ

√
P̂ (A) =⇒ P̂ (A) ≤ 2 max(P (A), 2ǫ2)

P (A) ≤ P̂ (A)+ǫ
√

P (A) =⇒ P (A) ≤ 2 max(P̂ (A), 2ǫ2).

To see the first statement, consider 1)P̂ (A) ≤ 4ǫ2 - The
statement is obvious. 2)̂P (A) > 4ǫ2 - This gives a bound
on ǫ, which impliesP̂ (A) ≤ P (A) + P̂ (A)/2 and hence
P̂ (A) ≤ 2P (A). The second statement follows similarly.

Using these statements and the relative VC inequalities
for the collectionAj , we have: With probability> 1 − 8 ·
2jde−nǫ2/4, ∀A ∈ Aj both

P (A) − P̂ (A) ≤ ǫ
√

P (A) ≤ ǫ

√
2 max(P̂ (A), 2ǫ2)



and

P̂ (A) − P (A) ≤ ǫ

√
P̂ (A) ≤ ǫ

√
2 max(P̂ (A), 2ǫ2)

Settingǫ =
√

4 log(2jd8/δj)/n, we have with probability
> 1 − δj, ∀A ∈ Aj

|P (A) − P̂ (A)|

≤
√

8
log(2jd8/δj)

n
max

(
P̂ (A), 8

log(2jd8/δj)

n

)

The result follows by dividing the result byµ(A), setting
δj = δ2−(j+1) and taking union bound.

The next lemma states how the density deviation bound
or penaltyΨj scales with resolution. This will be used to
derive rates of convergence.

Lemma 2 For all resolutions such that 2j =
O((n/ log n)

1
d ), there exist constantsc3, c4 ≡ c4(fmax,

d) > 0 such that for alln, with probability at least1 − 1/n,

c3

√
2jd

log n

n
≤ Ψj ≤ c4

√
2jd

log n

n

Proof: The lower bound follows by observing that

1=
∑

A∈Aj

P̂ (A) ≤ max
A∈Aj

P̂ (A)×|Aj | = max
A∈Aj

P̂ (A)

µ(A)
= max

A∈Aj

f̂(A)

and usingδ = 1/n, j ≥ 0 andµ(A) = 2−jd.
To get an upper bound, using the same arguments as in

proof of Lemma 1 based on the relative VC inequality it fol-
lows that [SSN07] with probability> 1− δj , for all A ∈ Aj

P̂ (A) ≤ 2 max

(
P (A), 8

log(2jd8/δj)

n

)
.

Dividing by µ(A) = 2−jd, using density boundfmax, set-
ting δj = δ2−(j+1) and taking union bound, we have with
probability> 1 − δ, for all dyadic resolutionsj

max
A∈Aj

f̂(A) ≤ 2 max

(
fmax, 2

jd8
log(2j(d+1)16/δ)

n

)
.

This implies the upper bound usingδ = 1/n and 2j =
O((n/ log n)1/d).

5.1 Proof of Theorem 1

The proof relies on the following lemma that will also be
used in the proof of Theorem 2.

Lemma 3 Consider densities satisfying assumptions[A]
and [B]. Then for all resolutions such that2j =

O(s−1
n (n/ log n)

1
d ), wheresn is a monotone diverging se-

quence, andn ≥ n0 ≡ n0(fmax, d, δ0, ǫo, C1, α) with prob-
ability at least1 − 3/n

d∞(Ĝj , G
∗
γ) ≤ max(2C3+3, 8

√
dǫ−1

o )

[(
Ψj

C1

) 1
α

+
√

d2−j

]
.

Proof: Let J0 = ⌈log2 4
√

d/ǫo⌉, whereǫo is as defined in
assumption[B]. Also define

ǫj :=

[(
Ψj

C1

) 1
α

+
√

d2−j

]
.

Consider two cases:

I. j < J0.
For this case, since the domainX = [0, 1]d, we use the
trivial bound

d∞(Ĝj , G
∗
γ) ≤

√
d ≤ 2J0(

√
d2−j) ≤ 8

√
dǫ−1

o ǫj .

The last step follows by choice ofJ0 and since
Ψj , C1 > 0.

II. j ≥ J0.
Observe that assumption[B] implies thatG∗

γ is not
empty sinceG∗

γ ⊇ Iǫ(G
∗
γ) 6= ∅ for ǫ ≤ ǫo. We will

show that for large enoughn, with high probability,
Ĝj ∩ G∗

γ 6= ∅ for j ≥ J0 and hencêGj is not empty.
Thus the Hausdorff error is given as

d∞(Ĝj , G
∗
γ) = max{ sup

x∈G∗

γ

ρ(x, Ĝj), sup
x∈Ĝj

ρ(x, G∗
γ)},

(4)
and we need bounds on the two terms in the right hand
side.

