
Learning Acyclic Probabilistic Circuits Using Test Paths

Dana Angluin1 and James Aspnes1,∗and Jiang Chen2,†and David Eisenstat3 and Lev Reyzin1,‡

1 Computer Science Department, Yale University
{angluin,aspnes}@cs.yale.edu, lev.reyzin@yale.edu

2 Yahoo! Inc., 701 First Avenue, Sunnyvale, CA 94086
criver@gmail.com

3 eisenstatdavid@gmail.com

Abstract

We define a model of learning probabilistic acyclic
circuits using value injection queries, in which an
arbitrary subset of wires is set to fixed values, and
the value on the single output wire is observed.
We adapt the approach of using test paths from
the Circuit Builder algorithm [AACW06] to show
that there is a polynomial time algorithm that uses
value injection queries to learn Boolean probabilis-
tic circuits of constant fan-in and log depth. In
the process, we discover that test paths fail utterly
for circuits over alphabets of size greater than two
and establish upper and lower bounds on the atten-
uation factor for general and transitively reduced
Boolean probabilistic circuits of test paths versus
general experiments. To overcome the limitations
of test paths for non-Boolean alphabets, we intro-
duce function injection queries, which allow the
symbols on a wire to be mapped to other symbols
rather than just to themselves or constants.

1 Introduction
Probabilistic networks are used as models in a variety of do-
mains, for example, gene interaction networks, social net-
works and causal reasoning. In a binary model of gene in-
teraction, the state of each gene is either active or inactive,
and the state of each gene is determined as a function of the
states of some number of other genes, its inputs. In a proba-
bilistic variant of the model, the activation function specifies,
for each possible combination of the states of the inputs, the
probability that the gene will be active. In the independent
cascade model of social networks, the state of each agent is
active or inactive and for each pair (u, v) of agents, there is
a probability that the activation of u will cause v to become
active. Kempe, Kleinberg and Tardos study the problem of
maximizing influence in this and related models of social
networks [KKET03, KKT05]. In a Bayesian network there

∗Supported in part by NSF grant CNS-0435201.
†Supported in part by a research contract from Consolidated

Edison.
‡This material is based upon work supported under a National

Science Foundation Graduate Research Fellowship.

is an acyclic directed graph and a joint probability distribu-
tion over the node values such that the joint distribution is
simply the product of each of the marginal distributions for
each node given the values of the parents (in-neighbors) of
the node.

A fundamental question is how much we can infer about
the properties and structure of such networks from observ-
ing and experimenting with their behaviors. Prior research
suggests that there is no polynomial time algorithm to learn
Boolean functions represented by acyclic circuits of constant
fan-in and depth O(log n) when we can set only the inputs
of the circuit and observe only the output [AK95]. In this pa-
per we consider a different setting, value injection queries,
in which we can fix the values on any subset of wires in the
target circuit, but still only observe the output of the circuit.

The idea of value injection queries was inspired by mod-
els of gene suppression and gene overexpression in the study
of gene interaction networks [AKMM98, ITK00] and was
proposed in [AACW06]. They show that with value injec-
tion queries, acyclic deterministic circuits with constant-size
alphabets, constant fan-in and depth O(log n) are learnable
up to behavioral equivalence in polynomial time. To extend
these results to analog circuits, Angluin et al. [AACR07]
consider circuits with polynomial-size alphabets. Larger al-
phabets make the learning problem significantly harder, ne-
cessitating structural restrictions on the graphs of the circuits
to achieve polynomial time learnability. They show that with
value injection queries, acyclic deterministic circuits that are
transitively reduced (or in general, have constant shortcut
width) and have polynomial-size alphabets, constant fan-in
and unbounded depth are learnable up to behavioral equiva-
lence in polynomial time.

In this paper we investigate how well the above positive
results can be extended to the case of acyclic probabilistic
circuits. The key technique in the previous work has been
the idea of a test path for an arbitrary wire w in the circuit.
Informally speaking, a test path is a directed path of wires
from w to the output wire in which each wire is an input of
the next wire on the path, and the other (non-path) inputs of
wires on the path are fixed to constant values, thus isolating
the wires along the path from the rest of the circuit. Ideally,
the choice of constant values is made in such a way as to
maximize the effect on the output of the circuit of changing
w from one value to another. A test path thus functions as a
kind of “microscope” for viewing the effects of different val-
ues on the wire w. The primary focus of this paper is to un-



derstand the properties of test paths in probabilistic circuits,
and the extent to which they can be used to give polynomial
time algorithms for learning probabilistic acyclic circuits.

