
On-line sequential bin packing

Andr ás Gÿorgy1 and Gábor Lugosi2 and György Ottucsák3

1Machine Learning Research Group, Computer and Automation Research Institute, Budapest, Hungary∗

gya@szit.bme.hu
2 ICREA and Department of Economics, Universitat Pompeu Fabra, Barcelona, Spain†

gabor.lugosi@gmail.com
3 GusGus AB, Budapest, Hungary

ottucsak@gmail.com

Abstract

We consider a sequential version of the classical
bin packing problem in which items are received
one by one. Before the size of the next item is re-
vealed, the decision maker needs to decide whether
the next item is packed in the currently open bin or
the bin is closed and a new bin is opened. If the
new item doesn’t fit, it is lost. If a bin is closed,
the remaining free space in the bin accounts for a
loss. The goal of the decision maker is to min-
imize the loss accumulated overn periods. The
main result of the paper is an algorithm that has a
cumulative loss not much larger than any strategy
that uses a fixed threshold at each step to decide
whether a new bin is opened.

1 Introduction

In the classicaloff-line bin packing problem, an algorithm
receivesitems(also calledpieces) x1, x2, . . . , xn ∈ (0, 1].
We have an infinite number of bins, each with capacity1,
and every item is to be assigned to a bin. Further, the sum
of the sizes of the items assigned to any bin cannot exceed
its capacity. A bin is empty if no item is assigned to it, oth-
erwise, it is used. The goal of the algorithm is to minimize
the number of used bins. This is one of the classicalNP-hard
problems and heuristic and approximation algorithms have
been investigated thoroughly, see, e.g., Coffman, Garey, and
Johnson [3].

Another well-studied version of the problem is the so-
calledon-line bin packing problem. Here items arrive one
by one and each itemxt must be assigned to a bin (with
free space at leastxt) immediately, without any knowledge
of the next pieces. In this setting the goal is the same as in
the off-line problem, that is, the number of used bins is to be
minimized, see, e.g., Seiden [8], He and Dósa [6].

In both the off-line and on-line problems the algorithm
has access to the bins in arbitrary order. In this paper we

∗The first author acknowledges support by the Hungarian Sci-
entific Research Fund (OTKA F60787) and the Mobile Innovation
Center of Hungary.

†The second author acknowledges support by the Spanish Min-
istry of Science and Technology grant MTM2006-05650 and by the
PASCAL Network of Excellence under EC grant no. 506778.

abandon this assumption and introduce a more restricted ver-
sion that we callsequential bin packing. In this setting items
arrive one by one (just like in the on-line problem) but in each
round the algorithm has only two possible choices: assign
the given item to the (only) open bin or to the “next” empty
bin (in this case this will be the new open bin), and items can-
not be assigned anymore to closed bins. An algorithm thus
determines a sequence of binary decisionsi1, . . . , in where
it = 0 means that the next item is assigned to the open bin
andit = 1 means that a new bin is opened and the next item
is assigned to that bin. Of course, ifit = 0, then it may hap-
pen that the itemxt doesn’t fit in the open bin. In that case
the item is “lost.” If the decision isit = 1 then the remaining
empty space in the last closed bin is counted as a loss. The
measure of performance we use is the total sum of all lost
items and wasted empty space.

Just as in the original bin packing problem, we may dis-
tinguish off-line and on-line versions of the sequential bin
packing problem. In theoff-line sequentialbin packing prob-
lem the entire sequencex1, . . . , xn is known to the algorithm
at the outset. Note that unlike in the classical bin packing
problem, the order of the items is relevant. This problem
turns out to be computationally significantly easier than its
non-sequential counterpart. In Section 3 we present a sim-
ple algorithm with running time ofO(n2) that minimizes the
total loss in the off-line sequential bin packing problem.

Much more interesting is the on-line variant of the se-
quential bin packing problem. Here the itemsxt are re-
vealed one by one,after the corresponding decisionit has
been made. In other words, each decision has to be made
without any knowledge on the size of the item. Formulated
this way, the problem is reminiscent to an on-lineprediction
problem, see [2]. However, unlike in standard formulations
of on-line prediction, here the loss the predictor suffers de-
pends not only on the outcomext and decisionit but also on
the “state” defined by the fullness of the open bin.

Our goal is to extend the usual bin packing problems to
situations in which one can handle only one bin at a time, and
items must be processed immediately so they cannot wait
for bin changes. To motivate the on-line sequential model,
one may imagine a simple revenue management problem in
which a decision maker has a unit storage capacity at his
disposal. A certain product arrives in packages of different
size and after each arrival, it has to be decided whether the
stored packages are shipped or not. (Storing of the product
is costly.) If the stored goods are shipped, the entire storage

capacity becomes available again. If they are not shipped
one waits for the arrival of the next package. However, if the
next package is too large to fit in the remaining open space,
it is lost.

In another example of application, a sensor collects mea-
surements that can be compressed to variable size (these are
the items). The sensor communicates its measurements by
sending frames of some fixed size (bins). Since it has lim-
ited memory, it cannot store more data than one frame. To
save energy, the sensor must maximize its throughput (the
proportion of useful data in each frame) and at the same time
minimize data loss (this trade-off is reflected in the definition
of the loss function).

