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Abstract

A kernel over the Boolean domain is said
to be reflection-invariant, if its value does
not change when we flip the same bit in
both arguments. (Many popular kernels
have this property.) We study the geo-
metric margins that can be achieved when
we represent a specific Boolean function f
by a classifier that employs a reflection-

invariant kernel. It turns out ‖f̂‖∞ is an
upper bound on the average margin. Fur-

thermore, ‖f̂‖−1
∞ is a lower bound on the

smallest dimension of a feature space as-
sociated with a reflection-invariant kernel
that allows for a correct representation of
f . This is, to the best of our knowledge,
the first paper that exhibits margin and
dimension bounds for specific functions (as
opposed to function families). Several gen-
eralizations are considered as well. The
main mathematical results are presented
in a setting with arbitrary finite domains
and a quite general notion of invariance.

1 Introduction

There has been much interest in margin and di-
mension bounds during the last decade. The sim-
plest way to cast (most of) the existing results in
this direction is offered by the notion of margin
and dimension complexity associated with a given
sign matrix A ∈ {−1, 1}m×n. A linear arrange-
ment, given by unit vectors u1, . . . , um; v1, . . . , vn

(taken from an inner product space), is said to rep-
resent A if, for all i = 1, . . . , m and j = 1, . . . , n,
Ai,j = sign(〈ui, vj〉). The dimension complexity of
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A is the smallest dimension of an inner product
space that allows for such a representation. The
margin complexity is obtained similarly by look-
ing for the linear arrangement that leads to the
maximum average margin (or, alternatively, to the
maximum margin that can be guaranteed for all
choices of i and j). Applying counting arguments,
Ben-David, Eiron, and Simon [1] have shown that,
loosely speaking, an overwhelming majority of sign
matrices of small VC-dimension do not allow for a
linear arrangement whose margin or dimension is
significantly better than what can be guaranteed in
a trivial fashion. Starting with Forster’s celebrated
exponential lower bound on the dimension complex-
ity of the Walsh-Hadamard matrix [4], there has
been a series of papers [5, 6, 10, 7, 13, 15] present-
ing (increasingly powerful) techniques for deriving
upper margin bounds or lower dimension bounds on
the complexity of sign matrices.

Note that a sign matrix represents a family of
Boolean functions, one Boolean function per col-
umn say. The lack of non-trivial margin or dimen-
sion bounds for a specific Boolean function has a
simple explanation: a specific function f(x) can
always trivially be represented in a 1-dimensional
space with geometric margin 1 by mapping an in-
stance x ∈ {−1, 1}n to f(x) ∈ {−1, 1}. The cor-
responding kernel would map a pair (x, x′) of in-
stances to 1 if f(x) = f(x′), and to −1 otherwise.
Clearly, the 1-dimensional “linear arrangement” for
f does not say much about the ability of kernel-
based large margin classifier systems to “learn” f
because we would need to know f perfectly prior
to the choice of the kernel. (If we had this knowl-
edge, there would be nothing to learn anymore.)
Nevertheless, this discussion shows that one cannot
expect non-trivial margin or dimension bounds for
specific functions that hold uniformly for all ker-
nels.

In this paper, we introduce the concept of dis-
tributed functions that are invariant under a group
G of transformations. We present the mathemati-
cal results about invariant distributed functions in
a quite general setting (because it does not make



sense to impose unnecessary restrictions). In par-
ticular, we derive non-trivial margin and dimen-
sion bounds for specific Boolean functions that are
valid for all linear arrangements resulting from G-
invariant kernels. If the domain of the distributed
function can be cast as a finite Abelian group, the
margin and dimension bounds for a function f can
be nicely expressed in terms of f ’s Fourier-spectrum.

As always, ‖f̂‖∞ denotes the largest absolute value
found in the spectrum of f ’s Fourier-coefficients.

We show that ‖f̂‖∞ is an upper bound on the largest

possible average margin, and ‖f̂‖−1
∞ is a lower bound

on the smallest possible dimension. Our general re-
sults easily apply to a special case of high learning-
theoretic relevance, namely the reflection-invariant
kernels. Their relevance comes from the fact that,
as demonstrated in the paper, many popular kernels
actually happen to be reflection-invariant.

The remainder of the paper is structured as fol-
lows. In Section 2, we fix some notation and re-
call some facts about Fourier-expansions over finite
Abelian groups and kernel-based classification. In
Section 3, we present our results for arbitrary fi-
nite domains and a quite general notion of invari-
ance. In Section 4, we introduce the concept of
rotation-invariance and mention some connections
between the Fourier-expansion over an arbitrary fi-
nite Abelian group and the spectral decomposition
of such functions. In Section 5, we consider dis-
tributed functions over the Boolean domain and
the concept of reflection-invariance, which is simply
rotation-invariance over a Boolean domain. Sec-
tion 6 presents the margin and dimension bounds
that are valid for reflection-invariant kernels. Sec-
tion 7 offers a possible interpretation of our results,
and mentions a connection to a recent paper by
Haasdonk and Burkhardt [8] along with some open
problems.