In Section 2 we formally define our model of acyclic
probabilistic circuits, value injection queries and distribution
injection queries, behavioral equivalence, and the learning
problem that we consider. In Section 3 we establish some
basic results about probabilistic circuits and value and distri-
bution injection experiments. In Section 4 we review the test
path lemma used in previous work and show that it fails ut-
terly in probabilistic circuits with alphabet size greater than
two. However, for Boolean probabilistic circuits, we show
that the test path lemma holds with an attenuation factor
that depends on the structure of the circuit. (Lemma 10
treats general acyclic circuits and Corollary 11 specializes
the bound to transitively reduced circuits.) In Section 5 we
apply the test path lemma in the Boolean case to adapt the
Circuit Builder algorithm [AACW06] to find using value in-
jection queries, with high probability, in time polynomial in
n and 1/ε, a circuit that is ε-behaviorally equivalent to a tar-
get acyclic Boolean probabilistic circuit of size n with con-
stant fan-in and depth bounded by a constant times log n. In
Section 6, we consider lower bounds on the attenuation of
paths; Lemma 15 shows that our bound is tight for transi-
tively reduced circuits and Lemma 17 gives a lower bound
for the case of general acyclic circuits. In Section 7 we in-
troduce a stronger kind of query, a function injection query,
and show that test paths with function injections overcome
the limitations of test paths for circuits with alphabets of size
greater than two.

2 Model
2.1 Probabilistic Circuits
We extend the circuit learning model studied in [AACR07,
AACW06]. to probabilistic gates. An unusual feature of this
model is that circuits do not have distinguished inputs—since
the learning algorithm seeks to predict the output behavior
of value injection experiments that override the values on an
arbitrary subset of wires, each wire is a potential input. Prob-
abilistic circuits are closely related to Bayesian networks as
well; we have chosen, however, to retain the conventions of
the previous works.

A probabilistic circuit C of size n ≥ 1 has n wires,
of which one is the distinguished output wire. We call the
set of C’s wires W , and these wires take values in a finite
alphabet Σ with |Σ| ≥ 2. If Σ = {0, 1}, then C is Boolean.
The value on a wire is ordinarily determined by the output
of an associated probabilistic gate, whose distribution is a
function of the values on other wires.

Formally, an value distribution D is a probability distri-
bution over Σ, that is, a map from Σ to the real interval [0, 1]
such that

∑
σ∈Σ D(σ) = 1. The support of D is the set of

values σ ∈ Σ such that D(σ) > 0, and when this set is a sin-
gleton {σ} for some σ ∈ Σ, we say D is deterministic. For
nonempty sets of values S ⊆ Σ, the uniform distribution
U(S) is the distribution such that U(S)(σ) = [σ ∈ S]/|Σ|.

A k-ary probabilistic gate function f maps each k-tuple
(σ1, . . . , σk) ∈ Σk of values to a value distribution. When
C is Boolean, we can specify f by a truth table giving the

expected value for each Boolean vector of inputs. A proba-
bilistic gate function is deterministic if it maps k-tuples to
deterministic value distributions only.

A probabilistic gate g of fan-in k pairs a k-ary proba-
bilistic gate function f with a k-tuple (w1, . . . , wk) ∈ W k of
input wires. g is deterministic if f is deterministic. When
k = 0, the gate g has no inputs, and we can regard it as a
value distribution, or, when C is Boolean, a biased coin flip.

A probabilistic circuit C maps wires to probabilistic
gates. C is deterministic if all of its gates are determinis-
tic. The fan-in of C is the maximum fan-in over C’s gates.
The circuit graph of C has nodes W and a directed edge
(w, u) if w is one of the input wires of the gate associated
with u. It is important to distinguish between wires in the
circuit and edges in the circuit graph. For example, if wire w
is an input of wires u and v, then there will be two directed
edges, (w, u) and (w, v), in the circuit graph.

