On-line sequential bin packing
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Abstract abandon this assumption and introduce a more restricted ver
sion that we calsequential bin packingn this setting items

We consider a sequential version of the classical arrive one by one (justlike in the on-line problem)_ but mhaag:
bin packing problem in which items are received rounq the.algorlthm has only two 'possmle choices: assign
one by one. Before the size of the next item is re- the given item to the (only) open bin or to the “next” empty
vealed, the decision maker needs to decide whether bin (in this case this will be the new open bin), and items can-
the next item is packed in the currently open bin or not be assigned anymore to closed bins. An algorithm thus
the bin is closed and a new bin is opened. If the determines a sequence of binary decisions. ., i, where
new item doesn't fit, it is lost. If a bin is closed, i¢ = 0 means that the next item is assigned to the open bin
the remaining free space in the bin accounts for a andi; = 1 means that a new bin is opened and the next item
loss. The goal of the decision maker is to min- is assigned to that bin. Of course;if= 0, then it may hap-
imize the loss accumulated overperiods. The pen that the itemx; doesn't fit in the open bin. In that case
main result of the paper is an algorithm that has a the item is “lost.” If the decision is, = 1 then the remaining
cumulative loss not much larger than any strategy empty space in the last closed bin is counted as a loss. The
that uses a fixed threshold at each step to decide measure of performance we use is the total sum of all lost
whether a new bin is opened. items and wasted empty space.

Just as in the original bin packing problem, we may dis-
tinguish off-line and on-line versions of the sequential bi

1 Introduction packing problem. In theff-line sequentiabin packing prob-

. . ) ) i lem the entire sequenag, .. ., x,, is known to the algorithm
In the classicabff-line bin packing problem, an algorithm  at the outset. Note that unlike in the classical bin packing
receivesitems(also calledpiece$ z1,zs,...,z, € (0,1]. problem, the order of the items is relevant. This problem

We have an infinite number of bins, each with capadity  turns out to be computationally significantly easier than it
and every item is to be assigned to a bin. Further, the sumpon-sequential counterpart. In Section 3 we present a sim-
of the sizes of the items assigned to any bin cannot exceedye algorithm with running time ab (n?) that minimizes the
its capacity. A bin is empty if no item is assigned to it, oth- total loss in the off-line sequential bin packing problem.
erWise, it is used. The goal _Of_the algorithm is tO minimize Much more interesting is the on-line variant of the se-
the number of used_bl_ns. This is one of t_he classm_ﬁahard quential bin packing problem. Here the items are re-
problems apd heuristic and approximation algorithms have yegled one by oneafter the corresponding decision has
been investigated thoroughly, see, e.g., Coffman, Gangy, a8 peen made. In other words, each decision has to be made
Johnson [3]. _ _ _ without any knowledge on the size of the item. Formulated
Another well-studied version of the problem is the so- thjs way, the problem is reminiscent to an on-lprediction
calledon-line bin packing problem. Here items arrive one proplem) see [2]. However, unlike in standard formulations
by one and each itera; must be assigned to a bin (with  of on-line prediction, here the loss the predictor suffezs d
free space at least) immediately, without any knowledge  pends not only on the outcomg and decisioni; but also on
of the next pieces. In this setting the goal is the same as inthe “state” defined by the fullness of the open bin.
the off-line problem, that is, the number,of used bins is to be Our goal is to extend the usual bin packing problems to
minimized, see, e.g., Seiden [8], He andda [6]. _ situations in which one can handle only one bin at a time, and
In both the off-line and on-line problems the algorithm jiems must be processed immediately so they cannot wait
has access to the bins in arbitrary order. In this paper wefor hin changes. To motivate the on-line sequential model,
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capacity becomes available again. If they are not shipped We also mention here the similan-line bin packing
one waits for the arrival of the next package. However, if the with rejection problem where the algorithm has an oppor-
next package is too large to fit in the remaining open space,tunity to reject some items and the loss function is the sum
it is lost. of the number of the used bins and the “costs” of the rejected
In another example of application, a sensor collects mea-items" (see He and bsa [6]). However, instead of the num-
surements that can be compressed to variable size (these areer of used bins, we use the sum of idle capacities (missed
the items). The sensor communicates its measurements byr free spaces) in the used bins to measure the loss.
sending frames of some fixed size (bins). Since it has lim- ~ The following example may help explain the difference
ited memory, it cannot store more data than one frame. Tobetween various versions of the problem.
save energy, the sensor must maximize its throughput (the
proportion of useful data in each frame) and at the same time
minimize data loss (this trade-off is reflected in the deibnit mal off-line bin packing i$ and it is 0.4 in the case of se-