2 Definitions and Notations

We assume familiarity with basics in matrix and
learning theory. For example, notions like

• singular values, eigenvalues, spectral norm

• kernels, feature map, Reproducing Kernel Hil-
bert Space

are assumed as known (although we shall occasion-
ally refresh the readers memory). Some central def-
initions and facts concerning

• linear arrangements representing a given sign
matrix,

• margin and dimension associated with such a
linear arrangement,

will be given later in the paper at the place where
it is required. In the following we fix some notation

and recall the Fourier-expansion over finite Abelian
groups as well as the notion of margin in kernel-
based classification.

2.1 Preliminaries

Throughout the paper, δ denotes the Kronecker-
symbol, i.e., δ(a, b) = 1 if a = b and δ(a, b) = 0
otherwise. For two n-dimensional vectors x, y, we
define x◦y to be the vector obtained by multiplying
x and y componentwise, i.e., (x ◦ y)i := xiyi for
i = 1, . . . , n. The n-dimensional “all-ones vector” is
given by

~e = (1, . . . , 1) .

The vector with 1 in component k and zeros else-
where is denoted as ~ek. We consider functions over
a finite domain D with values in R (or in C, resp.).
These functions form a |D|-dimensional vector space.
A distributed function over D is a function over the
domain D ×D. We will occasionally identify a dis-
tributed function f over D with the (D×D)-matrix
F given by Fx,y = f(x, y).

2.2 Fourier-expansions over Finite Abelian
Groups

Let (D, +) be a finite Abelian group of size d = |D|.
A function χ : D → C is called a character over D
if, for every x, y ∈ D,

χ(x + y) = χ(x) · χ(y) .

It is well-known that there are exactly d characters,
and they form an orthonormal basis of the vector
space CD with respect to the inner product

〈f, g〉 :=
1

d
·
∑

x∈D

f(x) · g(x) . (1)

We may fix a bijection between D and the set of
characters and write χz for the character that cor-
responds to z ∈ D. Every function f : D → C can
be written in the form

f(x) =
∑

z∈D

f̂(z) · χz(x) (2)

where

f̂(z) := 〈f, χz〉 =
1

d
·
∑

y∈D

f(y) · χz(y) .

Equation (2) is referred to as the Fourier expansion

of f , and f̂(z) is called the Fourier-coefficient of f
at z.

According to the “Fundamental Theorem for Fi-
nitely Generated Abelian Groups”, every finite Abelian
group is, up to isomorphism, of the form

D = Zq1
× · · · × Zqn

(3)

for some sequence q1, . . . , qn of prime powers. Equa-
tion (3) is assumed henceforth so that

d = |D| =
n∏

k=1

qk .



It is well-known that the characters over Zm are
given by

χ
(m)
k (j) = ωjk

m ,

where

ωm = exp

(
2πi

m

)

is a primitive root of unity of order m. The charac-
ters over D are then given by

χz(x) =

n∏

k=1

χ(qk)
zk

(xk) .

Consider now the matrix H = (Hx,z)x,z∈D given
by

Hx,z = χz(x) . (4)

It is obvious that H is symmetric. By the orthonor-
mality of the characters with respect to the inner
product in (1), it follows that

H∗ · H = H · H∗ = d · I ,

where I denotes the identity matrix.

2.3 Kernel-based Classification

Let K : D × D → R be a valid kernel over a fi-
nite domain D. In other words, K(x, y) is a real-
valued distributed function over D which, consid-
ered as matrix, is symmetric and positive semidef-
inite. LetΦK be the feature map and 〈·, ·〉K the
inner product that represent K in the Reproducing
Kernel Hilbert Space, and let ‖ · ‖K be the norm
induced by 〈·, ·〉K .1 Then Φ satisfies

∀x, y ∈ D : K(x, y) = 〈Φ(x), Φ(y)〉 .

With every “dual vector” α : D → R, we associate
the “weight vector”

w(α) :=
∑

x∈D

α(x)Φ(x) . (5)

In the context of “large margin classification”, α
is considered as a classifier that assigns the label
sign(〈w(α), Φ(x)〉) to input x. Consider a target
function f : D → {−1, 1} for a binary classification
task. Then, a negative sign of f(x) · 〈w(α), Φ(x)〉
indicates a “classification error” on x. So this ex-
pression should be positive and it is intuitively even
better when it leads to a large positive value. Thus,
the following number, called the (geometric) mar-
gin achieved by α on x w.r.t. target function f and
kernel K, is of interest:

µK(f |α, x) :=
f(x) · 〈w(α), Φ(x)〉
‖w(α)‖ · ‖Φ(x)‖ (6)

By averaging over all x ∈ D, we obtain the function

µK(f |α) := 2−n
∑

x∈D

µK(f |α, x) .

1In the sequel, we drop index K unless we would like
to stress the dependence on K.

Focusing on the margin that is guaranteed for every
x ∈ D, we should consider the function

µK(f |α) := min
x∈D

µK(f |α, x) .

