More Efficient Internal-Regret-Minimizing Algorithms

Amy Greenwald, Zheng Li, and Warren Schudy
Brown University, Providence, RI 02912
{amy,ws}@cs.brown.edu and zheng@dam.brown.edu

Abstract

Standard no-internal-regret (NIR) algorithms
compute a fixed point of a matrix, and hence
typically require O(n?) run time per round of
learning, where n is the dimensionality of the
matrix. The main contribution of this paper
is a novel NIR algorithm, which is a simple
and straightforward variant of a standard NIR
algorithm. However, rather than compute a
fixed point every round, our algorithm relies
on power iteration to estimate a fixed point,
and hence runs in O(n?) time per round.

Nonetheless, it is not enough to look only at
the per-round run time of an online learning
algorithm. One must also consider the algo-
rithm’s convergence rate. It turns out that
the convergence rate of the aforementioned al-
gorithm is slower than desired. This observa-
tion motivates our second contribution, which
is an analysis of a multithreaded NIR algo-
rithm that trades-off between its run time per
round of learning and its convergence rate.

1 Introduction

An online decision problem (ODP) consists of a series of
rounds, during each of which an agent chooses one of n
pure actions and receives a reward corresponding to its
choice. The agent’s objective is to maximize its cumu-
lative rewards. It can work towards this goal by abid-
ing by an online learning algorithm, which prescribes
a possibly mixed action (i.e., a probability distribution
over the set of pure actions) to play each round, based
on past actions and their corresponding rewards. The
success of such an algorithm is typically measured in
a worst-case fashion: specifically, an adversary chooses
the sequence of rewards that the agent faces. Hence,
the agent—the protagonist—must randomize its play;
otherwise, it can easily be exploited by the adversary.
The observation that an ODP of this nature can be
used to model a single player’s perspective in a repeated
game has spawned a growing literature connecting com-
putational learning theory—specifically, the subarea of
regret minimization—and game theory—specifically, the

subarea of learning in repeated games. Both groups
of researchers are interested in designing algorithms by
which an agent can learn from its past actions, and the
rewards associated with those actions, to play actions
now and in the future that yield high rewards. More
specifically, the entire sequence of actions should yield
low regret for not having played otherwise, or equiva-
lently, near equilibrium behavior.

In a seminal paper by Foster and Vohra [FV97], it
was established that the empirical distribution of the
joint play of a particular class of online learning al-
gorithms, called no-internal-regret (NIR) learners, con-
verges to the set of correlated equilibria in repeated ma-
trix games. However, standard NIR learning algorithms
(see Cesa-Bianchi and Lugosi [CBL06] and Blum and
Mansour [BM05])!—including the algorithm proposed
by Foster and Vohra (hereafter, FV)—involve a fixed
point calculation during each round of learning, an op-
eration that is cubic? in the number of pure actions
available to the player. Knowing that fixed point cal-
culations are expensive, Hart and Mas-Colell [HMCO00]
describe “a simple adaptive procedure” (hereafter, HM)
that also achieves the aforementioned convergence re-
sult. HM’s per-round run time is linear in the number
of pure actions.

It is well-known [HMCO0] that HM does not exhibit
no internal regret in the usual sense, meaning against
an adaptive adversary—one that can adapt in response
to the protagonist’s “realized” pure actions (i.e., those
that result from sampling his mixed actions). Still, in
a recent paper, Cahn [Cah04] has shown that HM’s al-
gorithm does exhibit no internal regret against an ad-
versary that is “not too sophisticated.” In this paper,
we use the terminology nearly oblivious to refer to this

!The former reference is to a book that surveys the field;
the latter reference is to a paper that includes a black-box
method for constructing NIR learners from another class of
learners called no-external-regret learners.

2Strassen [Str69] devised an O(n*®')-time algorithm for
matrix-matrix multiplication, based on which a fixed point
can be computed with the same run time [CLRS01]. Copper-
smith and Winograd [CW87] devised an O(n?3¢)-time algo-
rithm for matrix-matrix multiplication, but unlike Strassen’s
result their result is impractical. For better pedagogy, we
quote the “natural” O(n®) runtime in most of our discus-
sions rather than these better bounds.

type of adversary, because the “not-too-sophisticated”
condition is a weakening of the usual notion of an obliv-
ious adversary—one who chooses the sequence of re-
wards after the protagonist chooses its online learning
algorithm, but before the protagonist realizes any of its
pure actions. Since an oblivious adversary is also nearly
oblivious, Cahn’s result implies that HM exhibits no in-
ternal regret against an oblivious adversary.

As alluded to above, both FV and HM (and all the
algorithms studied in this paper) learn a mixed action
each round, and then play a pure action: i.e., a sample
from that mixed action. One important difference be-
tween them, however, which can be viewed at least as
a partial explanation of their varying strengths, is that
FV maintains as its state the mixed action it learns,
whereas HM maintains as its state the pure action it
plays. Intuitively, the latter cannot exhibit no internal
regret against an adaptive adversary because an adap-
tive adversary can exploit any dependencies between the
consecutively sampled pure actions.

Young [You04] proposes, but does not analyze rigor-
ously, a variant of HM he calls Incremental Conditional
Regret Matching (ICRM), which keeps track of a mixed
action instead of a pure action, and hence exhibits no in-
ternal regret against an adaptive adversary.®> ICRM has
quadratic run time each round. To motivate ICRM, re-
call that standard NIR algorithms involve a fixed-point
calculation. Specifically, they rely on solutions to equa-
tions of the form ¢ = ¢P;, where P, is a stochastic matrix
that encodes the learner’s regrets for its actions through
time ¢. Rather than solve this equation exactly, ICRM
takes gi+1 < q:P; as an iterative approximation of the
desired fixed point.