of the IOS_S fu_ncnon).. o quential off-line bin packing (see Figure 1). In the seqiant
Just like in on-line prediction, we compare the perfor- case the third item (0.2) has been rejected.
mance of an algorithm with the best in a pool of reference
algorithms (experts). Arguably the most natural compariso 01
class contains all algorithms that use a fixed threshold to de 03 | o 0.1
cide whether a new bin is opened. In other words, reference 0.5 ‘ 0.5 ‘
predictors are parameterized by a real number(0, 1]. An 0.5
expert with parametep simply decides to open a new bin o5 o5
whenever the remaining free space in the open bin is less than R I o4 0.3
p. We call such an expert@nstant-thresholdtrategy. The
main result of this paper is the construction of a randomized
algorithm for the sequential on-line bin packing probleitth
achieves a cumulative loss (measured as the sum of the totakigure 1: The difference between the optimal solutions for
wasted capacity and lost items) that is less than the tatal 1o  the off-line and sequential off-line problems.
of the best constant-threshold strategy (determined id-hin

sight) plus a quantity of the order o/ log!/® n.

H The Erinc!pal (?ciffri]cugy of the prEbIemineshin thebliact . Therestof the paper is organized as follows. In Section 2
that eac acslog of the gckl)smE maker takes the problem Ny, oroplem is defined formally. In Section 3 the complexity
a new “state” (determined by the remaining empty space in of the off-line sequential bin packing problem is analyzed.

the open bin) which has an effect on future losses. More- The main results of the paper are presented in Section 4
over, the state of the algorithm is typically different frahe ! ! pap P ! ' '

state of the experts which makes comparison difficult. In re- Setup
lated work, Merhav, Ordentlich, Seroussi, and Weinberger

[7] considered a similar setup in which the loss function has We use a terminology borrowed from the theory of on-line
a “memory,” that is, the loss of a predictor depends on the prediction with expert advice. Thus, we call the sequential
loss of past actions. Furthermore, Even-Dar, Kakade anddecisions of the on-line algorithrpredictionsand we use
Mansour [4] considered theDP case where the adversarial forecasteras a synonym for algorithm.

reward function changes according to some fixed stochastic ~ We denote byl; € {0, 1} the action of the forecaster at
dynamics. However, there are several main additional diffi- time¢ (that is, whert — 1 items have been received). Action
culties in the present case. First, unlike in [7], but simiyla 0 means that the next item will be assigned to the open bin
to [4], the loss function has an unbounded memory as the and actionl represents the fact that a new bin is opened and
state may depend on an arbitrarily long sequence of past prethe next item is assigned to the next empty bin. Note that
dictions. Second, the state space is infinite (the) inter- we assume that we start with an open empty bin, thus for
val) and the class of experts we compare to is also infinite, any reasonable algorithni; = 0, and we will restrict our

in contrast to both of the above papers. However, the spe-attention to such algorithms. The sequence of decisions up
cial properties of the bin packing problem make it possible to timet is denoted byl; € {0, 1}.

Example 1 Let the sequence of the items {8e4,0.5,0.2,
0.5,0.5,0.3,0.5,0.1). Then the cumulative loss of the opti-

0.5

a) off-line b) sequential off-line

to design a prediction strategy with small regret. Denote bys; € [0,1) the free space in the open (last)
Note that thempP setting of [4] would be a too pes- bin at time¢ > 1, that is, after having placed the items
simistic approach to our problem, as in our case there is az1, 72, ..., z; according to the sequendgof actions. This

strong connection between the rewards in different states,is thestateof the forecaster. More precisely, the state of the
thus the absolute adversarial reward function results in anforecaster is defined, recursively, as follows: As at therbeg
overestimated worst case. Also in the present case, statéing we have an empty bigg = 1. Fort = 1,2,...,n,
transitions are deterministically given by the outcomes th
previous state, and the action of the decision maker, while
in the setup of [4] transitions are stochastic and depeng onl
on the state and the decision of the algorithm, but not on the 1| sequential bin packing we assume that the cost of the items
reward (or on the underlying individual sequence genegatin coincides with their size. In this case the optimal solution of bin-
the reward). packing with rejection is to reject all items.

e 5, = 1 — x4, when the algorithm assigns the item to the
next empty bin (i.e./; = 1);



e 5, = 5,1, when the assigned item does not fit in the
open bin (i.e.l; = 0 ands;_1 < zy);

e S5 = 5;_1 — 14, when the assigned item fits in the open
bin (i.e.,lt =0 ands;_; > xt).