Wire u is reachable from wire w if there is a directed
path from w to u in the circuit graph. A wire is relevant if
the output wire is reachable from it. The depth of a wire w is
the number of edges in the longest simple path from w to the
output wire in the circuit graph. The depth of the circuit is
maximum depth of any relevant wire. The circuit is acyclic
if the circuit graph contains no directed cycles. The circuit
is transitively reduced if its circuit graph is transitively re-
duced, that is, if it contains no edge (w, u) such that there
is a directed path of length at least two from w to u. In this
paper we assume all circuits are acyclic.

2.2 Experiments

In an experiment some wires are constrained to be particular
symbols or value distributions and the other wires are left
free. The behavior of a circuit consists of its responses to all
possible experiments. For probabilistic circuits we consider
both value injection experiments and distribution injection
experiments.

A distribution injection experiment e is a function with
domain W that maps each wire w to a special symbol ∗ or
to a value distribution. A value injection experiment e is a
distribution injection experiment for which every value dis-
tribution assigned is deterministic – that is, always generates
the same symbol. To simplify notation, we think of a value
injection experiment as a mapping from W to (Σ ∪ {∗}). If
e is either kind of experiment, we say that e leaves w free if
e(w) = ∗; otherwise we say that e constrains w to e(w). If
e(w) is a single symbol, then we say e fixes w to e(w).

We define a partial ordering≤ on the set containing ∗ and
all value distributions D as follows: D ≤ ∗ for every value
distribution D, and for two value distributions, D1 ≤ D2

if the support of D1 is a subset of the support of D2. This
ordering is extended to experiments on the same set of wires
W as follows: e1 ≤ e2 if for every w ∈ W , e1(w) ≤ e2(w)
The intuitive meaning of e1 ≤ e2 is that e1 is at least as
constraining as e2 for every wire.

If e is any experiment, w is a wire, and a is ∗ or an ele-
ment of Σ or a value distribution, then the experiment e|w=a

is defined to be the experiment e′ such that e′(w) = a and
e′(u) = e(u) for all u ∈ W such that u 6= w.



2.3 Behavior
Let C be a probabilistic circuit. Then a distribution injec-
tion experiment e determines a joint distribution over assign-
ments of elements of Σ to all of the wires of the circuit, as
follows. If wire w is constrained then w is randomly and
independently assigned a value in Σ drawn according to the
value distribution e(w); in the case of a value injection ex-
periment, this just assigns a fixed element of σ to w. If wire
w is free, has probabilistic gate function f and its inputs
u1, . . . , uk have been assigned the values σ1, . . . , σk, then
w is randomly and independently assigned a value from Σ
according to the value distribution f(σ1, . . . , σk).

Constrained gates and gates of fan-in zero give the base
cases for the above recursive definition, which assigns an el-
ement of Σ to every wire because the circuit is acyclic. Let
C(e, w) denote the (marginal) value distribution of the as-
signments of values to w for the above process. The output
distribution of the circuit, denoted C(e), is the distribution
C(e, z), where z is the output wire of the circuit. The behav-
ior of a circuit C is the function that maps value injection
experiments e to output distributions C(e).

2.4 Example: C1

We give an example of a simple Boolean probabilistic circuit,
which we will also refer to later. The 2-input averaging gate
A(b1, b2) outputs 1 with probability (b1+b2)/2. We define a
circuit C1 of 4 wires as follows: w4 = A(w2, w3), w3 = w1,
w2 = w1, and w1 = U({0, 1}). The output wire is w4. C1

is depicted in Figure 1.

w1 = U({0,1})

w2 = w1 w3 = w1

w4 = A(w2,w3)

Figure 1: The circuit C1; w4 is the output wire.

To illustrate the behavior of this circuit, we consider two
value injection experiments. Define the experiment e1 to
leave every wire in C1 free, that is, e1(wi) = ∗ for 1 ≤ i ≤
4. Given e1, we construct one random outcome as follows.
The wire w1 is assigned a value as the result of an unbiased
coin flip – say it is assigned 0. Then the values assigned to
w2 and w3 are determined because they are each the output
of an identity gate with w1 as input: both are 0. Finally, be-
cause both its input wires have been assigned values, w4 can
be assigned a value according to A(0, 0), which is determin-
istically 0. It is easy to see that this is one of two possible
outcomes for experiment e1; either all wires are assigned 0
or all wires are assigned 1, and these each occur with proba-
bility 1/2. The output distribution C1(e1) is just an unbiased
coin flip.