The regret matrix P; used in ICRM (and HM) de-
pends on a parameter y that is strictly larger than the
maximum regret per round. This makes ICRM less in-
tuitive than it could be. We show that the same idea
also works when the normalizing factor ut is replaced by
the actual total regret experienced by the learner. This
simplifies the algorithm and eliminates the need for the
learner to know or estimate a bound on the rewards.
We call our algorithm Power Iteration (PI),* because
another more intuitive way to view it is as a modifi-
cation of a standard NIR algorithm (e.g., Greenwald,
et al. [GIMar]) with its fixed-point calculation replaced
by power iteration. Once again, the first (and primary)
contribution of this paper is a proof that using power it-
eration to estimate a fived point, which costs only O(n?)
per round, suffices to achieve no-internal-regret against
an adaptive adversary.

Although our PI algorithm is intuitive, the proof
that the idea pans out—that PI exhibits NIR against an
adaptive adversary—is non-trivial (which may be why

30ur analytical tools can be used to establish Young’s
claim rigorously.

4Both PI and ICRM can be construed as both incremen-
tal conditional regret matching algorithms and as power it-
eration methods. The difference between these algorithms
is merely the definition of the matrix P;, and who named
them, not what they are named for per se.

Young did not propose this algorithm in the first place).
The proof in Hart and Mas-Colell [HMCOO] relies on a
technical lemma, which states that ||q;P7 — q:P7 |1,
for some z > 0, is small, whenever all the entries on
the main diagonal of P; are at least some uniform con-
stant. With our new definition of P;, this condition does
not hold. Instead, our result relies on a generalization
of this lemma in which we pose weaker conditions that
guarantee the same conclusion. Specifically, we require
only that the trace of P be at least n — 1. Our lemma
may be of independent interest.

Hence, we have succeeded at defining a simple and
intuitive, O(n?) per-round online learning algorithm that
achieves no internal regret against an adaptive adver-
sary. However, it is not enough to look only at the per-
round run time of an online learning algorithm. One
must also consider the algorithm’s convergence rate. It
turns out that the convergence rates of PI, ICRM, and
HM are all slower than desired (their regret bounds are

O(y/nt=1/10)), whereas FV’s regret bound is O(y/n/t)
(see, for example, Greenwald, et al. [GLMO06]). This
observation motivates our second algorithm.

As our second contribution, we analyze an alterna-
tive algorithm, one which is multithreaded. Again, the
basic idea is straightforward: one thread plays the game,
taking as its mixed action the most-recently computed
fixed point, while the other thread computes a new fixed
point. Whenever a new fixed point becomes available,
the first thread updates its mixed action accordingly.
This second algorithm, which we call MT, for multi-
threaded, exhibits a trade-off between its run time per
round and its convergence rate. If p is an upper bound
on the number of rounds it takes to compute a fixed
point, MT’s regret is bounded by O(y/np/t). Observe
that this regret bound is a function of ¢/p, the number
of fixed points computed so far. If p is small, so that
many fixed points have been computed so far, then the
run time per round is high, but the regret is low; on
the other hand, if p is large, so that only very few fixed
points have been computed so far, then the run time
per round is low, but the regret is high.

This paper is organized as follows. In Section 2, we
define online decision problems and no-regret learning
precisely. In Section 3, we define the HM, ICRM, and PI
algorithms, and report their regret bounds. In Section 4,
we introduce our second algorithm, MT, and report its
regret bound. In Section 5, we prove a straightforward
lemma that we use in the analysis of all algorithms. In
Section 6, we analyze MT. In Section 7, we analyze PI.
In Section 8, we present some preliminary simulation
experiments involving PI, HM, and MT. In Section 9,
we describe some interesting future directions.

2 Formalism

An online decision problem (ODP) is parameterized by
a reward system (A, R), where A is a set of pure actions
and R is a set of rewards. Given a reward system (A, R),
we let IT = R4 denote the set of possible reward vectors.

Definition 1 Given a reward system (A, R), an online
decision problem can be described by a sequence of re-
ward functions (7,)$,, where 71, € (A= — TI).

Given an ODP ()22, the particular history H; =
({ar)t_q, {(m-)t_,) corresponds to the agent playing a,
and observing reward vector 7, = 7, (a1,...a,_1) at all
times 7 =1,...,t.

In this paper, we restrict our attention to bounded,
real-valued reward systems; as such, we assume WLOG
that R = [0, 1]. We also assume the agent’s pure action
set is finite; specifically, we let |A| = n. Still, we allow
agents to play mixed actions. That is, an agent can
play a probability distribution over its pure actions. We
denote by A(A) the set of mixed actions: i.e., the set of
all probability distributions over A.

An online learning algorithm is a sequence of func-
tions (¢;)$2,, where ¢; : Hi—1 — A(A) so that ¢ (h) €
A(A) represents the agent’s mixed action at time ¢ > 1,
after having observed history h € H;_;. When the his-
tory h is clear from context, we abbreviate ¢;(h) by
q:. For a given history of length ¢, let ¢ be the de-
generate probability distribution corresponding to the
action actually played at time ¢: i.e., for all 1 < i < n,
(G¢); = 1 (a; = 4).5 Clearly, g, is a random variable.

We are interested in measuring an agent’s regret in
an ODP for playing as prescribed by some online learn-
ing algorithm rather than playing otherwise. We pa-
rameterize this notion of “otherwise” by considering a
variety of other ways that the agent could have played.
For example, it could have played any single action a all
the time; or, it could have played a’ every time it actu-
ally played a. In either case, we arrive at an alternative
sequence of play by applying some transformation to
each action in the agent’s actual sequence of play, and
then we measure the difference in rewards obtained by
the two sequences, in the worst case. That is the agent’s
regret.

