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Abstract

We study the problem of learning mixtures of
distributions, a natural formalization of clus-
tering. A mixture of distributions is a col-
lection of distributionsD = {Ds,...Dr},
and mixing weights {w, ..., wr} such that
>, w; = 1. A sample from a mixture is gen-
erated by choosingwith probability w; and
then choosing a sample from distributidn.
The problem of learning the mixture is that
of finding the parameters of the distributions
comprisingD, given only the ability to sam-
ple from the mixture. In this paper, we restrict
ourselves to learning mixtures of product dis-
tributions.

The key to learning the mixtures is to find a
few vectors, such that points from different
distributions are sharply separated upon pro-
jection onto these vectors. Previous techniques
use the vectors corresponding to the top few
directions of highest variance of the mixture.
Unfortunately, these directions may be direc-
tions of high noise and not directions along
which the distributions are separated. Further,
skewed mixing weights amplify the effects of
noise, and as a result, previous techniques only
work when the separation between the input
distributions is large relative to the imbalance
in the mixing weights.

In this paper, we show an algorithm which
successfully learns mixtures of distributions
with a separation condition that depends only
logarithmically on the skewed mixing weights.
In particular, it succeeds for a separation be-
tween the centers that@®(o+/T log A), where

o is the maximum directional standard devia-
tion of any distribution in the mixturd is the
number of distributions, and is polynomial

in T, o, logn and the imbalance in the mixing
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weights. For our algorithm to succeed, we re-
quire aspreading conditionthat the distance
between the centers bpreadacros® (7' log A)
coordinates. Additionally, with arbitrarily small
separationj.e., even when the separation is
not enough for clustering, with enough sam-
ples, we can approximate the subspace con-
taining the centers. Previous techniques failed
to do so in polynomial time for non-spherical
distributions regardless of the number of sam-
ples, unless the separation was large with re-
spect to the maximum directional variange
and polynomially large with respect to the im-
balance of mixing weights.Our algorithm works
for Binary Product Distributiongnd
Axis-Aligned GaussiansThe spreading con-
dition above is implied by the separation con-
dition for binary product distributions, and is
necessary for algorithms that rely on linear
correlations.

Finally, when a stronger version of our spread-
ing condition holds, our algorithm performs
successful clustering when the separation be-
tween the centers is ony(o./T log A),
whereo, is the maximum directional standard
deviation in the subspace containing the cen-
ters of the distributions.
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Clustering, the problem of grouping together data points
in high dimensional space using a similarity measure, is
a fundamental problem of statistics with numerous ap-
plications in a wide variety of fields. A natural model for
clustering is that ofearning mixtures of distributions

A mixture of distributions is a collection of distributions
D = {D,...Dr}, andmixing weights{w, ..., wr}
such thafy ", w; = 1. A sample from a mixture is gen-
erated by choosingwith probability w; and choosing

a sample from distributio®;. The problem of learning
the mixture is that of finding the parameters of the distri-
butions comprising, given only the ability to sample
from the mixture.

If the distributionsD;, . .., D are very close to each
other, then even if we knew the parameters of the dis-
tributions, it would be impossible to classify the points
correctly with high confidence. Therefore, Dasgupta
[Das99] introduced the notion of separation condi-
tion, which is a promise that each pair of distributions is
sufficiently different according to some measure. Given
points from a mixture of distributions and a separation
condition, the goal is to find the parameters of the mix-
tureD, and cluster all but a small fraction of the points
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the centers.

This bound is suboptimal for two reasons. Although
mixtures with skewed mixing weights arise naturally in
practice(see [PSDO0Q] for an example), given enough sam-
ples, mixing weights have no bearing on the separability
of distributions. Consider two mixture®’ and D" of
distributionsD; andDs: in D', w1 = we = 1/2, and
in D", wy = 1/4 andw, = 3/4. Given enough com-
putational resources, if we can leafr from 50 sam-
ples, we should be able to leaf’ from 100 samples.
This does not necessarily hold for SVD-based methods.
Secondly, regardless of an algorithm, which has prior
knowledge of the subspace containing the centers of the
distributions, should be able to learn the mixture when
the separation is proportional ta., the maximum di-
rectional standard deviation of any distribution in the
subspace containing the centers. An example in which
o and o, are significantly different is shown in Fig-
ure 1(b).

In this paper, we study the problem of learning mix-
tures of product distributions A product distribution
overR" is one in which each coordinate is distributed
independently of any others. In practice, mixtures of
product distributions have been used as mathematical

correctly. A commonly used separation measure is the models for data and learning mixtures of product dis-

distance between the centers of the distributions param-

eterized by the maximum directional varianeeof any
distribution in the mixture.

A common approach to learning the mixtures and
therefore, clustering the high-dimensional cloud of peint
is to find afewinteresting vectors, such that points from
different distributions are sharply separated upon pro-

tributions specifically has been studied [FM99, FOSO05,
FOS06, DHKSO05] — see the Related Work section for
examples and details. However, even under this seem-
ingly restrictive assumption, providing an efficient algo-
rithm that does better than the bounds of [AM05, KSVO05]
turns out to be quite challenging. The main challenge is
to find a low-dimensional subspace that contains most

jection onto these vectors. Various distance-based meth-of the separation between the centers; although the inde-

ods [AKO1, Llo82, DLR77] are then applied to cluster

in the resulting low-dimensional subspace. The state-
of-the-art, in practice, is to use the vectors correspond-

ing to the top few directions diighest variancef the
mixture and to hope that it contains most of the sepa-
ration between the centers. This is computed ISira
gular Value Decompositiq®VD) of the matrix of sam-

pendence assumption can (sometimes) help us identify
which coordinates contribute to the distance between
some pair of centers, the problem of actually finding
the low-dimensional space still requires more involved
techniques.

In this paper, we present an algorithm for learning
mixtures of product distributions, which is stable in the

ples. This approach has been theoretically analyzed bypresence of skewed mixing weights, and, under certain

[VWO02] for spherical distributions, and for more gen-
eral distributions in [KSV05, AMO05]. The latter show
that the maximum variance directions are indeed the in-
teresting directions when the separatior@i%),

Wmin

wherewni, is the smallest mixing weight of any distri-
bution.