By taking the supremum over all α : D → R, we get
the respective parameters of a large margin classifier
employing kernel function K:

µK(f) := sup
α:D→RµK(f |α)

µK(f) := sup
α:D→RµK(f |α)

Finally, taking the supremum ranging over all K
from a given kernel class C, we get the respective
parameters of a best possible large margin classifier
among those that employ a kernel from C:

µC(f) := sup
K∈C

µK(f)

µC(f) := sup
K∈C

µK(f)

We briefly note that, obviously, the guaranteed mar-
gin is upper bounded by the average margin:

µK(f |α) ≤ µK(f |α)

µK(f) ≤ µK(f)

µC(f) ≤ µC(f)

3 A General Notion of Invariance

Throughout this section, D denotes an arbitrary
finite domain, S(D) is the group of permutations
over D, and G ≤ S(D) is an arbitrary but fixed
subgroup. A distributed function over D with val-
ues in V ⊆ C is said to be G-invariant if, for all
x, y ∈ D and every σ ∈ G, the following holds:

f(σ(x), σ(y)) = f(x, y)

We clearly have the

Pointwise Closure Property: The pointwise limit
of G-invariant functions is a G-invariant func-
tion. Furthermore, if f1, . . . , fd are G-invariant
functions and g : V d → W is an arbitrary func-
tion with values in W ⊆ C, then

g(f1(x, y), . . . , fd(x, y))

is G-invariant too.

More interesting is the the following result:

Lemma 1 G-invariant distributed functions over a
finite domain D are closed under the usual ma-
trix product and under the tensor-product of ma-
trices. More precisely, let F (x, y) and G(x, y) be
two G-invariant distributed functions (here viewed
as matrices). Then, the functions (F ·G)(x, y) is G-
invariant and the function (F ⊗ G)[(u, x), (v, y)] is
invariant over G×G (as subgroup of S(D)×S(D)).



Proof: Consider first the function (F · G)(x, y).
Let x, y ∈ D and σ ∈ G be arbitrary but fixed. The
following calculation shows that it is G-invariant:

(F · G)σ(x),σ(y) =
∑

z∈D

Fσ(x),z · Gz,σ(y)

=
∑

z∈D

Fx,σ−1(z) · Gσ−1(z),y

=
∑

z∈D

Fx,z · Gz,y

= (F · G)x,y

Now consider the tensor-product (F⊗G)[(u, x), (v, y)],
which is a distributed function over D × D, i.e., a
function over domain (D ×D) × (D × D). The fol-
lowing calculation shows that it is (G×G)-invariant:

(F ⊗ G)[(σ(u), τ(x)), (σ(v), τ(y))] =

F (σ(u), σ(v)) · G(τ(x), τ(y)) =

F (u, v) · G(x, y) =

(F ⊗ G)[(u, x), (v, y)]

In this section, we shall show the following. If
f : D → {−1, 1} is a function on domain D and G
is a subgroup of S(D), then the largest average (or
largest guaranteed, resp.) margin that can be ob-
tained when f is represented by a G-invariant kernel
is upper-bounded by the largest average (or largest
guaranteed, resp.) margin that can be obtained for
the family

Gf := {fσ : σ ∈ G}
where

fσ(x) := f(σ(x)) .

Since there are classical margin bounds that apply
to the family Gf , we obtain corresponding bounds
that apply to the single function f . An analogous
remark holds for dimension bounds. Details follow.

Assume that K(x, y) is a G-invariant kernel and
consider the feature map Φ = ΦK that represents
K in the Reproducing Kernel Hilbert Space. Then,
for all x, y ∈ D and every σ ∈ G, Φ satisfies

〈Φ(σ(x), Φ(σ(y)〉 = 〈Φ(x), Φ(y)〉 . (7)

Lemma 2 If kernel K is G-invariant, then the fol-
lowing holds for every x ∈ D and every σ ∈ G:

‖ΦK(σ(x))‖K = ‖ΦK(x)‖K

‖w(α)‖K = ‖w(ασ)‖K

In other words, the norm ‖·‖K is constant on feature
vectors of instances taken from the same orbit

xG := {σ(x) : σ ∈ G}
and it assigns the same value to all dual vectors
from the set

{w(ασ) : σ ∈ G} .

Proof: Let Φ = ΦK , ‖·‖ = ‖·‖K , and 〈·, ·〉 = 〈·, ·〉K .
Clearly, ‖Φ(σ(x))‖ = ‖Φ(x)‖ because of

‖Φ(σ(x))‖2 = 〈Φ(σ(x)), Φ(σ(x))〉
(7)
= 〈Φ(x), Φ(x)〉
= ‖Φ(x)‖2 .

As for the second statement, see the following cal-
culation:

‖w(ασ)‖2 = 〈w(ασ), w(ασ)〉
(5)
=

〈
∑

x∈D

ασ(x)Φ(x),
∑

y∈D

ασ(y)Φ(y)

〉

=
∑

x,y∈D

α(σ(x))α(σ(y))〈Φ(x), Φ(y)〉

=
∑

x,y∈D

α(x)α(y)
〈
Φ(σ−1(x)), Φ(σ−1(y))

〉

(7)
=

∑

x,y∈D

α(x)α(y)〈Φ(x), Φ(y)〉

= ‖w(α)‖2

Lemma 3 For every G-invariant kernel K, and ev-
ery choice of f : D → {−1, 1}, x ∈ D, σ ∈ G, and
α : D → R, the following holds:

µK(fσ|ασ, x) = µK(f |α, σ(x))

Proof: The proof starts as follows:

fσ(x) · 〈w(ασ), Φ(x)〉 (5)
=

fσ(x)

〈
∑

y∈D

ασ(y)Φ(y), Φ(x)

〉
=

f(σ(x))
∑

y∈D

α(σ(y))〈Φ(y), Φ(x)〉 (7)
=

f(σ(x))
∑

y∈D

α(σ(y))〈Φ(σ(y)), Φ(σ(x))〉 =

f(σ(x))