A transformation of the sort used in the first exam-
ple above—a constant transformation that maps every
action a’ in the actual sequence of play to a fixed, alter-
native action a—is called an external transformation.
We denote by ®gxr the set of all external transforma-
tions, one per action a € A. Many efficient algorithms,
with both fast run time per round and fast convergence
rates, are known to minimize regret with respect to
Ppxr (e.g., [LW94, FS97, HMCO01]). Here, we are inter-
ested in transformations of the second type, which are
called internal transformations. These transformations
can be described by the following set of n-dimensional
matrices:

<I>INT:{¢(a’b) ca#b1<a,b<n}

where
1 ifitani=j
(@), = { 1 ifi=aAj=b
0 otherwise

1 ifp

SFor predicate p, 1 (p) = { 0 otherwise °

For example, if |A] = 4, then applying the following
transformation to a pure action a yields the third action
if @ is the second action, and a otherwise:

100 0
p29 | 0 0 10
0010
000 1

Ppxr and Pryr are the two best-known examples of
transformation sets. More generally, a transformation
¢ can be any linear function from A(A) — A(A). In
the definitions that follow, we express reward vectors 7
as column vectors, mixed actions ¢ as row vectors, and
transformations ¢ as n-dimensional matrices.

If, at time 7, an agent plays mixed action ¢, in an
ODP with reward vector 7, the agent’s instantaneous
regret (r:), with respect to a transformation ¢ is the
difference between the rewards it could have obtained
by playing ¢,¢ and the rewards it actually obtained by

playing ¢.: i.e.,
(TT)qb = - OTr — ¢ Tr (1)

The agent’s cumulative regret vector (R;) through time
t is then computed in the obvious way: for ¢ € @,

t

(Re)s =Y _(rr)s (2)

T=1

One can also define pure action variants of the in-
stantaneous and cumulative regret vectors, as follows:

(7:7-)4{7 = G- ¢mr — G-y (3)

and
t

(Re)o =Y () (4)
T=1
One can bound either the expected pure action regret
or the (mixed action) regret. To avoid unilluminating
complications, we focus on the latter in this work.

Our objective in this work is to establish sublinear
bounds on the average internal-regret vector of various
online learning algorithms. Equipped with such bounds,
we can then go on to claim that our algorithms exhibit
no internal regret by applying standard techniques such
as the Hoeffding-Azuma lemma (see, for example, Cesa-
Bianchi and Lugosi [CBLO06]). Note that we cannot es-
tablish our results for general ®. We defer further dis-
cussion of this point until Section 9, where we provide
a simple counterexample.

For completeness, here is the formal definition of no-
®-regret learning;:

Definition 2 Given a finite set of transformations @,
an online learning algorithm (§:)$2, is said to exhibit
no-®-regret if for all € > 0 there exists tg > 0 such
that for any ODP (74)$2,,

1.
Pr |3t >t s.t. max—RY >e| <e (5)
ped ¢

The relevant probability space in the above definition is
the natural one that arises when considering a particular
ODP (7;)$2, together with an online learning algorithm
(G1)$2,. The universe consists of infinite sequences of
pure actions (a,)>2; and the measure is defined by the
learning algorithm.

We close this section with some notation that ap-
pears in later sections:

e Welet aeb = a’'b denote the dot product of column
vectors a and b.

e For vector v € R™, we let v denote the component-
wise max of v and the zero vector: i.e., (v'); =
max(v;, 0).

3 Algorithms

We begin this section by describing HM, the simple
adaptive procedure due to Hart and Mas-Colell [HMCO00]
that exhibits no internal regret against a nearly oblivi-
ous adversary, as well as ICRM, a variant of HM due to
Young [You04] that exhibits no internal regret against
an adaptive adversary. We then go on to present a sim-
ple variant of these algorithms, which we call PI, for
power iteration, for which we establish the stronger of
these two guarantees.

Definition 3 Define the n-dimensional matriz

Ne= Y (RN)so

PERINT

and the scalar

Dy = Z (R:r)qﬁ

PERINT

At a high-level, HM (Algorithm 1) and ICRM (not
shown) operate in much the same way: at each time
step ¢, an action is played and a reward is earned; then,
the regret matrix P; is computed in terms of N; and
D;, based on which a new action is derived. But the
algorithms differ in an important way: specifically, they
differ in their “state” (i.e., what they store from one
round to the next). In HM, the state is a pure action,
so that during each round, the next pure action is com-
puted based on the current pure action. In ICRM, the
state is a mixed action.

Like Young’s algorithm, the state in our algorithm,
PI (Algorithm 2), is a mixed action. But, our algo-
rithm differs from both of the others in our choice of
the matrix regret P;. In PI, P, = N;/D;, which is the
same matrix as in Greenwald et al. [GIMar], for exam-
ple. Intuitively, N;/D; is a convex combination of the
transformations in ®yr, with each ¢ € &y weighted
by the amount of regret the learner experienced for not
having transformed its play as prescribed. In HM and
ICRM, P; is a convex combination of N;/D; and the
identity matrix. This convex combination depends on
a parameter u, which is an upper bound on the regret
per round; typically, u = 2n.

Algorithm 1 HM [HMCO00]
Initialize a; to be an arbitrary pure action.

During each round t =1,2,3, ...
1. Play the pure action a;.

2. For all j,
let (Gi); = 1 (ar = j).

3. Observe rewards ;.
4. Update the regret vector R,.

Ni+(ut—D)I

5. Let the regret matrix P, = o

6. Sample a pure action asy;1 from (jtpt.

Algorithm 2 Power Iteration
Initialize ¢; to be an arbitrary mixed action.

During each round t = 1,2, 3, .. .:

1. Sample a pure action a; from ¢;.
Play the pure action ay.
Observe rewards 7.

Update the regret vector R;.

Define the regret matrix P; = g—:.

AN S

&

Set the mixed action g4+1 «— ¢ P;.

HM has a per-round run time linear in the num-
ber of pure actions because it updates one row of the
regret matrix during each round, namely that row corre-
sponding to the action played. ICRM and PI both have
per-round run times dominated by the matrix-vector
multiplication in Step 6, and are hence quadratic in the
number of pure actions.

