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Abstract

Inspired by longstanding lines of research in soci-
ology and related fields, and by more recent large-
population human subject experiments on the In-
ternet and the Web, we initiate a study of the com-
putational issues in learning to model collective
behavior from observed data. We define formal
models for efficient learning in such settings, and
provide both general theory and specific learning
algorithms for these models.

1 Introduction

Collective behavior in large populations has been a subject
of enduring interest in sociology and economics, and a more
recent topic in fields such as physics and computer science.
There is consequently now an impressive literature on math-
ematical models for collective behavior in settings as di-
verse as the diffusion of fads or innovation in social net-
works [10, 1, 2, 18], voting behavior [10], housing choices
and segregation [22], herding behaviors in financial mar-
kets [27, 8], Hollywood trends [25, 24], critical mass phe-
nomena in group activities [22], and many others. The ad-
vent of the Internet and the Web have greatly increased the
number of both controlled experiments [7, 17, 20, 21, 8] and
open-ended systems (such as Wikipedia and many other in-
stances of “human peer-production”) that permit the logging
and analysis of detailed collective behavioral data. It is nat-
ural to ask if there are learning methods specifically tailored
to such models and data.

The mathematical models of the collective behavior liter-
ature differ from one another in important details, such as the
extent to which individual agents are assumed to act accord-
ing to traditional notions of rationality, but they generally
share the significant underlying assumption that each agent’s
current behavior is entirely or largely determined by the re-
cent behavior of the other agents. Thus the collective behav-
ior is asocialphenomenon, and the population evolves over
time according to its own internal dynamics — there is no
exogenous “Nature” being reacted to, or injecting shocks to
the collective.

In this paper, we introduce a computational theory of
learning from collective behavior, in which the goal is to
accurately model and predict the future behavior of a large

population after observing their interactions during a train-
ing phase of polynomial length. We assume that each agent
i in a population of sizeN acts according to a fixed but un-
known strategyci drawn from a known classC. A strategy
probabilistically maps the current population state to thenext
state or action for that agent, and each agent’s strategy may
be different. As is common in much of the literature cited
above, there may also be a network structure governing the
population interaction, in which case strategies may map the
local neighborhood state to next actions.

Learning algorithms in our model are given training data
of the population behavior, either as repeated finite-length
trajectories from multiple initial states (anepisodicmodel),
or in a single unbroken trajectory from a fixed start state (a
no-resetmodel). In either case, they must efficiently (poly-
nomially) learn to accurately predict or simulate (properties
of) the future behavior of the same population. Our frame-
work may be viewed as a computational model for learning
the dynamics of an unknown Markov process — more pre-
cisely, a dynamic Bayes net — in which our primary interest
is in Markov processes inspired by simple models for social
behavior.

As a simple, concrete example of the kind of system we
have in mind, consider a population in which each agent
makes a series of choices from a fixed set over time (such as
what restaurant to go to, or what political party to vote for).
Like many previously studied models, we consider agents
who have a desire to behave like the rest of the population
(because they want to visit the popular restaurants, or want
to vote for “electable” candidates). On the other hand, each
agent may also have different and unknown intrinsic prefer-
ences over the choices as well (based on cuisine and decor, or
the actual policies of the candidates). We consider models in
which each agent balances or integrates these two forces in
deciding how to behave at each step [12]. Our main question
is: Can a learning algorithm watching the collective behavior
of such a population for a short period produce an accurate
model of their future choices?

The assumptions of our model fit nicely with the litera-
ture cited in the first paragraph, much of which indeed pro-
poses simple stochastic models for how individual agents re-
act to the current population state. We emphasize from the
outset the difference between our interests and those com-
mon in multiagent systems and learning in games. In those
fields, it is often the case that the agents themselves are
acting according to complex and fairly general learning al-



gorithms (such as Q-learning [26], no-regret learning [9],
fictitious play [3], and so on), and the central question is
whether and when the population converges to particular,
“nice” states (such as Nash or correlated equilibria). In con-
trast, while the agent strategies we consider are certainly
“adaptive” in a reactive sense, they are much simpler than
general-purpose learning algorithms, and we are interested
in learning algorithms thatmodelthe full collective behavior
no matter what its properties; there is no special status given
either to particular states nor to any notion of convergence.
Thus our interest is not in learning by the agents themselves,
but at the higher level of an observer of the population.

Our primary contributions are:

• The introduction of a computational model for learning
from collective behavior.

• The development of some general theory for this model,
including a polynomial-time reduction of learning from
collective behavior to learning in more traditional,
single-target I.I.D. settings, and a separation between
efficient learnability in collective models in which the
learner does and does not see all intermediate popula-
tion states.

• The definition of specific classes of agent strategies,
including variants of the “crowd affinity” strategies
sketched above, and complementary “crowd aversion”
classes.

• Provably efficient algorithms for learning from collec-
tive behavior for these same classes.

The outline of the paper is as follows. In Section 2, we
introduce our main model for learning from collective be-
havior, and then discuss two natural variants. Section 3 in-
troduces and motivates a number of specific agent strategy
classes that are broadly inspired by earlier sociological mod-
els, and provides brief simulations of the collective behaviors
they can generate. Section 4 provides a general reduction of
learning from collective behavior to a generalized PAC-style
model for learning from I.I.D. data, which is used subse-
quently in Section 5, where we give provably efficient algo-
rithms for learning some of the strategy classes introducedin
Section 3. Brief conclusions and topics for further research
are given in Section 6.

2 The Model

In this section we describe a learning model in which the
observed data is generated from observations of trajectories
(defined shortly) of the collective behavior ofN interacting
agents. The key feature of the model is the fact that each
agent’s next state or action is alwaysdetermined by the recent
actions of the other agents, perhaps combined with some in-
trinsic “preferences” or behaviors of the particular agent. As
we shall see, we can view our model as one for learning cer-
tain kinds of factored Markov processes that are inspired by
models common in sociology and related fields.

Each agent may follow a different and possibly proba-
bilistic strategy. We assume that the strategy followed by
each agent is constrained to lie in a known (and possibly

large) class, but is otherwise unknown. The learner’s ulti-
mate goal is not to discover each individual agent strategy
per se, but rather to make accurate predictions of thecollec-
tivebehavior in novel situations.

2.1 Agent Strategies and Collective Trajectories

We now describe the main components of our framework:

• State Space.At each time step, each agenti is in some
statesi chosen from a known, finite setS of sizeK.
We often think ofK as being large, and thus want al-
gorithms whose running time scales polynomially inK
and other parameters. We viewsi as theactiontaken by
agenti in response to the recent population behavior.
The joint action vector~s ∈ SN describes the current
global state of the collective.

• Initial State Distribution. We assume that the initial
population state~s 0 is drawn according to a fixed but
unknown distributionP overSN . During training, the
learner is able to see trajectories of the collective behav-
ior in which the initial state is drawn fromP , and as in
many standard learning models, must generalize with
respect to this same distribution. (We also consider a
no-reset variant of our model in Section 2.3.)

• Agent Strategy Class. We assume that each agent’s
strategy is drawn from a known classC of (typically
probabilistic) mappings from the recent collective be-
havior into the agent’s next state or action inS. We
mainly consider the case in whichci ∈ C probabilisti-
cally maps the current global state~s into agenti’s next
state. However, much of the theory we develop ap-
plies equally well to more complex strategies that might
incorporate a longer history of the collective behavior
on the current trajectory, or might depend on summary
statistics of that history.