This is the best possible result for SVD-based ap-
proaches; the directions of maximum variance may well

conditions, in the presence of high variance outside the
subspace containing the centers. In particular, the de-
pendence of the separation required by our algorithm on
skewed mixing weights is only logarithmic. Addition-
ally, with arbitrarily small separationj.¢., even when

the separation is not enough for classification), with
enough samples, we can approximate the subspace con-
taining the centers. Previous technigues failed to do so

not be the directions in which the centers are separated,for non-spherical distributions regardless of the num-
but instead may be the directions of very high noise, as ber of samples, unless the separation was sufficiently

illustrated in Figure 1(b). This problem is exacerbated
when the mixing weights); are skewed — because a dis-
tribution with low mixing weight diminishes the contri-

large. Our algorithm works for binary product distri-
butions and axis-aligned Gaussians. We require that the
distance between the centersspeeadacros® (T log A)

bution to the variance along a direction that separates coordinates, wher& depends polynomially on the max-



imum distance between centers ang;,,. For our algo- with a separation condition closer to the information the-
rithm to classify the samples correctly, we further need oretic bound.
the separation between centers todie /T log A).

In addition, if a stronger version of the spreading Related Work
condition is satisfied, then our algorithm requires a sepa- The first provable results for learning mixtures of Gaus-
ration of only©(o.+/T log A) to ensure correct classifi-  sians are due to Dasgupta [Das99] who shows how to
cation of the samples. The stronger spreading condition, learn mixtures of spherical Gaussians with a separation
discussed in more detail later, ensures that when we splitof ©(c/n) in an n-dimensional space. An EM based
the coordinates randomly into two sets, the maximum algorithm by Dasgupta and Schulman [DS00] was shown
directional variance of any distribution in the mixture to apply to more situations, and with a separation of
along the projection of the subspace containing the cen-g(s,,/4). Arora and Kannan [AKO1] show how to
ters into the subspaces spanned by the coordinate veciearn mixtures of distributions of arbitrary Gaussians
tors in each set, is comparabled®. whose centers are separateddy:'/*c). Their results

In summary, compared to [AMO5, KSV05], our al- apply to many other situations, for exampdencentric
gorithm is much (exponentially) less susceptible to the Gaussians with sufficiently different variance.
imbalance in mixture weights and, when the stronger  The first result that removed the dependencewon
spreading condition holds, to high variance noise out- in the separation requirement was that of Vempala and
side the subspace containing the centers. However, ounwang [VW02] who use SVD to learn mixtures of spher-
algorithm requires a spreading condition and coordinate- jca| Gaussians witld (o T'/*) separation. They project
independence, while [AMO5, KSV05] are more general. tg g subspace of dimensidhusing an SVD and use a
We note that for perfectly spherical distributions, the djistance based method in the low dimensional space. If
results of [VWO2] are better than our results — how- the separation is not enough for classification, [VW02]
e\./er, these results dO_ nOt apply even .for distributions can also find, given enough Samp|eS, asubspace approx-
with bounded eccentricity. Finally unlike the results jmating the subgspace containing the centers. While the
of [Das99, AKO1, DS00], which require the separation results of [VW02] are independent of the imbalance on
to grow polynomially with dimension, our separation mixing weights, they apply only to perfectly spherical
only grows logarithmically with the dimension. Gaussians, and cannot be extended to Gaussians with

Our algorithm is based upon two key insights. The bounded eccentricity. In further work Kannan, Salmasian,
first insight is that if the centers are separated along sev-and Vempala[KSV05] and Achlioptas and McSherry
eral coordinates, then many of these coordinatesare [AMO5] show how to cluster general Gaussians using
relatedwith each other. To exploit this observation, we SVD. While these results are weaker than ours, they ap-
choose half the coordinates randomly, and search theply to a mixture of general Gaussians, axis-aligned or
space of this half for directions of high variance. We not. We note that their analysis also applies to binary
use the remaining half of coordinatesfiiter the found product distributions again with polynomial dependence
directions. If a found direction separates the centers, it on the imbalance in mixing weigHts In contrast, our
is likely to have some correlation with coordinates in separation requirement §3(o.+/T log A), i.e.,is loga-
the remaining half, and therefore is preserved by the fil- rithmically dependent on the mixing weights and dimen-
ter. If, on the other hand, the direction found is due to sion and the maximum variance in noise directions.
noise, coordinate independence ensures that there will  There is also ample literature on specifically learn-
be no correlation with the second half of coordinates, ing mixtures of product distributions. Freund and Man-
and therefore such directions get filtered away. sour [FM99] show an algorithm which generates dis-

The second insight is that the tasks of searching for tributions that are:-close to a mixture of two product
and filtering the directions can be simultaneously ac- distributions over0,1}" in time polynomial inn and
complished via a singular value decomposition of the 1/¢. Feldman, O’'Donnell, and Servedio show how to
matrix of covariances between the two halves of coor- generate distributions that areclose to a mixture of’
dinates.In particular, we show that the top few direc- Product distributions [FOS05] and axis-aligned Gaus-
tions of maximum variance of the covariance matrix ap- sians [FOSO06]. Like [FM99], they have no separation
proximately capture the subspace containing the centersrequirements, but their algorithm takes(™") time. Das-
Moreover, we show that the covariance matrix has low guptaet. al[DHKSO05] provide an algorithm for learn-
singular value along any noise direction. By combining ing mixtures of heavy-tailed product distributions which
these ideas, we obtain an algorithm that is almost in- works with a separation O(B(R\/T), whereR is the
sensitive to mixing weights, a property essential for ap- maximum half-radius of any distribution in the mixture.
plications like population stratification [CHRZ07], and
which can be implemented using the heavily optimized They do not directly address binary product distributions
and thus, efficient, SVD procedure, and which works in their paper, but their techniques apply.



