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Abstract

We study the problem of learning mixtures of
distributions, a natural formalization of clus-
tering. A mixture of distributions is a col-
lection of distributionsD = {D1, . . .DT },
andmixing weights, {w1, . . . , wT } such that
∑

i wi = 1. A sample from a mixture is gen-
erated by choosingi with probabilitywi and
then choosing a sample from distributionDi.
The problem of learning the mixture is that
of finding the parameters of the distributions
comprisingD, given only the ability to sam-
ple from the mixture. In this paper, we restrict
ourselves to learning mixtures of product dis-
tributions.

The key to learning the mixtures is to find a
few vectors, such that points from different
distributions are sharply separated upon pro-
jection onto these vectors. Previous techniques
use the vectors corresponding to the top few
directions of highest variance of the mixture.
Unfortunately, these directions may be direc-
tions of high noise and not directions along
which the distributions are separated. Further,
skewed mixing weights amplify the effects of
noise, and as a result, previous techniques only
work when the separation between the input
distributions is large relative to the imbalance
in the mixing weights.

In this paper, we show an algorithm which
successfully learns mixtures of distributions
with a separation condition that depends only
logarithmically on the skewed mixing weights.
In particular, it succeeds for a separation be-
tween the centers that isΘ(σ

√
T log Λ), where

σ is the maximum directional standard devia-
tion of any distribution in the mixture,T is the
number of distributions, andΛ is polynomial
in T , σ, log n and the imbalance in the mixing

weights. For our algorithm to succeed, we re-
quire aspreading condition, that the distance
between the centers bespreadacrossΘ(T log Λ)
coordinates. Additionally, with arbitrarily small
separation,i.e., even when the separation is
not enough for clustering, with enough sam-
ples, we can approximate the subspace con-
taining the centers. Previous techniques failed
to do so in polynomial time for non-spherical
distributions regardless of the number of sam-
ples, unless the separation was large with re-
spect to the maximum directional varianceσ
and polynomially large with respect to the im-
balance of mixing weights.Our algorithm works
for Binary Product Distributionsand
Axis-Aligned Gaussians. The spreading con-
dition above is implied by the separation con-
dition for binary product distributions, and is
necessary for algorithms that rely on linear
correlations.

Finally, when a stronger version of our spread-
ing condition holds, our algorithm performs
successful clustering when the separation be-
tween the centers is onlyΘ(σ∗

√
T log Λ),

whereσ∗ is the maximum directional standard
deviation in the subspace containing the cen-
ters of the distributions.



1 Introduction

Clustering, the problem of grouping together data points
in high dimensional space using a similarity measure, is
a fundamental problem of statistics with numerous ap-
plications in a wide variety of fields. A natural model for
clustering is that oflearning mixtures of distributions.
A mixture of distributions is a collection of distributions
D = {D1, . . . DT }, andmixing weights, {w1, . . . , wT }
such that

∑

i wi = 1. A sample from a mixture is gen-
erated by choosingi with probabilitywi and choosing
a sample from distributionDi. The problem of learning
the mixture is that of finding the parameters of the distri-
butions comprisingD, given only the ability to sample
from the mixture.

If the distributionsD1, . . . , DT are very close to each
other, then even if we knew the parameters of the dis-
tributions, it would be impossible to classify the points
correctly with high confidence. Therefore, Dasgupta
[Das99] introduced the notion of aseparation condi-
tion, which is a promise that each pair of distributions is
sufficiently different according to some measure. Given
points from a mixture of distributions and a separation
condition, the goal is to find the parameters of the mix-
tureD, and cluster all but a small fraction of the points
correctly. A commonly used separation measure is the
distance between the centers of the distributions param-
eterized by the maximum directional variance,σ, of any
distribution in the mixture.

A common approach to learning the mixtures and
therefore, clustering the high-dimensional cloud of points
is to find afew interesting vectors, such that points from
different distributions are sharply separated upon pro-
jection onto these vectors. Various distance-based meth-
ods [AK01, Llo82, DLR77] are then applied to cluster
in the resulting low-dimensional subspace. The state-
of-the-art, in practice, is to use the vectors correspond-
ing to the top few directions ofhighest varianceof the
mixture and to hope that it contains most of the sepa-
ration between the centers. This is computed by aSin-
gular Value Decomposition(SVD) of the matrix of sam-
ples. This approach has been theoretically analyzed by
[VW02] for spherical distributions, and for more gen-
eral distributions in [KSV05, AM05]. The latter show
that the maximum variance directions are indeed the in-
teresting directions when the separation isΘ( σ√

wmin

),

wherewmin is the smallest mixing weight of any distri-
bution.

This is the best possible result for SVD-based ap-
proaches; the directions of maximum variance may well
not be the directions in which the centers are separated,
but instead may be the directions of very high noise, as
illustrated in Figure 1(b). This problem is exacerbated
when the mixing weightswi are skewed – because a dis-
tribution with low mixing weight diminishes the contri-
bution to the variance along a direction that separates

the centers.

This bound is suboptimal for two reasons. Although
mixtures with skewed mixing weights arise naturally in
practice(see [PSD00] for an example), given enough sam-
ples, mixing weights have no bearing on the separability
of distributions. Consider two mixturesD′ andD′′ of
distributionsD1 andD2: in D′, w1 = w2 = 1/2, and
in D′′, w1 = 1/4 andw2 = 3/4. Given enough com-
putational resources, if we can learnD′ from 50 sam-
ples, we should be able to learnD′′ from 100 samples.
This does not necessarily hold for SVD-based methods.
Secondly, regardless ofσ, an algorithm, which has prior
knowledge of the subspace containing the centers of the
distributions, should be able to learn the mixture when
the separation is proportional toσ∗, the maximum di-
rectional standard deviation of any distribution in the
subspace containing the centers. An example in which
σ and σ∗ are significantly different is shown in Fig-
ure 1(b).

In this paper, we study the problem of learning mix-
tures ofproduct distributions. A product distribution
overRn is one in which each coordinate is distributed
independently of any others. In practice, mixtures of
product distributions have been used as mathematical
models for data and learning mixtures of product dis-
tributions specifically has been studied [FM99, FOS05,
FOS06, DHKS05] – see the Related Work section for
examples and details. However, even under this seem-
ingly restrictive assumption, providing an efficient algo-
rithm that does better than the bounds of [AM05, KSV05]
turns out to be quite challenging. The main challenge is
to find a low-dimensional subspace that contains most
of the separation between the centers; although the inde-
pendence assumption can (sometimes) help us identify
which coordinates contribute to the distance between
some pair of centers, the problem of actually finding
the low-dimensional space still requires more involved
techniques.