Now consider experiment e2 = e1|w2=1 that fixes w2

to 1 and leaves the other wires free. Once again, the value
of w1 is determined by a coin flip – say it is assigned 0.
Since w2 is fixed to 1, that is its assignment. Wire w3 is
free, and is therefore assigned the value of w1, that is 0.
Now the inputs of w4 have been assigned values, so we con-
sider A(1, 0), which randomly and equiprobably selects 0 or
1. If, instead, the coin flip for w1 had returned 1, all wires
would be assigned 1. There are three possible assignments
to (w1, w2, w3, w4) for experiment e2: (1, 1, 1, 1) with prob-
ability 1/2, (0, 1, 0, 0) with probability 1/4 and (0, 1, 0, 1)
with probability 1/4. The output distribution C1(e2) is a bi-
ased coin flip that is 1 with probability 3/4.

2.5 Behavioral Equivalence
Two circuits C and C ′ are behaviorally equivalent if they
have the same set of wires, the same output wire and the
same behavior, that is, for every value injection experiment
e, C(e) = C ′(e). We also need a concept of approximate
equivalence. The (statistical) distance between value distri-
butions D and D′ is d(D,D′) = (1/2)

∑
σ |D(σ)−D′(σ)|,

which takes values in [0, 1]. Note that when D and D′ are
deterministic, d(D,D′) is 0 if D = D′ and 1 otherwise. For
ε ≥ 0, C is ε-behaviorally equivalent to C ′ if they contain
the same wires and the same output wire, and for every value
injection experiment e, d(C(e), C ′(e)) ≤ ε, where d is the
distance between value distributions defined above.

In Lemma 2 we show that the behavioral equivalence of
C and C ′ implies C(e) = C ′(e) for all distribution injection
experiments as well. Note that even when all the gates are
Boolean, deterministic and relevant, the circuit graph of the
target circuit may not be uniquely determined by its behav-
ior [AACW06].

2.6 Queries
The learning algorithm gets information about the target cir-
cuit by specifying a value injection experiment e and observ-
ing the element of Σ assigned to the output wire. Such an ac-
tion is termed a value injection query, abbreviated VIQ. A
value injection query does not return complete information
about the value distribution C(e), but instead returns an ele-
ment of Σ selected according to the distribution C(e). Thus,
in order to approximate the distribution C(e), the learner
must repeatedly make value injection queries with experi-
ment e. In this case, the goal of learning is approximate be-
havioral equivalence.

2.7 The Learning Problem
The learning problem is ε-approximate learning: by mak-
ing value injection queries to a target circuit C drawn from
a known class of probabilistic circuits, find a circuit C ′ that
is ε-behaviorally equivalent to C. The inputs to the learning
algorithm are the names of the wires in C, the name of the
output wire and positive numbers ε and δ, where the learn-
ing algorithm is required to succeed with probability at least
(1− δ).

3 Preliminary Results
In this section we establish some basic results about proba-
bilistic circuits. We first note that if C is a probabilistic cir-



cuit, e is a distribution injection experiment and either e(w)
is a value distribution or e deterministically fixes all the in-
put wires of w, then there is a value distribution D such that
the value of w in C(e) is determined by a random choice ac-
cording to D, independent of the values chosen for any other
wires. We make systematic use of this observation to reduce
the number of experiments under consideration.

Lemma 1 Let C1 and C2 be probabilistic circuits on wires
W with the same output wire, let w ∈ W be a wire, let
D be a value distribution, and let e1 and e2 be distribution
injection experiments such that e1(w) = e2(w) = D. Then
there exists a value σ ∈ support(D) such that

d(C1(e1|w=σ), C2(e2|w=σ)) ≥ d(C1(e1), C2(e2)).

Proof: We have

d(C1(e1), C2(e2))

=
1
2

∑
τ∈Σ

∣∣∣C1(e1)(τ)− C2(e2)(τ)
∣∣∣

=
1
2

∑
τ∈Σ

∣∣∣∣∣∣
∑
ρ∈Σ

C1(e1|w=ρ)(τ)D(ρ)

−
∑
ρ∈Σ

C2(e2|w=ρ)(τ)D(ρ)

∣∣∣∣∣∣
≤ 1

2

∑
ρ∈Σ

D(ρ)
∑
τ∈Σ

∣∣∣C1(e1|w=ρ)(τ)

− C2(e2|w=ρ)(τ)
∣∣∣

=
∑
ρ∈Σ

D(ρ)d(C(e1|w=ρ), C(e2|w=ρ))

by the triangle inequality. Let

σ = arg max
ρ∈support(D)

d(C(e1|w=ρ), C(e2|w=ρ)),

so that

d(C(e1|w=σ), C(e2|w=σ)) ≥ d(C(e1), C(e2))

by an averaging argument.