Just like in on-line prediction, we compare the perfor-
mance of an algorithm with the best in a pool of reference
algorithms (experts). Arguably the most natural comparison
class contains all algorithms that use a fixed threshold to de-
cide whether a new bin is opened. In other words, reference
predictors are parameterized by a real numberp ∈ (0, 1]. An
expert with parameterp simply decides to open a new bin
whenever the remaining free space in the open bin is less than
p. We call such an expert aconstant-thresholdstrategy. The
main result of this paper is the construction of a randomized
algorithm for the sequential on-line bin packing problem that
achieves a cumulative loss (measured as the sum of the total
wasted capacity and lost items) that is less than the total loss
of the best constant-threshold strategy (determined in hind-
sight) plus a quantity of the order ofn2/3 log1/3 n.

The principal difficulty of the problem lies in the fact
that each action of the decision maker takes the problem in
a new “state” (determined by the remaining empty space in
the open bin) which has an effect on future losses. More-
over, the state of the algorithm is typically different fromthe
state of the experts which makes comparison difficult. In re-
lated work, Merhav, Ordentlich, Seroussi, and Weinberger
[7] considered a similar setup in which the loss function has
a “memory,” that is, the loss of a predictor depends on the
loss of past actions. Furthermore, Even-Dar, Kakade and
Mansour [4] considered theMDP case where the adversarial
reward function changes according to some fixed stochastic
dynamics. However, there are several main additional diffi-
culties in the present case. First, unlike in [7], but similarly
to [4], the loss function has an unbounded memory as the
state may depend on an arbitrarily long sequence of past pre-
dictions. Second, the state space is infinite (the[0, 1) inter-
val) and the class of experts we compare to is also infinite,
in contrast to both of the above papers. However, the spe-
cial properties of the bin packing problem make it possible
to design a prediction strategy with small regret.

Note that theMDP setting of [4] would be a too pes-
simistic approach to our problem, as in our case there is a
strong connection between the rewards in different states,
thus the absolute adversarial reward function results in an
overestimated worst case. Also in the present case, state
transitions are deterministically given by the outcome, the
previous state, and the action of the decision maker, while
in the setup of [4] transitions are stochastic and depend only
on the state and the decision of the algorithm, but not on the
reward (or on the underlying individual sequence generating
the reward).

We also mention here the similaron-line bin packing
with rejectionproblem where the algorithm has an oppor-
tunity to reject some items and the loss function is the sum
of the number of the used bins and the “costs” of the rejected
items1 (see He and D́osa [6]). However, instead of the num-
ber of used bins, we use the sum of idle capacities (missed
or free spaces) in the used bins to measure the loss.

The following example may help explain the difference
between various versions of the problem.

Example 1 Let the sequence of the items be〈0.4, 0.5, 0.2,
0.5, 0.5, 0.3, 0.5, 0.1〉. Then the cumulative loss of the opti-
mal off-line bin packing is0 and it is0.4 in the case of se-
quential off-line bin packing (see Figure 1). In the sequential
case the third item (0.2) has been rejected.

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.4 0.4

0.3

0.3
0.2

0.1
0.1

a) off-line b) sequential off-line

Figure 1: The difference between the optimal solutions for
the off-line and sequential off-line problems.

The rest of the paper is organized as follows. In Section 2
the problem is defined formally. In Section 3 the complexity
of the off-line sequential bin packing problem is analyzed.
The main results of the paper are presented in Section 4.

2 Setup

We use a terminology borrowed from the theory of on-line
prediction with expert advice. Thus, we call the sequential
decisions of the on-line algorithmpredictionsand we use
forecasteras a synonym for algorithm.

We denote byIt ∈ {0, 1} the action of the forecaster at
time t (that is, whent− 1 items have been received). Action
0 means that the next item will be assigned to the open bin
and action1 represents the fact that a new bin is opened and
the next item is assigned to the next empty bin. Note that
we assume that we start with an open empty bin, thus for
any reasonable algorithm,I1 = 0, and we will restrict our
attention to such algorithms. The sequence of decisions up
to timet is denoted byIt ∈ {0, 1}t.

Denote byŝt ∈ [0, 1) the free space in the open (last)
bin at time t ≥ 1, that is, after having placed the items
x1, x2, . . . , xt according to the sequenceIt of actions. This
is thestateof the forecaster. More precisely, the state of the
forecaster is defined, recursively, as follows: As at the begin-
ning we have an empty bin,̂s0 = 1. For t = 1, 2, . . . , n,

• ŝt = 1− xt, when the algorithm assigns the item to the
next empty bin (i.e.,It = 1);

1In sequential bin packing we assume that the cost of the items
coincides with their size. In this case the optimal solution of bin-
packing with rejection is to reject all items.

• ŝt = ŝt−1, when the assigned item does not fit in the
open bin (i.e.,It = 0 andŝt−1 < xt);

• ŝt = ŝt−1 − xt, when the assigned item fits in the open
bin (i.e.,It = 0 andŝt−1 ≥ xt).