We analyze PI (Algorithm 2) in this paper, and ob-
tain the following result:

Theorem 4 PI (Algorithm 2) exhibits no internal re-
gret against an adaptive adversary. Specifically, the
bound on its average regret is as follows: for all times t,

+
HRT < O(V/at110)

o0

A slight variant of our analysis shows that ICRM
has the same bound as PI. Algorithm 1 was previously
analyzed by Cahn [Cah04], who showed that if the ad-
versary is nearly oblivious, then HM exhibits NIR. One
can combine ideas from Hart and Mas-Colell [HMCO00]
and our analysis of PI to show that against an oblivi-
ous adversary, the bound on HM’s average regret is as

follows: for all times ¢,
B
t

oo

Theorem 4 implies, by the Proposition at the bottom
of page 1133 in Hart and Mas-Colell [HMCO00], that like
HM and ICRM, PTI also converges to the set of correlated
equilibria in self-play.

Note that it is also possible to define a variant of PI
with P, = N;/D;, which like HM, uses the agent’s pure
action as its state. We conjecture that this algorithm
would exhibit no internal regret against an oblivious
(or nearly oblivious) adversary, but do not analyze it
because it has no obvious advantages over HM or PI.

4 Multithreaded algorithm

The ICRM and PI algorithms have better per-round run
times than standard NIR learning algorithms, but their
convergence rates are far worse. Moreover, these al-
gorithms are inflexible: they cannot expend additional
effort during a round to improve their convergence rates.
In this section, we present a parameterized, multithreaded
algorithm (MT) that smoothly trades off between per-
round run time and regret.

The idea underlying MT is simply to spread the com-
putation of a fixed point over many time steps, and in
the mean time to play the most recent fixed point com-
puted so far. This idea is formalized in Algorithm 3,
in which there are two threads. One thread plays the
game, taking as its mixed action the most-recently com-
puted fixed point; the other thread works towards com-
puting a new fixed point.

Theorem 5 Letp > 1 be an upper bound on how many
time steps it takes to compute a fized point. MT (Algo-
rithm 3) has per-round run time O(LS(n)/p + logn +
p) and regret bound O(\/np/t), where LS(n) required
solve a linear system of equations expressed as an n-
dimensional matriz and p is the usually negligible run
time required to maintain the regret vector (see Sec-
tion 6). More precisely, for all times t,

HR_f (n—1)(4p —3)
t .= t

oo

Suppose you are playing a game every minute and
you have just barely enough computational resources to
find a fixed point in the time alloted with a standard
NIR learning algorithm (p = 1). Further, suppose that
it takes 1 day of playing for your regret to fall below
a desired threshold. Now, suppose the game changes
and you now have to make a move every second. If you
set p = 60, and continue to compute 1 fixed point per
minute, this will require 4 - 60 — 3 ~ 4 - 60 times more
rounds to achieve the same level of regret. But each
round is 60 times faster, so the wall-clock time for the
same level of regret has increased by a factor of about
4, to a bit under 4 days.

With one extreme parameter setting, namely p = 1,
MT is just like a standard NIR learning algorithm, and

Algorithm 3 Multithreaded no-internal-regret learning
algorithm.

Initialize R, N, D to zero.

First thread: During each round t =1,2,3,...:
e Wait until it is time to take an action.

e Get the most up-to-date fixed point computed by
the other thread. Call it ¢;. (If no fixed point has
been computed yet, initialize g; arbitrarily.)

e Sample a pure action a; from g;.

e Play the pure action ay.

o Observe rewards ;.

e Update the regret vector R;.
Second thread: Repeat forever:

e Wait until the other thread updates the regret vec-
tor R, for any 7 > 0.

e Get a copy of R, from the other thread.

Compute N, and D..

Compute a fixed point of N,/D..

e Pass this fixed point to the other thread.

hence has run time O(n®) per round and regret bound
O(y/n/t). With another extreme parameter setting,
namely p = n3, MT has run time O(logn) per round
(as long as regret can be calculated quickly; see the end
of Section 6) and regret bound O(n?/v/t). The interme-
diate parameter setting p = n yields an O(n?) run time
per round and an O(n/v/t) regret bound. This algo-
rithm, therefore, dominates both PI and ICRM, achiev-
ing the same run time per round, but a better regret
bound, for all values of ¢t > nd/4,

5 General Analysis

In this section, we derive a key lemma that is used in
both our analyses. Specifically, we bound the La-norm
of the regret vector at time ¢ in terms of two summations
from time 7 = 1 to t. Each term in the first bounds
how close the mixed action played at time 7 is to being
a fixed point of the regret matrix at some previous time
7 — w(7). Each term in the second bounds the regret
that could ensue because the mixed action played at
time 7 is out of date.

Lemma 6 For any online learning algorithm and any
function w(-) > 0, we have the following inequality: for

all times t > 0,

t

2 Z qr (N‘rfw(‘r) - DT*’UJ(T)I) Tt

T=1

t
(n—1) Z

where q; is the mized action at time t, and I is the
identity matriz.

IN

2
|21,

We prove this lemma using two preliminary lemmas.
The first involves simple algebra.