While their separation requirement does not depend poly-
nomially on ——, their algorithm runs in time expo-

N L
Wmin I

nential in@(wl”, ). They also require a slope, which is NoiseT Q@ Noise

comparable to our spreading condition. Chaudbtiail.
[CHRZ07] show an iterative algorithm for learning mix- 5 —
tures of two product distributions that implicitly uses the ® " Soparation ®) " separation
notion of co-ordinate independence to filter out noise di-
rections. However, the algorithm heavily uses the two Figyre 1: (a) Spherical Gaussians: Direction of maxi-
distribution restriction to find the appropriate direc8on  yum variance is the direction separating the centers (b)

and does not work whefl > 2. _ _ Arbitrary Gaussians: Direction of maximum variance is
More broadly, the problem of analyzing mixture mod- g noise direction.

els data has received a great deal of attention in statis-
tics, see for example, [MB88, TSM85], and has numer-

ous applications. We present three applications where Y

data is modelled as a mixture of product distirbutions. D Dy
First, the problem of population stratification in popula- = g

tion genetics has been posed as learning mixtures of bi- ‘

nary productdistributions in [SRHO7]. In their work, the ! ;
authors develop an MCMC method for addressing the D1 | Dy
problem and their software embodiment is widely used. i =g

A second application is in speech recognition [Rey95, ‘
PFKO02], which models acoustic features at a specific il =l =l /

time point as a mixture of axis-aligned Gaussians. A
third application is the widely used Latent Dirichlet Al- , )
location model [BNJO3]. Here, documents are modelled ~ Figure 2: An Example where All Covariances are
as distributions over topics which, in turn, are distri-
butions over words. Subsequent choices of topics and
words are assumed to melependent(For words, this is
referred to as the “bag of words” assumption.) [BNJO3]
develops variational techniques that provide interesting > —C ;
results for various corpora. Interestingly, the same modelWord f_or ak__b't string appgnded by a string of '?”gth
was used by Kleinberg and Sandler [KS04] to model 7 — K in which each coordinate has valug2. Notice
user preferences for purchasing goods (users correspond@t the last — £ bits are noise. Thus, the centers are
to documents, topics to categories, and words to goods).S€Parated by’/2 coordinates. D, is the uniform dis-

Their algorithm, which provides provably good perfor-  tripution over then—dimensional hypercube. As there
mance in this model, also uses SVD-like clustering al- &€ Nno linear correlations between any two bits in the
gorithms as a subroutine. Hadamard code, the covariance Bf along any two

Our clustering method also involves a Canonical Cor- directions is0, and each direction has the same vari-

relations Analysis of the samples, which seems to have ance. As _th|s is also the case f@@ any S\(D.-bse.d
orrelation-based algorithm will fail to distinguish

connections with multiview learning[KF07] and co tralg[Aﬁéeﬁ./een the two mixtures. We also note that learning
binary product distributions with minimum separation
2 and average separatidnt 1 log 7" would allow one
The Spreading Condition. The spreading condition  to learn parities ofog 7" variables with noise. Finally,
loosely states that the distance between each pair of cenwe note that when the spreading condition fails, one has
ters is spread along abo@i(7 log A) coordinates. We  only a few coordinates that contain most of the distance
demonstrate by an example, that a sprea@ (@), is a between centers. One could enumerate the set of possi-
natural limit for all methods that use linear correlations ble coordinates to deal with this case, and is exponen-
between coordinates, such as our methods and SVD basé@nal in T log n log A. [FOS05] on the other hand takes
methods [VW02, KSV05, AM05]. We present, as an time exponential irf™ log n, and works with no separa-
example, two distributions : a mixtu®, of 1" binary tion requirement.

product distributions, and a single binary product dis-

tribution Dy, which have exactly the same covariance 2 A Summary of Our Results

matrix. Our example is based on the Hadamard code, in

which a codeword for &-bit message i€* bits long, We begin with some preliminary definitions about dis-
and includes a parity bit for each subset of the bits of tributions drawn overn dimensional spaces. We use

the message. The distributions comprisifig are de-
fined as follows. Each of th& = 2* centers is a code-

Discussion



f,g,...torange over coordinates, and, . . . to range
over distributions. For any € R™, we writezf for the
f-th coordinate ofc. For any subspacH (resp. vector
v), we useH (resp. v) to denote the orthogonal com-
plement ofH (resp.v). For a subspack and a vector
v, we write P4 (v) for the projection ofv onto the sub-
spaceH. Forany vector, we usé|z|| for the Euclidean
norm ofz. For any two vectors andy, we use(z, y)
for the dot-product of andy.

Mixtures of Distributions. A mixture of distributions
D, is a collection of distributions, D+, ..., Dr}, over
points inR™, and a set of mixing weightg, ..., wr
such that) ", w; = 1. In the sequelp is assumed to
be much larger thaff’. In a product distribution over
R™, each coordinate is distributed independently of the
others. When working with a mixture of binary prod-
uct distributions, we assume that tlfigh coordinate of

a point drawn from distributio; is 1 with probability

uf, and0 with probability1 — uf. When working with

a mixture of axis-aligned Gaussian distributions, we as-
sume that the¢'-th coordinate of a point drawn from dis-

tribution D; is distributed as a Gaussian with maaf]
and standard deviatiOﬂgr .

Centers. We define theenterof a distribution: as the
vector u;, and thecenter of mass of the mixtuss the
vector i wherefi/ is the mean of the mixture for the
coordinatef. We writeC for the subspace containing
M1y UT-

Directional Variance. We defines? as the maximum
variance of any distribution in the mixture along any
direction. We definer? as the maximum variance of
any distribution in the mixture along any direction in
the subspace containing the centers of the distributions.
We write o2, as the maximum variance of the entire
mixture in any direction. This may be more thahdue

to contribution from the separation between the centers.

Spread. We say that a unit vectarin R™ has sprea&
if Zf(vf)2 > S - max;(v])2,

Distance. Given a subspack of R™ and two points
z,y in R™, we writedi (z,y) for the square of the Eu-
clidean distance betweenandy projected along the
subspacéC.

The Spreading Condition and Effective Distance. The
spreading condition tells us that the distance between
eachy; andy; should not be concentrated along a few
coordinates. One way to ensure this is to demand that
for all 4, j, the vectoru; — u; has high spread. This is
comparable to the slope condition used in [DHKS05].
However, we do not need such a strong condition for
dealing with mixtures with imbalanced mixing weights.
Ourspreading conditiotherefore demands that for each
pair of centerg;, 11;, the norm of the vecton; — y;
high, even if we ignore the contribution of the top few

(aboutT’log T') coordinates. Due to technicalities in our
proofs, the number of coordinates we can ignore needs
to depend (logarithmically) on this distance.