This may be written in a more compact form:

ŝt = ŝt(It, xt, ŝt−1) (1)

= It(1 − xt) + (1 − It)(ŝt−1 − I{bst−1≥xt})

whereI{·} denotes the indicator function of the event in brack-
ets, that is, it equals 1 if the event is true and0 otherwise. The
loss suffered by the forecaster at roundt is

ℓ(It, xt | ŝt−1),

where the loss functionℓ is defined by

ℓ(0, x | s) =

{
0, if s ≥ x;

x, otherwise
(2)

and
ℓ(1, x | s) = s . (3)

The goal of the forecaster is to minimize its cumulative loss
defined by

L̂t = LIt,t =

t∑

s=1

ℓ(Is, xs | ŝs−1) .

In the off-line version of the problem, the entire sequence
x1, . . . , xn is given and the solution is the optimal sequence
I∗n of actions

I∗n = arg min
In∈{0,1}n

LIn,n .

In the on-line version of the problem the forecaster does not
know the size of the next items, and the sequence of items
can be completely arbitrary. We allow the forecaster to ran-
domize its decisions, that is, at each time instancet, It is al-
lowed to depend on a random variableUt whereU1, . . . , Un

are i.i.d. uniformly distributed random variables in[0, 1].
Since we allow the forecaster to randomize, it is impor-

tant to clarify that the entire sequence of items are deter-
minedbeforethe forecaster starts making decisions, that is,
x1, . . . , xn ∈ (0, 1] are fixed and cannot depend on the ran-
domizing variables. (This is the so-calledoblivious adver-
sarymodel known in the theory of sequential prediction, see,
e.g., [2].)

The performance of a sequential on-line algorithm is mea-
sured by its cumulative loss. It is natural to compare it to the
cumulative loss of the off-line solutionI∗n. However, it is
easy to see that in general it is impossible to achieve an on-
line performance that is comparable to the optimal solution.
(This is in contrast with the non-sequential counterpart ofthe
bin packing problem in which there exist on-line algorithms
for which the number of used bins is within a constant factor
of that of the optimal solution.)

So in order to measure the performance of a sequen-
tial on-line algorithm in a meaningful way, we adopt an ap-
proach extensively used in on-line prediction (the so-called
“experts” framework). We define a set of reference forecast-
ers, the so-calledexperts. The performance of the algorithm

SEQUENTIAL ON-LINE BIN PACKING PROBLEM
WITH EXPERT ADVICE

Parameters: set E of experts, state spaceS =
[0, 1), action spaceA = {0, 1}, nonnegative loss
function ℓ : (A × (0, 1]|S) → [0, 1), numbern of
items.
Initialization: ŝ0 = 1 andsE,0 = 1 for all E ∈ E .

For each roundt = 1, . . . , n,

(a) each expert forms its actionfE,t ∈ A;

(b) the forecaster observes the actions of the ex-
perts and forms its own decisionIt ∈ A;

(c) the next itemxt ∈ (0, 1] is revealed;

(d) the algorithm incurs lossℓ(It, xt | ŝt−1) and
each expert incurs lossℓ(fE,t, xt | sE,t−1).
The states of the experts and the algorithm are
updated.

Figure 2: Sequential on-line bin packing problem with expert
advice.

is evaluated relative to this set of experts, and the goal is to
perform asymptotically as well as the best expert from the
reference class.

Formally, letfE,t ∈ {0, 1} be the decision of an expertE
at roundt, whereE ∈ E andE is the set of the experts. This
set may be finite or infinite, we consider both cases below.
Similarly we denote the state of expertE with sE,t after the
t-th item has been revealed. Then the loss of expertE at
roundt is

ℓ(fE,t, xt | sE,t−1)

and the cumulative loss of expertE is

LE,n =
n∑

t=1

ℓ(fE,t, xt | sE,t−1).

The goal of the algorithm is to perform almost as well as the
best expert from the reference classE . Ideally, the normal-
ized difference of the cumulative losses (the so-calledregret)
should vanish asn grows, that is, one wishes to achieve

lim sup
n→∞

1

n
(L̂n − inf

E∈E
LE,n) ≤ 0

with probability one, regardless of the sequence of items.
This property is calledHannan consistency, see [5]. The
model of sequential on-line bin packing with expert advice
is given in Figure 2.

In Section 4 we design sequential on-line bin packing
algorithms for two cases. In the first (and simpler) case
we assume that the classE of experts is finite. In the sec-
ond case we consider the (infinite) class of experts defined
by constant-threshold strategies. But before turning to the
on-line problem, we show how the off-line problem can be
solved by a simple quadratic-time algorithm.

3 Sequential off-line bin packing

As it is well known, most variants of the bin packing prob-
lem areNP-hard, including bin packing with rejection [6],
and maximum resource bin packing [1]. In this section we
show that the sequential bin packing problem is significantly
easier. Indeed, we offer an algorithm to find the optimal se-
quential strategy with time complexityO(n2) wheren is the
number of the items.

The key property is that after thet-th item has been re-
ceived, the2t possible sequences of decisions cannot lead to
more thant different states.