Lemma 7 For any two vectors a,b € R?, with d > 1,
we have the following inequality:

[l(a+)13 < [la™ |3 +2a" o b+ |[b]f3 (6)
Proof: Both ||||§ and dot products are additive component-
wise, so it suffices to assume a, b are real numbers.
If a+b <0 then |[a™|> + 2a™b + b* = (a™ + b)?
0=|(a+b)"|2
Ifa+b>0thenat+b>a+b=(a+b)*" > 0.
Thus (at +b)% > |(a + b)T|*. [|

Lemma 8 For any learning algorithm and any t >

7 > 0, we have the following equality:
qt (NT — D-,—I) ¢

N,
Dth (D— — I) T

Proof: Standard no-regret arguments about the fixed
point (e.g., Theorem 5 in [GLMO6]). |

re e RY

Note that if ¢; is a fixed point of N,/D,, as in is
in FV and MT for appropriate choices of 7, then r; e
R* = 0. For example, in the traditional algorithm FV,
ree R, =0.
Proof: [Proof of Lemma 6] Fix a7 € {1,...,t}. By def-
inition, Rf = RY | +r.. Hence, by applying Lemma 7,

we obtain a linear approximation of |R} ||2 — HR 1||2
with an error term:
IRES < IREAl +2r o RE 4 1l
= |REL |5 +2r e RE
+2r 0 (R, = RY_)+ e[
< ||R7J-r71H; +2rr o RT_ ()
+2(w(m) =D -1)+(n—-1)

Qw(r) = 1)(n - 1)

(7)

| R[5 +2rr o BE)+

The second inequality follows from the fact that |r, ||§ <
(n—1).

Now if we apply Lemma 8 and sum over time, this
t
Jr
(R

yields:
|2
|E13)
T=1

< 2ZqT(NT—’w(T) -D
t
(n—1 Z
T=1

The summation on the left hand side of this equation

2 2 2
I, = 1&3], = =),

‘r—w(‘r)I)ﬂ-‘l’

(8)

collapses to HR;r and the lemma

is proved.

6 Analysis of MT

Equipped with Lemma 6, the proof of Theorem 5 is
quite simple.
Proof: [Proof of Theorem 5] For general p, the fixed
points may be based on out-of-date regret vectors, but
they are never very out of date. Once the fixed point
is computed, it is based on data that is p rounds out of
date. That fixed point is then used for another p rounds
while a replacement is computed. Overall, the fixed
point played at time ¢ can be based on a regret vector no
more than 2p rounds old. More precisely, the 7 such that
R; is used to compute ¢; satisfies t—(2p—1) < 7 < ¢t—1.
Now apply Lemma 6 letting w(7) be the age of the
regret vector used by the second thread in calculating
¢r. Since ¢, is a fixed point of N;_y(r)/Dr_w(r), it
follows that ¢-(N;_w(r) — Dy —w(r)I) = 0. Thus,

t t
IRAE < 2 04— 2@p-1)-1)
T=1 T=1
= (n—1)t(4p-3)
Therefore,
Rt n—l)(4p 3)
t t

and the theorem is proved.

A nailve computation of the regret vector would limit
the per-round run time of PI to Q(n?). For applications
where p is O(n) (or less), this is not a bottleneck, be-
cause in that case the O(n®/p) bound on the run time
of the fixed point computation is larger than the O(n?)
run time of the regret vector updates.

If the ODP is a repeated game where the opponents
have O(n) joint actions, an agent can simply record the
opponents’ actions each round in constant time, and
then update the regret vector right before solving for a
fixed point; this update takes time O(n3). In this case,
if p = n?, then MT’s per-round run time is O(logn).

For general ODPs, where the reward structure may
change arbitrarily from one round to the next, keep-
ing track of regret in time o(n?) per round seems to

require random sampling (i.e., bandit techniques; see,
for example, Auer et al. [ACBFS02]). We leave further
investigation of this issue to future work.

Choosing a random action from a probability distri-
bution using a binary search requires ©(logn) time, so
ODPs that require extremely quick decisions cannot be
handled without further innovation.

7 Analysis of PI

In this section, we analyze PI. By construction, ¢, is
not a fixed point but only an approximate fixed point,
80 7 (Nr_w(r) = Dr_w(r)I) # 0. Instead, we will show
the following:

Lemma 9 For all times 7 > 0 and 0 < w(r) < T,

= Drwi Dl =0 (G ()

”qT (Nwa(T)

Deferring the proof of Lemma 9, we first show how
to use Lemmas 6 (choose w(1) = 7%/%) and 9, to analyze
PI:

IN

|R 1

22%
(n—1 Zt:%?/f’
= ZO(m+n(2/5)2>+(n—1)0(t7/5)

O(n
O(

D‘rfw(‘r)l) ™

T—w(T)

t9/5) 4+ (n —
nt9/5)

Do)

Taking square roots and dividing by ¢ proves Theorem 4:

R

< Oyt~ /1%)

2

It remains to prove Lemma 9. For the remainder
of this section, we use the shorthands W = w(r) and
t=71—w(T).

We begin to analyze ¢, (N; — D:I) by rewriting this
expression as the sum of two terms. The first, which
would be zero if power iteration converged in W steps, is
provably small. The second measures how the matrices
Pr change over time; if all the Pr’s were equal, this

term would be zero. Noting that ¢, = ¢ (H;;i PT),

where each Pp = Np/Dp, we derive the two terms as
follows:

We will bound the two terms in Equation 9 in turn.
Beginning with the first, the quantity ¢;P/" can be in-
terpreted as the distribution of a Markov chain with
transition matrix P; and initial distribution ¢; after W
time steps. Most Markov chains converge to a station-
ary distribution, so it is intuitively plausible that the
related quantity ¢ (PW+1 PtW) is small. The follow-
ing lemma, which verifies this intuition, is a strengthen-
ing of statement M7 in Hart and Mas-Colell [HMCO00].
Our lemma is stronger because our premises are weaker.
Whereas their lemma requires that all the entries on the
main diagonal of P; be at least some uniform constant,
ours requires only that the sum of P;’s diagonal entries
(i.e., its trace) be at least n — 1. The latter of these
two conditions (only) is satisfied by PI’s choice of P,
because each P; is a convex combination of internal re-
gret transformations/matrices, each of which has trace
n—1.

Lemma 10 Forall z > 0, if P is n-dimensional stochas-
tic matrix that is close to the identity matrix in the
sense that Z?:l Py; > n—1, then Hq(PZ — Pz’l)”1 =
O(1/y/z) for all n-dimensional vectors q with |q|, = 1.