This may be written in a more compact form:

~

St

(1)

gt(Itywhgtfl)
L(1 =)+ (1= L)(Se—1 — Lz, 1 >0,3)

wherel;., denotes the indicator function of the event in brack-
ets, thatis, it equals 1 if the event is true @atherwise. The
loss suffered by the forecaster at rourid

E(Itth | gt—l)v

where the loss functiohis defined by

0, ifs>u;
H0.z]s)= { x, otherwise @
and
{Ll,x]s)=s. (3)

The goal of the forecaster is to minimize its cumulative loss
defined by

t
L, = LIt,t = ZK(IS7:I;S ‘ :9\871) .

s=1

In the off-line version of the problem, the entire sequence
x1,. .., T, IS given and the solution is the optimal sequence
I of actions

. _ .
I =arg min

Ly, n -
I,e{0,1}n

SEQUENTIAL ON-LINE BIN PACKING PROBLEM
WITH EXPERT ADVICE

Parameters: set & of experts, state spacg
[0,1), action spaced = {0,1}, nonnegative loss
function? : (A x (0,1]|S) — [0,1), numbern of

items.
Initialization: S, = 1andsgo = 1forall E € £.
Foreachround=1,....n,

(a) each expert forms its actigix ; € A;

(b) the forecaster observes the actions of the e
perts and forms its own decisidip € A;

(c) the nextitemx; € (0, 1] is revealed;

(d) the algorithm incurs los&(1;, z; | 5;—1) and
each expert incurs 0S4 fe ¢, z: | SEi—1)-
The states of the experts and the algorithm ar
updated.

[}

Figure 2: Sequential on-line bin packing problem with exper
advice.

is evaluated relative to this set of experts, and the goal is t
perform asymptotically as well as the best expert from the
reference class.

Formally, letfr , € {0, 1} be the decision of an expeft
at roundt, whereE' € £ and¢ is the set of the experts. This
set may be finite or infinite, we consider both cases below.
Similarly we denote the state of expéftwith s, after the
t-th item has been revealed. Then the loss of expest

In the on-line version of the problem the forecaster does not roundt is

know the size of the next items, and the sequence of items

can be completely arbitrary. We allow the forecaster to ran-
domize its decisions, that is, at each time instandeis al-
lowed to depend on a random variablewhereUy, ..., U,
are i.i.d. uniformly distributed random variables[in1].

Since we allow the forecaster to randomize, it is impor-

tant to clarify that the entire sequence of items are deter-

minedbeforethe forecaster starts making decisions, that is,
z1,...,2, € (0,1] are fixed and cannot depend on the ran-
domizing variables. (This is the so-calleblivious adver-

sarymodel known in the theory of sequential prediction, see,

e.g., [2].)

The performance of a sequential on-line algorithm is mea-

sured by its cumulative loss. It is natural to compare it & th
cumulative loss of the off-line solutiol;. However, it is

g(fE,ta Tt | SE,tfl)

and the cumulative loss of expédrttis

Len=>Y Ufp x| spi-1).
t=1

The goal of the algorithm is to perform almost as well as the
best expert from the reference clasldeally, the normal-
ized difference of the cumulative losses (the so-catbgde?)
should vanish as grows, that is, one wishes to achieve

1 ~
. 1 . <
lim sup n(Ln éléfg Lg,) <0

n—oo

easy to see that in general it is impossible to achieve an on-with probability one, regardless of the sequence of items.

line performance that is comparable to the optimal solution
(This is in contrast with the non-sequential counterpattef
bin packing problem in which there exist on-line algorithms
for which the number of used bins is within a constant factor
of that of the optimal solution.)

So in order to measure the performance of a sequen-

tial on-line algorithm in a meaningful way, we adopt an ap-
proach extensively used in on-line prediction (the soechll
“experts” framework). We define a set of reference forecast-
ers, the so-calledxperts The performance of the algorithm

This property is calledHannan consistengysee [5]. The
model of sequential on-line bin packing with expert advice
is given in Figure 2.