We now prove that̂Gj is not empty and obtain bounds
on the two terms in the Hausdorff error. Towards this
end, we establish two propositions. The first proposi-
tion proves that for large enoughn, with high proba-
bility, the distance of all points that are erroneously ex-
cluded or included in the level set estimate, from the
true set boundary is bounded byǫj . Notice that, ifĜj is
non-empty, this provides an upper bound on the second
term of the Hausdorff error (Eq. 4). The second propo-
sition establishes that, for large enoughn andj ≥ J0,
2ǫj ≤ ǫo and hence the inner coverI2ǫj

(G∗
γ) is not

empty. And using the first proposition, with high prob-
ability, I2ǫj

(G∗
γ) contains points that are correctly in-

cluded in the level set estimate and lie inĜj ∩G∗
γ . Thus

Ĝj is not empty. Further, along with assumption[B],
this provides a bound ofǫj on the distance of any point
in G∗

γ from the estimatêGj , thus bounding the first term
of the Hausdorff error (Eq. 4).

We end the proof of the two propositions with a white
box � to indicate that these propositions are included
within the proof of Lemma 3, and do not signify end of
the proof of Lemma 3.

Proposition 2 If Ĝj∆G∗
γ 6= ∅, then for resolutions sat-

isfying 2j = O(s−1
n (n/ logn)1/d) andn ≥ n1(fmax,

d, δ0) with probability at least1 − 2/n

sup
x∈Ĝj∆G∗

γ

ρ(x, ∂G∗
γ) ≤

(
Ψj

C1

)1/α

+
√

d2−j = ǫj .



Proof:Since by assumption̂Gj∆G∗
γ 6= ∅, considerx ∈

Ĝj∆G∗
γ . Let Ax ∈ Aj denote the cell containingx at

resolutionj. Consider two cases:

(i) Ax ∩ ∂G∗
γ 6= ∅. This implies that

ρ(x, ∂G∗
γ) ≤

√
d2−j.

(ii) Ax ∩ ∂G∗
γ = ∅. Sincex ∈ Ĝj∆G∗

γ , it is erro-
neously included or excluded from the level set
estimateĜj . Therefore, if f̄(Ax) ≥ γ, then
f̂(Ax) < γ otherwise if f̄(Ax) < γ, then
f̂(Ax) ≥ γ. This implies that|γ − f̄(Ax)| ≤
|f̄(Ax) − f̂(Ax)|. Using Lemma 1, we get|γ −
f̄(Ax)| ≤ Ψj with probability at least1 − δ.

Now let x0 be any point inAx such that|γ −
f(x0)| ≤ |γ − f̄(Ax)| (Notice that at least one
such point must exist inAx since this cell does
not intersect the boundary). As argued above,
|γ − f̄(Ax)| ≤ Ψj with probability at least
1 − 1/n (for δ = 1/n) and using Lemma 2,
Ψj decreases withn for resolutions satisfying
2j = O(s−1

n (n/ logn)
1
d ) with probability at least

1−1/n. So for large enoughn ≥ n1(fmax, d, δ0),
Ψj ≤ δ0 and hence|γ − f(x0)| ≤ δ0. Thus, the
density regularity assumption[A] holds atx0 with
probability> 1 − 2/n and we have

ρ(x0, ∂G∗
γ) ≤

( |γ − f(x0)|
C1

) 1
α

≤
( |γ − f̄(Ax)|

C1

) 1
α

≤
(

Ψj

C1

) 1
α

.

Sincex, x0 ∈ Ax, ρ(x, ∂G∗
γ) ≤ ρ(x0, ∂G∗

γ) +√
d2−j . Therefore,

ρ(x, ∂G∗
γ) ≤

(
Ψj

C1

)1/α

+
√

d2−j .

So for both cases, we can say that for resolutions sat-
isfying 2j = O(s−1

n (n/ logn)1/d) andn ≥ n1(fmax,

d, δ0) with probability at least1 − 2/n, ∀x ∈ Ĝj∆G∗
γ

ρ(x, ∂G∗
γ) ≤

(
Ψj

C1

)1/α

+
√

d2−j = ǫj.
�

Proposition 3 Recall assumption[B] and denote the
inner cover ofG∗

γ with 2ǫj-balls, I2ǫj
(G∗

γ) ≡ I2ǫj
.

For resolutions satisfying2j = O(s−1
n (n/ log n)1/d),

j ≥ J0 andn ≥ n0 ≡ n0(fmax, d, δ0, ǫo, C1, α), with
probability at least1 − 3/n,

Ĝj 6= ∅ and sup
x∈I2ǫj

ρ(x, Ĝj ∩ G∗
γ) ≤ ǫj .

Proof:Observe that forj ≥ J0, 2
√

d2−j ≤
2
√

d2−J0 ≤ ǫo/2. And using Lemma 2 for
large enoughn ≥ n2 ≡ n2(ǫo, fmax, C1, α),

2(Ψj/C1)
1/α ≤ ǫo/2 with probability at least1− 1/n.

Therefore for allj ≥ J0 and n ≥ n2, 2ǫj ≤ ǫo

with probability at least1 − 1/n and henceI2ǫj
6= ∅.

Now consider any2ǫj-ball in I2ǫj
. Then the distance

of all points in the interior of the concentricǫj-ball
from the boundary ofI2ǫj

, and hence from the bound-
ary of G∗

γ is greater thanǫj. As per Proposition 2 for
n ≥ n0 = max(n1, n2), with probability> 1 − 3/n,
none of these points can lie in̂Gj∆G∗

γ , and hence must

lie in Ĝj ∩ G∗
γ since they are inI2ǫj

⊆ G∗
γ . Therefore,

Ĝj 6= ∅ and sup
x∈I2ǫj

ρ(x, Ĝj ∩ G∗
γ) ≤ ǫj .