We therefore define the spreading condition as fol-
lows. We define parametets; and a parametek as :

A > ngz’; andc;; is the maximum value such
Wmin-(mMing ; cij) J
that there ard97 log A coordinates with |u£c — Mﬂ >
cij- We note thatA is bounded by a polynomial in
T,04,1/Wmin, 1/c;; and logarithmic im.

We definecyin to be the minimum over all pairs j
of ¢;;. Given a pair of centersandy, let A;; be the set

of coordinatesf such thatu! — 11| > ¢;;, and letw;
be defined asv/, = u! — pf,if f ¢ Ay, andvf; = ¢

K3
otherwise. We definé(y;, 11;), the effective distance
betweeny; andy; to be the square of the, norm of

v;5. In contrast, the square of the norm of the vector
wi — pj; is the actual distance between centersand

w;, and is always greater than or equal to the effective
distance betweep; and u;. Moreover, giveri and j
and the subspad€, we definedx (1, 11;) as the square

of the norm of the vectar;; projected onto the subspace
K.

Under these definitions, our spreading condition now
requires thatl(y;, p1;) > 49¢;;T log A and our stronger
spreading condition requires that every vecto€ihas
spread327'log 7.

A Formal Statement of our Results. Our main con-
tribution is Algorithm GRR-CLUSTER, a correlation
based algorithm for learning mixtures of binary prod-
uct distributions and axis-aligned Gaussians. The input
to the algorithm is a set of samples from a mixture of
distributions, and the output is a clustering of the sam-
ples.

The main component of Algorithm@RR-CLUSTER
is Algorithm CoRR-SUBSPACE which, given samples
from a mixture of distributions, computes an approxi-
mation to the subspace containing the centers of the dis-
tributions. The motivation for approximating the latter
space is as follows. In thE-dimensional subspace con-
taining the centers of the distributions, the distance be-
tween each pair of centers andy; is the same as their
distance inR"; however, because of the low dimen-
sionality, the magnitude of the noise is small. There-
fore, provided the centers of the distributions are suf-
ficiently separated, projection onto this subspace will
sharply separate samples from different distributions.
SVD-based algorithms [VW02, AM05, KSV05] attempt
to approximate this subspace by the ®gingular vec-
tors of the matrix of samples. However, for product
distributions, our Algorithm ©RR-SUBSPACE can ap-
proximate this subspace correctly under more restrictive
separation conditions.

The properties of Algorithms GRR-SuBsPACEand



CoRR-CLUsTERare formally summarized in Theorem 1
and Theorem 2 respectively.

Theorem 1 (Spanning centers) Suppose we are given
a mixture of distributionsD = {Ds,...,Dr}, with
mixing weightsuy, . . ., wr. Then with at least constant
probability, the subspacé& of dimension at mosXT’
output by AlgorithmCoRR-SUBSPACE has the follow-
ing properties.

1. If, for all i and j, d(ps, p1;) > 49¢3,T log A, then,

for all pairs i, j,

99
dic(pis p1g) > 1_00(d(,uivﬂj) —49Tc};log A)

. If,in addition, every vector i@ has spread21'log -,
then, with at least constant probability, the maxi-
mum directional variance ifC of any distribution
D; in the mixture is at mositio?2.

The number of samples required by AlgoritiBoRR-

SUBSPACEIs polynomial in%, T, n,c and ﬁ and

the algorithm runs in time polynomial in, 7', and the

number of samples.

then with probabilityl — % over the samples and
with constant probability over the random choices
made by the algorithm, Algorith@ORR-CLUSTER
computes a correct clustering of the sample points.

. For axis-aligned Gaussians, if every vecto€ihas
spread at leas827'log >, and for alli, j:

d(pi, 1)

then, with constant probability over the random-
ness in the algorithm, and with probability —
L over the samples, Algorith@ORR-CLUSTER
computes a correct clustering of the sample points.

> 150027 (log A + log n)

Algorithm CORR-CLUSTER runs in time polynomial in
n and the number of samples required by AlgoritBorR-
CLUSTERIs polynomial in-, T', n, o and L

Wmin

We note that because we are required to do classifi-
cation here, we do require an absolute lower bound on
the distance between each pair of centers in Theorem 2.

The second theorem follows from the first and the

The subspack computed by Algorithm ©RR-SUBSPACE  gistance concentration Lemmas of [AMO5] as described
approximates the subspace containing the centers of thg getail in Chapter 3 of [Cha07]. The Lemmas show
distributions in the sense that the distance between eachy st once the points are projected onto the subspace com-
pair of centergy; andy; is high alongkC. Theorem 1 5 ted in Theorem 1, a distance-based clustering method
states that Algorithm ORR-SUBSPACECOMpUtes an ap-  gyfices to correctly cluster the points.

proximation to the subspace containing the centers of . -
the distributions, provided the spreading conditionis sat A Note on the Stronger Spreading Condition. The
isfied. If the strong spreading condition is satisfied as Motivation for requiring the stronger spreading condi-

well, then the maximum variance of eath alongk is tion is as follows. Our algorithm splits the coordinates
also, close tar2. randomly into two setss andG. If Cx andCg denote

Note that in Theorem 1. there is no absolute lower the restriction of’ to the coordinates itF andg respec-

bound required on the distance between any pair of cen-tVely, then our algorithm requires that the maximum
ters. This means that, so long as the spreading Condi_Q|rectlonaI variance of any d|str|bu_t|on in thg mixture
tion is satisfied, and there are sufficiently many sam- 1S lose too. in Cr andCg respectively. Notice that
ples, even if the distance between the centers is not largetis does not follow from _the2fact that the maximum di-
enough for correct classification, we can compute an ap- 'éctional variance along is o suppos& is spanned
proximation to the subspace containing the centers of PY (0-1,0.1,1,1) and(0.1,0.1, -1, 1), variances of»,

the distributions. We also note that although we show @long the axes ar@l0, 10,1, 1), andZ"is {1,2}. Then,
that Algorithm GORR-SUBSPACE succeeds with con- O IS about.8, while the variance oD, alongCr is10.
stant probability, we can make this probability higher However, as Lemma 9 shows, the required condition is

at the expense of a more restrictive spreading condition, €"Sured by the strong spreading condition. _
or by running the algorithm multiple times. However, in general, the maximum directional vari-

ance of anyD; in the mixture alongCr andCg may
still be close tar2, even though strong spreading condi-
tion is far from being met. For example:(dfis the space
spanned by the firdt coordinate vectors,, . . . , er,then
with probability 1 — QLT the maximum variance along

Cr andCg is alsoo?.