In Section 4 we design sequential on-line bin packing
algorithms for two cases. In the first (and simpler) case
we assume that the clagsof experts is finite. In the sec-
ond case we consider the (infinite) class of experts defined
by constant-threshold strategies. But before turning & th
on-line problem, we show how the off-line problem can be
solved by a simple quadratic-time algorithm.



3 Sequential off-line bin packing

As it is well known, most variants of the bin packing prob-
lem arenp-hard, including bin packing with rejection [6],
and maximum resource bin packing [1]. In this section we
show that the sequential bin packing problem is signifigantl
easier. Indeed, we offer an algorithm to find the optimal se-
quential strategy with time complexity(n?) wheren is the
number of the items.

The key property is that after theth item has been re-
ceived, the2! possible sequences of decisions cannot lead to
more thant different states.

Lemma 1 For any fixed sequence of items, xs,...,x,
and for everyl <t < n,

|St| S tv

where
Si={s:s=s1,4 1 €{0,1}}

and sy, ; is the state reached after the sequedigc®f deci-
sions.

Proof: The proof goes by induction. Note that sinGe= 0,
we always haves;, 1 = 1 — x1, and therefordS;| = 1.
Now assume thaS; ;| < t — 1. At time ¢, the state of
every sequence of decisions with = 0 belongs to the set
Si ={s":5 =5 —Is>,7,5 € S;—1} and the state of
those withl; = 1 becomed — z;. Therefore,

1S < S|+ 1< |Si1|+1 <t

as desired. n

To describe a computationally efficient algorithm to com-
puteI’, we set up a graph with the set of possible states as
a vertex set (there a@(n?) of them by Lemma 1) and we
show that the shortest path on this graph yields the optimal
solution of the sequential off-line bin packing problem.

To formalize the problem, consider a finite directed acy-
clic graph with a set of verticélg = {v1, ..., vy} and a set
of edgesE = {ey, ..., e }. Each vertexy, = v(sy, 1) of
the graph is defined by a time indéxand a state;, € S;,
and corresponds to statg reachable aftet;,, steps. To show
the latter dependence, we will writg € S;, . Two vertices
(vs,v;) are connected by an edge if and onlwjfe S;_;,

v; € S and statev; is reachable from state;. That is,
by choosing either actiofi or action1 in statev;, the new
state becomes; after itemx; has been placed. Each edge
has a label and a weight: the label corresponds to the actio
(zero or one) and the weight equals the loss, dependig o
the initial state, the action, and the size of item. Figure 3
shows the proposed graph. Moreover a sink verigx is
introduced that is connected with all verticesSp. These
edges have weight equal to the loss of the final states. Th

n

edges. More precisely, f¢p;, v/|) the loss isl — v;, where
v; € Sp.

Notice that there is a one to one coresspondence between

paths fromw; to vy and possible sequences of actions of
lengthn. Furthermore, the total weight of each path (calcu-
lated as the sum of the weights on the edges of the path) is

Mdecisions and letq, ...,

e
losses of these edges only depend on the initial state of the

0/€(0,z1 |s1) 0/€(0,z2|s2)

Figure 3: The graph corresponding to the off-line sequéntia
bin packing problem.

equal to the loss of the corresponding sequence of actions.
Thus, if we find a path with minimal total weight from

to v}y, we also find the optimal sequence of actions for the
off-line bin packing problem. It is well known that this can
be done inO(|V| + |E]) time. Now by Lemma 1]V| <
n(n+1)/2+ 1, where the additional vertex accounts for the
sink. Moreover itis easy to see th#&t| < n(n—1)+n = n?.
Hence the total time complexity of finding the off-line solu-
tion isO(n?).

4 Sequential on-line bin packing

In this section we study the sequential on-line bin packing
problem with expert advice, as described in Section 2. We
deal with two special cases. First we consider finite classes
of experts (i.e., reference algorithms) without any assump
tion on the form or structure of the experts. We construct a
randomized algorithm that, with large probability, acleiev

a cumulative loss not larger than that of the best expert plus
O(n?/31'/® N) whereN = |£| is the number of experts.
Then we consider the class of all constant-threshold expert
and show that a regret of the ord@tn2/3 In'/3 n) may be
achieved with high probability.

The following simple lemma is a key ingredient of the
results of this section. It shows that in sequential on-line
bin packing the cumulative loss is not sensitive to theahiti
states in the sense that the cumulative loss depends on the
initial state in a minor way.