�

Now sinceG∗
γ and Ĝj are non-empty sets, we bound

the two terms that contribute to the Hausdorff error

sup
x∈G∗

γ

ρ(x, Ĝj) and sup
x∈Ĝj

ρ(x, G∗
γ).

For this, we will use Propositions 2 and 3, hence
all the following statements will hold for resolutions
satisfying 2j = O(s−1

n (n/ log n)1/d), j ≥ J0 and
n ≥ n0 ≡ n0(fmax, d, δ0, ǫo, C1, α), with probability
at least1 − 3/n.

To bound the second term, observe that

(i) If Ĝj \ G∗
γ = ∅, thensupx∈Ĝj

ρ(x, G∗
γ) = 0.

(ii) If Ĝj \ G∗
γ 6= ∅, it implies thatĜj∆G∗

γ 6= ∅.
Hence, using Proposition 2, we have

sup
x∈Ĝj

ρ(x, G∗
γ) = sup

x∈Ĝj\G∗

γ

ρ(x, G∗
γ)

= sup
x∈Ĝj\G∗

γ

ρ(x, ∂G∗
γ)

≤ sup
x∈Ĝj∆G∗

γ

ρ(x, ∂G∗
γ) ≤ ǫj .

Thus, for either case

sup
x∈Ĝj

ρ(x, G∗
γ) ≤ ǫj . (5)

To bound the first term, observe that

(i) If G∗
γ \ Ĝj = ∅, thensupx∈G∗

γ
ρ(x, Ĝj) = 0.

(ii) If G∗
γ \ Ĝj 6= ∅, we proceed as follows:

sup
x∈G∗

γ

ρ(x, Ĝj)≤ sup
x∈G∗

γ

ρ(x, Ĝj ∩ G∗
γ)

= max{ sup
x∈I2ǫj

ρ(x, Ĝj ∩ G∗
γ),

sup
x∈G∗

γ\I2ǫj

ρ(x, Ĝj ∩ G∗
γ)}

≤ max{ǫj, sup
x∈G∗

γ\I2ǫj

ρ(x, Ĝj ∩ G∗
γ)}.

The last step follows using Proposition 3.



Now consider anyx ∈ G∗
γ \ I2ǫj

. Then using tri-
angle inequality,∀y ∈ ∂G∗

γ and∀z ∈ I2ǫj
,

ρ(x, Ĝj ∩ G∗
γ)≤ρ(x, y)+ρ(y, z)+ρ(z, Ĝj ∩ G∗

γ)

≤ ρ(x, y) + ρ(y, z) +

sup
z∈I2ǫj

ρ(z, Ĝj ∩ G∗
γ)

≤ ρ(x, y) + ρ(y, z) + ǫj.

The last step follows using Proposition 3. This im-
plies that∀y ∈ ∂G∗

γ ,

ρ(x, Ĝj ∩ G∗
γ) ≤ ρ(x, y) + inf

z∈I2ǫj

ρ(y, z) + ǫj

= ρ(x, y) + ρ(y, I2ǫj
) + ǫj

≤ ρ(x, y) + sup
y∈∂G∗

γ

ρ(y, I2ǫj
) + ǫj

≤ ρ(x, y) + 2C3ǫj + ǫj.

Here the last step invokes assumption[B]. This in
turn implies that

ρ(x, Ĝj ∩ G∗
γ) ≤ inf

y∈∂G∗

γ

ρ(x, y) + (2C3 + 1)ǫj

≤ 2ǫj + (2C3 + 1)ǫj .

The second step is true forx ∈ G∗
γ \ I2ǫj

. If it
was not true, then∀y ∈ ∂G∗

γ , ρ(x, y) > 2ǫj and
hence there exists a closed2ǫj-ball aroundx that
is in G∗

γ . This contradicts the fact thatx 6∈ I2ǫj
.

Therefore, we have:

sup
x∈G∗

γ\I2ǫj

ρ(x, Ĝj ∩ G∗
γ) ≤ (2C3 + 3)ǫj .

And going back to the start of case (ii) we get:

sup
x∈G∗

γ

ρ(x, Ĝj) ≤ (2C3 + 3)ǫj .

Therefore, for either case we have

sup
x∈G∗

γ

ρ(x, Ĝj) ≤ (2C3 + 3)ǫj . (6)

From Eq. (5) and (6), we have that for all densities
satisfying assumptions[A, B], for resolutions satisfying
2j = O(s−1

n (n/ log n)1/d), j ≥ J0 andn ≥ n0 ≡
n0(fmax, d, δ0, ǫo, C1, α), with probability> 1 − 3/n,

d∞(Ĝj , G
∗
γ) = max{ sup

x∈G∗

γ

ρ(x, Ĝj), sup
x∈Ĝj

ρ(x, G∗
γ)}

≤ (2C3 + 3)ǫj .