Given these components, we can now define what is meant
by acollective trajectory.

Definition 1 Let~c ∈ CN be the vector of strategies for the
N agents,P be the initial state distribution, andT ≥ 1 be an
integer. AT -trajectory of ~c with respect to P is a random
variable 〈~s 0, · · · , ~s T 〉 in which the initial state~s 0 ∈ SN

is drawn according toP , and for eacht ∈ {1, · · · , T}, the
componentst

i of the joint state~s t is obtained by applying
the strategyci to ~s t−1. (Again, more generally we may
also allow the strategiesci to depend on the full sequence
~s 0, . . . , ~s t−1, or on summary statistics of that history.)

Thus, a collective trajectory in our model is simply a
Markovian sequence of states thatfactorsaccording to the
N agent strategies — that is, a dynamic Bayes net [19]. Our
interest is in cases in which this Markov process is generated
by particular models of social behavior, some of which are
discussed in Section 3.

2.2 The Learning Model

We now formally define the learning model we study. In
our model, learning algorithms are given access to an oracle
OEXP(~c, P, T ) that returns aT -trajectory〈~s 0, · · · , ~s T 〉 of



~c with respect toP . This is thus anepisodicor resetmodel,
in which the learner has the luxury of repeatedly observing
the population behavior from random initial conditions. It
is most applicable in (partially) controlled, experimental set-
tings [7, 17, 20, 21, 8] where such “population resets” can
be implemented or imposed. In Section 2.3 below we de-
fine a perhaps more broadly applicable variant of the model
in which resets are not available; the algorithms we provide
can be adapted for this model as well (Section 5.3).

The goal of the learner is to find agenerative modelthat
can efficiently produce trajectories from a distribution that
is arbitrarily close to that generated by the true population.
Thus, letM̂(~s 0, T ) be a (randomized) model output by a
learning algorithm that takes as input a start state~s 0 and
time horizonT , and outputs a randomT -trajectory, and let
QM̂ denote the distribution over trajectories generated byM̂
when the start state is distributed according toP . Similarly,
let Q~c denote the distribution over trajectories generated by
OEXP(~c, P, T ). Then the goal of the learning algorithm is to
find a modelM̂ making theL1 distanceε(QM̂ , Q~c) between
QM̂ andQ~c small, where

ε(QM̂ , Q~c) ≡
∑

〈~s 0,··· ,~s T 〉

|QM̂ (〈~s 0, · · · , ~s T 〉) − Q~c(〈~s 0, · · · , ~s T 〉)| .

A couple of remarks are in order here. First, note that
we have defined the output of the learning algorithm to be
a “black box” that simply produces trajectories from initial
states. Of course, it would be natural to expect that this black
box operates by having good approximations to every agent
strategy in~c, and using collective simulations of these to pro-
duce trajectories, but we choose to define the outputM̂ in a
more general way since there may be other approaches. Sec-
ond, we note that our learning criteria is both strong (see
below for a discussion of weaker alternatives) and useful,
in the sense that ifε(QM̂ , Q~c) is smaller thanε, then we can
sampleM̂ to obtainO(ε)-good approximations to the expec-
tation of any (bounded)functionof trajectories. Thus, for in-
stance, we can usêM to answer questions like “What is the
expected number of agents playing the plurality action after
T steps?” or “What is the probability the entire population
is playing the same action afterT steps?” (In Section 2.4 be-
low we discuss a weaker model in which we care only about
onefixedoutcome function.)

Our algorithmic results consider cases in which the agent
strategies may themselves already be rather rich, in which
case the learning algorithm should be permitted resources
commensurate with this complexity. For example, the crowd
affinity models have a number of parameters that scales with
the number of actionsK. More generally, we usedim(C) to
denote the complexity or dimension ofC; in all of our imag-
ined applicationsdim(·) is either the VC dimension for de-
terministic classes, or one of its generalizations to probabilis-
tic classes (such as pseudo-dimension [11], fat-shattering di-
mension [15], combinatorial dimension [11], etc.).

We are now ready to define our learning model.

Definition 2 Let C be an agent strategy class over actions
S. We say thatC is polynomially learnable from collective

behavior if there exists an algorithmA such that for any
population sizeN ≥ 1, any~c ∈ CN , any time horizonT ,
any distributionP overSN , and anyε > 0 andδ > 0, given
access to the oracleOEXP(~c, P, T ), algorithmA runs in time
polynomial inN , T , dim(C), 1/ε, and1/δ, and outputs a
polynomial-time model̂M such that with probability at least
1 − δ, ε(QM̂ , Q~c) ≤ ε.

We now discuss two reasonable variations on the model
we have presented.

2.3 A No-Reset Variant

The model above assumes that learning algorithms are given
access to repeated, independent trajectories via the oracle
OEXP, which is analogous to theepisodicsetting of rein-
forcement learning. As in that field, we may also wish to
consider an alternative “no-reset” model in which the learner
has access only to asingle, unbroken trajectory of states gen-
erated by the Markov process. To do so we must formulate
an alternative notion of generalization, since on the one hand,
the (distribution of the) initial state may quickly become ir-
relevant as the collective behavior evolves, but on the other,
the state space is exponentially large and thus it is unrealistic
to expect to model the dynamics from anarbitrary state in
polynomial time.

One natural formulation allows the learner to observe any
polynomially long prefix of a trajectory of states for training,
and then to announce its readiness for the test phase. If~s is
the final state of the training prefix, we can simply ask that
the learner output a model̂M that generates accurateT -step
trajectoriesforward from the current state~s. In other words,
M̂ should generate trajectories from a distribution close to
the distribution overT -step trajectories that would be gener-
ated if each agent continued choosing actions according to
his strategy. The length of the training prefix is allowed to be
polynomial inT and the other parameters.

While aspects of the general theory described below are
particular to our main (episodic) model, we note here that the
algorithms we give for specific classes can in fact be adapted
to work in the no-reset model as well. Such extensions are
discussed briefly in Section 5.3.

2.4 Weaker Criteria for Learnability

We have chosen to formulate learnability in our model us-
ing a rather strong success criterion — namely, the ability to
(approximately) simulate the full dynamics of the unknown
Markov process induced by the population strategy~c. In or-
der to meet this strong criterion, we have also allowed the
learner access to a rather strong oracle, which returns allin-
termediatestates of sampled trajectories.

There may be natural scenarios, however, in which we
are interested only in specificfixed properties of collective
behavior, and thus a weaker data source may suffice. For in-
stance, suppose we have a fixed, real-valuedoutcome func-
tionF (~s T ) of final states (for instance, the fraction of agents
playing the plurality action at timeT ), with our goal being
to simply learn a functionG that maps initial states~s 0 and a
time horizonT to real values, and approximately minimizes

E~s 0∼P

[∣

∣G(~s 0, T ) − E~s T [F (~s T )]
∣

∣

]



where~s T is a random variable that is the final state of a
T -trajectory of~c from the initial state~s 0. Clearly in such a
model, while it certainly would suffice, there may be no need
to directly learn a full dynamical model. It may be feasible
to satisfy this criterion without even observing intermediate
states, but only seeing initial state and final outcome pairs
〈~s 0, F (~s T )〉, closer to a traditional regression problem.