In this paper, we present an algorithm for learning
mixtures of product distributions, which is stable in the
presence of skewed mixing weights, and, under certain
conditions, in the presence of high variance outside the
subspace containing the centers. In particular, the de-
pendence of the separation required by our algorithm on
skewed mixing weights is only logarithmic. Addition-
ally, with arbitrarily small separation, (i.e., even when
the separation is not enough for classification), with
enough samples, we can approximate the subspace con-
taining the centers. Previous techniques failed to do so
for non-spherical distributions regardless of the num-
ber of samples, unless the separation was sufficiently
large. Our algorithm works for binary product distri-
butions and axis-aligned Gaussians. We require that the
distance between the centers bespreadacrossΘ(T log Λ)
coordinates, whereΛ depends polynomially on the max-



imum distance between centers andwmin. For our algo-
rithm to classify the samples correctly, we further need
the separation between centers to beΘ(σ

√
T log Λ).

In addition, if a stronger version of the spreading
condition is satisfied, then our algorithm requires a sepa-
ration of onlyΘ(σ∗

√
T log Λ) to ensure correct classifi-

cation of the samples. The stronger spreading condition,
discussed in more detail later, ensures that when we split
the coordinates randomly into two sets, the maximum
directional variance of any distribution in the mixture
along the projection of the subspace containing the cen-
ters into the subspaces spanned by the coordinate vec-
tors in each set, is comparable toσ2

∗.
In summary, compared to [AM05, KSV05], our al-

gorithm is much (exponentially) less susceptible to the
imbalance in mixture weights and, when the stronger
spreading condition holds, to high variance noise out-
side the subspace containing the centers. However, our
algorithm requires a spreading condition and coordinate-
independence, while [AM05, KSV05] are more general.
We note that for perfectly spherical distributions, the
results of [VW02] are better than our results – how-
ever, these results do not apply even for distributions
with bounded eccentricity. Finally unlike the results
of [Das99, AK01, DS00], which require the separation
to grow polynomially with dimension, our separation
only grows logarithmically with the dimension.

Our algorithm is based upon two key insights. The
first insight is that if the centers are separated along sev-
eral coordinates, then many of these coordinates arecor-
relatedwith each other. To exploit this observation, we
choose half the coordinates randomly, and search the
space of this half for directions of high variance. We
use the remaining half of coordinates tofilter the found
directions. If a found direction separates the centers, it
is likely to have some correlation with coordinates in
the remaining half, and therefore is preserved by the fil-
ter. If, on the other hand, the direction found is due to
noise, coordinate independence ensures that there will
be no correlation with the second half of coordinates,
and therefore such directions get filtered away.

The second insight is that the tasks of searching for
and filtering the directions can be simultaneously ac-
complished via a singular value decomposition of the
matrix of covariances between the two halves of coor-
dinates.In particular, we show that the top few direc-
tions of maximum variance of the covariance matrix ap-
proximately capture the subspace containing the centers.
Moreover, we show that the covariance matrix has low
singular value along any noise direction. By combining
these ideas, we obtain an algorithm that is almost in-
sensitive to mixing weights, a property essential for ap-
plications like population stratification [CHRZ07], and
which can be implemented using the heavily optimized
and thus, efficient, SVD procedure, and which works

with a separation condition closer to the information the-
oretic bound.

Related Work

The first provable results for learning mixtures of Gaus-
sians are due to Dasgupta [Das99] who shows how to
learn mixtures of spherical Gaussians with a separation
of Θ(σ

√
n) in an n-dimensional space. An EM based

algorithm by Dasgupta and Schulman [DS00] was shown
to apply to more situations, and with a separation of
Θ(σn1/4). Arora and Kannan [AK01] show how to
learn mixtures of distributions of arbitrary Gaussians
whose centers are separated byΘ(n1/4σ). Their results
apply to many other situations, for example,concentric
Gaussians with sufficiently different variance.

The first result that removed the dependence onn
in the separation requirement was that of Vempala and
Wang [VW02] who use SVD to learn mixtures of spher-
ical Gaussians withO(σT 1/4) separation. They project
to a subspace of dimensionT using an SVD and use a
distance based method in the low dimensional space. If
the separation is not enough for classification, [VW02]
can also find, given enough samples, a subspace approx-
imating the subgspace containing the centers. While the
results of [VW02] are independent of the imbalance on
mixing weights, they apply only to perfectly spherical
Gaussians, and cannot be extended to Gaussians with
bounded eccentricity. In further work Kannan, Salmasian,
and Vempala[KSV05] and Achlioptas and McSherry
[AM05] show how to cluster general Gaussians using
SVD. While these results are weaker than ours, they ap-
ply to a mixture of general Gaussians, axis-aligned or
not. We note that their analysis also applies to binary
product distributions again with polynomial dependence
on the imbalance in mixing weights1. In contrast, our
separation requirement isΩ(σ∗

√
T log Λ), i.e., is loga-

rithmically dependent on the mixing weights and dimen-
sion and the maximum variance in noise directions.

There is also ample literature on specifically learn-
ing mixtures of product distributions. Freund and Man-
sour [FM99] show an algorithm which generates dis-
tributions that areǫ-close to a mixture of two product
distributions over{0, 1}n in time polynomial inn and
1/ǫ. Feldman, O’Donnell, and Servedio show how to
generate distributions that areǫ-close to a mixture ofT
product distributions [FOS05] and axis-aligned Gaus-
sians [FOS06]. Like [FM99], they have no separation
requirements, but their algorithm takesnO(T 3) time. Das-
guptaet. al [DHKS05] provide an algorithm for learn-
ing mixtures of heavy-tailed product distributions which
works with a separation ofΘ(R

√
T ), whereR is the

maximum half-radius of any distribution in the mixture.

1They do not directly address binary product distributions
in their paper, but their techniques apply.



While their separation requirement does not depend poly-
nomially on 1

wmin

, their algorithm runs in time expo-
nential inΘ( n

wmin
). They also require a slope, which is

comparable to our spreading condition. Chaudhuriet al.
[CHRZ07] show an iterative algorithm for learning mix-
tures of two product distributions that implicitly uses the
notion of co-ordinate independence to filter out noise di-
rections. However, the algorithm heavily uses the two
distribution restriction to find the appropriate directions,
and does not work whenT > 2.

More broadly, the problem of analyzing mixture mod-
els data has received a great deal of attention in statis-
tics, see for example, [MB88, TSM85], and has numer-
ous applications. We present three applications where
data is modelled as a mixture of product distirbutions.
First, the problem of population stratification in popula-
tion genetics has been posed as learning mixtures of bi-
nary product distributions in [SRH07]. In their work, the
authors develop an MCMC method for addressing the
problem and their software embodiment is widely used.
A second application is in speech recognition [Rey95,
PFK02], which models acoustic features at a specific
time point as a mixture of axis-aligned Gaussians. A
third application is the widely used Latent Dirichlet Al-
location model [BNJ03]. Here, documents are modelled
as distributions over topics which, in turn, are distri-
butions over words. Subsequent choices of topics and
words are assumed to beindependent. (For words, this is
referred to as the “bag of words” assumption.) [BNJ03]
develops variational techniques that provide interesting
results for various corpora. Interestingly, the same model
was used by Kleinberg and Sandler [KS04] to model
user preferences for purchasing goods (users correspond
to documents, topics to categories, and words to goods).
Their algorithm, which provides provably good perfor-
mance in this model, also uses SVD-like clustering al-
gorithms as a subroutine.