And addressing both Case I (j < J0) and Case
II (j ≥ J0), we finally have that for all densi-
ties satisfying assumptions[A, B], for resolutions sat-
isfying 2j = O(s−1

n (n/ logn)
1
d) and n ≥ n0 ≡

n0(fmax, d, δ0, ǫo, C1, α), with probability> 1 − 3/n,

d∞(Ĝj , G
∗
γ) ≤ max(2C3 + 3, 8

√
dǫ−1

o )ǫj .

Since the chosen resolution2−j ≍ sn(n/ logn)−
1

(d+2α)

satisfies conditions of Lemma 3, proof of Theorem 1 now
follows using the bound onΨj from Lemma 2. LetΩ denote
the event such that the bounds of Lemma 2 and Lemma 3
hold. Then forn ≥ n0, P (Ω̄) ≤ 4/n. Hence for alln,
P (Ω̄) ≤ max(4, n0)/n. So ∀f ∈ F∗

1 (α): (HereC may
denote a different constant from line to line. Explanation for
each step is provided after the equations.)

E[d∞(Ĝj , G
∗
γ)]

= P (Ω)E[d∞(Ĝj , G
∗
γ)|Ω] + P (Ω̄)E[d∞(Ĝj , G

∗
γ)|Ω̄]

≤ E[d∞(Ĝj , G
∗
γ)|Ω] + P (Ω̄)

√
d

≤ C

[(
Ψj

C1

)1/α

+
√

d2−j +

√
d

n

]

≤ C max

{(
2jd log n

n

) 1
2α

, 2−j ,
1

n

}

≤ C(C1, C3, ǫo, fmax, δ0, d, α)sn

(
n

log n

)− 1
d+2α

.

The second step follows using the trivial boundsP (Ω) ≤
1 and since the domainX = [0, 1]d, E[d∞(Ĝj , G

∗
γ)|Ω̄] ≤√

d. The third step follows from Lemma 3 and the fourth
one using Lemma 2. The last step follows since the chosen
resolution2−j ≍ sn(n/ log n)−

1
(d+2α) .

5.2 Proof of Theorem 2

To analyze the resolution chosen by the complexity penal-
ized procedure of Eq. (3) based on the vernier, we first es-
tablish two results regarding the vernier. Using Lemma 1,
we have the following corollary that bounds the deviation of
true and empirical vernier.

Corollary 1 Consider0 < δ < 1. With probability at least
1 − δ, the following is true for all dyadic resolutionsj:

|Vγ,j − V̂γ,j| ≤ Ψj′ .

Proof: Let A0 ∈ Aj denote the cell achieving the min defin-
ing Vγ,j and A1 ∈ Aj denote the cell achieving the min
defining V̂γ,j. Also let A′

0 and A′
1 denote the subcells at

resolutionj′ within A0 andA1, respectively, that have maxi-
mum average density deviation fromγ. Similarly, letÂ′

0 and
Â′

1 denote the subcells at resolutionj′ within A0 andA1,
respectively, that have maximum empirical density deviation
from γ. Then we have: (Explanation for the steps are given
after the equations.)

Vγ,j − V̂γ,j = |γ − f̄(A′
0)| − |γ − f̂(Â′

1)|
≤ |γ − f̄(A′

1)| − |γ − f̂(Â′
1)|

≤ |f̄(A′
1) − f̂(Â′

1)|
= max{f̄(A′

1) − f̂(Â′
1), f̂(Â′

1) − f̄(A′
1)}

≤ max{f̄(A′
1) − f̂(A′

1), f̂(Â′
1) − f̄(Â′

1)}
≤ max

A∈Aj′

|f̄(A) − f̂(A)|

≤ Ψj′



The first inequality invokes definition ofA0, the third in-
equality invokes definitions of the subcellsA′

1, Â′
1, and the

last one follows from Lemma 1. Similarly,

V̂γ,j − Vγ,j = |γ − f̂(Â′
1)| − |γ − f̄(A′

0)|
≤ |γ − f̂(Â′

0)| − |γ − f̄(A′
0)|

≤ |f̄(A′
0) − f̂(Â′

0)|
Here the first inequality invokes definition ofA1. The rest
follows as above, considering cellA0 instead ofA1.

The second result establishes that the vernier is sensitive
to the resolution and density regularity.

Lemma 4 Consider densities satisfying assumptions[A]
and[C]. Recall thatj′ = ⌊j +log2 sn⌋, wheresn is a mono-
tone diverging sequence. Then for all dyadic resolutionsj

min(δ0, C1)2
−j′α ≤ Vγ,j ≤ C(

√
d2−j)α

holds forn large enough such thatsn > 4C46
d. HereC ≡

C(C2, fmax, δ1, α)> 0.

Proof: We first establish the upper bound. Recall assump-
tion [A] and consider the cellA ∈ Aj that contains the point
y0. ThenA ∩ ∂G∗

γ 6= ∅. Let A′ denote the subcell at resolu-
tion j′ within A that has maximum average density deviation
from γ. Consider two cases:

(i) If the resolution is large enough so that
√

d2−j ≤ δ1,
then the density regularity assumption[A] holds∀x ∈
A sinceA ⊂ B(y0, δ1), the δ1-ball aroundy0. The
same holds also for the subcellA′. Hence

|γ − f̄(A′)| ≤ C2(
√

d2−j)α

(ii) If the resolution is not large enough and
√

d2−j > δ1,
the following trivial bound holds:

|γ − f̄(A′)| ≤ fmax ≤ fmax

δα
1

(
√

d2−j)α

The last step holds since
√

d2−j > δ1.