〈
∑

y∈D

α(σ(y))Φ(σ(y)), Φ(σ(x))

〉
=

f(σ(x))

〈
∑

y∈D

α(y)Φ(y), Φ(σ(x))

〉
=

f(σ(x))〈w(α), Φ(σ(x))〉
Using this calculation in combination with Lemma 2,
the proof is easy to accomplish:

µK(fσ|ασ, x)
(6)
=

fσ(x) · 〈w(ασ), Φ(x)〉
‖w(ασ)‖ · ‖Φ(x)‖

=
f(σ(x)) · 〈w(α), Φ(σ(x))〉

‖w(α)‖ · ‖Φ(σ(x))‖
(6)
= µK(f |α, σ(x))



Corollary 4 For every G-invariant kernel K, and
every choice of f : D → {−1, 1}, σ ∈ G, and α :
D → R, the following holds:

µK(fσ|ασ) = µK(f |α)

µK(fσ|ασ) = µK(f |α)

µK(fσ) = µK(f)

µK(fσ) = µK(f)

µG(fσ) = µG(f)

µG(fσ) = µG(f)

Note that the last two equations in Corollary 4 ba-
sically say that the largest (average or guaranteed)
margin that can be achieved for a function f by a
large margin classifier is invariant under G (provided
that the underlying kernel is G -invariant).

Let M ∈ {−1, 1}r×s be a sign matrix. Con-
sider a linear arrangement A given by unit vectors
u1, . . . , ur; v1, . . . , vs ∈ Rd. The average margin
achieved by this arrangement for sign matrix M is
defined as follows:

µ(M |A) :=
1

rs
·

r∑

i=1

s∑

j=1

Mi,j〈ui, vj〉

The largest average margin that can be achieved for
sign matrix M by any linear arrangement is then
given by

µ(M) := sup
A

µ(M |A) ,

where the supremum ranges over all linear arrange-
ments A for M . Forster and Simon [7] have shown
that, for every M ∈ Rr×s, every d ≥ 1, and every
choice of unit vectors u1, . . . , ur; v1, . . . , vs in a real
inner-product space, the following holds:

r∑

i=1

s∑

j=1

Mi,j〈ui, vj〉 ≤
√

rs‖M‖ .

From that, we conclude that

µ(M) ≤ ‖M‖√
rs

.

Consider the sign matrix Mf,G given by

Mf,G
x,σ := fσ(x) . (8)

In combination with Corollary 4, we arrive at the
following

Theorem 5 Let D be a finite domain, and let G be
a subgroup of S(D). Then, every function f : D →
{−1, 1} satisfies

µG(f) ≤ ‖Mf,G‖√
|D| · |G|

.

In other words, no large margin classifier that em-
ploys a G-invariant kernel can achieve an average

margin for f which exceeds ‖Mf,G‖√
|D|·|G|

.

As our input space D is finite, we can assume
without loss of generality that the Reproducing Ker-
nel Hilbert Space for a kernel K on D coincides withRd(K) for some suitable 1 ≤ d(K) ≤ |D|. We say
that α : D → R represents target function f cor-
rectly w.r.t. kernel K if

∀x ∈ D : µK(f |α, x) > 0 .

Corollary 6 Let dG(f) denote the smallest dimen-
sion of a feature space associated with a G-invariant
kernel K that allows for a correct representation of
f . Then,

dG(f) ≥
√
|D| · |G|
‖Mf,G‖ .

Proof: According to Lemma 3, a kernel that al-
lows for a correct representation of f allows also for
a correct representation of all fσ. According to a re-
sult by Forster [4], the corresponding feature space

must have dimension at least
√
|D| · |G|/‖Mf,G‖.

Corollary 6 can be strengthened slightly:

Corollary 7 Let σi denote the i-th singular value
of Mf,G, where σ1, σ2, . . . are in decreasing order.
Then, dG(f) satisfies the following lower bound:

dG(f) ·
dG(f)∑

i=1

σ2
i ≥ 1 (9)

Proof: Let A ∈ {−1, 1}r×s be a matrix whose
columns are viewed as binary functions f1, . . . , fs.
It has been shown by Forster and Simon [7] that
the dimension d of a feature space which allows for
a correct representation of f1, . . . , fs satisfies

d ·
d∑

i=1

σ2
i (A) ≥ rs .

This trivially implies (9).

4 Rotation-invariant Functions

In Section 4.1 we will derive some facts about dis-
tributed functions over a finite Abelian group via
the Fourier-expansion. Section 4.2 ties everything
together and presents the resulting margin and di-
mension bounds obtained in this restricted setting.

4.1 Distributed Functions over Finite
Abelian Groups

We apply the results of the preceding section to the
case where D is a Abelian group of finite size d,
and Grot is the subgroup of S(D) consisting of all
permutations of the form x 7→ x + a. Note that
d = |D| = |Grot|.



We are interested in distributed functions f :
D ×D → C and arrange the d2 Fourier-coefficients
of such a function as a matrix as follows:

F̂a,b = f̂(a,−b) (10)

= d−2
∑

(x,y)∈D×D

f(x, y)χ(a,−b)(x, y) (11)

= d−2 ·
∑

x∈D

∑

y∈D

f(x, y)χa(x)χb(y) (12)

In matrix notation, this reads as

F̂ = d−2 · H∗ · F · H , (13)

where H is the matrix from (4).
A distributed function f(x, y) over D is said to

be rotation-invariant if, for all x, y, a ∈ D, the fol-
lowing holds:

f(x + a, y + a) = f(x, y)

In the sense of the previous section, f is meant to
be Grot-invariant.