Our clustering method also involves a Canonical Cor-
relations Analysis of the samples, which seems to have
connections with multiview learning[KF07] and co-training[AT98].

Discussion

The Spreading Condition. The spreading condition
loosely states that the distance between each pair of cen-
ters is spread along aboutΘ(T log Λ) coordinates. We
demonstrate by an example, that a spread ofΩ(T ), is a
natural limit for all methods that use linear correlations
between coordinates, such as our methods and SVD based
methods [VW02, KSV05, AM05]. We present, as an
example, two distributions : a mixtureD1 of T binary
product distributions, and a single binary product dis-
tribution D2, which have exactly the same covariance
matrix. Our example is based on the Hadamard code, in
which a codeword for ak-bit message is2k bits long,
and includes a parity bit for each subset of the bits of

Figure 1: (a) Spherical Gaussians: Direction of maxi-
mum variance is the direction separating the centers (b)
Arbitrary Gaussians: Direction of maximum variance is
a noise direction.
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Figure 2: An Example where All Covariances are0

the message. The distributions comprisingD1 are de-
fined as follows. Each of theT = 2k centers is a code-
word for ak−bit string appended by a string of length
n − k in which each coordinate has value1/2. Notice
that the lastn − k bits are noise. Thus, the centers are
separated byT/2 coordinates.D2 is the uniform dis-
tribution over then−dimensional hypercube. As there
are no linear correlations between any two bits in the
Hadamard code, the covariance ofD1 along any two
directions is0, and each direction has the same vari-
ance. As this is also the case forD2, any SVD-bsed
or correlation-based algorithm will fail to distinguish
between the two mixtures. We also note that learning
binary product distributions with minimum separation
2 and average separation1 + 1

2 log T would allow one
to learn parities oflog T variables with noise. Finally,
we note that when the spreading condition fails, one has
only a few coordinates that contain most of the distance
between centers. One could enumerate the set of possi-
ble coordinates to deal with this case, and is exponen-
tional inT log n log Λ. [FOS05] on the other hand takes
time exponential inT 3 log n, and works with no separa-
tion requirement.

2 A Summary of Our Results

We begin with some preliminary definitions about dis-
tributions drawn overn dimensional spaces. We use



f, g, . . . to range over coordinates, andi, j, . . . to range
over distributions. For anyx ∈ R

n, we writexf for the
f -th coordinate ofx. For any subspaceH (resp. vector
v), we useH̄ (resp. v̄) to denote the orthogonal com-
plement ofH (resp.v). For a subspaceH and a vector
v, we writePH(v) for the projection ofv onto the sub-
spaceH. For any vectorx, we use||x|| for the Euclidean
norm ofx. For any two vectorsx andy, we use〈x, y〉
for the dot-product ofx andy.

Mixtures of Distributions. A mixture of distributions
D, is a collection of distributions,{D1, . . . , DT }, over
points inR

n, and a set of mixing weightsw1, . . . , wT

such that
∑

i wi = 1. In the sequel,n is assumed to
be much larger thanT . In a product distribution over
R

n, each coordinate is distributed independently of the
others. When working with a mixture of binary prod-
uct distributions, we assume that thef -th coordinate of
a point drawn from distributionDi is 1 with probability
µf

i , and0 with probability1 − µf
i . When working with

a mixture of axis-aligned Gaussian distributions, we as-
sume that thef -th coordinate of a point drawn from dis-
tribution Di is distributed as a Gaussian with meanµf

i

and standard deviationσf
i .

Centers. We define thecenterof a distributioni as the
vectorµi, and thecenter of mass of the mixtureas the
vector µ̄ whereµ̄f is the mean of the mixture for the
coordinatef . We writeC for the subspace containing
µ1, . . . , µT .

Directional Variance. We defineσ2 as the maximum
variance of any distribution in the mixture along any
direction. We defineσ2

∗ as the maximum variance of
any distribution in the mixture along any direction in
the subspace containing the centers of the distributions.
We write σ2

max as the maximum variance of the entire
mixture in any direction. This may be more thanσ2 due
to contribution from the separation between the centers.

Spread. We say that a unit vectorv in R
n has spreadS

if
∑

f (vf )2 ≥ S · maxf (vf )2.

Distance. Given a subspaceK of R
n and two points

x, y in R
n, we writedK(x, y) for the square of the Eu-

clidean distance betweenx and y projected along the
subspaceK.

The Spreading Condition and Effective Distance. The
spreading condition tells us that the distance between
eachµi andµj should not be concentrated along a few
coordinates. One way to ensure this is to demand that
for all i, j, the vectorµi − µj has high spread. This is
comparable to the slope condition used in [DHKS05].

However, we do not need such a strong condition for
dealing with mixtures with imbalanced mixing weights.
Ourspreading conditiontherefore demands that for each
pair of centersµi, µj , the norm of the vectorµi − µj

high, even if we ignore the contribution of the top few

(aboutT log T ) coordinates. Due to technicalities in our
proofs, the number of coordinates we can ignore needs
to depend (logarithmically) on this distance.

We therefore define the spreading condition as fol-
lows. We define parameterscij and a parameterΛ as :

Λ > σmaxT log2 n
wmin·(mini,j c2

ij
)

andcij is the maximum value such

that there are49T log Λ coordinatesf with |µf
i −µf

j | >
cij . We note thatΛ is bounded by a polynomial in
T, σ∗, 1/wmin, 1/cij and logarithmic inn.

We definecmin to be the minimum over all pairsi, j
of cij . Given a pair of centersi andj, let ∆ij be the set
of coordinatesf such that|µf

i − µf
j | > cij , and letνij

be defined as:νf
ij = µf

i − µf
j , if f /∈ ∆ij , andνf

ij = cij

otherwise. We definēd(µi, µj), the effective distance
betweenµi andµj to be the square of theL2 norm of
νij . In contrast, the square of the norm of the vector
µi − µj is the actual distance between centersµi and
µj , and is always greater than or equal to the effective
distance betweenµi andµj . Moreover, giveni andj
and the subspaceK, we defined̄K(µi, µj) as the square
of the norm of the vectorνij projected onto the subspace
K.

Under these definitions, our spreading condition now
requires that̄d(µi, µj) ≥ 49c2

ijT log Λ and our stronger
spreading condition requires that every vector inC has
spread32T log σ

σ∗
.