Lemma 1 For any fixed sequence of itemsx1, x2, . . . , xn

and for every1 ≤ t ≤ n,

|St| ≤ t,

where
St = {s : s = sIt,t, It ∈ {0, 1}t}

and sIt,t is the state reached after the sequenceIt of deci-
sions.

Proof: The proof goes by induction. Note that sinceI1 = 0,
we always havesI1,1 = 1 − x1, and therefore|S1| = 1.
Now assume that|St−1| ≤ t − 1. At time t, the state of
every sequence of decisions withIt = 0 belongs to the set
S ′

t = {s′ : s′ = s − I{s≥xt}xt, s ∈ St−1} and the state of
those withIt = 1 becomes1 − xt. Therefore,

|St| ≤ |S ′
t| + 1 ≤ |St−1| + 1 ≤ t

as desired.

To describe a computationally efficient algorithm to com-
puteI∗n, we set up a graph with the set of possible states as
a vertex set (there areO(n2) of them by Lemma 1) and we
show that the shortest path on this graph yields the optimal
solution of the sequential off-line bin packing problem.

To formalize the problem, consider a finite directed acy-
clic graph with a set of verticesV = {v1, . . . , v|V |} and a set
of edgesE = {e1, . . . , e|E|}. Each vertexvk = v(sk, tk) of
the graph is defined by a time indextk and a statesk ∈ Stk

and corresponds to statesk reachable aftertk steps. To show
the latter dependence, we will writevk ∈ Stk

. Two vertices
(vi, vj) are connected by an edge if and only ifvi ∈ St−1,
vj ∈ St and statevj is reachable from statevi. That is,
by choosing either action0 or action1 in statevi, the new
state becomesvj after itemxt has been placed. Each edge
has a label and a weight: the label corresponds to the action
(zero or one) and the weight equals the loss, dependig on
the initial state, the action, and the size of item. Figure 3
shows the proposed graph. Moreover a sink vertexv|V | is
introduced that is connected with all vertices inSn. These
edges have weight equal to the loss of the final states. The
losses of these edges only depend on the initial state of the
edges. More precisely, for(vi, v|V |) the loss is1− vi, where
vi ∈ Sn.

Notice that there is a one to one coresspondence between
paths fromv1 to v|V | and possible sequences of actions of
lengthn. Furthermore, the total weight of each path (calcu-
lated as the sum of the weights on the edges of the path) is

v1 v2

v3

v4

v5

v6 . . .

. . .

. . .
0/ℓ(0, x1 |s1)

1/ℓ(1, x
1 |s

1)

0/ℓ(0, x2 |s2)

1/ℓ(1, x2 |s3)

0/ℓ(0, x
2 |s

3)

1/ℓ(1, x
2 |s

2)

Figure 3: The graph corresponding to the off-line sequential
bin packing problem.

equal to the loss of the corresponding sequence of actions.
Thus, if we find a path with minimal total weight fromv1

to v|V |, we also find the optimal sequence of actions for the
off-line bin packing problem. It is well known that this can
be done inO(|V | + |E|) time. Now by Lemma 1,|V | ≤
n(n+1)/2+1, where the additional vertex accounts for the
sink. Moreover it is easy to see that|E| ≤ n(n−1)+n = n2.
Hence the total time complexity of finding the off-line solu-
tion isO(n2).

4 Sequential on-line bin packing

In this section we study the sequential on-line bin packing
problem with expert advice, as described in Section 2. We
deal with two special cases. First we consider finite classes
of experts (i.e., reference algorithms) without any assump-
tion on the form or structure of the experts. We construct a
randomized algorithm that, with large probability, achieves
a cumulative loss not larger than that of the best expert plus
O(n2/3 ln1/3 N) whereN = |E| is the number of experts.
Then we consider the class of all constant-threshold experts
and show that a regret of the orderO(n2/3 ln1/3 n) may be
achieved with high probability.

The following simple lemma is a key ingredient of the
results of this section. It shows that in sequential on-line
bin packing the cumulative loss is not sensitive to the initial
states in the sense that the cumulative loss depends on the
initial state in a minor way.

Lemma 2 Let i1, . . . , im ∈ {0, 1} be a fixed sequence of
decisions and letx1, . . . , xm ∈ (0, 1] be a sequence of items.
Let s0, s

′
0 ∈ [0, 1) be two different initial states. Finally,

let s0, . . . , sm ands′0, . . . , s
′
m denote the sequences of states

generated byi1, . . . , im andx1, . . . , xm starting from initial
statess0 ands′0, respectively. Then

∣∣∣∣∣

m∑

t=1

ℓ(it, xt | s′t−1) −
m∑

t=1

ℓ(it, xt | st−1)

∣∣∣∣∣

≤ s′0 + s0 ≤ 2 .

Proof: Let m′ denote the smallest index for whichim′ = 1.

Note thatst−1 = s′t−1 for all t > m′. Therefore, we have
m∑

t=1

ℓ(it, xt | s′t−1) −
m∑

t=1

ℓ(it, xt | st−1)

=

m′∑

t=1

ℓ(it, xt | s′t−1) −
m′∑

t=1

ℓ(it, xt | st−1)

=
m′−1∑

t=1

ℓ(0, xt | s′t−1) −
m′−1∑

t=1

ℓ(0, xt | st−1)

+ℓ(1, xm′ | s′m′−1) − ℓ(1, xm′ | sm′−1) .