Lemma?2 Letiy,...,i, € {0,1} be a fixed sequence of
zm € (0,1] be asequence of items.
Let sg,s; € [0,1) be two different initial states. Finally,
letso,...,smandsg,..., s, denote the sequences of states
generated by, .. ., Ty, Starting from initial

trem
yim andzy, ..
statess, and sy, respectively. Then

D iy [ s_y) = D> x| sio1)

m
t=1 t=

1
<sp+s0<2.

Proof: Let m’ denote the smallest index for whi¢h, = 1.



Note thats;_; = s;_, for all ¢ > m’. Therefore, we have

m
Zf(it,lﬂﬂsg 1 Z@zt,xt|st 1
t=1 t=1

TYL

é(thTt‘S; 1 Zézt,:rt\st 1

Il
M2

&~
Il

1

1

3

00,2 | 55_4) Z (0,24 | 84-1)

(]

~
Il

—~ =

H(1, s | S q) — E(l,zm/ | Smr—1) -
Now using the definition of the loss (see (2) and (3)), we
write

m m

Zg(it,l‘t | st 1) — Zg(it,l‘t | st-1)
t=1 t=1

= Z ]I{St <z} T H{St—1<rt})

+sm’—1 — Sm/—1
m/—1
Z xt(l - H{sf,_1<mt}) + s;n’—l —Sm/—1
t=1
m’—1

< Z 2e(1 =I5, <)) + 50

t=1

< S0+ s

where the next-to-last inequality holds becasse ;| < s

ands,,,—1 > 0, and the last inequality follows from the fact
that

IN

0 S Sm'—1 = Sm ]I{S ’

m/ —

o>x, s JEm/—1
= Sm H{s I_g>x oy m =2

{sm/_2>:v 3 Tm/—1

m/ —

m’'—1
= S0 — Z H{st 1>zt}xt
t=1
Similarly,
m m
Zg(itvl't|st 1 ZE Ztvl't‘st 1
t=1 t=1
< sy + so
and the statement follows. n

The following example shows that upper bound of the
lemma is tight.

Example 2 Letz; = so, s < so, andm’ = 2. Then

Y Mivsws | sj_1) = > iy | se-1)
t= t=1

= 40,21 | sp) +€(1, 22 | 57)
—(E(O,:Ul | s0) + (1, 24 | 51))
= £(0,s0 | sp) +£(1,z2 | sp)
—(£(0,50 | s0) +£(1,22 | 0))
= so+s5—(04+0).

4.1 Finite sets of experts

First we consider the on-line sequential bin packing pnwble
when the goal of the algorithm is to keep its cumulative loss
close to the best in a finite set of experts. In other words, we
assume that the class of experts is finite, |$ay= N, but we
do not assume any additional structure of the experts. The
ideas presented here will be used below when we consider
the infinite class of constant-threshold experts.

The proposed algorithm partitions the time perioe=
1,...,n into segments of lengtlh wherem < n is a posi-
tive integer whose value will be specified later. This way we
obtainn’ = |n/m| segments of lengtim, and, ifm does
not dividen, an extra segment of length less than At the
beginning of each segment, the algorithm selects an expert
randomly, according to an exponentially weighted average
distribution. During the entire segment, the algorithm fol
lows the advice of the selected expert. By changing actions
so rarely, the algorithm achieves a certain synchronimatio
with the chosen expert, since the effect of the difference in
the initial states is minor, according to Lemma 2. (A similar
idea was used in [7] in a different context.) The algorithm
is described in Figure 4. Recall that each expérte £
recommends an actiofy; ; € {0, 1} at every time instance
t =1,...,n. Since we haveéV experts, we may identify
with the set{1,..., N}. Thus, experts will be indexed by
the positive integers € {1,...,N}. At the beginning of
each segment, the algorithm chooses expemdomly, with
probabilityp; ;, where the distributiop, = (p1¢,...,pn.t)
is specified below. The random selection is made indepen-
dently for each segment.

The following theorem establishes a performance bound

of the algorithm. Recall thaLTn denotes the cumulative loss
of the algorithm whileL; ,, is that of expert.

Theorem 3 Letn, N > 1,7 > 0,1 < m < n,andé €
(0,1). For any sequences,...,z, € (0,1] of items, the
cumulative losd.,, of the randomized strategy defined above
satisfies, with probability at leagt— 4,

s " + 3 + 5 n6
In particular, choosingm = (16n/In(N/§))Y/3 andn =

v/8mIn N/n, one has

Ly,— min_ L;,
i=1,.