A Formal Statement of our Results. Our main con-
tribution is Algorithm CORR-CLUSTER, a correlation
based algorithm for learning mixtures of binary prod-
uct distributions and axis-aligned Gaussians. The input
to the algorithm is a set of samples from a mixture of
distributions, and the output is a clustering of the sam-
ples.

The main component of Algorithm CORR-CLUSTER
is Algorithm CORR-SUBSPACE, which, given samples
from a mixture of distributions, computes an approxi-
mation to the subspace containing the centers of the dis-
tributions. The motivation for approximating the latter
space is as follows. In theT -dimensional subspace con-
taining the centers of the distributions, the distance be-
tween each pair of centersµi andµj is the same as their
distance inRn; however, because of the low dimen-
sionality, the magnitude of the noise is small. There-
fore, provided the centers of the distributions are suf-
ficiently separated, projection onto this subspace will
sharply separate samples from different distributions.
SVD-based algorithms [VW02, AM05, KSV05] attempt
to approximate this subspace by the topT singular vec-
tors of the matrix of samples. However, for product
distributions, our Algorithm CORR-SUBSPACE can ap-
proximate this subspace correctly under more restrictive
separation conditions.

The properties of Algorithms CORR-SUBSPACEand



CORR-CLUSTERare formally summarized in Theorem 1
and Theorem 2 respectively.

Theorem 1 (Spanning centers) Suppose we are given
a mixture of distributionsD = {D1, . . . , DT }, with
mixing weightsw1, . . . , wT . Then with at least constant
probability, the subspaceK of dimension at most2T
output by AlgorithmCORR-SUBSPACE has the follow-
ing properties.

1. If, for all i andj, d̄(µi, µj) ≥ 49c2
ijT log Λ, then,

for all pairs i, j,

dK(µi, µj) ≥
99

100
(d̄(µi, µj) − 49Tc2

ij log Λ)

2. If, in addition, every vector inC has spread32T log σ
σ∗

,
then, with at least constant probability, the maxi-
mum directional variance inK of any distribution
Di in the mixture is at most11σ2

∗.

The number of samples required by AlgorithmCORR-
SUBSPACE is polynomial in σ

σ∗
, T , n,σ and 1

wmin

, and
the algorithm runs in time polynomial inn, T , and the
number of samples.

The subspaceK computed by Algorithm CORR-SUBSPACE
approximates the subspace containing the centers of the
distributions in the sense that the distance between each
pair of centersµi andµj is high alongK. Theorem 1
states that Algorithm CORR-SUBSPACEcomputes an ap-
proximation to the subspace containing the centers of
the distributions, provided the spreading condition is sat-
isfied. If the strong spreading condition is satisfied as
well, then the maximum variance of eachDi alongK is
also close toσ2

∗ .
Note that in Theorem 1, there is no absolute lower

bound required on the distance between any pair of cen-
ters. This means that, so long as the spreading condi-
tion is satisfied, and there are sufficiently many sam-
ples, even if the distance between the centers is not large
enough for correct classification, we can compute an ap-
proximation to the subspace containing the centers of
the distributions. We also note that although we show
that Algorithm CORR-SUBSPACE succeeds with con-
stant probability, we can make this probability higher
at the expense of a more restrictive spreading condition,
or by running the algorithm multiple times.

Theorem 2 (Clustering) Suppose we are given a mix-
ture of distributionsD = {D1, . . . , DT }, with mixing
weightsw1, . . . , wT . Then, AlgorithmCORR-CLUSTER
has the following properties.

1. If for all i andj, d̄(µi, µj) ≥ 49Tc2
ij log Λ, and for

all i, j we have:
d̄(µi, µj) > 59σ2T (logΛ + log n)

(for axis-aligned Gaussians)

d̄(µi, µj) > 59T (logΛ + log n)

(for binary product distributions)

then with probability1 − 1
n over the samples and

with constant probability over the random choices
made by the algorithm, AlgorithmCORR-CLUSTER
computes a correct clustering of the sample points.

2. For axis-aligned Gaussians, if every vector inC has
spread at least32T log σ

σ∗
, and for all i, j:

d̄(µi, µj) ≥ 150σ2
∗T (logΛ + log n)

then, with constant probability over the random-
ness in the algorithm, and with probability1 −
1
n over the samples, AlgorithmCORR-CLUSTER
computes a correct clustering of the sample points.

AlgorithmCORR-CLUSTER runs in time polynomial in
n and the number of samples required by AlgorithmCORR-
CLUSTER is polynomial in σ

σ∗
, T , n, σ and 1

wmin
.

We note that because we are required to do classifi-
cation here, we do require an absolute lower bound on
the distance between each pair of centers in Theorem 2.

The second theorem follows from the first and the
distance concentration Lemmas of [AM05] as described
in detail in Chapter 3 of [Cha07]. The Lemmas show
that once the points are projected onto the subspace com-
puted in Theorem 1, a distance-based clustering method
suffices to correctly cluster the points.

A Note on the Stronger Spreading Condition. The
motivation for requiring the stronger spreading condi-
tion is as follows. Our algorithm splits the coordinates
randomly into two setsF andG. If CF andCG denote
the restriction ofC to the coordinates inF andG respec-
tively, then our algorithm requires that the maximum
directional variance of any distribution in the mixture
is close toσ∗ in CF andCG respectively. Notice that
this does not follow from the fact that the maximum di-
rectional variance alongC is σ2

∗ : supposeC is spanned
by (0.1, 0.1, 1, 1) and(0.1, 0.1,−1, 1), variances ofD1

along the axes are(10, 10, 1, 1), andF is {1, 2}. Then,
σ2
∗ is about2.8, while the variance ofD1 alongCF is 10.

However, as Lemma 9 shows, the required condition is
ensured by the strong spreading condition.

However, in general, the maximum directional vari-
ance of anyDi in the mixture alongCF andCG may
still be close toσ2

∗ , even though strong spreading condi-
tion is far from being met. For example: ifC is the space
spanned by the firstT coordinate vectorse1, . . . , eT ,then
with probability1 − 1

2T , the maximum variance along
CF andCG is alsoσ2

∗ .

3 Algorithm CORR-CLUSTER

Our clustering algorithm follows the same basic frame-
work as the SVD-based algorithms of [VW02, KSV05,
AM05]. The input to the algorithm is a setS of samples,



and the output is a pair of clusterings of the samples ac-
cording to source distribution.

CORR-CLUSTER(S)
1. PartitionS into SA andSB uniformly at ran-

dom.
2. Compute: KA = Corr − Subspace(SA),

KB = Corr − Subspace(SB)
3. Project each point inSB (resp.SA) on the sub-

spaceKA (resp.KB).
4. Use a distance-based clustering algo-

rithm [AK01] to partition the points in
SA andSB after projection.