Now using the definition of the loss (see (2) and (3)), we
write

m∑

t=1

ℓ(it, xt | s′t−1) −
m∑

t=1

ℓ(it, xt | st−1)

=
m′−1∑

t=1

xt(I{s′

t−1
<xt} − I{st−1<xt})

+s′m′−1 − sm′−1

≤
m′−1∑

t=1

xt(1 − I{st−1<xt}) + s′m′−1 − sm′−1

≤
m′−1∑

t=1

xt(1 − I{st−1<xt}) + s′0

≤ s0 + s′0
where the next-to-last inequality holds becauses′m′−1 ≤ s′0
andsm′−1 ≥ 0, and the last inequality follows from the fact
that

0 ≤ sm′−1 = sm′−2 − I{sm′
−2≥xm′

−1}
xm′−1

= sm′−3 − I{sm′
−3≥xm′

−2}
xm′−2

−I{sm′
−2≥xm′

−1}
xm′−1

= s0 −
m′−1∑

t=1

I{st−1≥xt}xt .

Similarly,
m∑

t=1

ℓ(it, xt | st−1) −
m∑

t=1

ℓ(it, xt | s′t−1)

≤ s′0 + s0

and the statement follows.

The following example shows that upper bound of the
lemma is tight.

Example 2 Letx1 = s0, s′0 < s0, andm′ = 2. Then
m∑

t=1

ℓ(it, xt | s′t−1) −
m∑

t=1

ℓ(it, xt | st−1)

= ℓ(0, x1 | s′0) + ℓ(1, x2 | s′1)

−
(
ℓ(0, x1 | s0) + ℓ(1, x2 | s1)

)

= ℓ(0, s0 | s′0) + ℓ(1, x2 | s′0)

−
(
ℓ(0, s0 | s0) + ℓ(1, x2 | 0)

)

= s0 + s′0 − (0 + 0) .

4.1 Finite sets of experts

First we consider the on-line sequential bin packing problem
when the goal of the algorithm is to keep its cumulative loss
close to the best in a finite set of experts. In other words, we
assume that the class of experts is finite, say|E| = N , but we
do not assume any additional structure of the experts. The
ideas presented here will be used below when we consider
the infinite class of constant-threshold experts.

The proposed algorithm partitions the time periodt =
1, . . . , n into segments of lengthm wherem < n is a posi-
tive integer whose value will be specified later. This way we
obtainn′ = ⌊n/m⌋ segments of lengthm, and, if m does
not dividen, an extra segment of length less thanm. At the
beginning of each segment, the algorithm selects an expert
randomly, according to an exponentially weighted average
distribution. During the entire segment, the algorithm fol-
lows the advice of the selected expert. By changing actions
so rarely, the algorithm achieves a certain synchronization
with the chosen expert, since the effect of the difference in
the initial states is minor, according to Lemma 2. (A similar
idea was used in [7] in a different context.) The algorithm
is described in Figure 4. Recall that each expertE ∈ E
recommends an actionfE,t ∈ {0, 1} at every time instance
t = 1, . . . , n. Since we haveN experts, we may identifyE
with the set{1, . . . , N}. Thus, experts will be indexed by
the positive integersi ∈ {1, . . . , N}. At the beginning of
each segment, the algorithm chooses experti randomly, with
probabilitypi,t, where the distributionpt = (p1,t, . . . , pN,t)
is specified below. The random selection is made indepen-
dently for each segment.

The following theorem establishes a performance bound
of the algorithm. Recall that̂Ln denotes the cumulative loss
of the algorithm whileLi,n is that of experti.

Theorem 3 Let n, N ≥ 1, η > 0, 1 ≤ m ≤ n, and δ ∈
(0, 1). For any sequencex1, . . . , xn ∈ (0, 1] of items, the
cumulative losŝLn of the randomized strategy defined above
satisfies, with probability at least1 − δ,

L̂n − min
i=1,...,N

Li,n

≤ m lnN

η
+

nη

8
+

√
nm

2
ln

1

δ
+

2n

m
+ 2m

In particular, choosingm = (16n/ ln(N/δ))1/3 and η =√
8m ln N/n, one has

L̂n − min
i=1,...,N

Li,n

≤ 3
3
√

2
n2/3 ln1/3 N

δ
+ 4

(
2n

ln(N/δ)

)1/3

.

Proof: We introduce an auxiliary quantity, the so-calledhy-
pothetical loss, defined as the loss the algorithm would suffer
if it had been in the same state as the selected expert. This
hypothetical loss does not depend on previous decisions of
the algorithm. More precisely, the true loss of the algorithm
at time instancet is ℓ(It, xt | ŝt) and its hypothetic loss is
ℓ(It, xt | sJt,t). Introducing the notation

ℓi,t = ℓ(fi,t, xt | si,t) ,

SEQUENTIAL ON-LINE BIN PACKING ALGORITHM

Parameters: Real numberη > 0 andm ∈ N
+.