Here are some examples for rotation-invariant
functions:

• A distributed function of the form f(x, y) =
g(x − y) is obviously rotation-invariant. Con-
versely, any rotation-invariant function f(x, y)
can be written in this form by setting g(x) :=
f(x, 0) because rotation-invariance implies that

f(x, y) = f(x − y, 0) = g(x − y) .

• Because of the obvious identity

χz(x − y) = χz(x) · χz(y) ,

the distributed function χz(x)·χz(y) is rotation-
invariant too.

The fact that f(x, y) = g(x − y) is a rotation-
invariant function can be restated as follows: any
function f(x, y) that can be cast as a function in
x1 − y1 mod q1, . . . , xn − yn mod qn is rotation-in-
variant.

In terms of the matrix of Fourier-coefficients, F̂ ,
rotation-invariant functions over D can be charac-
terized as follows:

Lemma 8 A distributed function f(x, y) over D is

rotation-invariant iff F̂ is a diagonal matrix.

Proof: Assume first that f(x, y) is rotation-invariant.

Consider a Fourier-coefficient in F̂ outside the main
diagonal, say F̂a,b so that ak 6= bk. Every pair (x, y)
can be put into the equivalence class

{(x + j ~ek, y + j ~ek) : j = 0, . . . , qk − 1} .

We show that every equivalence class contributes 0
to (12):

qk−1∑

j=0

f(x + j ~ek, y + j ~ek)χa(x + j ~ek) · χb(y + j ~ek) =

f(x, y)χa(x) · χb(y)

qk−1∑

j=0

χ
(qk)
ak

(j)χ
(qk)
bk

(j)

The latter sum vanishes because it equals

qk−1∑

j=0

ω(bk−ak)j
qk

.

Recall that δ denotes the Kronecker symbol and it
is well-known that

m−1∑

j=0

ω(l′−l)j
m = m · δl,l′ .

This shows that F̂a,b = 0.

Now assume that F̂ is a diagonal matrix. We con-
clude from (13) that

F = H · F̂ · H∗ , (14)

which implies that

Fx,y =
∑

z∈D

F̂z,z · χx(z) · χy(z) .

Rotation-invariance is now easily obtained:

f(x + a, y + a) =
∑

z∈D

F̂z,z · χx+a(z) · χy+a(z)

=
∑

z∈D

F̂z,z · χz(x + a) · χz(y + a)

=
∑

z∈D

F̂z,z · χz(x) · χz(y)

= f(x, y)

In the second-last equation, we used the rotation-

invariance of χz(x) · χz(y).

Corollary 9 Assume that f(x, y) is a rotation-in-
variant distributed function over D and let Fx,y =
f(x, y) denote the corresponding matrix. Then the
(complex) eigenvalues of d−1 · F are found on the

main diagonal of F̂ .

Proof: Rewrite (14) as

d−1F = (d−1/2H) · F̂ · (d−1/2H∗)

and observe that this is nothing but the spectral
decomposition of d−1F (since F̂ is a diagonal matrix
and d−1/2H is unitary).

We briefly note the following result:



Lemma 10 Let F̂ be the (diagonal) matrix that
contains the Fourier-coefficients of the (rotation-
invariant) distributed function f(x − y). Then, for

every z ∈ D, f̂(z) = F̂z,z.

Proof: Consider the function fy(x) := f(x − y).
We shall show below that the Fourier coefficients of
f and fy are related as follows:

f̂y(z) = f̂(z) · χy(z) . (15)

The proof is now obtained by the following calcula-
tion:

F̂z,z = d−2 ·
∑

x,y∈D

f(x − y) · χz(x) · χz(y)

= d−1 ·
∑

y∈D

(
d−1 ·

∑

x∈D

fy(x)χz(x)

)
χz(y)

= d−1 ·
∑

y∈D

f̂y(z) · χz(y)

(15)
= f̂(z) · d−1 ·

∑

y∈D

χy(z)χz(y)
︸ ︷︷ ︸

=1

= f̂(z)

The following calculation verifies (15):

f̂y(z) = d−1 ·
∑

x∈D

f(x − y) · χx(x)

= d−1 ·
∑

x∈D

∑

w∈D

f̂(w) · χw(x − y) · χz(x)

= d−1 ·
∑

x∈D

∑

w∈D

f̂(w) · χw(x) · χw(y) · χz(x)

= d−1 ·
∑

w∈D

(
∑

x∈D

χw(x) · χz(x)

)

︸ ︷︷ ︸
=d·δw,z

f̂(w) · χw(y)

= f̂(z) · χz(y)

Corollary 9 and Lemma 10 yield the following.2

Corollary 11 Let F denote the matrix with entries
Fx,y = f(x − y). Then the spectrum of (complex)
eigenvalues of d−1 · F coincides with the spectrum
of (complex) Fourier-coefficients of f .

Consider the sign matrix Mf,Grot . From (8) and
the definition of Grot, we conclude that

Mf,Grot
x,y = f(x + y) .