The first step in the algorithm is to use Algorithm
CORR-SUBSPACEto find aO(T )-dimensional subspace
K which is an approximation to the subspace containing
the centers of the distributions. Next, the samples are
projected ontoK and a distance-based clustering algo-
rithm is used to find the clusters.

We note that in order to preserve independence the
samples we project ontoK should be distinct from the
ones we use to computeK. A clustering of the complete
set of points can then be computed by partitioning the
samples into two setsA andB. We useA to compute
KA, which is used to clusterB and vice-versa.

We now present our algorithm which computes a ba-
sis for the subspaceK. With slight abuse of notation we
useK to denote the set of vectors that form the basis for
the subspaceK.The input to CORR-SUBSPACEis a setS
of samples, and the output is a subspaceK of dimension
at most2T .

Algorithm CORR-SUBSPACE:

Step 1: Initialize and Split Initialize the basisK with
the empty set of vectors. Randomly partition the
coordinates into two sets,F andG, each of size
n/2. Order the coordinates as those inF first, fol-
lowed by those inG.

Step 2: Sample Translate each sample point so that the
center of mass of the set of sample points is at the
origin. LetF (respectivelyG) be the matrix which
contains a row for each sample point, and a column
for each coordinate inF (respectivelyG). For each
matrix, the entry at rowx, columnf is the value of
the f -th coordinate of the sample pointx divided
by
√

|S|.

Step 3: Compute Singular Space For the matrixFTG,
compute{v1, . . . , vT }, the topT left singular vec-
tors,{y1, . . . , yT }, the topT right singular vectors,
and{λ1, . . . , λT }, the topT singular values.

Step 4: Expand Basis For eachi, we abuse notation
and usevi (yi respectively) to denote the vector
obtained by concatenatingvi with the 0 vector in

n/2 dimensions (0 vector inn/2 dimensions con-
catenated withyi respectively). For eachi, if the
singular valueλi is more than a thresholdτ =

O
(

wminc2

ij

T log2 n
·
√

log Λ
)

, we addvi andyi toK.

Step 5: Output Output the set of vectorsK.

The main idea behind our algorithm is to use half the
coordinates to compute a subspace which approximates
the subspace containing the centers, and the remaining
half to validate that the subspace computed is indeed a
good approximation. We critically use the coordinate
independence property of product distributions to make
this validation possible.

4 Analysis of Algorithm CORR-CLUSTER

This section is devoted to proving Theorems 1, and 2.
We use the following notation.
Notation.We writeF -space (resp.G-space) for then/2
dimensional subspace ofR

n spanned by the coordinate
vectors{ef | f ∈ F} (resp.{eg | g ∈ G}). We writeC
for the subspace spanned by the set of vectorsµi. We
write CF for the space spanned by the set of vectors
PF (µi). We writePF (C̄F) for the orthogonal comple-
ment ofCF in theF -space. Moreover, we writeCF∪G
for the subspace of dimension2T spanned by the union
of a basis ofCF and a basis ofCG . Next, we define a key
ingredient of the analysis.
Covariance Matrix. Let N be a large number. We de-
fine F̂ (resp.Ĝ), theperfect sample matrixwith respect
to F (resp.G) as theN × n/2 matrix whose rows from
(w1 + . . . + wi−1)N +1 through(w1 + . . . + wi)N are
equal to the vectorPF (µi)/

√
N (resp. PG(µi)/

√
N ).

For a coordinatef , letXf be a random variable which is
distributed as thef -th coordinate of the mixtureD. As
the entry in rowf and columng in the matrixF̂TĜ is
equal toCov(Xf , Xg), the covariance ofXf andXg,
we call the matrixF̂TĜ thecovariance matrixof F and
G.
Proof Structure. The overall structure of our proof is
as follows. First, we show that the centers of the dis-
tributions in the mixture have a high projection on the
subspace of highest correlation between the coordinates.
To do this, we first assume,in Section 4.1 that the input
to the algorithm in Step 2 are the perfect sample ma-
trices F̂ andĜ. Of course, we cannot directly feed in
the matricesF̂ , Ĝ, as the values of the centers are not
known in advance. Next, we show in Section 4.2 that
this holds even when the matricesF andG in Step 2 of
Algorithm CORR-SUBSPACEare obtained by sampling.
In Section 4.3, we combine these two results and prove
Theorem 1. Finally, using results on distance concentra-
tion from [AM05, AK01], we complete the analysis by
proving Theorem 2.



4.1 The Perfect Sample Matrix

The goal of this section is to prove Lemmas 3 and 7,
which establish a relationship between directions of high
correlation of the covariance matrix constructed from
the perfect sample matrix, and directions which contain
a lot of separation between centers. Lemma 3 shows that
a direction which contains a lot of effective distance be-
tween some pair of centers, is also a direction of high
correlation.

Lemma 7 shows that a directionv ∈ PF (C̄F), which
is perpendicular to the space containing the centers, is a
direction with 0 correlation. In addition, we show in
Lemma 8, another property of the perfect sample ma-
trix – the covariance matrix constructed from the perfect
sample matrix has rank at mostT . We conclude this sec-
tion by showing in Lemma 9 that when every vector in
C has high spread, the directional variance of any distri-
bution in the mixture alongF -space orG-space is of the
order ofσ2

∗ .
We begin by showing that if a directionv contains

a lot of the distance between the centers, then, for most
ways of splitting the coordinates, the magnitude of the
covariance of the mixture along the projection ofv on
F -space and the projection ofv G-space is high. In other
words, the projections ofv alongF -space andG-space
are directions of high correlation.

Lemma 3 Let v be any vector inCF∪G such that for
somei andj, d̄v(µi, µj) ≥ 49Tc2

ij log Λ. If vF andvG
are the normalized projections ofv to F -space andG-
space respectively, then, with probability at least1 − 1

T

over the splitting step, for all suchv, vT

F F̂TĜvG ≥ τ

whereτ = O
(

wminc2

ij

T log2 n
· √log Λ

)

.

A detailed proof, presented in [Cha07], is omitted due
to lack of space. However, the main ingredient of the
proof is Lemma 4.

Lemma 4 Letv be a fixed vector inC such that for some
i andj, d̄v(µi, µj) ≥ 49Tc2

ij log Λ. If vF andvG are the
projections ofv to F -space andG-space respectively,
then, with probability at least1−Λ−2T over the splitting

step,vT

F F̂TĜvG ≥ 2τ whereτ = O
(

wminc2

ij

T log2 n
· √log Λ

)

.