Theorem 2 (Clustering) Suppose we are given a mix-
ture of distributionsD = {D;,..., Dr}, with mixing
weightswy, . .., wp. Then, AlgorithnCORR-CLUSTER
has the following properties.
1. Ifforalliandj, d(p, ju;) > 49Tc;; log A, and for
all 7, j we have:
d(pi, ) > 590*T(log A + logn)
(for axis-aligned Gaussians)
> 59T (log A + logn)
(for binary product distributions)

3 Algorithm CoRR-CLUSTER

Our clustering algorithm follows the same basic frame-
work as the SVD-based algorithms of [VW02, KSVO05,
AMO5]. The input to the algorithm is a sStof samples,

d( i, py)



and the output is a pair of clusterings of the samples ac-
cording to source distribution.

CORR-CLUSTER(S)

1. PartitionS into S4 andSg uniformly at ran-
dom.

2. Compute: K4 = Corr — Subspace(S4),
Kp = Corr — Subspace(Sp)

3. Project each pointi§p (resp.S4) on the sub-
spaceC 4 (resp.Kg).

4. Use a distance-based clustering algo-
rithm [AKO1] to partition the points in
S4 andSp after projection.

The first step in the algorithm is to use Algorithm
CoRR-SuBsPACEto find aO(T')-dimensional subspace
K which is an approximation to the subspace containing
the centers of the distributions. Next, the samples are
projected ontdC and a distance-based clustering algo-
rithm is used to find the clusters.

n/2 dimensions { vector inn/2 dimensions con-
catenated withy; respectively). For each if the
singular value); is more than a threshold =

0] ( -+/log A) , we addv; andy; to K.

Step 5: Output Output the set of vectors.

2
WminCjj

Tlog?n

The main idea behind our algorithmis to use half the
coordinates to compute a subspace which approximates
the subspace containing the centers, and the remaining
half to validate that the subspace computed is indeed a
good approximation. We critically use the coordinate
independence property of product distributions to make
this validation possible.

4 Analysisof Algorithm CORR-CLUSTER

This section is devoted to proving Theorems 1, and 2.
We use the following notation.

We note that in order to preserve independence the Notation.We write 7-space (respg-space) for the: /2

samples we project ontg should be distinct from the
ones we use to compute A clustering of the complete
set of points can then be computed by partitioning the
samples into two setd and B. We useA to compute

K 4, which is used to clusteB and vice-versa.

We now present our algorithm which computes a ba-
sis for the subspadé. With slight abuse of notation we
usek to denote the set of vectors that form the basis for
the subspack.The input to @RR-SUBSPACEIS a setS
of samples, and the output is a subspiicaf dimension
at most2T'.

Algorithm CORR-SUBSPACE

Step 1: Initialize and Split Initialize the basigC with
the empty set of vectors. Randomly partition the
coordinates into two setsF and G, each of size
n/2. Order the coordinates as thoseffirst, fol-
lowed by those irg.

Step 2: Sample Translate each sample point so that the
center of mass of the set of sample points is at the
origin. Let F' (respectively) be the matrix which
contains a row for each sample point, and a column
for each coordinate iff (respectivel\G). For each
matrix, the entry at row;, columnf is the value of
the f-th coordinate of the sample pointdivided

by /|S].

Step 3: Compute Singular Space For the matrixt' TG,
compute{vy, ..., vr}, the topT left singular vec-
tors,{y1, ..., yr}, the topT right singular vectors,
and{\, ..., \r}, the topT singular values.

Step 4: Expand Basis For eachi, we abuse notation
and usev; (y; respectively) to denote the vector
obtained by concatenating with the 0 vector in

dimensional subspace B&" spanned by the coordinate
vectors{es | f € F} (resp.{eq | g € G}). We writeC
for the subspace spanned by the set of vegigrs\We
write Cx for the space spanned by the set of vectors
Pr(u;). We writeP £ (Cx) for the orthogonal comple-
ment ofCx in the F-space. Moreover, we writr g
for the subspace of dimensi@fi’ spanned by the union
of a basis o€ » and a basis afg. Next, we define a key
ingredient of the analysis.

Covariance Matrix. Let N be a large number. We de-
fine £ (resp.G), theperfect sample matriwith respect
to F (resp.G) as theN x n/2 matrix whose rows from
(w1 +...4+w;—1)N +1through(w; +...+w;)N are

equal to the vectoP #(u;)/vV/N (resp. Pg(i:)/v/N).
For a coordinat¢, let X ; be a random variable which is
distributed as the-th coordinate of the mixtur®. As

the entry in rows and columry in the matrix 2 TG is
equal toCov(Xy, X,), the covariance oX ; and X,

we call the matrixt'T G the covariance matrixof F and

Q

Proof Structure. The overall structure of our proof is
as follows. First, we show that the centers of the dis-
tributions in the mixture have a high projection on the
subspace of highest correlation between the coordinates.
To do this, we first assume,in Section 4.1 that the input
to the algorithm in Step 2 are the perfect sample ma-
trices F andG. Of course, we cannot directly feed in
the matricesF, G, as the values of the centers are not
known in advance. Next, we show in Section 4.2 that
this holds even when the matricésandG in Step 2 of
Algorithm CoRR-SuUBSPACEare obtained by sampling.

In Section 4.3, we combine these two results and prove
Theorem 1. Finally, using results on distance concentra-
tion from [AMO5, AKO1], we complete the analysis by
proving Theorem 2.