Proof: See Appendix. |

Now, we can easily bound D; = D, _w by (n—1)(7—
W) < nr, so the first term in Equation 9 is bounded

above by O(n7/vW). The following lemma bounds the
second term in Equation 9:

Lemma 11 For all times 7 >0 and 0 < w(7) < T,

(HPT -)(Pt I)

The proof of this lemma makes use of the following
definition and related fact: the induced Li-norm of a
matrix M is given by

= O(nW?/Dy)
1

||UM||1

and for any n-dimensional vector v and matrix M,

[oM]y <ol [M], (10)

Proof: Since |P; —I||; < |P|, + |I|; = 2, it follows
that

w-—1

q <H PtJrS_PtW) (P —1)
s=0
Ww-—-1

qt <H PtJrs_PtW)
s=0

Hence, it suffices to bound Hqt (Hzigl Piys— PtW) H .
1

To do so, we first note that

1

< 2

1

w-—1
H Prys — PtW
s=0 . . -
= Z (H Pt+uPtW_S_1 - H Pt+uPtW_S>
Wt et -
= Z (H Piyu(Piys — Pt)PtW_S_1> (11)
s=0 \u=0

Next, we multiply both sides of Equation 11 by ¢; and
take the Li-norm. Then, we apply Equation 10 and
the facts that |¢:|, = 1 and [Py, = 1, for all s =
0,---,W —1, to obtain the following;:

w—1
qt (H PtJrs_PtW)
s=0 1
wW—1 s—1
Z Gt (H Pt+u> (Prys — PPV 571
s=0 u=0

1

w-—1 s—1
< qt (H Pt+u> (Prps — PPV 71

s=0 u=0 1

w-—1 s—1

W—s—1

< > laly <H ||Pt+u||1> |Pits — Pilly | P2ly

s=0 u=0

wW-1
= Y|Py — P, (12)

s=0

The first inequality in the above derivation follows from
the triangle inequality. The second follows from the fact
that the norm of a product is bounded above by the
product of the norms. To understand the final quantity
(Equation 12) intuitively, consider two coupled Markov
chains, one of which uses P; as its transition matrix, and
the other of which uses P;;s. These Markov chains lead
to different distributions to the extent that they have
different transition matrices.
Since Pt+5 = Nt+s/Dt+57 it follows that:

| Pets — Pelly
_ ‘ Neys Ny
| Diys Dy 1
' Niys Nigs + | Negs — Nefy
T || Digs D; |, Dy
INorel, |Dits = Di| | [News — Nely

(De4sDv) D,

The inequality in this derivation follows from the trian-
gle inequality.

Only n — 1 of the n(n — 1) internal transformations
affect any particular action and rewards are between
0 and 1, so |Dyy1 — Dy| is bounded by n — 1. The
induced Li-norm of a matrix is the maximum row sum,
after taking the absolute value of each entry; hence,
[Niy1 — Ne|y is bounded by n — 1. Further, |Nyysf, <
Diis, [Diys—Dy| < s(n—1),and [Npys — Ny} < s(n—
1), so we conclude that |Pyys — P|; < 2s(n —1)/Dy.
Summing over s from 0 to W — 1 yields the desired
O(nW?/Dy).]

8 Experiments

We ran some simple experiments on the repeated Shap-
ley game to see whether the theoretical bounds we de-
rived match what is observed in practice. An instance of
the internal regret-matching (IRM) algorithm® of Green-
wald et al. [GLMO06] was played against PI, HM with
u=>5, and MT with p = 10. Our results are plotted in
Figures 1, 2, 3 and 4 (the fourth figure summarizes all
our results).

Each experiment was repeated 50 times, and each
ensuing data series is plotted with two lines, delimit-
ing the 95% confidence interval. The “true” line cor-
responding to infinitely many runs probably lies some-
where between the two plotted lines. Note the logarith-
mic scales of the axes, so powers such as 1/v/f appear
as straight lines.

What we observe is twofold: (i) PI does much better
in practice than it does in theory, achieving better per-
formance than HM and MT (see Figure 4); and (ii) MT
does substantially worse than IRM, with the ratio sim-

ilar to the \/4(10) — 3 ~ 6 predicted by theory.

9 Discussion

Standard no-internal-regret (NIR) algorithms rely on
a fixed point computation, and hence typically require
O(n?) run time per round of learning. The main contri-
bution of this paper is a novel NIR algorithm, which is
a simple and straightforward variant of a standard NIR
algorithm, namely that in Greenwald [GJMar]. Rather
than compute a fixed point every round, our algorithm
relies on power iteration to estimate a fixed point, and
hence runs in O(n?) time per round.

One obvious question that comes to mind is: can
power iteration be used in algorithms that minimize ®-
regret, for arbitrary ®? The answer to this question is
no, in general. For example, consider an ODP with two
actions, and only one action transformation ¢, which
swaps the two actions: i.e.,

101
=[]
A standard ®-regret-minimizing algorithm would play

the fixed-point of this matrix, which is uniform random-
ization. However, PI would learn a predictable sequence

5This algorithm is a close cousin of FV, and has the same
regret bound.

Max Average Internal Regret

1
— Power Iteration
-- Standard NIR Algorithm

01—
T
g
1
8

< L

0.01—

| | |
O'0011 10 100 1000 10000

Rounds

Figure 1: IRM and PI playing Shapley. 95% confidence
interval of average of 50 runs shown.

of mixed actions, namely ¢,1 — ¢,¢q,1 — ¢,.... Since an
adversary could easily exploit this alternating sequence
of plays, the idea does not immediately apply to arbi-
trary ®. The part of the proof that is specific to Pyt
is P having trace n — 1, allowing us to use Lemma 10.