Let F̂v (Ĝv respectively) be thes × n/2 matrix ob-
tained by projecting each row of̂F (respectivelyĜ) on
vF (respectivelyvG). Then,

vT

F F̂T

v ĜvvG

=
∑

i

wi〈vF ,PvF
(µi − µ̄)〉〈vG ,PvG

(µi − µ̄)〉

= vT

F F̂TĜvG

Moreover, for any pair of vectorsx in F -space and
y in G-space such that〈x, vF 〉 = 0 and〈y, vG〉 = 0,

xTF̂T

v Ĝvy =
∑

i

wi〈x,PvF
(µi−µ̄)〉〈y,PvG

(µi−µ̄)〉 = 0

Therefore,F̂T

v Ĝv has rank at most1.
The proof strategy for Lemma 4 is to show that if

dv(µi, µj) is large then the matrix̂FT

v Ĝv has high norm.
We require the following notation. For each coordinate
f we define aT -dimensional vectorzf as

zf = [
√

w1Pv(µf
1 − µ̄f ), . . . ,

√
wT Pv(µ

f
T − µ̄f )]

Notice that for any two coordinatesf ,g:

〈zf , zg〉 = Cov(Pv(Xf ),Pv(Xg))

, computed over the entire mixture. We also observe that
∑

f

||zf ||2 =
∑

i

wi · dv(µi, µ̄)

The RHS of this equality is the weighted sum of the
squares of the Euclidean distances between the centers
of the distributions and the center of mass. By the trian-
gle inequality, this quantity is at least49wminc

2
ijT log Λ.

We also a couple of technical lemmas – Lemmas 5 and 6,
which are stated below. The proofs of these lemmas
are omitted due to lack of space, but can be found in
[Cha07].

Lemma 5 LetA be a set of coordinates with cardinality
more than144T 2 log Λ such that for eachf ∈ A, ||zf ||
is equal and

∑

f∈A ||zf ||2 = D. Then, (1)

∑

f,g∈A,f 6=g

〈zf , zg〉2 ≥ D2

288T 2 log Λ

and (2) with probability1 − Λ−2T over the splitting of
coordinates in Step 1,

∑

f∈F∩A,g∈G∩A

〈zf , zg〉2 ≥ D2

1152T 2 log Λ

Lemma 6 Let A be a set of coordinates such that for
eachf ∈ A, ||zf || is equal and

∑

f∈A ||zf ||2 = D. If
48T log Λ + T < |A| ≤ 144T 2 log Λ, then (1)

∑

f,g∈A,f 6=g

〈zf , zg〉2 ≥ D2

1152T 4 log Λ

and (2) with probability1 − Λ−2T over the splitting in
Step 1,

∑

f∈F∩A,g∈G∩A

〈zf , zg〉2 ≥ D2

4608T 4 log Λ



Proof:(Of Lemma 4) From the definition of effective
distance, if the condition:̄dv(µi, µj) > 49c2

ijT log Λ
holds then there are at least49T log Λ vectorszf with
total squared norm at least98wmincij

2T log Λ. In the
sequel we will scale down each vectorzf with norm
greater thancij

√
wmin so that its norm is exactly

cij
√

wmin. We divide the vectors intolog n groups as
follows: groupBk contains vectors which have norm
betweencij

√
wmin

2k and cij
√

wmin

2k−1 .
We will call a vectorsmall if its norm is less than√

wmincij

2
√

log n
, and otherwise, we call the vectorbig. We ob-

serve that there exists a set of vectorB with the fol-
lowing properties: (1) the cardinality ofB is more than
49T log Λ, (2) the total sum of squares of the norm of the

vectors inB is greater than
49T log Λwminc2

ij

log n , and, (3) the
ratio of the norms of any two vectors inB is at most
2
√

log n.

Case 1: Suppose there exists a groupBk of small vec-
tors the squares of whose norms sum to a value greater

than
49Twminc2

ij log Λ

log n . By definition, such a group has
more than49T log Λ vectors, and the ratio is at most2.

Case 2: Otherwise, there are at least49T log Λ big vec-
tors. By definition, the sum of the squares of their norms

exceeds
49Twminc2

ij log Λ

log n . Due to the scaling, the ratio is

at most2
√

log n.
We scale down the vectors inB so that each vector

has squared norm
wminc2

ij

2k in case 1, and, squared norm
wminc2

ij

4 log n in case 2. Due to (2) and (3), the total squared

norm of the scaled vectors is at least
49Twminc2

ij log Λ

4 log2 n
.

Due to (1), we can now apply Lemmas 5 and 6 on
the vectors to conclude that for some constanta1, with
probability1 − Λ−2T ,

∑

f∈F ,g∈G
〈zf , zg〉2 ≥ a1 ·

(

w2
minc

4
ij log Λ

T 2 log4 n

)

The above sum is the square of the Frobenius norm
|F̂T

v Ĝv|F of the matrixF̂T

v Ĝv. SinceF̂T

v Ĝv has rank
at most1, and the maximum singular value of a rank1
matrix is its Frobenius norm [GL96], plugging in

τ = O
(

wminc2

ij

T log2 n
·
√

log Λ
)

completes the proof.�

Next we show that a vectorx ∈ PF (C̄F ) is a di-
rection of0 correlation. A similar statement holds for a
vectory ∈ PG(C̄G).

Lemma 7 If at Step 2 of AlgorithmCORR-SUBSPACE,
the values ofF and G are respectivelyF̂ and Ĝ, and
for somek,the topk-th left singular vector isvk and the
corresponding singular valueλk is more thanτ , then
for any vectorx in PF (C̄F), 〈vk, x〉 = 0.

Proof: We first show that for anyx in PF(C̄F ), and any
y, xTF̂TĜy = 0.

xTF̂TĜy =

T
∑

i=1

wi〈PF (µi), x〉 · 〈PG(µi), y〉

Sincex is in PF (C̄F), 〈PF (µi), x〉 = 0, for all i, and
hencexTF̂TĜy = 0 for all x in PF (C̄F). We now
prove the Lemma by induction onk.

Base case (k = 1). Let v1 = u1 + x1, whereu1 ∈ CF
and x1 ∈ PF(C̄F ). Let y1 be the top right singular
vector ofF̂TĜ, and let|x1| > 0. Then,vT

1 F̂TĜy1 =

uT

1 F̂TĜy1, andu1/|u1| is a vector of norm1 such that
1

|u1|u
T

1 F̂TĜy1 > vT

1 F̂TĜy1, which contradicts the fact

thatv1 is the top left singular vector of̂FTĜ.

Inductive case. Let vk = uk + xk, whereuk ∈ CF and
xk ∈ PF (C̄F). Letyk be the topk-th right singular vec-
tor of F̂TĜ, and let|xk| > 0. We first show thatuk is
orthogonal to each of the vectorsv1, . . . , vk−1. Other-
wise, suppose there is somej, 1 ≤ j ≤ k − 1, such that
〈uk, vj〉 6= 0. Then,〈vk, vj〉 = 〈xk, vj〉 + 〈uk, vj〉 =
〈uk, vj〉 6= 0. This contradicts the fact thatvk is a
left singular vector ofF̂TĜ. Therefore,vT

k F̂TĜyk =

uT

k F̂TĜyk, anduk/|uk| is a vector of norm1, orthogo-
nal tov1, . . . , vk−1 such that 1

|uk|u
T

k F̂TĜyk > vT

k F̂TĜyk.
This contradicts the fact thatvk is the topk-th left sin-
gular vector ofF̂TĜ. The Lemma follows.�

Lemma 8 The covariance matrix̂FTĜ has rank at most
T .