It is not difficult to define simple agent strategy classes
for which learning from only〈~s 0, F (~s T )〉 pairs is provably
intractable, yet efficient learning is possible in our model.
This idea is formalized in Theorem 3 below. Here the popu-
lation forms a rather powerful computational device map-
ping initial states to final states. In particular, it can be
thought of as a circuit of depthT with “gates” chosen from
C, with the only real constraint being that each layer of the
circuit is an identical sequence ofN gates which are applied
to the outputs of the previous layer. Intuitively, if only initial
states and final outcomes are provided to the learner, learn-
ing should be as difficult as a corresponding PAC-style prob-
lem. On the other hand, by observing intermediate state vec-
tors we can build arbitrarily accurate models for each agent,
which in turn allows us to accurately simulate the full dy-
namical model.

Theorem 3 LetC be the class of 2-inputAND andOR gates,
and one-inputNOT gates. ThenC is polynomially learnable
from collective behavior, but there exists a binary outcome
function F such that learning an accurate mapping from
start states~s 0 to outcomesF (~s T ) without observing inter-
mediate state data is intractable.

Proof: (Sketch) We first sketch the hardness construction.
Let H be any class of Boolean circuits (that is, with gates in
C) that is not polynomially learnable in the standard PAC
model; under standard cryptographic assumptions, such a
class exists. LetD be a hard distribution for PAC learning
H. Let h ∈ H be a Boolean circuit withR inputs,S gates,
and depthD. To embed the computation byh in a collective
problem, we letN = R + S andT = D. We introduce
an agent for each of theR inputs toh, whose value after the
initial state is set according to an arbitraryAND, OR, or NOT
gate. We additionally introduce one agent for every gateg
in h. If a gateg in h takes as its inputs the outputs of gates
g′ andg′′, then at each time step the agent corresponding to
g computes the corresponding function of the states of the
agents corresponding tog′ andg′′ at the previous time step.
Finally, by convention we always have theN th agent be the
agent corresponding to the output gate ofh, and define the
output function asF (~s) = sN . The distributionP over ini-
tial states of theN agents is identical toD on theR agents
corresponding to the inputs ofh, and arbitrary (e.g., inde-
pendent and uniform) on the remainingS agents.

Despite the fact that this construction introduces a great
deal of spurious computation (for instance, at the first time
step, many or most gates may simply be computing Boolean
functions of the random bits assigned to non-input agents),it
is clear that if gateg is at depthd in h, then at timed in the
collective simulation of the agents, the corresponding agent
has exactly the value computed byg under the inputs toh
(which are distributed according toD). Because the outcome
function is the value of the agent corresponding to the output

gate ofh at timeT = D, pairs of the form〈~s 0, F (~s T )〉
provide exactly the same data as the PAC model forh under
D, and thus must be equally hard.

For the polynomial learnability ofC from collective be-
havior, we note thatC is clearly PAC learnable, since it is
just Boolean combinations of 1 or 2 inputs. In Section 4
we give a general reduction from collective learning of any
agent strategy class to PAC learning the class, thus giving the
claimed result.

Conversely, it is also not difficult to concoct cases in
which learning the full dynamics in our sense is intractable,
but we can learn to approximate a specific outcome func-
tion from only〈~s 0, F (~s T )〉 pairs. Intuitively, if each agent
strategy is very complex but the outcome function applied to
final states is sufficiently simple (e.g., constant), we cannot
but do not need to model the full dynamics in order to learn
to approximate the outcome.

We note that there is an analogy here to the distinc-
tion betweendirectandindirectapproaches to reinforcement
learning [16]. In the former, one learns a policy that is spe-
cific to a fixed reward function without learning a model of
next-state dynamics; in the latter, at possibly greater cost,
one learns an accurate dynamical model, which can in turn
be used to compute good policies for any reward function.
For the remainder of this paper, we focus on the model as we
formalized it in Definition 2, and leave for future work the
investigation of such alternatives.

3 Social Strategy Classes

Before providing our general theory, including the reduction
from collective learning to I.I.D. learning, we first illustrate
and motivate the definitions so far with some concrete exam-
ples of social strategy classes, some of which we analyze in
detail in Section 5.

3.1 Crowd Affinity: Mixture Strategies

The first class of agent strategies we discuss are meant to
model settings in which each individual wishes to balance
their intrinsic personal preferences with a desire to “follow
the crowd.” We broadly refer to strategies of this type as
crowd affinitystrategies (in contrast to thecrowd aversion
strategies discussed shortly), and examine a couple of natural
variants.

As a motivating example, imagine that there areK
restaurants, and each week, every member of a population
chooses one of the restaurants in which to dine. On the one
hand, each agent has personal preferences over the restau-
rants based on the cuisine, service, ambiance, and so on. On
the other, each agent has some desire to go to the currently
“hot” restaurants — that is, where many or most other agents
have been recently. To model this setting, letS be the set of
K restaurants, and suppose~s ∈ SN is the population state
vector indicating where each agent dined last week. We can
summarize the population behavior by the vector or distribu-
tion ~f ∈ [0, 1]K , wherefa is the fraction of agents dining
in restauranta in ~s. Similarly, we might represent the per-
sonal preferences of a specific agent by another distribution
~w ∈ [0, 1]K in whichwa represents the probability this agent
would attend restauranta in the absence of any information
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Figure 1: Sample simulations of the (a) crowd affinity mixture model; (b) crowd affinity multiplicative model; (c) agent affinity model.
Horizontal axis is population state; vertical axis is simulation time. See text fordetails.

about what the population is doing. One natural way for the
agent to balance their preferences with the population behav-
ior would be to choose a restaurant according to the mixture
distribution(1 − α)~f + α~w for some agent-dependent mix-
ture coefficientα. Such models have been studied in the
sociology literature [12] in the context of belief formation.

We are interested in collective systems in which every
agenti has some unknown preferences~wi and mixture co-
efficient αi, and in each weekt chooses its next restaurant
according to(1 − αi)~f t + αi ~wi, which thus probabilisti-
cally yields the next population distribution~f t+1. How do
such systems behave? And how can we learn to model their
macroscopic properties from only observed behavior, espe-
cially when the number of choicesK is large?

An illustration of the rich collective behavior that can al-
ready be generated from such simple strategies is shown in
Figure 1(a). Here we show a single but typical 1000-step
simulation of collective behavior under this model, in which
N = 100 and each agent’s individual preference vector~w
puts all of its weight on just one of 10 possible actions (rep-
resented as colors); this action was selected independently at
random for each agent. All agents have anα value of just
0.01, and thus are selecting from the population distribution
99% of the time. Each row shows the population state at a
given step, with time increasing down the horizontal axis of
the image. The initial state was chosen uniformly at random.

It is interesting to note the dramatic difference between
α = 0 (in which rapid convergence to a common color
is certain) and this small value forα; despite the fact that
almost all agents play the population distribution at every
step, revolving horizontal waves of near-consensus to dif-
ferent choices are present, with no final convergence in
sight. The slight “personalization” of population-only be-
havior is enough to dramatically change the collective be-

havior. Broadly speaking, it is such properties we would like
a learning algorithm to model and predict from sufficient ob-
servations.