3, N oan \'?
< n?Bm'3 g ———— :
= wmr T T v

Proof: We introduce an auxiliary quantity, the so-calleg
pothetical lossdefined as the loss the algorithm would suffer

if it had been in the same state as the selected expert. This
hypothetical loss does not depend on previous decisions of
the algorithm. More precisely, the true loss of the alganith

at time instance is ¢(I;,z; | 5;) and its hypothetic loss is
£(Iy, z¢ | sy, +). Introducing the notation

Civ =Lfi, x| sin)



Now we may decompose the regret as follows:

SEQUENTIAL ON-LINE BIN PACKING ALGORITHM

Zn — min L;,
Parameters: Real number; > 0 andm € NT. i=L...,n
Initialization: w;o = 1 ands;g = 1 fori = R n
1,...,N,ands, = 1. = | Ln=) Ly
Foreachround =1,...,n, t=1
() If ((t —1) modm) = 0 then + <Z (j,— min Ln> .
— calculate the updated probability distribu- t=1 =hen
tion Wi t—1 The second term on the right-hand side is bounded using (4).
Pit = N To bound the first term, observe that by Lemma 2,
Zj:l Wj,t—1
fori=1,...,N; Ln_i:r{nnnLi,n

— randomly select an expert/; € n
{1,...,N} according to the proba- _ "I 5 S ur
bility distributionp; = (p1.4,...,DN.t); ; e, ze | 5e-1) Z (L e | 87,-1)

. t=1
otherwise, let/; = J;_;. ,

n'—1 m

n

(b) FOHOW the Chosen experf;f = ny,,t' S m + Z Z (E(Ism+t7 Tsm4t | 3\sm—&-t—l)
(c) The size of nextitem; € (0,1] is revealed. 5=0 t=1
(d) The algorithm incurs loss ~ULsmts Tomert | $Tppss smtt—1))

< m+2n

E(Ityxt | gtfl)

and each expettincurs l0s€( f; ;, 1 | si4_1). where in the second inequality we bounded the difference on

The states of the experts and the algorithm are the last segment separately. n
changed.
(e) Update the weights 4.2 Constant-threshold experts
Wi = w; e MUielsie1) Now we are prepared to address the sequential on-line bin
' ' packing problem when the goal is to perform almost as well
foralli e {1,...,N}. as the best in the class of all constant-threshold strategie

Recall that a constant-threshold strategy is parametkhbye
a numberp € (0,1] and it opens a new bin if and only if
Figure 4: Sequential on-line bin packing algorithm. the remaining empty space in the bin is less tparMore
precisely, if the state of the algorithm defined by experhwit
parametemp is s, ;—1, then at timet the expert’s advice is
Its, ., <py- To simplify notation, we will refer to each ex-
: ; o pert with its parameter, and, similarly to the previousisegt
the hypothetical loss of the algorithm is just fp.+ @ands,, ; will denote the decision of expegtat timet, and
its state after the decision, respectively.
_ _ The difficulty in this setup is that there are uncountabl
Wl | sg00) = W me | $0) = Lo - many constant—};hreshold exgerts. In this section we pmvi?j/
a solution to this problem by reducing it to the case of finite
Now it follows by a well-known result of randomized on-line  €XPert classes. The main observation that enables this+edu
prediction (see, e.g., [2, Corollary 4.2]) that the hyptita tion is that on any sequence ofitems, experts can exhibit
loss of the sequential on-line bin packing algorithm satigfi ~ Only  finite number of different behaviors. In a sense, the

with probability at least — 4, “effective” number of experts is not too large and this fact
may be exploited by the algorithm.
Fort = 1,...,n we call two expertg-indistinguishable
n n (with respect to the sequence of items ..., z;) if their
ZEJM — min ZEH (4) decision sequences are identical up to timeThis prop-
=1 =1 N erty defines a natural partitioning of the class of expetts in
mN  n'y 1 maximalt-indistinguishable sets, _vvhe_re any two experts that
< m|l—+—L4+4/=In= | +m, belong to the same set arendistinguishable, and experts
( n 8 2 5) from different sets are natindistinguishable. Obviously,

there are no more thatt maximalt-indistinguishable sets.