The proof is omitted due to space constraints.
Finally, we show that if the spread of every vector in

C is high, then with high probability over the splitting of
coordinates in Step 1 of Algorithm CORR-SUBSPACE,
the maximum directional variances of any distribution
Di in CF and CG are high. This means that there is
enough information in bothF -space andG-space for
correctly clustering the distributions through distance con-
centration.

Lemma 9 If every vectorv ∈ C has spread at least
32T log σ

σ∗
, then, with constant probability over the split-

ting of coordinates in Step 1 of Algorithm
CORR-SUBSPACE, the maximum variance along any di-
rection inCF or CG is at most5σ2

∗.

Proof:(Of Lemma 9) Letv andv′ be two unit vectors
in C, and letvF (resp.v′F ) andvG (resp.v′G denote the
normalized projections ofv (resp. v′) on F -space and
G-space respectively. If||vF − v′F || < σ∗

σ , then, the



directional variance of anyDi in the mixture alongv′F
can be written as:

E[〈v′F , x − E[x]〉2]
= E[〈vF , x − E[x]〉2] + E[〈v′F − vF , x − E[x]〉2]

+2E[〈vF , x − E[x]〉]E[〈v′F − vF , x − E[x]〉]
≤ E[〈vF , x − E[x]〉2] + ||vF − v′F ||2σ2

Thus, the directional variance of any distribution in the
mixture alongv′ is at most the directional variance along
v, plus an additionalσ2

∗ . Therefore, to show this lemma,
we need to show that ifv is any vector on aσ∗

σ -cover
of C, then with high probability over the splitting of co-
ordinates in Step 1 of Algorithm CORR-SUBSPACE, the
directional variances of anyDi in the mixture alongvF
andvG are at most4σ2

∗.
We show this in two steps. First we show that for

anyv in a σ∗

σ -cover ofC, 1
4 ≤

∑

f∈F(vf )2 ≤ 3
4 . Then,

we show that this condition means that for this vectorv,
the maximum directional variances alongvF andvG are
at most4σ2

∗.
Let v be any fixed unit vector inC. We first show

that with probability1 −
(

σ∗

σ

)2T
over the splitting of

coordinates in Step 1 of Algorithm CORR-SUBSPACE,
1
4 ≤ ∑

f∈F(vf )2 ≤ 3
4 . To show this bound, we ap-

ply the Method of Bounded Difference[PD05]. Since
we split the coordinates intoF andG uniformly at ran-
dom, E[

∑

f∈F(vf )2] = 1
2 . Let γf be the change in

∑

f∈F(vf )2 when the inclusion or exclusion of coordi-
natef in the setF changes. Then,γf = (vf )2 and
γ =

∑

f γ2
f . Since the spread of vectorv is at least

32T log σ
σ∗

, γ =
∑

f (vf )4 ≤ 1
32T log σ

σ∗

, and from the

Method of Bounded Differences,

Pr[|
∑

f∈F
(vf )2 − E[

∑

f∈F
(vf )2]| >

1

4
] ≤ e−1/32γ

≤
(σ∗

σ

)2T

By taking an union bound over allv on a σ∗
σ -cover ofC,

we deduce that for any suchv, 1
4 ≤∑f∈F(vf )2 ≤ 3

4 .
Since the maximum directional variance of any dis-

tributionDi in the mixture inC is at mostσ2
∗,

∑

f (vf )2(σf
i )2 ≤ σ2

∗. Therefore the maximum variance
alongvF as well asvG can be computed as:

1

||vF ||2
∑

f∈F
(vf )2(σf

i )2 ≤ 1

||vF ||2
∑

f

(vf )2(σf
i )2 ≤ 4σ2

∗

The lemma follows.�

4.2 Working with Real Samples

In this section, we show that given sufficient samples,
the properties of the matrixFTG, whereF andG are

generated by sampling in Step 2 of Algorithm CORR-
CLUSTER are very close to the properties of the matrix
F̂TĜ. The lemmas are stated below. The proofs are
omitted due to space constraints, but can be found in
[Cha07]. The proofs use the Method of Bounded Dif-
ferences (when the input is a mixture of binary product
distributions) and the Gaussian Concentration of Mea-
sure Inequality (for axis-aligned Gaussians).

The central lemma of this section is Lemma 10, which
shows that, if there are sufficiently many samples, for
any set of2m vectors,{v1, . . . , vm} and{y1, . . . , ym},
∑

k vT

k FTGyk and
∑

k vT

k F̂TĜyk are very close. This
lemma is then used to prove Lemmas 11 and 12. Lemma
11 shows that the top few singular vectors ofFTG out-
put by Algorithm CORR-SUBSPACEhave very low pro-
jection onPF (C̄F) or PG(C̄G). Lemma 12 shows that
the rank of the matrixFTG is almostT , in the sense
that theT + 1-th singular value of this matrix is very
low.

Lemma 10 LetU = {u1, . . . , um}, Y = {y1, . . . , ym}
be any two sets of orthonormal vectors, and letF andG
be the matrices generated by sampling in Step2 of the
algorithm. If the number of samples|S| is greater than

Ω(m3n2 log n log(σmax/δ)
δ2 ) (for Binary Product Distribu-

tions), andΩ(max(a1, a2)) (for Axis-Aligned Gaussians),

wherea1 = σ4m4n2 log2 n log2(σmax/δ)
δ2 , and

a2 =
σ2σ2

max
m3n log n log(σmax/δ)

δ2 , then, with probability
at least1 − 1/n,

|
∑

k

uT

k (FTG − E[FTG])yk| ≤ δ

Lemma 11 Let F andG be the matrices generated by
sampling in Step2 of the algorithm, and letv1, . . . , vm

be the vectors output by the algorithm in Step4. If the
number of samples|S| is greater than

Ω(
m3n2 log n(log Λ+log 1

ǫ
)

τ2ǫ4 ) (for Binary Product Distribu-
tions), andmax(a1, a2) (for Axis-Aligned Gaussians)

wherea1 = σ4m4n2 log2 n log2(Λ/ǫ)
τ2ǫ4 , and

a2 =
σ2σ2

max
m3n log n log(Λ/ǫ)

τ2ǫ4 , then, for eachk, and any
x in PF(C̄F ), 〈vk, x〉 ≤ ǫ.