Initialization: wi,0 = 1 and si,0 = 1 for i =
1, . . . , N , andŝ0 = 1.

For each roundt = 1, . . . , n,

(a) If ((t − 1) modm) = 0 then
– calculate the updated probability distribu-

tion
pi,t =

wi,t−1∑N
j=1 wj,t−1

for i = 1, . . . , N ;
– randomly select an expertJt ∈
{1, . . . , N} according to the proba-
bility distributionpt = (p1,t, . . . , pN,t);

otherwise, letJt = Jt−1.

(b) Follow the chosen expert:It = fJt,t.

(c) The size of next itemxt ∈ (0, 1] is revealed.

(d) The algorithm incurs loss

ℓ(It, xt | ŝt−1)

and each experti incurs lossℓ(fi,t, xt | si,t−1).
The states of the experts and the algorithm are
changed.

(e) Update the weights

wi,t = wi,t−1e
−ηℓ(fi,t,xt|si,t−1)

for all i ∈ {1, . . . , N}.

Figure 4: Sequential on-line bin packing algorithm.

the hypothetical loss of the algorithm is just

ℓ(It, xt | sJt,t) = ℓ(fJt,t, xt | sJt,t) = ℓJt,t .

Now it follows by a well-known result of randomized on-line
prediction (see, e.g., [2, Corollary 4.2]) that the hypothetical
loss of the sequential on-line bin packing algorithm satisfies,
with probability at least1 − δ,

n∑

t=1

ℓJt,t − min
i=1,...,N

n∑

t=1

ℓi,t (4)

≤ m

(
lnN

η
+

n′η

8
+

√
n′

2
ln

1

δ

)
+ m ,

wheren′ = ⌊ n
m⌋ and the lastm term comes from bounding

the difference on the last, not necessarily complete segment.

Now we may decompose the regret as follows:

L̂n − min
i=1,...,n

Li,n

=

(
L̂n −

n∑

t=1

ℓJt,t

)

+

(
n∑

t=1

ℓJt,t − min
i=1,...,n

Li,n

)
.

The second term on the right-hand side is bounded using (4).
To bound the first term, observe that by Lemma 2,

L̂n − min
i=1,...,n

Li,n

=
n∑

t=1

ℓ(It, xt | ŝt−1) −
n∑

t=1

ℓ(It, xt | sJt−1)

≤ m +
n′−1∑

s=0

m∑

t=1

(
ℓ(Ism+t, xsm+t | ŝsm+t−1)

−ℓ(Ism+t, xsm+t | sJsm+t−1,sm+t−1)
)

≤ m + 2n′

where in the second inequality we bounded the difference on
the last segment separately.

4.2 Constant-threshold experts

Now we are prepared to address the sequential on-line bin
packing problem when the goal is to perform almost as well
as the best in the class of all constant-threshold strategies.
Recall that a constant-threshold strategy is parameterized by
a numberp ∈ (0, 1] and it opens a new bin if and only if
the remaining empty space in the bin is less thanp. More
precisely, if the state of the algorithm defined by expert with
parameterp is sp,t−1, then at timet the expert’s advice is
I{sp,t−1<p}. To simplify notation, we will refer to each ex-
pert with its parameter, and, similarly to the previous section,
fp,t andsp,t will denote the decision of expertp at timet, and
its state after the decision, respectively.

The difficulty in this setup is that there are uncountably
many constant-threshold experts. In this section we provide
a solution to this problem by reducing it to the case of finite
expert classes. The main observation that enables this reduc-
tion is that on any sequence ofn items, experts can exhibit
only a finite number of different behaviors. In a sense, the
“effective” number of experts is not too large and this fact
may be exploited by the algorithm.

For t = 1, . . . , n we call two expertst-indistinguishable
(with respect to the sequence of itemsx1, . . . , xt) if their
decision sequences are identical up to timet. This prop-
erty defines a natural partitioning of the class of experts into
maximalt-indistinguishable sets, where any two experts that
belong to the same set aret-indistinguishable, and experts
from different sets are nott-indistinguishable. Obviously,
there are no more than2t maximalt-indistinguishable sets.
This bound, although finite, is still too large to be useful.
However, it turns out that the number of maximalt-indistin-
guishable sets only grows quadratically witht.

The first step in proving this fact is the next lemma that
shows that the maximalt-indistinguishable expert sets are
intervals.

Lemma 4 Let 1 ≥ p > r > 0 be such that expertp and ex-
pertr aret-indistinguishable. Then for anyp > q > r expert
q is t-indistinguishable from both expertsp andr. Thus, the
maximalt-indistinguishable expert sets form subintervals of
(0, 1].

Proof: By the assumption of the lemma the decision se-
quences of expertsp andr coincide, that is,

fp,u = fr,u and sp,u = sr,u

for all u = 1, 2, . . . , t. Let t1, t2, . . . denote the time in-
stances when expertp (or expertr) assigns the next item to
the next empty bin (i.e.,fp,u = 1 for u = t1, t2, . . .). If
expertq also decides1 at timetk for somek, then it will de-
cide0 for t = tk + 1, . . . , tk+1 − 1 since so does expertp
andp > q, and will decide1 at timetk+1 asq > r. Thus the
decision sequence of expertq coincides with that of expertp
andr for time instancestk + 1, . . . , tk+1 in this case. Since
all experts start with the empty bin at time0, the statement
of the lemma follows by induction.