This bound, although finite, is still too large to be useful.
wheren’ = | I | and the lasin term comes from bounding  However, it turns out that the number of maxinahdistin-
the difference on the last, not necessarily complete segmen guishable sets only grows quadratically with



The first step in proving this fact is the next lemma that
shows that the maximatindistinguishable expert sets are
intervals.

Lemma4 Letl > p > r > 0 be such that expeyt and ex-
pertr aret-indistinguishable. Then for any> ¢ > r expert

q is t-indistinguishable from both experntsandr. Thus, the
maximalt-indistinguishable expert sets form subintervals of
(0,1].

Proof: By the assumption of the lemma the decision se-
guences of expertsandr coincide, that is,

fp,u = f'r,u Spu =

forall w = 1,2,...,t. Lettq,ts,... denote the time in-
stances when expept(or expertr) assigns the next item to
the next empty bin (i.e.fp. = 1foru = t,t5,...). If
expertqg also decideg at timet,, for somek, then it will de-
cideOfort =t + 1,...,tx+1 — 1 since so does expept
andp > ¢, and will decidel at timet;; asq > r. Thus the
decision sequence of expertoincides with that of expept
andr for time instances;, + 1, ..., 541 in this case. Since
all experts start with the empty bin at tinde the statement
of the lemma follows by induction. B

and

Sr,u

Based on the lemma we can identify thindistinguish-
able sets by their end points. L&; = {q14,...,qn,.t}
denote the set of the end points after receiviitgms, where
N; = | Q| is the number of maximatindistinguishable sets,
andgo: =0 < g1t < g2t < --- < gn,t = 1. Then the
t-indistinguishable sets afgy_1 ¢, qx,] for k = 1,..., N,.
The next result shows that the number of maxitaigdistin-
guishable sets cannot grow too fast.

Lemma5 The number of the maximalindistinguishable
sets is at most quadratic in the number of the itemislore
precisely,N; < 1+ (¢t — 1)t/2foranyl <t <n.

Proof: The proof is by induction. Firsty; = 1 (andQ; =
{1}) since the first decision of each expertisNow assume
thatNV;—1 <1+ (t—2)(t—1)/2forsomel <t <n-—1.
When the next itemx; arrives, an expent with states de-
cidesl in the next step if and only f < s — x; < p. There-
fore, as each expert belonging to the same indistinguishabl
set has the same state, thth maximal(¢—1)-indistinguish-
able interval with state is split into two subintervals if and
only if gr_1+-1 < s —x¢ < qr—1 (EXpPerts in this interval
with parameters larger than— z; will form one subset, and
the ones with parameter at most- x; will form the other
one). As the number of possible states at timd is at most
t — 1 by Lemma 1, it follows that at most— 1 intervals can
be split,and saV; < N;_; +t—1 < 1+ (¢t —1)t/2, where
the second inequality holds by the induction hypothesig.

This lemma makes it possible to apply our earlier algo-

rithm for the case of finite expert classes. However, note tha Figure 5: Sequential on-line bin packing algorithm with

SEQUENTIAL ON-LINE BIN PACKING ALGORITHM
WITH CONSTANT-THRESHOLD EXPERTS

Parameters:n > 0 andm € N*.

Initialization: wo; = 1, Ny = 1, Q1 = {1},
51,0 = 1 and§0 =1.
Foreachround=1,...,n,
(@) If ((t—1) modm) = 0then
— fori=1,..., N, compute the probabili-
ties
Wi, t—1
Dit =

Z;V:t1 Wy,t—1 ’
— randomly select an intervalJ; €
{1,..., N;} according to the probability
distributionp, = (p1.¢, ..., PN, );
— choose an expep; uniformly from the in-
terval (¢, —1.t, 4, 4]
otherwise, lep; = p;_1.
(b) Follow the decision of expegt: I; = f, +.
(c) z: € (0, 1], the size of the next item is revealed.
(d) The algorithm incurs loss
(I, 2t | Sp—1)
and each experp € (0,1] incurs loss
U fpt, 2t | Spe—1), wherep € [0,1).