4.1 ThePerfect Sample Matrix Moreover, for any pair of vectors in F-space and

The goal of this section is to prove Lemmas 3 and 7, ¥ in g-space such thaer, vr) = 0 and(y, vg) = 0,
which establish a relationship between directions of high _T g 2 . -

; . . F = H{x, P i— P i—il)) =
correlation of the covariance matrix constructed from * Gy Zwl@’ vr ()N, Pog (= i1)) = 0
the perfect sample matrix, and directions which contain !
alot of separation between centers. Lemma 3 shows thatTherefore /T G, has rank at most.

a direction which contains a lot of effective distance be- The proof strategy for Lemma 4 is to show that if

tween some pair of centers, is also a direction of high dy (i, j17) is large then the matrii@jré’v has high norm.

correlation. _ We require the following notation. For each coordinate
Lemma 7 shows that a directione P = (Cx), which / we define &’-dimensional vectoz; as

is perpendicular to the space containing the centers, is a

direction with 0 correlation. In addition, we show in 2p = [V Py (] — i), ..., VorP,(u — i)

Lemma 8, another property of the perfect sample ma- ; ; .

trix — the covariance matrix constructed from the perfect Notice that for any two coordinatgsy:

sample matrix has rank at m@st We conclude this sec- (2f,24) = Cov(P,(Xy),Py(Xy))

tion by showing in Lemma 9 that when every vector in

C has high spread, the directional variance of any distri-

bution in the mixture along--space oG-space is of the Z ll241* = Z w; - dy (1, i)

f i

, computed over the entire mixture. We also observe that

order ofo2.

We begin by showing that if a directioncontains . i .
a lot of the distance between the centers, then, for most 1€ RHS of this equality is the weighted sum of the

ways of splitting the coordinates, the magnitude of the SAuares of the Euclidean distances between the centers
covariance of the mixture along the projection«oén of the distributions and the center of mass. By the trian-

. putor e 5
F-space and the projection ofj-space is high. Inother ~ 91€ ineéquality, this quantity is at leastuw,nincj; 'log A.

words, the projections of alongF-space andj-space We. also a couple of technical lemmas —Lemmas 5 and 6,
are directions of high correlation. which are stated below. The proofs of these lemmas

are omitted due to lack of space, but can be found in

Lemma 3 Let v be any vector inCx,g such that for [Cha07].

: .7 2
somei and j, dy (psi, p1;) > 49Tc;;log A. If vr andug Lemma5 LetA be a set of coordinates with cardinality
are the normalized projections ofto F-space andj- more than1 4472 log A such that for eaclf € A, ||z/|

; . o f

space respe.ctllvely, then, with probabrlrllt}/TatAleast T is equal anaszA llz[]2 = D. Then, (1)

over the splitting step, for all such, vz F'*Guvg > 7

wherer = O (25 - VIog R ). S (2.2
[9€A, f#g

and (2) with probabilityl — A=27" over the splitting of

coordinates in Step 1,

D2
> -
— 288T2log A
A detailed proof, presented in [Cha07], is omitted due

to lack of space. However, the main ingredient of the
proofis Lemma 4.

D2
Lemma4 Letv be afixed vector i@ such that for some Z (£, 29)" > 115272 log A
iandy, dy (i, p15) > 49T log A. If v andug are the ferna,gegna
projections ofv to F-space andj-space respectively,
then, with probability at least— A ~>" overthesplitting | emma 6 Let A be a set of coordinates such that for
stepuE FTGug > 27 wherer = O (;E};;; : \/W). eachf € A, ||zf|| is equal andy_ . , [|2¢|]> = D. If
48T 1log A + T < |A| < 144T%log A, then (1)

~ ~ 2
Let F, (G, respectively) be the x n/2 matrix ob- Z (2f,24)% > D
. o - LA 7790 = 1152T4 log A
tained by projecting each row df (respectivelyG) on F.gEA f#g

respectivelyg). Then,
vr (resp Wo) and (2) with probabilityl — A=27 over the splitting in

VTG g Step 1,
Z w7;<’l}_7-‘, PU}‘ (MZ - ﬂ)) <Ug, P’Ug (IU/l - ﬁ)>

2 D2
>_ -
D (20’ 2 g log A
T AT A fEFNA,geGNA
= vrF " Gug



Proof:(Of Lemma 4) From the definition of effective
distance, if the condition, (., u;) > 49¢};Tlog A
holds then there are at leatiT"log A vectorszy with
total squared norm at IeaQmeincijQTlog A. In the
sequel we will scale down each vector with norm
greater tham;; ,/wmin SO that its norm is exactly
Cij+/Wmin- We divide the vectors inttbgn groups as
follows: group By contains vectors which have norm
between=rmiz and iy min

We will call a vectorsmallif its norm is less than
7% and otherwise, we call the vectoig. We ob-
serve that there exists a set of vecf®rwith the fol-
lowing properties: (1) the cardinality @ is more than

49T log A, (2) the total sum of squares of the norm of the

: : Awminc};
vectors inB is greater thaé%t, and, (3) the

ratio of the norms of any two vectors iR is at most
2+/logn.

Case 1: Suppose there exists a groBp of small vec-

tors the squares of whose norms sum to a value greate

49Twm;nc?, log A ..
than — Tz BY definition, such a group has

more thar97 log A vectors, and the ratio is at mdxst
Case 2: Otherwise, there are at lealtT log A big vec-

tors. By definition, the sum of the squares of their norms

49T wmincs; log A . L
exceeds— % %22 Dye to the scaling, the ratio is

logn

at most2+/log n.
We scale down the vectors B so that each vector

WminC

2
has squared norm—;— in case 1, and, squared norm

WminC

2
——— in case 2. Due to (2) and (3), the total squared

4logn

. 49T wininc?,; log A
norm of the scaled vectors is at leastominis 084

4log?n

Due to (1), we can now apply Lemmas 5 and 6 on

the vectors to conclude that for some constantwith
probability1l — A=27,

2 4
Yo ()’ zar (W)
FeFaco T?log™n
The above sum is the square of the Frobenius norm
|ETG,|p of the matrix ©TG,,. SinceFTG, has rank
at mostl, and the maximum singular value of a rahk
matrix is its Frobenius norm [GL96], plugging in

incZ;
r=0 (“’“““ i . /Tog A) completes the proof]

Tlog%n

Next we show that a vectar € Px(Cr) is a di-

rection of0 correlation. A similar statement holds for a

vectory € Pg(Cg).

Lemma7 If at Step 2 of AlgorithnCORR-SUBSPACE
the values off' and G are respectively” and G, and
for somek,the topk-th left singular vector is, and the
corresponding singular valugy, is more thanr, then
for any vectorz in P=(Cx), (v, z) = 0.