3.2 Crowd Affinity: Multiplicative Strategies

One possible objection to the crowd affinity mixture strate-
gies described above is that each agent can be viewed as
randomlychoosing whether toentirelyfollow the population
distribution (with probability1−α) or toentirelyfollow their
personal preferences (with probabilityα) at each time step.
A more realistic model might have each agent trulycombine
the population behavior with their preferences at every step.

Consider, for instance, how an American citizen might
alter their anticipated presidential voting decision overtime
in response to recent primary or polling news. If their first
choice of candidate — say, an Independent or Libertarian
candidate — appears over time to be “unelectable” in the
general election due to their inability to sway large num-
bers of Democratic and Republican voters, a natural and typ-
ical response is for the citizen to shift their intended voteto
whichever of the front-runners they most prefer or least dis-
like. In other words, the low popularity of their first choice
causes that choice to be dampened or eradicated; unlike the
mixture model above, where weightα is always given to per-
sonal preferences, here there may remainno weight on this
candidate.

One natural way of defining a general such class of
strategies is as follows. As above, let~f ∈ [0, 1]K , where
fa is the fraction of agents dining in restauranta in the
current state~s. Similar to the mixture strategies above, let
~wi ∈ [0, 1]K be a vector ofweightsrepresenting the intrinsic
preferences of agenti over actions. Then define the prob-
ability that agenti plays actiona to befa · wi,a/Z(~f, ~wi),
where the normalizing factor isZ(~f, ~wi) =

∑

b∈S fb · wi,b.



Thus, in suchmultiplicativecrowd affinity models, the prob-
ability the agent takes an action is always proportional to the
product of their preference for it and its current popularity.

Despite their similar motivation, the mixture and mul-
tiplicative crowd affinity strategies can lead to dramatically
different collective behavior. Perhaps the most obvious dif-
ference is that in the mixture case, if agenti has a strong
preference for actiona there isalwayssome minimum prob-
ability (αiwi,a) they take this action, whereas in the mul-
tiplicative case even a strong preference can be eradicated
from expression by small or zero values for the popularity
fa.

In Figure 1(b), we again show a single but typical 1000-
step, N = 100 simulation for the multiplicative model
in which agent’s individual preference distributions~w are
chosen to be random normalized vectors over 10 actions.
The dynamics are now quite different than for the additive
crowd affinity model. In particular, now there is never near-
consensus but a gradual dwindling of the colors represented
in the population — from the initial full diversity down to 3
colors remaining at approximatelyt = 100, until by t = 200
there is a stand-off in the population between red and light
green. Unlike the additive models, colors die out in the popu-
lation permanently. There is also clear vertical structurecor-
responding to strong conditional preferences of the agents
once the stand-off emerges.

3.3 Crowd Aversion and Other Variants

It is easy to transform the mixture or multiplicative crowd
affinity strategies intocrowd aversionstrategies — that is, in
which agents wish to balance or combine their personal pref-
erences with a desire to actdifferentlythan the population at
large. This can be accomplished in a variety of simple ways.
For instance, if~f is the current distributions over actions in
the population, we can simply define a kind of “inverse” to
the distribution by lettingga = (1 − fa)/(K − 1), where
K−1 =

∑

b∈S(1−fb) is the normalizing factor, and apply-

ing the strategies above to~g rather than~f . Now each agent
exhibits a tendency to “avoid the crowd”, moderated as be-
fore by their own preferences.

Of course, there is no reason to assume that the entire
population is crowd-seeking, or crowd-avoiding; more gen-
erally we would allow there to be both types of individuals
present. Furthermore, we might entertain other transforms
of the population distribution than justga above. For in-
stance, we might wish to still consider crowd affinity, but to
first “sharpen” the distribution by replacing eachfa with f2

a

and normalizing, then applying the models discussed above
to the resulting vector. This has the effect of magnifying the
attraction to the most popular actions. In general our algo-
rithmic results are robust to a wide range of such variations.

3.4 Agent Affinity and Aversion Strategies

In the two versions of crowd affinity strategies discussed
above, an agent has personal preferences over actions, and
also reacts to the current population behavior, but only in an
aggregate fashion. An alternative class of strategies thatwe
call agent affinitystrategies instead allows agents to prefer to
agree (or disagree) in their choice with specific other agents.

For a fixed agent, such a strategy can be modeled by a
weight vector~w ∈ [0, 1]N , with one weight for eachagent
in the population rather than each action. We define the prob-
ability that this agent takes actiona if the current global state
is ~s ∈ SN to be proportional to

∑

i:si=a wi. In this class of
strategies, the strength of the agent’s desire to take the same
action as agenti is determined by how large the weightwi

is. The overall behavior of this agent is then probabilistically
determined by summing over all agents in the fashion above.

In Figure 1(c), we show a single but typical simulation,
again withN = 100 but now with a much shorter time hori-
zon of 200 steps and a much larger set of 100 actions. All
agents have random distributions as their preferences over
other agents; this model is similar to traditional diffusion dy-
namics in a dense, random (weighted) network, and quickly
converges to global consensus.

We leave the analysis of this strategy class to future work,
but remark that in the simple case in whichK = 2, learning
this class is closely related to the problem of learning per-
ceptrons under certain noise models in which the intensity of
the noise increases with proximity to the separator [5, 4] and
seems at least as difficult.

3.5 Incorporating Network Structure

Many of the social models inspiring this work involve a net-
work structure that dictates or restricts the interactionsbe-
tween agents [18]. It is natural to ask if the strategy classes
discussed here can be extended to the scenario in which each
agent is influenced only by his neighbors in a given network.
Indeed, it is straightforward to extend each of the strategy
classes introduced in this section to a network setting. For
example, to adapt the crowd affinity and aversion strategy
classes, it suffices to redefinefa for each agenti to be the
fraction of agents in the local neighborhood of agenti choos-
ing actiona. To adapt the agent affinity and aversion classes,
it is necessary only to require thatwj = 0 for every agentj
outside the local neighborhood of agenti. By making these
simple modifications, the learning algorithms discussed in
Section 5 can immediately be applied to settings in which a
network structure is given.

4 A Reduction to I.I.D. Learning

Since algorithms in our framework are attempting to learn to
model the dynamics of a factored Markov process in which
each component is known to lie in the classC, it is natural
to investigate the relationship between learning just a single
strategy inC and the entire Markovian dynamics. One main
concern might be effects of dynamic instability — that is,
that even small errors in models for each of theN compo-
nents could be amplified exponentially in the overall popula-
tion model.

In this section we show that this can be avoided. More
precisely, we prove that if the component errors are all small
compared to1/(NT )2, the population model also has small
error. Thus fast rates of learning for individual compo-
nents are polynomially preserved in the resulting population
model.

To show this, we give a reduction showing that if a class
C of (possibly probabilistic) strategies is polynomially learn-
able (in a sense that we describe shortly) from I.I.D. data,



thenC is also polynomially learnable from collective behav-
ior. The key step in the reduction is the introduction of the
experimental distribution, defined below. Intuitively, the ex-
perimental distribution is meant to capture the distribution
over states that are encountered in the collective setting over
repeated trials. Polynomial I.I.D. learning on this distribu-
tion leads to polynomial learning from the collective.