Based on the lemma we can identify thet-indistinguish-
able sets by their end points. LetQt = {q1,t, . . . , qNt,t}
denote the set of the end points after receivingt items, where
Nt = |Qt| is the number of maximalt-indistinguishable sets,
andq0,t = 0 < q1,t < q2,t < · · · < qNt,t = 1. Then the
t-indistinguishable sets are(qk−1,t, qk,t] for k = 1, . . . , Nt.
The next result shows that the number of maximalt-indistin-
guishable sets cannot grow too fast.

Lemma 5 The number of the maximalt-indistinguishable
sets is at most quadratic in the number of the itemst. More
precisely,Nt ≤ 1 + (t − 1)t/2 for any1 ≤ t ≤ n.

Proof: The proof is by induction. First,N1 = 1 (andQ1 =
{1}) since the first decision of each expert is1. Now assume
thatNt−1 ≤ 1 + (t − 2)(t − 1)/2 for some1 ≤ t ≤ n − 1.
When the next itemxt arrives, an expertp with states de-
cides1 in the next step if and only if0 ≤ s− xt < p. There-
fore, as each expert belonging to the same indistinguishable
set has the same state, thek-th maximal(t−1)-indistinguish-
able interval with states is split into two subintervals if and
only if qk−1,t−1 < s − xt ≤ qk,t−1 (experts in this interval
with parameters larger thans− xt will form one subset, and
the ones with parameter at mosts − xt will form the other
one). As the number of possible states at timet−1 is at most
t− 1 by Lemma 1, it follows that at mostt− 1 intervals can
be split, and soNt ≤ Nt−1 + t− 1 ≤ 1 + (t− 1)t/2, where
the second inequality holds by the induction hypothesis.

This lemma makes it possible to apply our earlier algo-
rithm for the case of finite expert classes. However, note that
the number of “distinguishable” experts, that is, the number
of the maximal indistinguishable sets, constantly grows with
time, and each indistinguishable set contains a continuum
number of experts. Therefore we need to redefine the algo-
rithm carefully. This may be done by a two-level random

SEQUENTIAL ON-LINE BIN PACKING ALGORITHM
WITH CONSTANT-THRESHOLD EXPERTS

Parameters:η > 0 andm ∈ N
+.

Initialization: w0,1 = 1, N1 = 1, Q1 = {1},
s1,0 = 1 andŝ0 = 1.

For each roundt = 1, . . . , n,

(a) If ((t − 1) modm) = 0 then
– for i = 1, . . . , Nt, compute the probabili-

ties
pi,t =

wi,t−1∑Nt

j=1 wj,t−1

;

– randomly select an intervalJt ∈
{1, . . . , Nt} according to the probability
distributionpt = (p1,t, . . . , pNt,t);

– choose an expertpt uniformly from the in-
terval(qJt−1,t, qJt,t];

otherwise, letpt = pt−1.

(b) Follow the decision of expertpt: It = fpt,t.

(c) xt ∈ (0, 1], the size of the next item is revealed.

(d) The algorithm incurs loss

ℓ(It, xt | ŝt−1)

and each expertp ∈ (0, 1] incurs loss
ℓ(fp,t, xt | sp,t−1), wherep ∈ [0, 1).

(e) Compute the statêst of the algorithm by (2),
and calculate the auxiliary weights and states
of the expert sets for alli = 1, . . . , Nt by

w̃i,t = wi,t−1e
−ηℓ(fi,t,xt|si,t−1)

s̃i,t = fi,t(1 − xt)

+(1 − fi,t)(si,t − I{si,t≥xt}).

(f) Update the end points of the intervals:

Qt+1 = Qt ∪
Nt⋃

i=1

{s̃i,t : qi−1,t < s̃i,t ≤ qi,t}

andNt+1 = |Qt+1|.
(g) Assign the new states and weights to the(t+1)-

indistinguishable sets

si,t+1 = s̃j,t and wi,t+1 = w̃j,t

for all i = 1, . . . , Nt+1 andj = 1, . . . , Nt such
thatqj−1,t < qi,t+1 ≤ qj,t.

Figure 5: Sequential on-line bin packing algorithm with
constant-threshold experts.

choice of the experts: first we choose an indistinguishable
expert set, then we pick one expert from this set randomly.
The resulting algorithm is given in Figure 5.

Up to step (e) the algorithm is essentially the same as
in the case of finitely many experts. The two-level random
choice of the expert is performed in step (a). In step (f)
we update thet-indistinguishable sets, and usually introduce
new indistinguishable expert sets. Because of these new ex-
pert sets, the update of the weightswi,t and the statessi,t are
performed in two steps, (e) and (g), where the actual update
is made in step (e), and reordering of these quantities accord-
ing to the new indistinguishable sets is performed in step (g)
together with the introduction of the weights and states for
the newly formed expert sets.

The performance and complexity of the algorithm is given
in the next theorem.