It follows that Mf,Grot is a symmetric matrix. If f is
real-valued, then Mf,Grot has real eigenvalues. Note

2This result might be known, but we are not aware
of an appropriate pointer to the literature.

that Mf,Grot coincides with matrix Fx,y = f(x− y)
up to a permutation of columns (where the column
indexed y is exchanged with the column indexed
−y). Since the spectrum of eigenvalues (or singular
values, resp.) of a matrix is left invariant under a
permutation of columns, we obtain the following

Corollary 12 Let f(x − y) be real-valued, and let
F be the matrix with entries Fx,y = f(x−y). Then,
the following holds:

1. F coincides with the symmetric matrix Mf,Grot

up to a permutation of columns.

2. The spectrum of eigenvalues of d−1 · F coin-
cides with the spectrum of (real) eigenvalues of
d−1 ·Mf,Grot and with the spectrum of Fourier-
coefficients of f .

4.2 Margin and Dimension Bounds for
Rotation-invariant Kernels

For every function f : D → {−1, 1},
µrot(f) := µGrot

(f)

denotes the largest possible average margin that can
be achieved by a linear arrangement for f resulting
from a rotation-invariant kernel. As for the smallest
possible dimension, parameter drot(f) is understood
analogously.

Corollary 13 Let D be a finite Abelian group of
size d. Every function f : D → {−1, 1} satisfies

µrot(f) ≤ ‖f̂‖∞ . (16)

In other words, no large margin classifier that em-
ploys a rotation-invariant kernel can achieve an av-

erage margin for f which exceeds ‖f̂‖∞.

Proof: According to Theorem 5,

µrot(f) ≤ ‖Mf,Grot‖√
|D| · |Grot|

=
‖Mf,Grot‖

d
.

We conclude from Corollary 12 that

‖Mf,Grot‖ = ‖F‖ = d · ‖f̂‖∞ ,

which leads us to inequality (16).

Corollary 6 and 7 combined with Corollary 11
lead us to the following results:

Corollary 14 Let drot(f) denote the smallest di-
mension of a feature space associated with a rotation-
invariant kernel K that allows for a correct repre-

sentation of f . Then, drot(f) ≥ ‖f̂‖−1
∞ .

Proof: According to Corollary 6, the corresponding
feature space for the kernel must have dimension at
least

√
|D| · |Grot|/‖Mf,Grot‖ = d/‖Mf,Grot‖. Ac-

cording to Corollary 12, the latter expression eval-

uates to ‖f̂‖−1
∞ .



Corollary 15 Let f̂i denote the i-th Fourier-coefficient

of f , where |f̂1|, . . . , |f̂d| are in decreasing order.
Then,

drot(f) ·
drot(f)∑

i=1

∣∣∣f̂i

∣∣∣
2

≥ 1

Proof: From (9), we obtain

drot(f) ·
drot(f)∑

i=1

σ2
i ≥ 1

where σi denotes the i-th largest singular value of
Mf,Grot . We conclude from Corollary 12, that σi

coincides with |f̂i|.

5 Reflection-invariant Functions

In this section, we consider real-valued functions
only. A distributed function f(x, y) over {−1, 1}n

is said to be reflection-invariant if, for all x, y, a ∈
{−1, 1}n, the following holds:

f(x ◦ a, y ◦ a) = f(x, y) (17)

Note that reflection-invariance corresponds to
rotation-invariance with (Zn

2 , +) as the underlying
(additive) Abelian group is or, equivalently, with
({−1, 1}n, ·) as the underlying (multiplicative) Abelian
group. This is because the subgroup Grot of S(D)
that we have used for rotation-invariant distributed
functions collapses for D = {−1, 1}n (with a multi-
plicative group structure) to the following subgroup
of S({−1, 1}n):

Gref = {x 7→ x ◦ a : a ∈ {−1, 1}n}
Thus, reflection-invariant functions inherit all

closure properties that hold, in general, for G-invariant
distributed functions (see the Pointwise Closure Prop-
erty and Lemma 1 in Section 3):

Corollary 16 1. The pointwise limit of reflection-
invariant functions is a reflection-invariant func-
tion. Furthermore, if f1, . . . , fd are reflection-
invariant functions and g : Rd → R is an ar-
bitrary function, then

g(f1(x, y), . . . , fd(x, y))

is reflection-invariant too.

2. Reflection-invariant distributed functions over
{−1, 1}n are closed under the usual matrix prod-
uct and under the tensor-product of matrices.

Furthermore, reflection-invariant functions inherit
all properties that hold, in general, for distributed
functions over a finite Abelian group:

• A reflection-invariant function f(x, y) can be
decomposed according to (2). Since D = {−1, 1}n,
the character χz coincides with the parity func-
tion induced by z, i.e., χz(x) =

∏
zi=−1 xi.

• The matrix F̂ whose entries are the Fourier co-
efficients of f satisfies (13) where H is the ma-
trix from (4). Since D = {−1, 1}n, H equals
the well-known (2n×2n)-Walsh-Hadamard ma-
trix.