4.1 A Reduction for Deterministic Strategies

In order to illustrate some of the key ideas we use in the
more general reduction, we begin by examining the simple
case in which the number of actionsK = 2 and and each
strategyc ∈ C is deterministic. We show that ifC is polyno-
mially learnable in the (distribution-free) PAC model, then C
is polynomially learnable from collective behavior.

In order to exploit the fact thatC is PAC learnable, it is
first necessary to define a single distribution over states on
which we would like to learn.

Definition 4 For any initial state distributionP , strategy
vector~c, and sequence lengthT , theexperimental distribu-
tion DP,~c,T is the distribution over state vectors~s obtained
by queryingOEXP(~c, P, T ) to obtain〈~s 0, · · · , ~s T 〉, choos-
ing t uniformly at random from{0, · · · , T − 1}, and setting
~s = ~s t.

We denote this distribution simply asD whenP ,~c, andT
are clear from context. Given access to the oracleOEXP, we
can sample pairs〈~s, ci(~s)〉 where~s is distributed according
to D using the following procedure:

1. QueryOEXP(~c, P, T ) to obtain〈~s 0, · · · , ~s T 〉.

2. Chooset ∈ {0, · · · , T − 1} uniformly at random.

3. Return〈~s t, s t+1
i 〉.

If C is polynomially learnable in the PAC model, then by
definition, with access to the oracleOEXP, for anyδ, ε > 0,
it is possible to learn a model̂ci such that with probability
1 − (δ/N),

Pr~s∼D[ĉi(~s) 6= ci(~s)] ≤
ε

NT

in time polynomial inN , T , 1/ε, 1/δ, and the VC dimension
of C using the sampling procedure above; the dependence
on N and T come from the fact that we are requesting a
confidence of1 − (δ/N ) and an accuracy ofε/(TN). We
can learn a set of such strategiesĉi for all agentsi at the cost
of an additional factor ofN .

Consider a new sequence〈~s 0, · · · , ~s T 〉 returned by the
oracleOEXP. By the union bound, with probability1 − δ,
the probability that there exists any agenti and anyt ∈
{0, · · · , T − 1}, such that̂ci(~s

t) 6= ci(~s
t) is less thanε.

If this is not the case (i.e., if̂ci(~s
t) = ci(~s

t) for all i and
t) then the same sequence of states would have been reached
if we had instead started at state~s 0 and generated each ad-
ditional state~s t by lettingst

i = ci(~s
t−1). This implies that

with probability1 − δ, ε(QM̂ , Q~c) ≤ ε, andC is polynomi-
ally learnable from collective behavior.

4.2 A General Reduction

Multiple analogs of the definition of learnability in the PAC
model have been proposed for distribution learning settings.
The probabilistic concept model [15] presents a definition
for learning conditional distributions over binary outcomes,
while later work [13] proposes a definition for learning un-
conditional distributions over larger outcome spaces. We
combine the two into a single PAC-style model for learn-
ing conditional distributions over large outcome spaces from
I.I.D. data as follows.

Definition 5 LetC be a class of probabilistic mappings from
an input~x ∈ X to an outputy ∈ Y whereY is a finite set. We
say thatC is polynomially learnable if there exists an algo-
rithm A such that for anyc ∈ C and any distributionD over
X , if A is given access to an oracle producing pairs〈~x, c(~x)〉
with x distributed according toD, then for anyε, δ > 0, al-
gorithmA runs in time polynomial in1/ε, 1/δ, anddim(C)
and outputs a function̂c such that with probability1 − δ,

E~x∼D





∑

y∈Y

|Pr(c(~x) = y) − Pr(ĉ(~x) = y)|



 ≤ ε .

We could have chosen instead to require that the expected
KL divergence betweenc andĉ be bounded. Using Jensen’s
inequality and Lemma 12.6.1 of Cover and Thomas [6], it
is simple to show that if the expected KL divergence be-
tween two distributions is bounded byε, then the expected
L1 distance is bounded by

√

2 ln(2)ε. Thus any class that is
polynomially learnable under this alternate definition is also
polynomially learnable under ours.

Theorem 6 For any classC, if C is polynomially learnable
according to Definition 5, thenC is polynomially learnable
from collective behavior.

Proof: This proof is very similar in spirit to the proof of the
reduction for the deterministic case. However, several tricks
are needed to deal with the fact that trajectories are now ran-
dom variables, even given a fixed start state. In particular,it
is no longer the case that we can argue that starting at a given
start state and executing a set of strategies that are “closeto”
the true strategy vector usually yieldsthe samefull trajectory
we would have obtained by executing the true strategies of
each agent. Instead, due to the inherent randomness in the
strategies, we must argue that thedistributionover trajecto-
ries is similar when the estimated strategies are sufficiently
close to the true strategies.

To make this argument, we begin by introducing the idea
of sampling from a distributionP1 using a “filtered” version
of a second distributionP2 as follows. First, draw an out-
comeω ∈ Ω according toP2. If P1(ω) ≥ P2(ω), output
ω. Otherwise, outputω with probabilityP1(ω)/P2(ω), and
with probability1−P1(ω)/P2(ω), output an alternate action
drawn according to a third distributionP3, where

P3(ω) =
P1(ω) − P2(ω)

∑

ω′:P2(ω′)<P1(ω′) P1(ω′) − P2(ω′)

if P1(ω) > P2(ω), andP3(ω) = 0 otherwise.



It is easy to verify that the output of this filtering algo-
rithm is indeed distributed according toP1. Additionally,
notice that the probability that the output is “filtered” is

∑

ω:P2(ω)>P1(ω)

P2(ω)

(

1 − P1(ω)

P2(ω)

)

=
1

2
||P2 − P1||1 . (1)

As in the deterministic case, we make use of the experi-
mental distributionD as defined in Definition 4. IfC is poly-
nomially learnable as in Definition 5, then with access to the
oracleOEXP, for anyδ, ε > 0, it is possible to learn a model
ĉi such that with probability1 − (δ/N),

E~s∼D

[

∑

s∈S

|Pr(ci(~s)=s) − Pr(ĉi(~s)=s)|
]

≤
( ε

NT

)2

(2)

in time polynomial inN , T , 1/ε, 1/δ, anddim(C) using the
three-step sampling procedure described in the deterministic
case; as before, the dependence onN andT stem from the
fact that we are requesting a confidence of1− (δ/N) and an
accuracy that is polynomial in bothN andT . It is possible
learn a set of such strategiesĉi for all agentsi at the cost of
an additional factor ofN .

If Equation 2 is satisfied for agenti, then for anyτ ≥ 1,
the probability of drawing a state~s from D such that

∑

s∈S

|Pr(ci(~s) = s) − Pr(ĉi(~s) = s)| ≥ τ
( ε

NT

)2

(3)

is no more than1/τ .
Consider a new sequence〈~s 0, · · · , ~s T 〉 returned by the

oracleOEXP. For each~s t, consider the actionst+1
i chosen

by agenti. This action was chosen according to the distribu-
tion ci. Suppose instead we would like to choose this action
according to the distribution̂ci using a filtered version ofci

as described above. By Equation 1, the probability that the
action choice ofci is “filtered” (and thus not equal tost+1

i )
is half theL1 distance betweenci(~s

t) and ĉi(~s
t). From

Equation 3, we know that for anyτ ≥ 1, with probability at
least1 − 1/τ , this probability is less thanτ(ε/(NT ))2, so
the probability of the new action being different fromst+1

i

is less thanτ(ε/(NT ))2 + 1/τ . This is minimized when
τ = 2NT/ε, giving us a bound ofε/(NT ).