Hence we can say for allj there existsA ∈ Aj such that

|γ − f̄(A′)| ≤ max

(
C2,

fmax

δα
1

)
(
√

d2−j)α

This yields the upper bound on the vernier:

Vγ,j ≤ max

(
C2,

fmax

δα
1

)
(
√

d2−j)α := C(
√

d2−j)α

whereC ≡ C(C2, fmax, δ1, α).
For the lower bound, consider a cellA ∈ Aj . We will

show that assumption[C] on the level set boundary dimen-
sion basically implies that the boundary does not intersect
all subcells at resolutionj′ within the cellA at resolutionj.
And in fact for large enoughn (so that2−j′ is small enough,
recall thatj′ = ⌊j+log2 sn⌋ wheresn is a monotone diverg-
ing sequence), there exists at least one subcellA′

o ∈ A∩Aj′

such that∀x ∈ A′
o,

ρ(x, ∂G∗
γ) ≥ 2−j′ .

We establish this statement formally later on, but for now
assume that it holds. The local density regularity condi-
tion [A] now gives that for allx ∈ A′

o, |γ − f(x)| ≥
min(δ0, C12

−j′α) ≥ min(δ0, C1)2
−j′α. So we have:

max
A′∈A∩Aj′

|γ − f̄(A′)| ≥ |γ − f̄(A′
o)| ≥ min(δ0, C1)2

−j′α

Since this is true for anyA ∈ Aj , in particular, this is true
for the cell achieving the min definingVγ,j. Hence, the lower
bound on the vernierVγ,j follows.

We now formally prove that assumption[C] on the level
set boundary dimension implies that for large enoughn (so
thatsn > 4C46

d), ∃A′
o ∈ A ∩ Aj′ s.t.∀x ∈ A′

o,

ρ(x, ∂G∗
γ) ≥ 2−j′ .

Observe that it suffices to show that for large enoughn,
∃A′′ ∈ A ∩ Aj′−2 s.t. A′′ ∩ ∂G∗

γ = ∅. To prove this last
statement, consider two cases:

(i) A ∩ ∂G∗
γ = ∅. For sn ≥ 8, j′ − 2 ≥ j (recall defini-

tion of j′), and sinceA does not intersect the boundary,
clearly∃A′′ ∈ A ∩ Aj′−2 s.t.A′′ ∩ ∂G∗

γ = ∅.

(ii) A∩ ∂G∗
γ 6= ∅. Letx ∈ A∩ ∂G∗

γ . Considerǫ =
√

d2−j

(the diagonal length of a cell), thenA ⊆ B(x, ǫ).
Also let δ =

√
d2−(j′−2)/2 (the choice will be jus-

tified below). Forsn ≥ 4, 0 < δ ≤ ǫ and using
assumption[C], the minimum number ofδ−balls re-
quired to cover∂G∗

γ ∩ B(x, ǫ) is ≤ C4(δ/ǫ)−(d−1).
SinceA ⊆ B(x, ǫ), the minimum number ofδ−balls
required to cover∂G∗

γ ∩ A is also≤ C4(δ/ǫ)−(d−1).
Now consider a uniform partition of the cellA into sub-
cells of sidelength2δ/

√
d = 2−(j′−2). Since the diag-

onal length of a subcell
√

d2−(j′−2) = 2δ, this choice
of δ implies that a subcell at resolution2−(j′−2) is in-
scribed within an alignedδ-ball. Observe that at this
resolution, in d-dim, an unalignedδ-ball can intersect
up to3d−1 subcells (number of neighbors of any hyper-
cube). Therefore, the number of subcells inA ∩ Aj′−2

that intersect the boundary can be no more than

3dC4(δ/ǫ)−(d−1) = 3dC4

(√
d2−(j′−2)

2
√

d2−j

)−(d−1)

=
C46

d

2
2(j′−2−j)d2−(j′−2−j)

<
4C46

d

sn
2(j′−2−j)d

where the last step uses the fact2−j′ < 2−j+1/sn. For
sn > 4C46

d, the number of subcells withinA at res-
olution j′ − 2 that intersect the boundary is less than
the total number of subcells withinA at that resolution.
Therefore,∃A′′ ∈ A ∩ Aj′−2 s.t.A′′ ∩ ∂G∗

γ = ∅.

This in turn implies that forn large enough (so thatsn >
4C46

d), ∃A′
o ∈ A ∩ Aj′ such that∀x ∈ A′

o, ρ(x, ∂G∗
γ) ≥

2−j′ .