(e) Compute the state, of the algorithm by (2),
and calculate the auxiliary weights and state
of the expert sets forall=1,..., N, by

Wi 4 wiAtile_"e(fi,t/J:tlsi,t—l)
Siv = fia(1—my)
+(1 - fi,t)(si,t - H{9712T1})
(f) Update the end points of the intervals:
Ny
Qiy1 = U U{§zf SQim1t < Sip < qipt
1=1
andN;1 = [Qy41].
(9) Assignthe new states and weights to(thel)-
indistinguishable sets

Sit+1 = Sjt and Wi t41 = Wyt

foralli=1,..., Ny andj =1,..., N, such
thatg; 1+ < git+1 < gjt-

1*2

the number of “distinguishable” experts, that is, the numbe constant-threshold experts.

of the maximal indistinguishable sets, constantly growth wi
time, and each indistinguishable set contains a continuum
number of experts. Therefore we need to redefine the algo-
rithm carefully. This may be done by a two-level random



choice of the experts: first we choose an indistinguishable
expert set, then we pick one expert from this set randomly.
The resulting algorithm is given in Figure 5.

Up to step (e) the algorithm is essentially the same as
in the case of finitely many experts. The two-level random
choice of the expert is performed in step (a). In step (f)
we update the-indistinguishable sets, and usually introduce
new indistinguishable expert sets. Because of these new ex
pert sets, the update of the weights; and the states; , are

performed in two steps, (e) and (g), where the actual update

is made in step (e), and reordering of these quantities decor
ing to the new indistinguishable sets is performed in stép (g
together with the introduction of the weights and states for
the newly formed expert sets.

The performance and complexity of the algorithm is given
in the next theorem.

Theorem 6 LetN = 1+n(n—1)/2,m = (16n/In(n?/5))*/3
andn = 44y/mlnn/n andé € (0,1). Then the regret of the
algorithm defined above is bounded, with probability at teas
1-19, by

Ln— inf Ly,
p€(0,1]
3 9 n? 2n 1/3
< Lp2pslo g )
= wmTM S T )

Moreover, the algorithm can be implemented with time com-
plexity O(n?) and space complexity(n?).

Proof: Itis easy to see that the two-level choice of the expert
p; ensures that the algorithm is the same as for the finite ex-
pert class with the experts defined @y,. Thus, Theorem 3

can be used to bound the regret, where the number of experts

is V;. By Lemma 5, the latter is bounded by < n2, which
finishes the proof of the first statement.

For the second part note that the algorithm has to store
the states, the intervals, the weights and the probakilitie
each on the order af(n?) based on Lemma 5. Concern-
ing time complexity, the algorithm has to update the weights
and states in each round (requiriGgn?) computations per
round), and has to compute the probabilities in everstep,
which requiresO(n? /m) computations. Thus the time com-
plexity of the algorithm igD(n?). B

The next example reveals that the loss of the best expert

can be arbitrarily far from that of the optimal sequentid# of
line packing.
Example 3 Let the sequence of items be

(g,1—,e,1—¢, ...

e, 1,6, 1,1, ..., 1),

2k k

where the number of itemsis= 3k + 1 and0 < ¢ < 1.
An optimal sequential off-line packing is achieved if wepdro
anyone of the terms; then the total loss is In contrast to
this, the loss of the constant-threshold experts ise + &
independently of the choice of the parameterNamely, if
p < 1—ethentheloss if for the first2k items, but after the
algorithm is stuck and suffels+ 1 — ¢ loss. Ifp > 1 — ¢,
then the loss i for the first2k items and after that — ¢ for
the rest of the sequence.

5 Conclusions

In this paper we provide an extension of the classical bin
packing problems to an on-line sequential scenario. In this
setting items are received one by one, and before the size of
the next item is revealed, the decision maker needs to decide
whether the next item is packed in the currently open bin or
the bin is closed and a new bin is opened. If the new item

doesn't fit, it is lost. If a bin is closed, the remaining free
space in the bin accounts for a loss. The goal of the decision
maker is to minimize the loss accumulated orgreriods.

As the main result of the paper, we give an algorithm
that has a cumulative loss not much larger than any finite
set of reference algorithms, and, more importantly, arothe
algorithm that has a cumulative loss not much larger than
any strategy that uses a fixed threshold at each step to decide
whether a new bin is opened. An interesting aspect of the
problem is that the loss function has an (unbounded) mem-
ory. The presented solutions rely on the fact that one can
“synchronize” the loss function in the sense that no matter i
what state an algorithm is started, its loss may change only
by a small additive constant. The second result is obtained
by a covering of the uncountable set of constant-threshold
experts such that the cardinality of the chosen finite set-of e
perts grows only quadratically with the sequence lengtlke Th
approach in the paper can easily be extended to any control
problem where the loss function has such a synchronizable

property.
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