By the union bound, with probability1 − δ, the proba-
bility that there exists any agenti and anyt ∈ {1, · · · , T},
such thats t+1

i is not equal to the action we get by sampling
ĉi(~s

t) using the filtered version ofci must then be less than
ε. As in the deterministic version, if this isnot the case, then
the same sequence of states would have been reached if we
had instead started at state~s 0 and generated each additional
state~s t by lettingst

i = ĉi(~s
t−1) filtered usingci. This im-

plies that with probability1 − δ, ε(QM̂ , Q~c) ≤ ε, andC is
polynomially learnable from collective behavior.

5 Learning Social Strategy Classes

We now turn our attention to efficient algorithms for learn-
ing some of the specific social strategy classes introduced in
Section 3. We focus on the two crowd affinity model classes.
Recall that these classes are designed to model the scenario

in which each agent has an intrinsic set of preferences over
actions, but simultaneously would prefer to choose the same
actions chosen by other agents. Similar techniques can be
applied to learn the crowd aversion strategies.

Formally, let ~f be a vector representing the distribution
over current states of the agents; if~s is the current state, then
for each actiona, fa = |{i : si = a}|/N is the fraction of the
population currently choosing actiona. (Alternately, if there
is a network structure governing interaction among agents,
fa can be defined as the fraction of nodes in an agent’s local
neighborhood choosing actiona.) We denote byDf the dis-
tribution over vectors~f induced by the experimental distri-
butionD over state vectors~s. In other words, the probability
of a vector ~f underDf is the sum over all state vectors~s
mapping to~f of the probability of~s underD.

We focus on the problem of learning the parameters of
the strategy of a single agenti in each of the models. We as-
sume that we are presented with a set of samplesM, where
each instanceIm ∈ M consists of a pair〈~fm, am〉. Here
~fm is the distribution over states of the agents andam is the
next action chosen by agenti. We assume that the state dis-
tributions ~fm of these samples are distributed according to
Df . Given access to the oracleOEXP, such samples could
be collected, for example, using a three-step procedure like
the one in Section 4.1. We show that each class is polyno-
mially learnable with respect to the distributionDf induced
by anydistributionD over states, and so by Theorem 6, also
polynomially learnable from collective behavior.

While it may seem wasteful to gather only one data in-
stance for each agenti from eachT -trajectory, we remark
that only small, isolated pieces of the analysis presented in
this section rely on the assumption that the state distributions
of the samples are distributed according toDf . In practice,
the entire trajectories could be used for learning with no im-
pact on the structure of the algorithms. Additionally, while
the analysis here is geared towards learning under the experi-
mental distribution, the algorithms we present can be applied
without modification in the no-reset variant of the model in-
troduced in Section 2.3. We briefly discuss how to extend
the analysis to the no-reset variant in Section 5.3.

5.1 Learning Crowd Affinity Mixture Models

In Section 3.1, we introduced the class of crowd affinity mix-
ture model strategies. Such strategies are parameterized by a
(normalized) weight vector~w and parameterα ∈ [0, 1]. The
probability that agenti chooses actiona given that the cur-
rent state distribution is~f is thenαfa + (1 − α)wa. In this
section, we show that this class of strategies is polynomially
learnable from collective behavior and sketch an algorithm
for learning estimates of the parametersα and ~w.

Let I(x) be the indicator function that is 1 ifx is true and
0 otherwise. From the definition of the model it is easy to
see that for anym such thatIm ∈ M, for any actiona ∈ S,
E[I(am = a)] = αfa + (1− α)wa, where the expectation is
over the randomness in the agent’s strategy. By linearity of
expectation,

E

[

∑

m:Im∈M

I(am = a)

]

=α
∑

m:Im∈M

fm,a+(1 − α)wa|M| . (4)



Standard results from uniform convergence theory say
that we can approximate the left-hand side of this equation
arbitrarily well given a sufficiently large data setM. Replac-
ing the expectation with this approximation in Equation 4
yields a single equation with two unknown variables,α and
wa. To solve for these variables, we must construct apair of
equations with two unknown variables. We do so by splitting
the data into instances wherefm,a is “high” and instances
where it is “low.”

Specifically, letM = |M|. For convenience of notation,
assume without loss of generality thatM is even; ifM is
odd, simply discard an instance at random. DefineMlow

a

to be the set containing theM/2 instances inM with the
lowest values offm,a. Similarly, defineMhigh

a to be the
set containing theM/2 instances with the highest values of
fm,a. ReplacingM with Mlow

a andMhigh
a respectively in

Equation 4 gives us two linear equations with two unknowns.
As long as these two equations are linearly independent, we
can solve the system of equations forα, giving us

α=
E
[

∑

m:Im∈Mhigh
a

I(am =a)−∑m:Im∈Mlow
a

I(am =a)
]

∑

m:Im∈Mhigh
a

fm,a −∑m:Im∈Mlow
a

fm,a

.

We can approximateα from data in the natural way, using

α̂=

∑

m:Im∈Mhigh
a

I(am=a)−∑m:Im∈Mlow
a

I(am=a)
∑

m:Im∈Mhigh
a

fm,a −∑m:Im∈Mlow
a

fm,a

. (5)

By Hoeffding’s inequality and the union bound, for any
δ > 0, with probability1 − δ,

|α − α̂| ≤
√

ln(4/δ)M
∑

m:Im∈Mhigh
a

fm,a −∑m:Im∈Mlow
a

fm,a

= (1/Za)
√

ln(4/δ)/M , (6)

where

Za =
1

M/2

∑

m:Im∈Mhigh
a

fm,a − 1

M/2

∑

m:Im∈Mlow
a

fm,a .

The quantityZa measures the difference between the
mean value offm,a among instances with “high” values of
fm,a and the mean value offm,a among instances with “low”
values. While this quantity is data-dependent, standard uni-
form convergence theory tells us that it is stable once the data
set is large. From Equation 6, we know that if there is an ac-
tion a for which this difference is sufficiently high, then it
is possible to obtain an accurate estimate ofα given enough
data. If, on the other hand, no sucha exists, it follows that
there is very little variance in the population distribution over
the sample. We argue below that it is not necessary to learn
α in order to mimic the behavior of an agenti if this is the
case.

For now, assume thatZa is sufficiently large for at least
one value ofa, and call this valuea∗. We can use the estimate
of α to obtain estimates of the weights for each action. From
Equation 4, it is clear that for anya,

wa =
E
[
∑

m:Im∈M I(am = a)
]

− α
∑

m:Im∈M fm,a

(1 − α)M
.

We estimate this weight using

ŵa =

∑

m:Im∈M I(am = a) − α̂
∑

m:Im∈M fm,a

(1 − α̂)M
. (7)

The following lemma shows that given sufficient data,
the error in these estimates is small whenZa∗ is large.