We are now ready to prove Theorem 2. Observe that
Lemmas 2, 3 and Corollary 1 hold together with probabil-
ity at least1 − 5/n (takingδ = 1/n). Using these lemmas,
we will show that for the resolution̂j chosen by Eq. (3), both

Vγ,ĵ andΨĵ′ are upper bounded byCs
dα

d+2α
n (n/ log n)−

α
d+2α ,

whereC ≡ C(C2, fmax, δ1, d, α) > 0. If this holds, then us-
ing Lemma 4 and the definition ofj′, we have the following
upper bound on the sidelength: Forsn > 4C46

d

2−ĵ ≤ sn2−ĵ′ ≤ sn

( Vγ,ĵ

min(δ0, C1)

) 1
α

≤ c2sns
d

d+2α
n

(
n

log n

)− 1
d+2α

,

wherec2 ≡ c2(C1, C2, fmax, δ0, δ1, d, α) > 0. Also notice
that since2J ≍ s−1

n (n/ logn)1/d, we have2j′ ≤ 2J′ ≤
sn2J ≍ (n/ log n)1/d, and hence Lemma 2 can be used to
provide a lower bound on the sidelength:

2−ĵ>
sn

2
2−ĵ′ ≥ sn

2

(
Ψ2

ĵ′

c2
3

n

log n

)− 1
d

≥ c1sn

(
s

2dα
d+2α
n

(
n

log n

)− 2α
d+2α n

log n

)− 1
d

= c1s
d

d+2α
n

(
n

log n

) −1
d+2α

,

wherec1 ≡ c1(C2, fmax, δ1, d, α) > 0. So we have for
sn > 4C46

d, with probability at least1 − 5/n,

c1s
d

d+2α
n

(
n

log n

)− 1
d+2α

≤ 2−ĵ ≤ c2sns
d

d+2α
n

(
n

log n

)− 1
d+2α

.

(7)
Hence the automatically chosen resolution behaves as de-
sired.

Let us now derive the claimed bounds onVγ,ĵ andΨĵ′ .
Using Corollary 1 and Eq. (3), we have the following oracle
inequality:

Vγ,ĵ ≤ V̂γ,ĵ + Ψĵ′

= min
0≤j≤J

{
V̂γ,j + Ψj′

}
≤ min

0≤j≤J
{Vγ,j + 2Ψj′}

Lemma 4 provides an upper bound on the vernierVγ,j, and
Lemma 2 provides an upper bound on the penaltyΨj′ . We
now plug these bounds into the oracle inequality. HereC
may denote a different constant from line to line.

Vγ,ĵ ≤ V̂γ,ĵ + Ψĵ′ ≤C min
0≤j≤J

{
2−jα +

√
2j′d

log n

n

}

≤C min
0≤j≤J

{
max

(
2−jα,

√
2jdsd

n

log n

n

)}

≤Cs
dα

d+2α
n

(
n

log n

)− α
d+2α

.

HereC ≡ C(C2, fmax, δ1, d, α). The second step uses the
definition ofj′ and the last step follows by balancing the two

terms for optimal resolution2−j∗ ≍ s
d

d+2α
n

(
n

log n

)− 1
d+2α

.

This establishes the desired bounds onVγ,ĵ andΨĵ′ .
Now we can invoke Lemma 3 to derive the rate of con-

vergence for the Hausdorff error. Consider large enough
n ≥ n1(C4, d) so thatsn > 4C46

d. Also, recall that the
condition of Lemma 3 requires thatn ≥ n0(fmax, d, δ0, ǫo,
C1, α). Pick n ≥ max(n0, n1) and letΩ denote the event
such that the bounds of Lemma 2, Lemma 3 and Corollary
1 hold with δ = 1/n. Then, we haveP (Ω̄) ≤ 5/n for
n ≥ max(n0, n1), or for all n, P (Ω̄) ≤ max(5, n0, n1)/n.
So ∀f ∈ F∗

2 (α), we have: (HereC may denote a differ-
ent constant from line to line. Explanation for each step is
provided after the equations.)

E[d∞(Ĝ, G∗
γ)]

= P (Ω)E[d∞(Ĝ, G∗
γ)|Ω] + P (Ω̄)E[d∞(Ĝ, G∗

γ)|Ω̄]

≤ E[d∞(Ĝ, G∗
γ)|Ω] + P (Ω̄)

√
d

≤ C

[(
Ψĵ

C1

)1/α

+
√

d2−ĵ +

√
d

n

]

≤ C max

{(
2ĵd log n

n

) 1
2α

, 2−ĵ,
1

n

}

≤ Csns
d

d+2α
n

(
n

log n

)− 1
d+2α

≤ Cs2
n

(
n

log n

)− 1
d+2α

.

Here C ≡ C(C1, C2, C3, C4, ǫo, fmax, δ0, δ1, d, α). The
second step follows by observing the trivial boundsP (Ω) ≤
1 and since the domainX = [0, 1]d, E[d∞(Ĝ, G∗

γ)|Ω̄] ≤√
d. The third step follows from Lemma 3 and the fourth

one from Lemma 2. The last step follows using the upper
and lower bounds established on2−ĵ in Eq. (7).