Proof: We first show that for any in P =(Cx), and any
Y, xTFTGy = 0.
T
ZTETGy =3 wilPr(ui),x) - (Po(iui), y)

i=1

Sincex is in P£(Cr), (P£(u;),z) = 0, for all 4, and
hencexTFTGy = 0 for all z in Px(Cx). We now
prove the Lemma by induction dn

Basecase (k = 1). Letv; = uy + 21, whereu; € Cr
andz; € Px(Cr). Lety; be the top right singular
vector of FT@, and let|z1| > 0. Then,vT FTGy, =
uTFTGy,, andu, /|u, | is a vector of norm such that
L uTFTGy, > vT FTGyy, which contradicts the fact

[ur]

thatv; is the top left singular vector af TG.

Inductive case. Let vy, = uy + x, whereuy, € Cx and
xr € P£(Cr). Letyy be the topk-th right singular vec-
tor of FTG, and let|zy| > 0. We first show thaty, is
orthogonal to each of the vectors, . .., v;_1. Other-
wise, suppose there is somel < j < k — 1, such that
(ug,vj) # 0. Then,(vg,vj) = (@K, v5) + (Ug,vj) =
(ug,vj) # 0. This contradicts the fact that, is a
left singular vector off TG, ThereforepT FTGy,, =
uF FTGyy,, anduy /|uy| is a vector of norm, orthogo-
naltowvy,...,v,_1 such thaﬂ%klukT,FTéyk > UEFTG‘yk.
This contradicts the fact tha, is the topk-th left sin-
gular vector ofF'TG. The Lemma follows[]

Lemma 8 The covariance matrix¥' TG has rank at most
T.

The proof is omitted due to space constraints.

Finally, we show that if the spread of every vector in
C is high, then with high probability over the splitting of
coordinates in Step 1 of Algorithm @RR-SUBSPACE
the maximum directional variances of any distribution
D; in Cx andCg are high. This means that there is
enough information in botl¥-space andj-space for
correctly clustering the distributions through distanoce-c
centration.

Lemma9 If every vectorv € C has spread at least
32T'log -, then, with constant probability over the split-
ting of coordinates in Step 1 of Algorithm
CORR-SUBSPACE the maximum variance along any di-
rection inCx or Cg is at mostso2.

Proof:(Of Lemma 9) Letv andv’ be two unit vectors
in C, and letvr (resp.v’z) andvg (resp.vg denote the
normalized projections of (resp. v’) on F-space and
G-space respectively. lffvr — v’|| < Z=, then, the

o !



directional variance of any; in the mixture along/,
can be written as:

E[(vy, ¢ — El2])’]
— El(vr,x — Bla])?] + B(v} — vr,2 — Efa])?
+2E[(vr, @ — Bla])[E[(v) — vz, — Ela])]
< El(vr,a - Bla])?] + [Jus — %0

Thus, the directional variance of any distribution in the
mixture along’ is at most the directional variance along
v, plus an additiona#?. Therefore, to show this lemma,
we need to show that if is any vector on &=-cover

of C, then with high probability over the spllttlng of co-
ordinates in Step 1 of Algorithm @RR-SUBSPACE the
directional variances of ani; in the mixture along
andvg are at mostio?2.

We show this in two steps. First we show that for
anyv in a Z=-cover ofC, + < >, ~(v/)? < 3. Then,
we show that this condition means that for this veetor
the maximum directional variances along andvg are
at mostdo?2.

Let v be any fixed unit vector i. We first show
that with probab|I|ty1 ( *)2 over the splitting of
coordinates in Step 1 of Algorithm &RR-SUBSPACE
T < Y jer(w?)? < 2. To show this bound, we ap-
ply the Method of Bounded Difference[PDO05]. Since
we split the coordinates intd andG uniformly at ran-
dom, E[}_ ;. ~(v/)?] = 3. Let~; be the change in
Zfef(vf)2 when the inclusion or exclusion of coordi-
nate f in the set¥ changes. Theny; = (v/)? and

= Zf ﬁ. Since the spread of vectoris at least
32T10g ;—*, Y= Zf(Uf)4 S W’ and from the
Method of Bounded Differences,

Pl Yo (0 B[ )] > 5] < e
fer fer

O« 2T

< (%)

By taking an union bound over allon aZ*-cover ofC,
we deduce that for any sueh < Zfef(vf) <3

Since the maximum directional variance of any dis-
tribution D; in the mixture inC is at mostr2,

PO (v))2(o] 72 < 52, Therefore the maximum variance
alongvf as well asyg can be computed as:

Pl S 2

feF

< 402
[[z]? 7—'|

The lemma follows

4.2 Working with Real Samples

In this section, we show that given sufficient samples,

the properties of the matrikT G, whereF andG are

generated by sampling in Step 2 of AlgorithnoRR-
CLUSTER are very close to the properties of the matrix
FT@. The lemmas are stated below. The proofs are
omitted due to space constraints, but can be found in
[Cha07]. The proofs use the Method of Bounded Dif-
ferences (when the input is a mixture of binary product
distributions) and the Gaussian Concentration of Mea-
sure Inequality (for axis-aligned Gaussians).

The central lemma of this section is Lemma 10, which
shows that, if there are sufficiently many samples, for
any set of2m vectors{vy, ..., v} and{yi,...,ym},

YL oE FT Gy, andY, o FTGyy, are very close. This
lemmais then used to prove Lemmas 11 and 12. Lemma
11 shows that the top few singular vectorsfof G out-

put by Algorithm QRR-SUBSPACEhave very low pro-
jection onP £(Cr) or Pg(Cg). Lemma 12 shows that
the rank of the matrix" TG is almostT, in the sense
that theT" + 1-th singular value of this matrix is very
low.

Lemmal10 LetU = {u1,...,um}, Y ={y1,.-.-,Ym}
be any two sets of orthonormal vectors, anddeand G
be the matrices generated by sampling in Stejj the
algorithm. If the number of sampléS| is greater than

Q(mS"2 log ";Sg(”‘“a"/‘s)) (for Binary Product Distribu-
tions), and?(max(aq, ag)) (for Axis-Aligned Gaussians),

4 2
,and

a*m*n?log® nlog? (o0 max/9)

wherea; = 52

ay = Cmaxmnlognlos(onas/9) then, with probability
at leastl — 1/n,

1> uf (FTG - B[FTG)ye| <6
k

Lemma 1l Let F' and G be the matrices generated by
sampling in Steg of the algorithm, and let, ..., v,
be the vectors output by the algorithm in Steplf the
number of samplels| is greater than

Q( mn log n(log Alog ;) ) (for Binary Product Distribu-

2.4

tions), andTmax(al,ag) (for Axis-Aligned Gaussians)
wherea; = o*m?n?log? nlog?(A/e) _and

24
0'20'2

o m3nlogn log(A/e)
a2 = g

zin Pr(Cr), (v, x) <e.