Lemma 7 Leta∗ = argmaxa∈S Za, and letα̂ be calculated
as in Equation 5 witha = a∗. For eacha ∈ S, let ŵa be
calculated as in Equation 7. For sufficiently largeM , for
anyδ > 0, with probability1 − δ,

|α − α̂| ≤ (1/Za∗)
√

ln((4 + 2K)/δ)/M ,

and for all actionsa,

|wa − ŵa|

≤ ((1 − α̂)Za∗/
√

2 + 2)
√

ln((4 + 2K)/δ)

Za∗(1 − α̂)2
√

M − (1 − α̂)
√

ln((4 + 2K)/δ)
.

The proof of this lemma, which is in the appendix,1,
relies heavily on the following technical lemma for bound-
ing the error of estimated ratios, which is used frequently
throughout the remainder of the paper.

Lemma 8 For any positiveu, û, v, v̂, k, and ε such that
εk < v, if |u − û| ≤ ε and|v − v̂| ≤ kε, then

∣

∣

∣

∣

u

v
− û

v̂

∣

∣

∣

∣

≤ ε(v + uk)

v(v − εk)
.

Now that we have bounds on the error of the estimated
parameters, we can bound the expectedL1 distance between
the estimated model and the real model.

Lemma 9 For sufficiently largeM ,

E~f∼Df

∑

a∈S

|(αfa + (1 − α)wa) − (α̂fa + (1 − α̂)ŵa)|

≤ 2
√

ln((4 + 2K)/δ)

Za∗

√
M

+min

{

K(Za∗/
√

2 + 2)
√

ln((4 + 2K)/δ)

Za∗(1 − α̂)
√

M −
√

ln((4 + 2K)/δ)
,

2(1 − α̂)
}

.

In this proof of this lemma, which appears in the appendix,
the quantity

∑

a∈S

|(αfa + (1 − α)wa) − (α̂fa + (1 − α̂)ŵa)|

is boundeduniformly for all ~f using the error bounds. The
bound on the expectation follows immediately.

It remains to show that we can still bound the error when
Za∗ is zero or very close to zero. We present a light sketch
of the argument here; more details appear in the appendix.

1An appendix containing omitted proofs can be found in the
long version of this paper available on the authors’ websites.



Let ηa andµa be the true median and mean of the dis-
tribution from which the random variablesfm,a are drawn.
Let fhigh

a be the mean value of the distribution overfm,a

conditioned onfm,a > ηa. Let f̄high
a be the empirical

average offm,a conditioned onfm,a > ηa. Finally, let
f̂high

a = (2/M)
∑

m:Im∈Mhigh
a

fm,a be the empirical av-
erage offm,a conditioned onfm,a being greater than the
empiricalmedian. We can calculatêfhigh

a from data.
We can apply standard arguments from uniform conver-

gence theory to show thatfhigh
a is close tof̄high

a , and in turn
that f̄high

a is close tof̂high
a . Similar statements can be made

for the analogous quantitiesf low
a , f̄ low

a , andf̂ low
a . By noting

thatZa = f̂high
a − f̂ low

a this implies that ifZa is small, then
the probability that a random value offm,a is far from the
meanµa is small. When this is the case, it is not necessary
to estimateα directly. Instead, we set̂α = 0 and

ŵa =
1

M

∑

m:Im∈M

I(am = a) .

Applying Hoeffding’s inequality again, it is easy to show
that for eacha, ŵa is very close toαµa + (1 − α)wa, and
from here it can be argued that theL1 distance between the
estimated model and the real model is small.

Thus for any distributionD over state vectors, regardless
of the corresponding value ofZa∗ , it is possible to build an
accurate model for the strategy of agenti in polynomial time.
By Theorem 6, this implies that the class is polynomially
learnable from collective behavior.

Theorem 10 The class of crowd affinity mixture model
strategies is polynomially learnable from collective behav-
ior.

5.2 Learning Crowd Affinity Multiplicative Models

In Section 3.2, we introduced the crowd affinity multiplica-
tive model. In this model, strategies are parameterized only
by a weight vector~w. The probability that agenti chooses
actiona is simplyfawa/

∑

b∈S fbwb.
Although the motivation for this model is similar to that

for the mixture model, the dynamics of the system are quite
different (see the simulations and discussion in Section 3),
and a very different algorithm is necessary to learn individ-
ual strategies. In this section, we show that this class is poly-
nomially learnable from collective behavior, and sketch the
corresponding learning algorithm. The algorithm we present
is based on a simple but powerful observation. In particular,
consider the following random variable:

χm
a =

{

1/fm,a if fm,a > 0 andam = a ,

0 otherwise.

Suppose that for allm such thatIm ∈ M, it is the case that
fm,a > 0. Then by the definition of the strategy class and
linearity of expectation,

E

[

∑

m:Im∈M

χm
a

]

=
∑

m:Im∈M

1

fm,a

(

fm,awa
∑

s∈S fm,sws

)

= wa

∑

m:Im∈M

1
∑

s∈S fm,sws

,

where the expectation is over the randomness in the agent’s
strategy. Notice that this expression is the product of two
terms. The first,wa, is precisely the value we would like
to calculate. The second term is something that depends on
the set of instancesM, but does notdepend on actiona.
This leads to the key observation at the core of our algorithm.
Specifically, if we have a second actionb such thatfm,b > 0
for all m such thatIm ∈ M, then

wa

wb

=
E
[
∑

m:Im∈M χm
a

]

E
[
∑

m:Im∈M χm
b

] .

Although we do not know the values of these expec-
tations, we can approximate them arbitrarily well given
enough data. Since we have assumed (so far) thatfm,a > 0
for all m ∈ M, and we know thatfm,a represents a fraction
of the population, it must be the case thatfm,a ≥ 1/N and
χm

a ∈ [0, N ] for all m. By a standard application of Ho-
effding’s inequality and the union bound, we see that for any
δ > 0, with probability1 − δ,
∣

∣

∣

∣

∣

∑

m:Im∈M

χm
a − E

[

∑

m:Im∈M

χm
a

]∣

∣

∣

∣

∣

≤
√

N ln(2/δ)

2|M| . (8)

This leads to the following lemma. We note that the role of
β in this lemma may appear somewhat mysterious. It comes
the fact that we are bounding the error of a ratio of two terms;
an application of Lemma 8 using the bound in Equation 8
gives us a factor ofχa,b + χb,a in the numerator and a factor
of χb,a in the denominator. This is problematic only when
χa,b is significantly larger thanχb,a. The full proof appears
in the appendix.

Lemma 11 Suppose thatfm,a > 0 andfm,b > 0 for all m
such thatIm ∈ M. Then for anyδ > 0, with probability
1 − δ, for anyβ > 0, if χa,b ≤ βχb,a andχb,a ≥ 1, then if
|M| ≥ N ln(2/δ)/2, then
∣

∣

∣

∣

∣

wa

wb

−
∑

m:Im∈M χm
a

∑

m:Im∈M χm
b

∣

∣

∣

∣

∣

≤ (1 + β)
√

N ln(2/δ)
√

2|M| −
√

N ln(2/δ)
.

If we are fortunate enough to have a sufficient number of
data instances for whichfm,a > 0 for all a ∈ S, then this
lemma supplies us with a way of approximating the ratios
between all pairs of weights and subsequently approximating
the weights themselves. In general, however, this may not be
the case. Luckily, it is possible to estimate the ratio of the
weights of each pair of actionsa andb that are used together
frequently by the population using only those data instances
in which at least one agent is choosing each. Formally, define

Ma,b = {Im ∈ M : fm,a > 0, fm,b > 0} .