Theorem 6 LetN = 1+n(n−1)/2, m = (16n/ ln(n2/δ))1/3

andη = 4
√

m ln n/n andδ ∈ (0, 1). Then the regret of the
algorithm defined above is bounded, with probability at least
1 − δ, by

L̂n − inf
p∈(0,1]

Lp,n

≤ 3
3
√

2
n2/3 ln1/3 n2

δ
+ 4

(
2n

ln(n2/δ)

)1/3

.

Moreover, the algorithm can be implemented with time com-
plexityO(n3) and space complexityO(n2).

Proof: It is easy to see that the two-level choice of the expert
pt ensures that the algorithm is the same as for the finite ex-
pert class with the experts defined byQn. Thus, Theorem 3
can be used to bound the regret, where the number of experts
is Nt. By Lemma 5, the latter is bounded byN < n2, which
finishes the proof of the first statement.

For the second part note that the algorithm has to store
the states, the intervals, the weights and the probabilities,
each on the order ofO(n2) based on Lemma 5. Concern-
ing time complexity, the algorithm has to update the weights
and states in each round (requiringO(n2) computations per
round), and has to compute the probabilities in everym step,
which requiresO(n3/m) computations. Thus the time com-
plexity of the algorithm isO(n3).

The next example reveals that the loss of the best expert
can be arbitrarily far from that of the optimal sequential off-
line packing.

Example 3 Let the sequence of items be

〈 ε, 1−ε, ε, 1−ε, . . . , ε, 1−ε︸ ︷︷ ︸
2k

, ε, 1, 1, . . . , 1︸ ︷︷ ︸
k

〉,

where the number of items isn = 3k + 1 and0 < ε < 1.
An optimal sequential off-line packing is achieved if we drop
anyone of theε terms; then the total loss isε. In contrast to
this, the loss of the constant-threshold experts is1 − ε + k
independently of the choice of the parameterp. Namely, if
p ≤ 1−ε then the loss is0 for the first2k items, but after the
algorithm is stuck and suffersk + 1 − ε loss. Ifp > 1 − ε,
then the loss isk for the first2k items and after that1−ε for
the rest of the sequence.

5 Conclusions
In this paper we provide an extension of the classical bin
packing problems to an on-line sequential scenario. In this
setting items are received one by one, and before the size of
the next item is revealed, the decision maker needs to decide
whether the next item is packed in the currently open bin or
the bin is closed and a new bin is opened. If the new item
doesn’t fit, it is lost. If a bin is closed, the remaining free
space in the bin accounts for a loss. The goal of the decision
maker is to minimize the loss accumulated overn periods.

As the main result of the paper, we give an algorithm
that has a cumulative loss not much larger than any finite
set of reference algorithms, and, more importantly, another
algorithm that has a cumulative loss not much larger than
any strategy that uses a fixed threshold at each step to decide
whether a new bin is opened. An interesting aspect of the
problem is that the loss function has an (unbounded) mem-
ory. The presented solutions rely on the fact that one can
“synchronize” the loss function in the sense that no matter in
what state an algorithm is started, its loss may change only
by a small additive constant. The second result is obtained
by a covering of the uncountable set of constant-threshold
experts such that the cardinality of the chosen finite set of ex-
perts grows only quadratically with the sequence length. The
approach in the paper can easily be extended to any control
problem where the loss function has such a synchronizable
property.

References
[1] J. Boyar, L. Epstein, L.M. Favrholdt, J.S. Kohrt,

K.S. Larsen, M.M. Pedersen, and S. Wøhlk. The max-
imum resource bin packing problem.Theoretical Com-
puter Science, 362:127–139, 2006.

[2] N. Cesa-Bianchi and G. Lugosi.Prediction, Learning,
and Games. Cambridge University Press, 2006.

[3] E.G. Coffman, M.R. Garey, and D.S. Johnson.Approx-
imation algorithms for bin packing: a survey. In Ap-
proximation algorithms for NP-hard problems, pp. 46–
93, PWS Publishing Co., Boston, MA, 1997.

[4] E. Even-Dar, S.M. Kakade, and Y. Mansour. Experts in
a Markov Decision Process. In L.K. Saul, Y. Weiss, and
L. Bottou, editors,Advances in Neural Information Pro-
cessing Systems 17, pp. 401–408. MIT Press,Cambridge,
MA, 2005.

[5] J. Hannan. Approximation to Bayes risk in repeated
plays. In M. Dresher, A. Tucker, and P. Wolfe, editors,
Contributions to the Theory of Games, volume 3, pp. 97–
139. Princeton University Press, 1957.

[6] Y. He and Gy. D́osa. Bin packing and covering problems
with rejection.Lecture Notes in Computer Science 3595,
pp. 885–894, 2005.

[7] N. Merhav, E. Ordentlich, G. Seroussi, and M. J. Wein-
berger. On sequential strategies for loss functions with
memory. IEEE Transactions on Information Theory,
48:1947-1958, 2002.

[8] S.S. Seiden. On the online bin packing problem. inPro-
ceedings of the 28th International Colloquium on Au-
tomata, Languages and Programming, pp. 237 - 248,
2001.