Distributed functions f(x, y) overRn that satisfy (17)
for all x, y ∈ Rn and every a ∈ {−1, 1}n are said to
be reflection-invariant in the Euclidean space. Here
are some examples (with some overlap to our ex-
emplification of rotation-invariant functions in Sec-
tion 4):

• A distributed function of the form f(x, y) =
g(x◦y) is reflection-invariant (in the Euclidean
space provided that the domain is Rn):

g((x ◦ a) ◦ (y ◦ a)) = g(x ◦ y ◦ (a ◦ a)) = g(x ◦ y)

Conversely, any reflection-invariant function f(x, y)
(over domain {−1, 1}n) can be written in this
form by setting g(x) := f(x,~e) because reflection-
invariance implies that

f(x, y) = f(x◦y, y◦y) = f(x◦y,~e) = g(x◦y) .

• Because of the obvious identity

χz(x ◦ y) = χz(x) · χz(y) ,

the distributed function χz(x)·χz(y) is reflection-
invariant too.

• The metric

Lp(x − y) =

(
n∑

i=1

|xi − yi|p
)1/p

induced by the Lp-norm is clearly reflection-
invariant in the Euclidean space.

In Section 6, we shall see that many popular kernel
functions happen to be reflection-invariant.

The fact that f(x, y) = g(x ◦ y) is a reflection-
invariant function can be restated as follows: any
function f(x, y) that can be cast as a function in
x1 · y1, . . . , xn · yn is reflection-invariant. Similarly,
any function f(x, y) that can be cast as a function in
Lp(x−y) (or, more generally, in |x1−y1|, . . . , |xn−
yn|) is reflection-invariant.

6 Reflection-invariant Kernels

In this section, we consider kernel functions K(x, y)
over the Boolean or over the Euclidean domain. In
other words, K(x, y) is a distributed function over
{−1, 1}n or over Rn with the additional property
that every finite principal sub-matrix of K is sym-
metric and positive semidefinite. In Section 6.1, we
demonstrate that the family of reflection-invariant
kernels is quite rich and contains many popular ker-
nels. In Section 6.2, we derive margin and dimen-
sion bounds for reflection-invariant kernels.



6.1 Examples and Closure Properties

Let us start with some examples. The following
(quite popular) kernels (overRn except for the DNF-
Kernel that has a Boolean domain) can be cast as
functions in x1 · y1, . . . , xn · yn or as functions in
‖x − y‖2 and are therefore reflection-invariant:

Polynomial Kernels: K(x, y) = p(x⊤y) for an
arbitrary polynomial p with positive coefficients.

All-subsets Kernel: K(x, y) =
∏n

i=1(1 + xiyi).

ANOVA Kernel: Let 1 ≤ s ≤ n and define

Ks(x, y) =
∑

1≤i1<···<is≤n

s∏

j=1

xij
yij

.

DNF-Kernel: K(x, y) = −1+2−n
∏n

i=1(xiyi +3).

Exponential Kernels: K(x, y) = ep(x⊤y) for an
arbitrary polynomial p with positive coefficients.

Gaussian Kernel: K(x, y) = e−‖x−y‖2

2
/σ2

for an
arbitrary σ > 0.

These kernels have the usual nice properties like be-
ing efficiently evaluable although the number of (im-
plicitly represented) features is exponentially large
(or even infinite). Polynomial, Exponential, and
Gaussian Kernels (first used in [2]) are found in al-
most any basic text-book that is relevant to the
subject (e.g. [3]). The All-subsets Kernel is found
in [18], and the ANOVA Kernel is found in [19]. As
for the latter two kernels, see also [17]. The DNF-
Kernel has been proposed in [16].3 The reader inter-
ested in more information about these (and other)
kernels may consult the relevant literature. Here,
we simply point to the fact that all kernels men-
tioned above are reflection-invariant.

We move on and consider the possibility of mak-
ing new reflection-invariant kernels from kernels that
are already known to be reflection-invariant. To this
end, we briefly call into mind some basic closure
properties of kernels:

Lemma 17 Let K, K1, K2 be kernels, and let c > 0
be a positive constant. Then, the distributed func-
tions

K1(x, y) + K2(x, y) , c · K(x, y)

K1(x, y) · K2(x, y) , (K1 ⊗ K2)[(u, x), (v, y)]

are kernels too. Moreover, the pointwise limit of
kernels yields a kernel.

3In [16], the kernel is defined over the Boolean do-
main {0, 1}n. Our formula above is obtained from the
formula in [16] by plugging in the affine transformation
that identifies 1 with −1 and 0 with 1. A similar remark
applies to the Monotone DNF-Kernel discussed at the
end of this section.

The proof of Lemma 17 can be looked-up in [3], for
example.

Corollary 18 If K1, . . . , Kd are kernels and P :Rd → R is a polynomial (or a converging power
series) with positive coefficients, then

P (K1(x, y), . . . , Kd(x, y))

is a kernel too.

Note that closure properties of reflection-invariant
functions (see Corollary 16) are comparably strong
so that Lemma 17 and Corollary 18 remain valid
(mutatis mutandis) for reflection-invariant kernels.

The following kernels (proposed in [11] and [9],
respectively) define a new kernel-matrix K in terms
of a given symmetric matrix B (called “similarity
matrix” in this context):

Exponential Diffusion Kernel: For λ ∈ R, de-
fine

K = eλ·B =
∑

k≥0

λk

k!
· Bk .

von Neumann Diffusion Kernel: For 0 ≤ λ <
‖B‖−1, define

K = (I − λ · B)−1 =
∑

k≥0

λk · Bk .