Another related question is: can power iteration be
used in other NIR algorithms? For example, Cesa-

Bianchi and Lugosi [CBL03] and Greenwald et al. [GLMOG]

present a class of NIR algorithms, each one of which
is based on a potential function. Similarly, Blum and
Mansour [BMO05] present a method of constructing NIR
learners from no-external-regret (NER) learners. We
conjecture that the power iteration idea could be ap-
plied to any of these NIR algorithms, but we have not
yet thoroughly explored this question.

Our admittedly limited experimental investigations
reveal that perhaps PI’s convergence rate in practice is
not as bad as the theory predicts, but further study is
certainly warranted. Another interesting question along
the same lines is: would another iterative linear solving
method, specifically one that is more sophisticated than
power iteration, such as biconjugate gradient, yield bet-
ter results, either in theory or in practice?

Acknowledgments

We are grateful to Dean Foster for originally suggesting
that we try out power iteration in our experiments with
regret-minimizing algorithms. We are also grateful to
Casey Marks for providing much of the code for our ex-
periments and to Yuval Peres for assistance simplifying
the proof of Lemma 10. This research was supported in

Max Average Internal Regret

— Hart Mas-Colell
-- Standard NIR Algorithm

0.1+

)
54
o4
5}
S L |

0.01— —

\ \ \ S
0'0011 10 100 1000 10000
Rounds

Figure 2: IRM and HM with g = 5 playing Shapley.
95% confidence interval of average of 50 runs shown.

part by the Sloan Foundation.

References

[ACBFS02] P. Auer, N. Cesa-Bianchi, Y. Freund, and
R. Schapire. The nonstochastic multiarmed
bandit problem. Siam J. of Computing,
32(1):48-77, 2002.

A. Blum and Y. Mansour. From external
to internal regret. In Proceedings of the
2005 Computational Learning Theory Con-
ferences, pages 621-636, June 2005.

A. Cahn. General procedures leading to
correlated equilibria. International Jour-
nal of Game Theory, 33(1):21-40, Decem-
ber 2004.

N. Cesa-Bianchi and G. Lugosi. Potential-
based algorithms in on-line prediction and
game theory. Machine Learning, 51(3):239—
261, 2003.

N. Cesa-Bianchi and G. Lugosi. Prediction,
Learning, and Games. Cambridge Univer-
sity Press, 2006.

Cormen, Leiserson, Rivest, and Stein. In-
troduction to Algorithms, chapter 28, pages
757-758. MIT Press, 2nd edition, 2001.

D. Coppersmith and S. Winograd. Matrix
multiplication via arithmetic progressions.
In STOC ’87: Proceedings of the mnine-
teenth annual ACM Symposium on Theory
of Computing, pages 1-6. ACM Press, New
York, NY USA, 1987.

[BMO5]

[Cah04]

[CBLO3]

[CBLOG]

[CLRS01]

[CW87]

Max Average Internal Regret

— Multithreaded with p=10
-- Standard NIR Algorithm
01—
T
oy
1
8
< L
0.01—
| | |
O'0011 10 100 1000 10000

Rounds

Figure 3: IRM and MT with p = 10 playing Shapley.
95% confidence interval of average of 50 runs shown.

[FS97] Y. Freund and R. E. Schapire. A decision-
theoretic generalization of on-line learning
and an application to boosting. Journal
of Computer and System Sciences, 55:119—
139, 1997.

D. Foster and R. Vohra. Calibrated learn-
ing and correlated equilibrium. Games and
Economic Behavior, 21:40-55, 1997.

A. Greenwald, A. Jafari, and C. Marks. A
general class of no-regret algorithms and
game-theoretic equilibria. In Amitabha
Gupta, Johan van Benthem, and Eric
Pacuit, editors, Logic at the Crossroads:
An Interdisciplinary View, volume 2. Allied
Publishers, To Appear.

A. Greenwald, Z. Li, and C. Marks. Bounds
for regret-matching algorithms. In Proceed-
ings of the Ninth International Symposium
on Artificial Intelligence and Mathematics,
2006.

S. Hart and A. Mas-Colell. A simple adap-
tive procedure leading to correlated equilib-
rium. Econometrica, 68:1127-1150, 2000.
S. Hart and A. Mas-Colell. A general class
of adaptive strategies. Journal of Economic
Theory, 98(1):26-54, 2001.

Torgny Lindvall. Lectures on the Coupling
Method, chapter 11.12, pages 41-47. Wiley,
1992.

N. Littlestone and M. K. Warmuth. The
weighted majority algorithm. Information
and Computation, 108:212 — 261, 1994.

[FV97]

[GIMar]

[GLMO6]

[HMC00]

[HMCO1]

[Lin92]

[LW94]

Max Regret

Max Average Internal Regret

— Hart Mas-Colell
Multithreaded with p=10
L --- Power Iteration |
| | |
0'0011 10 100 1000
Rounds

Figure 4: Summary of Figures 1, 2 and 3.

its. Oxford University Press, Oxford,

A Proof of technical Lemma 10

Note: in this proof, we use N, M and t for meanings
unrelated to those in the main body of the paper. Don’t
be confused.

[Str69] Volker Strassen. Gaussian elimination is
not optimal. Numer. Math., 13:354-356,
1969.

[You04] P. Young. Strategic Learning and its Lim-

2004.

Let M be an n by n matrix which is row-stochastic

max
lall, =1

la™ =MW, = 01/ VW),

(vectors should be multiplied on the left as in ¢M) and
has trace at least n — 1. We want to show:

For any two probability measures p and v on prob-

= vy = 5 3 nla) ~ v(a)].

a€ef)

11(QW)) = QW —1))llrv = O(1/VIV)

for all initial distributions g.

ability space 2, their total variation distance is defined
to be

(13)

We denote by p(X) the distribution of random vari-
able X. Let Q(t) denote the state of a Markov chain
with transition matrix M and initial distribution ¢ af-
ter ¢ time steps. Our desired conclusion can be recast
in Markov chain language as

We know that). m;; > n — 1 where m;; is the

element of the ith row and jth column in matrix M. All
m;; are at most 1, so there can be at most one state,

call it p, satisfying myp, < 1/2. If no such state exists
the Lemma was already shown as step M7 of [HMCO00],
so assume it exists.” We define a new matrix N as the
unique solution to m;; = (n;; + d;;) if i # p, and
mpj = npj otherwise, where 6;; = 1 if i = j and
0 otherwise.® It is easy to check N is row stochastic
and is therefore the transition matrix of some Markov
Chain. For simplicity we denote by N the Markov
Chain with transition matrix N and initial distribution
g. Let B(0),B(1l),... be the random walk associated
with Markov Chain N.