, then, for eactk, and any

Lemma 12 Let F' and G be the matrices generated by
sampling in Step 2 of AlgorithrBORR-SUBSPACE If
the number of samplées/| is greater than

0 (M) (for binary product distributions) and

4. 2 2 3
27301 log A H
o Tn Tlgg logA Tmax¥ ;O%" o8 for axis-

aligned Gaussians, themT+1, the T + 1-th singular
value of the matrix¥" TG is at mostr /8.

Q (max



4.3 TheCombined Analysis

In this section, we combine the lemmas proved in Sec-
tions 4.1 and 4.2 to prove Theorem 1.

We begin with a lemma which shows that if every
vector inC has spread2T log .-, then the maximum
directional variance i, the space output by Algorithm
CORR-SUBSPACE is at mostl102.

Lemma 13 Let K be the subspace output by the algo-
rithm, and letv be any vector iriC. If every vector irC
has spread32T log =, and the number of sampl¢S|

is greater than
0'6T4nj21§fg£'2 log A then
for anyi the maximum variance @b; alongv is at most
1102

a?ﬂaxa4T3n log nlog A
)

Q (max 7251

The proof is omitted due to space constraints, and
can be found in [Cha07].
The above Lemmas are now combined to prove Theo-
rem 1.
Proof: (Of Theorem 1)

Suppos&C = K1, UKg, whereKp, = {vq,. ..
the topm left singular vectors of TG and
Kr = {y1,...,ym are the corresponding right singu-
lar vectors. We abuse notation and wsdo denote the
vectorvy, concatenated with a vector consistingrof2
zeros, and usg;, to denote the vector consistingof2
zeros concatenated wity. Moreover, we uséC, K,
and KCr interchangeably to denote sets of vectors and
the subspace spanned by those sets of vectors.

We show that with probability at least- 1 over the
splitting step, there exists no vectokE Crg such that
(1) v is orthogonal to the space spanned by the vedfors
and (2) there exists some pair of centeasd; such that
dy (1, pt5) > 49Tc§j log A. For contradiction, suppose
there exists such a vector

Then, if vz andvg denote the normalized projec-
tions ofv onto F-space andj-space respectively, from
Lemma 30EFTGug > 7 with probability at least —
% over the splitting step. From Lemma 10, if the num-

7vm}1

ber of sample§S| is greater thaf (w) for
binary product distributions, and 5| is greater than

0 (max ( )) for

axis-aligned Gaussiansf FTGvg > 7 with at least
constant probability. Since is orthogonal to the space
spanned byC, v is orthogonal toK; andwvg is or-
thogonal toKr. AS Ay41 is the maximum value of
2T FT Gy over all vectorse orthogonal taC;, andy or-
thogonal toCr, A1 > 5, which is a contradiction.
Moreover, from Lemma 127, < g, and hence
m<T.

Let us construct an orthonormal series of vectors
V1,...,Um, ... Which arealmostin C~ as follows.

a*n?log? log A 02031“71 log nlog A
T2 Ll T2

vy, - .., Uy are the vectors output by AlgorithmdRr-
SuBsPACE We inductively definey; as follows. Sup-
pose for eaclk, v, = ur + zx, whereu;, € Cr and
xr € Px(Cr). Letwu; be a unit vector irC+ which is
perpendicular taiy, ..., u;—1. Then,u; = u;. By defi-
nition, this vector is orthogonal to,, ..., ;1. In ad-
dition, for anyk # 1, {(v;, vg) = (ug, ug) + {u;, xx) = 0,
andv; is also orthogonal tey, ..., v;—1. Moreover, if
€ < 1557 U1, - - -, U, @re linearly independent, and we
can always findlim(Cx) such vectors. Similarly, we
construct a set of vectots, y», . . .. Letus call the com-
bined set of vector§*.

We now show that if there are sufficient samples,
de~(pi, pij) < ¢};. Note that for any unit vectop*
in C*, and any unitr € Cryg, (v,z) < me. Also,
note that for anyu, andu;, k # 1, |{(ug, w;)| < €2, and
[lup||* > 1 — €% Letv = Y, akuy be any unit vector
in Crug. Then,1 = ||’U||2 = Zk,k/ akak/<uk,uk/> >
> o lunl? — Q(T%€).

The projection ofv on C* can be written as:

Z(U,vk>2 Z(v,uk)Q

k k
Z Z o (ug, ug)® 4 2 Z oo (ug, up) (g, urr)
] L

k
> affjugl]* = TPt > 1 - Q(T7%6)
k

Y

The last step follows because for edgH|uy||? > 1 —
€2. If the number of samplgs| is greater than

Q(mntlog nllog A0 190T) ) (for Binary Product Distri-

butions), and

max (a4m4n2 log? nlog?(100TA) o2, o?m®nloglog(100TA) )
274 bl 274

(for axis-aligned Gaussians), theng 1/1007". There-

fore,

de- (i py) <
For anyi and,

A, py) = dic(pas p1g) + dese (pa, p13) + de= (i, 1)
Since vector,,+1,... and y,,+1, - .., all belong to
Crug (aswell aL* \ K, there exists ne € C*\ K with
the Conditions (1) and (2) in the previous paragraph,
andde,. o \x (i, 1) < 49Tc;;log A. That is, the ac-
tual distance betweem; andy; in Cryug \ K (as well
asC* \ K) is at most the contribution té(y;, 1;) from
the t0p49Tc$j log A coordinates, and the contribution
to d(ui, j1;) from K and C* is at least the contribution
from the rest of the coordinates. Sinég- (u;, 1) <
Wlod(uu /_Lj), the distance betwegn andy; in K is at
least ¥ d (i, 1;) — 49T log Acy;). The first part of the
theorem follows.

The second part of the theorem follows directly from
Lemma 13[]
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