Lemma 11 tells us that ifMa,b is sufficiently large, and there
is at least one instanceIm ∈ Ma,b for which am = b, then
we can approximate the ratio betweenwa andwb well.

What if one of these assumptions does not hold? If we
are not able to collect sufficiently many instances in which
fm,a > 0 andfm,b > 0, then standard uniform convergence
results can be used to show that it is very unlikely that we
see a new instance for whichfa > 0 andfb > 0. This idea
is formalized in the following lemma, the proof of which is
in the appendix.



Lemma 12 For any M < |M|, for any δ ∈ (0, 1), with
probability1 − δ,

Pr~f∼Df [∃a, b ∈ S : fa > 0, fb > 0, |Ma,b| < M ]

≤ K2

2

(

M

|M| +

√

ln(K2/(2δ))

2|M|

)

.

Similarly, if χa,b = χb,a = 0, then a standard uniform
convergence argument can be used to show that it is unlikely
that agenti would ever select actiona or b whenfm,a > 0
andfm,b > 0. We will see that in this case, it is not important
to learn the ratio between these two weights.

Using these observations, we can accurately model the
behavior of agenti. The model consists of two phases. First,
as a preprocessing step, we calculate a quantity

χa,b =
∑

m:Im∈Ma,b

χm
a

for each paira, b ∈ S. Then, each time we are presented
with a state~f , we calculate a set of weights for all actionsa
with fa > 0 on the fly.

For a fixed~f , letS ′ be the set of actionsa ∈ S such that
fa > 0. By Lemma 12, if the data set is sufficiently large,
then we know that with high probability, it is the case that
for all a, b ∈ S ′, |Ma,b| ≥ M for some thresholdM .

Now, leta∗ = argmaxa∈S′ |{b : b ∈ S ′, χa,b ≥ χb,a}|.
Intuitively, if there is sufficient data,a∗ should be the action
in S ′ with the highest weight, or have a weight arbitrarily
close to the highest. Thus for anya ∈ S ′, Lemma 11 can
be used to bound our estimate ofwa/wa∗ with a value ofβ
arbitrarily close to 1. Noting that

wa
∑

s∈S′ ws

=
wa/wa∗

∑

s∈S′ ws/wa∗

,

we approximate therelative weight of actiona ∈ S ′ with
respect to the other actions inS ′ using

ŵa =
χa,a∗/χa∗,a

∑

s∈S′ χs,a∗/χa∗,s

,

and simply letŵa = 0 for anya 6∈ S ′. Applying Lemma 8,
we find that for alla ∈ S ′, with high probability,

∣

∣

∣

∣

wa
∑

s∈S′ ws

− ŵa

∣

∣

∣

∣

≤ (1 + β)K
√

N ln(2K2/δ)√
2M − (1 + β)K

√

N ln(2K2/δ)
, (9)

whereM is the lower bound on|Ma,b| for all a, b ∈ S ′, and
β is close to 1. With this bound in place, it is straightforward
to show that we can apply Lemma 8 once more to bound the
expectedL1,

E~f∼Df

[

∑

a∈S

∣

∣

∣

∣

wafa
∑

s∈S wsfs

− ŵafa
∑

s∈S ŵsfs

∣

∣

∣

∣

]

,

and that the bound goes to 0 at a rate ofO(1/
√

M) as the
thresholdM grows. More details are given in the appendix.

Since it is possible to build an accurate model of the strat-
egy of agenti in polynomial time under any distributionD
over state vectors, we can again apply Theorem 6 to see that
this class is polynomially learnable from collective behavior.

Theorem 13 The class of crowd affinity multiplicative
model strategies is polynomially learnable from collective
behavior.

5.3 Learning Without Resets

Although the analyses in the previous subsections are tai-
lored to learnability in the sense of Definition 2, they can
easily be adapted to hold in the alternate setting in which
the learner has access only to a single, unbroken trajectory
of states. In this alternate model, the learning algorithm ob-
serves a polynomially long prefix of a trajectory of states for
training, and then must produce a generative model which
results in a distribution over the values of the subsequentT
states close to the true distribution.

When learning individual crowd affinity models for each
agent in this setting, we again assume that we are presented
with a set of samplesM, where each instanceIm ∈ M
consists of a pair〈~fm, am〉. However, instead of assuming
that the state distributions~fm are distributed according to
Df , we now assume that the state and action pairs represent
a single trajectory. As previously noted, the majority of the
analysis for both the mixture and multiplicative variants of
the crowd affinity model does not depend on the particular
way in which state distribution vectors are distributed, and
thus carries over to this setting as is. Here we briefly discuss
the few modifications that are necessary.

The only change required in the analysis of the crowd
affinity mixture model relates to handling the case in which
Za is small for alla. Previously we argued that when this is
the case, the distributionDf must be concentrated so that for
all a, fa falls within a very small range with high probability.
Thus it is not necessary to estimate the parameterα directly,
and we can instead learn a single probability for each action
that is used regardless of~f . A similar argument holds in
the no-reset variant. If it is the case thatZa is small for all
a, then it must be the case that for eacha, the value offa

has fallen into the same small range for the entire observed
trajectory. A standard uniform convergence argument says
that the probability thatfa suddenly changes dramatically is
very small, and thus again it is sufficient to learn a single
probability for each action that is used regardless of~f .

To adapt the analysis of the crowd affinity multiplicative
model, it is first necessary to replace Lemma 12. Recall that
the purpose of this lemma was to show that when the data
set does not contain sufficient samples in whichfa > 0 and
fb > 0 for a pair of actionsa andb, the chance of observing
a new state distribution~f with fa > 0 andfb > 0 is small.
This argument is actually much more straightforward in the
no-reset case. By the definition of the model, it is easy to
see that iffa > 0 for some actiona at timet in a trajectory,
then it must be the case thatfa > 0 at all previous points
in the trajectory. Thus iffa > 0 on any test instance, then
fa must have been non-negative oneverytraining instance,
and we do not have to worry about the case in which there is
insufficient data to compare the weights of a particular pair
of actions.

One additional, possibly more subtle, modification is
necessary in the analysis of the multiplicative model to han-
dle the case in whichχa,b = χb,a = 0 for all “active” pairs
of actionsa, b ∈ S ′. This can happen only if agenti has



extremely small weights for every action inS ′, and had pre-
viously been choosing an alternate action that is no longer
available, i.e., an actions for which fs had previously been
non-negative but suddenly is not. However, in order forfs

to become0, it must be the case that agenti himself chooses
an alternate action (say, actiona) instead ofs, which can-
not happen since the estimated weight of actiona used by
the model is0. Thus this situation can never occur in the
no-reset variant.

6 Conclusions and Future Work

We have introduced a computational model for learning from
collective behavior, and populated it with some initial gen-
eral theory and algorithmic results for crowd affinity models.
In addition to positive or negative results for further agent
strategy classes, there are a number of other general direc-
tions of interest for future research. These include exten-
sion of our model to agnostic [14] settings, in which we re-
lax the assumption that every agent strategy falls in a known
class, and to reinforcement learning [23] settings, in which
the learning algorithm may itself be a member of the popu-
lation being modeled, and wishes to learn an optimal policy
with respect to some reward function.
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