It follows from the closure properties of reflection-
invariant functions that both diffusion kernels would
inherit reflection-invariance from the underlying sim-
ilarity matrix B.

The family of reflection-invariant kernels is quite
rich. But here are two kernels (the first-one from [16],
and the second-one from [12]) which are counterex-
amples:

Monotone DNF-Kernel:

K(x, y) = −1 + 2−2n
n∏

i=1

(xjyj − xj − yj + 5) .

Spectrum Kernel: Here, x, y ∈ {−1, 1}n are con-
sidered as binary strings. For 1 ≤ p ≤ n and
for every substring u ∈ {−1, 1}p,

Φp
v(x) = |{(u, w) : x = uvw}|

counts how often v occurs as a substring of x.
The p-Spectrum Kernel is then given by

K(x, y) =
∑

v∈{−1,1}p

Φp
v(x) · Φp

v(y) .

It is easy to see that both kernels are not reflection-
invariant. More generally, string kernels (measuring
similarity between strings) often violate reflection-
invariance.



6.2 Margin and Dimension Bounds for
Reflection-invariant Kernels

For every function f : {−1, 1}n → {−1, 1},
µref (f) := µGref

(f)

denotes the largest possible average margin that
can be achieved by a linear arrangement for f re-
sulting from a reflection-invariant kernel. Because
reflection-invariance is a special case of rotation-
invariance, the following result immediately follows
from Corollaries 13, 14, and 15:

Corollary 19 1. Every Boolean function f sat-
isfies

µref (f) ≤ ‖f̂‖∞ .

In other words, no large margin classifier that
employs a reflection-invariant kernel can achieve

an average margin for f which exceeds ‖f̂‖∞.

2. Let dref (f) denote the smallest dimension of a
feature space associated with a reflection-invariant
kernel K that allows for a correct representa-

tion of f . Then, dref (f) ≥ ‖f̂‖−1
∞ .

3. Let f̂i denote the i-th Fourier-coefficient of f ,

where |f̂1|, . . . , |f̂2n | are in decreasing order. Then,
dref (f) satisfies the following lower bound:

dref (f) ·
dref (f)∑

i=1

∣∣∣f̂i

∣∣∣
2

≥ 1

7 Conclusions and Open Problems

We start with some remarks which offer a possible
interpretation of our results. Finally, some open
problems are mentioned.

7.1 Discussion of our Results

Ideally the invariance-properties of a kernel reflect
symmetries in the data. For example, assume that
there exists a set of transformations, say T , so that,
for every instance x ∈ D and every transformation
t ∈ T , the label assigned to x by target function
f equals the label assigned to t(x) by f . Then,
it looks desirable to apply a kernel that is invari-
ant under the transformations from T . It would
be surprising if our results implied that such ker-
nels (that sort of perfectly model the symmetries
in the data) would inherently lead to small mar-
gins or high-dimensional feature spaces. It is, how-
ever, easy to argue that (as expected) the contrary
is true and our margin and dimension bounds trivi-
alize whenever the invariance of the kernel perfectly
matches with symmetries in the data. To see this,
consider again (compare with the introduction) the
“super-kernel”

K(x, y) =

{
+1 if f(x) = f(y)
−1 otherwise

that allows for a 1-dimensional halfspace represen-
tation of f with margin 1, and note that K actually
is invariant under all transformations from T . Thus,
no upper margin bound that holds uniformly for all
T -invariant kernels can be smaller than 1. Simi-
larly, no lower dimension bound can be larger than
1. Note that this is no contradiction to the main re-
sults in this paper because the family {ft : t ∈ T }
of functions ft(x) = f(t(x)) collapses to the sin-
gleton {f}. Thus Forster’s margin and dimension
bounds applied to this family do not lead to non-
trivial values.

Viewed from this perspective, our results can be
interpreted as follows: one should not use a kernel
that is invariant under a set T of transformations if
T does not reflect symmetries in the data. The ker-
nel becomes very poor especially when the family
{ft : t ∈ T } contains much “orthogonality” (which
is sort of the opposite of collapsing to a singleton or
to a family of highly correlated functions) because
Forster’s bounds, applied to pairwise (almost) or-
thogonal functions, are extremely strong.

This interpretation makes clear that our results
are not particularly surprising but, on the other
hand, quantify (in terms of small margin and large
dimension bounds) in a meaningful and rigorous
fashion an existing mismatch between a kernel and
the (missing or existing) symmetries in the data.

7.2 Open Problems

Haasdonk and Burkhardt [8] consider two notions
of invariance: “simultaneous invariance” and “to-
tal invariance”. Simultaneous invariance very much
corresponds to the notion of invariance that we dis-
cussed in Section 3 so that our margin and dimen-
sion bounds apply. Total invariance is a stronger
notion so that our bounds apply more than ever.
But the obvious challenge is to find stronger margin
and dimension bounds for totally invariant kernels.

The basic idea behind our paper is roughly as
follows. For a family of kernels (e.g., polynomial
kernels), we argue that the existence a “good rep-
resentation” for a particular target function implies
the existence of a “good representation” for a whole
family of target functions (so that classical margin
and dimension bounds can be brought into play).
We think that invariance under a group operation
(the notion considered in this paper) is just the first
obvious thing one should consider. We would like
to develop more versatile techniques that, while fol-
lowing the same basic idea, lead to strong margin
and dimension bounds for a wider class of kernels.
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