5.3 Star-shaped sets satisfy assumptions [B] and [C]

Recall the definition ofFSL as defined in [Tsy97]. The class
corresponds to densities bounded above byfmax, satisfying
a slightly modified form of the local density regularity as-
sumption[A]:

[A’] Local density regularity: The density isα-regular
around theγ-level set,0 < α < ∞ andγ < fmax,
if there exist constantsC2 > C1 > 0 andδ0 > 0 such
that

C1ρ(x, ∂G∗
γ)α ≤ |f(x) − γ| ≤ C2ρ(x, ∂G∗

γ)α

for all x ∈ X with |f(x) − γ| ≤ δ0, where∂G∗
γ is

the boundary of the true level setG∗
γ , and the set{x :

|f(x) − γ| ≤ δ0} is non-empty.

and the densities haveγ level sets of the form

G∗
γ = {(r, φ); φ ∈ [0, π)d−2 × [0, 2π), 0 ≤ r ≤ g(φ) ≤ R},

where(r, φ) denote the polar/hyperspherical coordinates and
R > 0 is a constant.g is a periodic Lipschitz function that
satisfiesg(φ) ≥ h, whereh > 0 is a constant, and

|g(φ)−g(θ)| ≤ L||φ−θ||1, ∀ φ, θ ∈ [0, π)d−2×[0, 2π).



HereL > 0 is the Lipschitz constant, and|| · ||1 denotes the
ℓ1 norm.

We setR = 1/2 in the definition of the star-shaped set
so that the domain is a subset of[−1/2, 1/2]d. With this
domain, the following lemma shows that the level setG∗

γ of
a densityf ∈ FSL satisfies[B] and[C].

Lemma 5 Consider theγ level setG∗
γ of a densityf ∈ FSL.

ThenG∗
γ satisfies the assumptions[B] and[C] on the level set

regularity and the level set boundary dimension, respectively.

Proof: We first present a sketch of the main ideas, and then
provide a detailed proof. Consider theγ-level setG∗

γ of a
densityf ∈ FSL. To see that it satisfies[B], divide the
star-shaped setG∗

γ into sectors of width≍ ǫ so that each sec-
tor contains at least oneǫ-ball and the inner coverIǫ(G

∗
γ)

touches the boundary at some point(s) in each sector. Now
one can argue that, in each sector, all other points on the
boundary areO(ǫ) from the inner cover since the bound-
ary is Lipschitz. Since this is true for each sector, we have
∀x ∈ ∂G∗

γ , ρ(x, Iǫ(G
∗
γ)) = O(ǫ). To see thatG∗

γ satis-
fies [C], consider any sector of width≍ ǫ and divide it into
sub-sectors of widthO(δ), 0 < δ ≤ ǫ. Since the bound-
ary is Lipschitz, a constant number ofδ-balls can cover the
boundary in each sub-sector. Thus, the minimum number
of δ-balls needed to cover the boundary in all sub-sectors is
of the order of the minimum number of sub-sectors, that is,
O((ǫ/δ)d−1). Hence, the result follows. We now present the
proof in detail.

To see thatG∗
γ satisfies[B], fix ǫo ≤ h/3. Then for all

ǫ ≤ ǫo, B(0, ǫ) ⊆ G∗
γ (sinceg(φ) ≥ h > ǫo), and hence

Iǫ(G
∗
γ) 6= ∅. We also need to show that∃C3 > 0 such that

for all x ∈ ∂G∗
γ , ρ(x, Iǫ(G)) ≤ C3ǫ. For this, divideG∗

γ

into Md−1 sectors indexed bym = (m1, m2, . . . , md−1)
∈ {1, . . . , M}d−1

Sm=
{
(r, φ) : 0 ≤ r ≤ g(φ),

π(mi − 1)

M
≤ φi <

πmi

M
, i = 1, . . . , d − 2,

2π(md−1 − 1)

M
≤ φd−1 <

2πmd−1

M

}
,

whereφ = (φ1, φ2, . . . , φd−1). Let

M =

⌊
π

2 sin−1 ǫ
h−ǫo

⌋

This choice ofM implies that:

(i) There exists anǫ-ball within Sm ∩ B(0, h) for every
m ∈ {1, . . . , M}d−1, and hence within each sector
Sm. This follows because the minimum angular width
of a sector with radiush required to fit anǫ-ball within
is

2 sin−1 ǫ

h − ǫ
≤ 2 sin−1 ǫ

h − ǫo
≤ π

M
.

(ii) The angular-width of the sectors scales asO(ǫ).
π

M
<

π
π

2 sin−1 ǫ
h−ǫo

− 1
=

1
1

2 sin−1 ǫ
h−ǫo

− 1
π

≤ 3 sin−1 ǫ

h − ǫo
≤ 6

ǫ

h− ǫo
≤ 9

h
ǫ

The second inequality follows as

1

π
≤ 1

6 sin−1 ǫ
h−ǫo

since ǫ
h−ǫo

≤ ǫo

h−ǫo
≤ 1

2 by choice ofǫo ≤ h/3. The

third inequality is true sincesin−1(z/2) ≤ z for 0 ≤
z ≤ π/2. The last step follows by choice ofǫo ≤ h/3.

Now from (i) above, each sector contains at least oneǫ-ball.
Consider anym ∈ {1, . . . , M}d−1. We claim that there ex-
ists a pointxm ∈ ∂G∗

γ ∩ Sm, xm = (g(θ), θ) for some
θ ∈ [0, π)d−2 × [0, 2π), such thatρ(xm, Iǫ(G

∗
γ)) = 0.