Lemma 12 Let F andG be the matrices generated by
sampling in Step 2 of AlgorithmCORR-SUBSPACE. If
the number of samples|S| is greater than

Ω
(

T 3n2 log n log Λ
τ2

)

(for binary product distributions) and

Ω
(

max
(

σ4T 4n2 log2 log Λ
τ2 ,

σ2

max
σ2T 3n log n log Λ

τ2

))

for axis-

aligned Gaussians, then,λT+1, the T + 1-th singular
value of the matrixFTG is at mostτ/8.



4.3 The Combined Analysis

In this section, we combine the lemmas proved in Sec-
tions 4.1 and 4.2 to prove Theorem 1.

We begin with a lemma which shows that if every
vector inC has spread32T log σ

σ∗
, then the maximum

directional variance inK, the space output by Algorithm
CORR-SUBSPACE, is at most11σ2

∗.

Lemma 13 Let K be the subspace output by the algo-
rithm, and letv be any vector inK. If every vector inC
has spread32T log σ

σ∗
, and the number of samples|S|

is greater than

Ω
(

max
(

σ6T 4n2 log2 log Λ
τ2σ4

∗

,
σ2

max
σ4T 3n log n log Λ

τ2σ4
∗

))

then

for anyi the maximum variance ofDi alongv is at most
11σ2

∗.

The proof is omitted due to space constraints, and
can be found in [Cha07].
The above Lemmas are now combined to prove Theo-
rem 1.
Proof:(Of Theorem 1)

SupposeK = KL∪KR, whereKL = {v1, . . . , vm},
the topm left singular vectors ofFTG and
KR = {y1, . . . , ym} are the corresponding right singu-
lar vectors. We abuse notation and usevk to denote the
vectorvk concatenated with a vector consisting ofn/2
zeros, and useyk to denote the vector consisting ofn/2
zeros concatenated withyk. Moreover, we useK, KL,
andKR interchangeably to denote sets of vectors and
the subspace spanned by those sets of vectors.

We show that with probability at least1− 1
T over the

splitting step, there exists no vectorv ∈ CF∪G such that
(1)v is orthogonal to the space spanned by the vectorsK
and (2) there exists some pair of centersi andj such that
d̄v(µi, µj) > 49Tc2

ij log Λ. For contradiction, suppose
there exists such a vectorv.

Then, if vF andvG denote the normalized projec-
tions ofv ontoF -space andG-space respectively, from
Lemma 3,vT

F F̂TGvG ≥ τ with probability at least1 −
1
T over the splitting step. From Lemma 10, if the num-

ber of samples|S| is greater thanΩ
(

T 3n2 log n log Λ
τ2

)

for

binary product distributions, and if|S| is greater than

Ω
(

max
(

σ4n2 log2 log Λ
τ2 ,

σ2σ2

max
n log n log Λ
τ2

))

for

axis-aligned Gaussians,vT

FFTGvG ≥ τ
2 with at least

constant probability. Sincev is orthogonal to the space
spanned byK, vF is orthogonal toKL and vG is or-
thogonal toKR. As λm+1 is the maximum value of
xTFTGy over all vectorsx orthogonal toKL andy or-
thogonal toKR, λm+1 ≥ τ

2 , which is a contradiction.
Moreover, from Lemma 12,λT+1 < τ

8 , and hence
m ≤ T .

Let us construct an orthonormal series of vectors
v1, . . . , vm, . . . which arealmostin CF as follows.

v1, . . . , vm are the vectors output by Algorithm CORR-
SUBSPACE. We inductively definevl as follows. Sup-
pose for eachk, vk = uk + xk, whereuk ∈ CF and
xk ∈ PF (C̄F). Let ul be a unit vector inCF which is
perpendicular tou1, . . . , ul−1. Then,vl = ul. By defi-
nition, this vector is orthogonal tou1, . . . , ul−1. In ad-
dition, for anyk 6= l, 〈vl, vk〉 = 〈ul, uk〉+ 〈ul, xk〉 = 0,
andvl is also orthogonal tov1, . . . , vl−1. Moreover, if
ǫ < 1

100T , u1, . . . , um are linearly independent, and we
can always finddim(CF ) such vectors. Similarly, we
construct a set of vectorsy1, y2, . . .. Let us call the com-
bined set of vectorsC∗.

We now show that if there are sufficient samples,
dC̄∗(µi, µj) ≤ c2

ij . Note that for any unit vectorv∗

in C∗, and any unitx ∈ C̄F∪G , 〈v, x〉 ≤ mǫ. Also,
note that for anyuk andul, k 6= l, |〈uk, ul〉| ≤ ǫ2, and
||uk||2 ≥ 1 − ǫ2. Let v =

∑

k αkuk be any unit vector
in CF∪G. Then,1 = ||v||2 =

∑

k,k′ αkαk′ 〈uk, uk′〉 ≥
∑

k α2
k||uk||2 − Ω(T 2ǫ2).

The projection ofv onC∗ can be written as:
∑

k

〈v, vk〉2 =
∑

k

〈v, uk〉2

=
∑

k

∑

l

α2
l 〈uk, ul〉2 + 2

∑

l,l′

αlαl′〈uk, ul〉〈uk, ul′〉

≥
∑

k

α2
k||uk||4 − T 3ǫ4 ≥ 1 − Ω(T 2ǫ2)

The last step follows because for eachk, ||uk||2 ≥ 1 −
ǫ2. If the number of samples|S| is greater than

Ω(m3n2 log n(log Λ+log 100T )
τ2T 4 ) (for Binary Product Distri-

butions), and

max
(σ4m4n2 log2 n log2(100TΛ)

τ2T 4 ,
σ2

max
σ2m3n log log(100TΛ)

τ2T 4

)

(for axis-aligned Gaussians), then,ǫ < 1/100T . There-
fore,

dC̄∗(µi, µj) ≤
1

100
d(µi, µj)

For anyi andj,

d(µi, µj) = dK(µi, µj) + dC∗\K(µi, µj) + dC̄∗(µi, µj)

Since vectorsvm+1, . . . and ym+1, . . . , all belong to
CF∪G (as well asC∗ \K, there exists nov ∈ C∗ \K with
the Conditions (1) and (2) in the previous paragraph,
and d̄CF∪G\K(µi, µj) ≤ 49Tc2

ij log Λ. That is, the ac-
tual distance betweenµi andµj in CF∪G \ K ( as well
asC∗ \ K) is at most the contribution tod(µi, µj) from
the top49Tc2

ij log Λ coordinates, and the contribution
to d(µi, µj) from K andC̄∗ is at least the contribution
from the rest of the coordinates. SincedC̄∗(µi, µj) ≤
1

100d(µi, µj), the distance betweenµi andµj in K is at
least 99

100 d̄(µi, µj) − 49T log Λc2
ij). The first part of the

theorem follows.
The second part of the theorem follows directly from

Lemma 13.�
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