One can easily create a random walk of the Markov
chain M from the walk of N as follows. If the current
state is the special state p, do what the N-chain did.
Otherwise, flip a coin, following N with probability 50%
and remaining at the same state otherwise. Formally,
define index I; inductively by Ip = 0 and I; = I;_1+a
symmetric Bernoulli distribution, if B(l;—1) # p, and
I; = I;_1 + 1 otherwise. Then it can be shown that
Q(t) = B(I}) has distribution ¢M*. We need to show
the distributions of B(I;) and B(I;_1) are close to each
other.

For i > 0, define X; = #{t >0 I, =i}. In-
tuitively, X; is the number of steps the M chain takes
while the N chain is in state B(¢). Our proof hinges on
the easily seen fact that the X;s are independent random
variables. If B(i) = p, X; = 1 and if B(7) # p, X is geo-
metrically dlstrlbuted with mean 2.9 Let T} = Zl LX;.
One can see that Iyy = max{i : T; <W }.

In order to prove the conclusion we need the follow-
ing two lemmas.

Lemma 12 Let f(y,z) be a function, Y,Y' and Z be
random variables with Z pairwise independent of Y and
Y'. Let I = f(Y,Z) and I' = f(Y', Z) be random vari-
ables. Then

(D) = p(I)llzv < |lp(Y) = p)]. (14)

Proof: The total variation distance between u(X) and
u(X') is equal to minimum possible probability that
X # X' over couplings of X and X’. A coupling of
Y and Y’ can be extended into a coupling of I and I’
trivially. |

Lemma 13 Let S = Zle X; where X;’s are indepen-
dent identically distributed random variables with geo-
metric distributions with mean 2, then ||pn(Sk) — p(1 +

So)llrv = O(n='/?).
Proof: Equation I1.12.4 of [Lin92].]

The probability that Iy < W/3 is bounded by the
probability that the sum of W Bernoulli random vari-
ables with mean 1/2 is less than W/3. A standard

"One can see that the current proof also holds if no such
state exists.

SI.e., Ni,5 = 2mi,j
wise.

9Note that our “geometrically distributed” variables have
support 1,2,..., so Pr(X; = k) = (1/2)* for k > 1.

—&;,5 if © # p, and np; = myp,; other-

Chernoff bound therefore shows that the event E that
Iy < W/3 is exponentially unlikely. Condition on the
path B(0), B(1),. .. and event E not happening. We can
therefore write Iy = max{ i :
and fyy—1 = max{i : 35 /5 Xi 2 W —1—Tyyz}.
Now by Lemma 12, associating Z with the vector-valued
random variable {Xi}?iW/erlv Y with W — Tyy/3 and
Y’ with W — 1 — Ty /3, we see that it suffices to bound
the total variation distance between Ty 3 and Ty 3+ 1.

Define £k = #{0<i < W/3 B(i) #b}. Every
visit to b is followed by a visit to another state with prob-
ability at least 1/2, so with exponentially high proba-
bility over the choices of the B(i), k¥ > W/12. Con-
dition on the event k& > W/12. By definition Ty 3 =
(W/3 = k) + 2. p(iys Xis s0 it suffices to analyze the
variation distance between the sum of k > W/12 geo-
metric random variables and the same shifted by 1. By
Lemma 13, this is O(1/v/W).

Therefore we obtain

luIw) = u(Iw-1)llrv = O(W~12) (15)
Back to M chain B(Iw) we could have

Pr(B(Iy)=1i) = Z Pr(B
ZPT‘

i)Pr(Iw = a)

and similarly

Pr(B(Iw_1)

ZP’F

y=19)Pr(Iw-1 =a)

Thus
[|[(B(Iw) — p(B(Iw-1)llrv
= % Z |Pr(B(Iw) = i) — Pr(B(Iw_1) = 1)|

< = Z ZPr)| Pr(Iy = a) — Pr(Iy—1 = a)|
= §Z|PT(IW:CL)_PT(IW71:CL)|

= NlpUw) = p(Iw-1)|lrv

= OW~'/?)

This concludes the proof.

We remark that this lemma can also be proved in
a more self-contained manner via a Markov chain cou-
pling. The motivating story follows.

Charlie and Eve are walking drunkenly between the
n neighborhood bars. If Charlie is in a good bar, each
time step he first flips a coin to decide whether or not
he should leave that bar. If he decides to leave, he then
makes a probabilistic transition to some bar (perhaps
the same one). If Charlie is in a bad bar, he always
leaves. Eve starts one time step later than Charlie at the
same initial bar. Eve makes her decision to leave or not

Z;:W/3+1 Xi <W —Twys}

(Iw) = ilIw = a)Pr(Iw = a)

independently of Charlie, but reuses Charlie’s choices of
where to go next. However, if Eve ever catches up with
Charlie, she switches to just following him around. A
natural question to ask is how likely Eve and Charlie
are to be at the same bar after ¢ time steps? Note that
if you look at Eve’s motions and ignore Charlie’s, she
behaves exactly like Charlie does.

The connection to the present lemma is that Char-
lie’s distribution corresponds to M* and Eve’s to M‘~1.
Standard arguments relating total variation distance to
couplings show that if Eve and Charlie usually finish
at the same bar, their probability distributions must be
quite similar.