Suppose not. Then one can slide theǫ-ball within the sec-
tor towards the periphery and never touch the boundary, im-
plying that the setG∗

γ is unbounded. This is a contradic-
tion by the definition of the classFSL. So now we have,
∀y ∈ ∂G∗

γ ∩ Sm, y = (g(φ), φ)

ρ(y, Iǫ(G
∗
γ)) ≤ ρ(y, xm) = ||y − xm||

= ||(g(φ), φ) − (g(θ), θ)||
≤ |g(φ) − g(θ)| + 2

√
g(φ)g(θ) ·

d−1∑

i=1

∣∣∣∣ sin
φi − θi

2

∣∣∣∣

≤ L||φ − θ||1 +

d−1∑

i=1

|φi − θi|
2

= (L + 1/2)

d−1∑

i=1

|φi − θi|

≤ (L + 1/2)d
π

M

≤ 9d(L + 1/2)

h
ǫ := C3ǫ

The third step follows using simple algebra (see [SSN07]),
the fourth step follows by the Lipschitz condition ong(·),
g(·) ≤ R = 1/2 and since| sin(z)| ≤ |z|. The sixth step
follows sincex, y ∈ Sm and hence|φi − θi| ≤ π/M for
i = 1, . . . , d − 2 and|φd−1 − θd−1| ≤ 2π/M . The last step
invokes(ii) above. Therefore, we have for ally ∈ ∂G∗

γ ∩
Sm, ρ(y, Iǫ(G

∗
γ)) ≤ C3ǫ. And since the result is true for

any sector, condition[B] is satisfied by any level setG∗
γ with

densityf ∈ FSL.
To see thatG∗

γ satisfies[C], considerx ∈ ∂G∗
γ . Let x =

(g(φ0), φ0). Also letφ(1)
i = min{φi : (g(φ), φ) ∈ B(x, ǫ)}

andφ
(2)
i = max{φi :(g(φ), φ) ∈B(x, ǫ)}. Define the sector

Sx
ǫ = {(r, φ) : 0 ≤ r ≤ g(φ),

φ
(1)
i ≤ φi ≤ φ

(2)
i , ∀i = 1, . . . , d − 1

}

Observe that ifǫ ≤ πh/4 < h, the width ofSx
ǫ in the ith

coordinate,∆φi = φ
(2)
i − φ

(1)
i ≤ 2 sin−1 ǫ

g(φ
0
)

by con-

struction. Sinceg(·) ≥ h, we have∆φi ≤ 2 sin−1 ǫ
h ≤

4ǫ/h, where the last step follows since for0 ≤ z ≤ π/2,
sin−1(z/2) ≤ z. If ǫ > πh/4, then use the trivial bound



∆φi ≤ 2π ≤ 8ǫ/h. Equivalently, we can say for allǫ and all
i,

∆φi ≤ 8ǫ/h. (8)

Further subdivideSx
ǫ into Md−1 sub-sectors indexed by

m = (m1, . . . , md−1)

Sm =
{
(r, φ) : 0 ≤ r ≤ g(φ), φ

(1)
i +

(mi − 1)∆φi

M
≤ φi

< φ
(1)
i +

mi∆φi

M
, ∀i = 1, . . . , d − 1

}

Pick M such that for all coordinates, the sub-sector width
∆φi

M ≤ 2δ
(d−1)(L+1/2) , where0 < δ ≤ ǫ. With this choice of

sub-sector width,Sm ∩ ∂G∗
γ can be covered by aδ-ball. To

see this, consider two points inSm ∩ ∂G∗
γ - (g(φ), φ) and

(g(θ), θ). Proceeding as before, we have:

||(g(φ), φ) − (g(θ), θ)|| ≤ (L + 1/2)

d−1∑

i=1

|φi − θi|

≤ (L + 1/2)
d−1∑

i=1

∆φi

M
≤ 2δ.

Since each sub-sector can be covered by aδ-ball, the min-
imum number ofδ-balls needed to coverB(x, ǫ) ∩ ∂G∗

γ
is equal to the minimum number of sub-sectors needed
(Md−1). This corresponds to the smallestM such that
maxi

∆φi

M ≤ 2δ
(d−1)(L+1/2) . Therefore, minimum number

of δ-balls needed to coverB(x, ǫ) ∩ ∂G∗
γ is equal to

(⌈
(d − 1)(L + 1/2)maxi ∆φi

2δ

⌉)d−1

≤
(

(d − 1)(L + 1/2)maxi ∆φi

2δ
+ 1

)d−1

≤
(

2(d − 1)(2L + 1)

h

ǫ

δ
+

ǫ

δ

)d−1

≤
(

2(d − 1)(2L + 1)

h
+ 1

)d−1 ( ǫ

δ

)d−1

:= C4

( ǫ

δ

)d−1

The second inequality follows since from Eq. (8),∆φi ≤ 8 ǫ
h

for all i, and sinceδ ≤ ǫ. Therefore, any level setG∗
γ with

densityf ∈ FSL also satisfies[C].
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