Lemma 2 Let C1 and C2 be probabilistic circuits on wires
W with the same output wire and let e be a distribution in-
jection experiment. Then there exists a value injection exper-
iment e′ ≤ e such that

d(C1(e′), C2(e′)) ≥ d(C1(e), C2(e)).

Proof: By induction on |V |, where V ⊆ W is the set of
wires that e constrains to nonconstant distributions. If |V | >
0, then let w ∈ V . By Lemma 1, there exists a value σ ∈ Σ
such that

d(C1(e|w=σ), C2(e|w=σ)) ≥ d(C1(e), C2(e)).

Since e|w=σ constrains one fewer wire to a nonconstant dis-
tribution, the existence of e′ follows from the inductive hy-
pothesis.

Corollary 3 If circuits C1 and C2 are ε-behaviorally equiv-
alent with respect to value injection experiments, then C1

and C2 are ε-behaviorally equivalent with respect to distri-
bution injection experiments.

Suppose that C is a probabilistic circuit and e1 and e2 are
distribution injection experiments. For each wire w, we say
that e1 and e2 agree on w if either

• e1 and e2 constrain w to the same distribution, or

• w is free in e1 and e2, and e1 and e2 agree on all of w’s
inputs.

If e1 and e2 agree on a wire w, then the marginal distributions
of w in e1 and e2 are identical, that is, C(e1, w) = C(e2, w).

Lemma 4 Let C be a probabilistic circuit on wires W and
let e1 and e2 be distribution injection experiments that agree
on wires V ⊆ W . Then there exist distribution injection ex-
periments e′1 ≤ e1 and e′2 ≤ e2 such that for each wire w ∈
V , there exists a value σ ∈ Σ such that e′1(w) = e′2(w) = σ,
and

d(C(e′1), C(e′2)) ≥ d(C(e1), C(e2)).

Proof: By induction on the number of unfixed wires w ∈
V . If there is such a wire, choose v to be one that is not
reachable from the others. If e1(v) = e2(v) = ∗, then e1

and e2 agree on all of v’s inputs, and by the choice of v, all
of v’s inputs are fixed. As such, we may assume without
loss of generality that e1 and e2 in fact constrain v to the
distribution D = C(e1, v) = C(e2, v). By Lemma 1, there
exists a value σ ∈ support(D) such that

d(C(e1|v=σ), C(e2|v=σ)) ≥ d(C(e1), C(e2)).

The existence of e′1 and e′2 follows from the inductive hy-
pothesis.

Lemma 5 Let C be a probabilistic circuit on wires W , let
e be a distribution injection experiment, let w ∈ W be a
wire free in e, and let D be a value distribution. Then e and
e|w=D agree on all wires u ∈ W to which there is no path
on free wires from w.

Proof: If u is constrained, then the conclusion follows. Oth-
erwise, since u is free and has no free path from w, none of
u’s inputs have free paths from w. We proceed by induction
on the length of the longest path to u. If this length is zero,
then u does not have any inputs. Otherwise, the inductive hy-
pothesis applies to all of u’s inputs, on which e and e|w=D

then must agree. It follows that they also agree on u.

Lemma 6 Let C be a probabilistic circuit on wires W , let
w ∈ W be a wire, and let D1, D2 be value distributions.
There exist value distributions D′

1, D
′
2 with support(D′

1) ∩
support(D′

2) = ∅ such that for all experiments e,

d(C(e|w=D1), C(e|w=D2))
= d(D1, D2)d(C(e|w=D′

1
), C(e|w=D′

2
)).



Proof: We have

d(C(e|w=D1), C(e|w=D2))

=
1
2

∑
σ∈Σ

∣∣∣C(e|w=D1)(σ)− C(e|w=D2)(σ)
∣∣∣

=
1
2

∑
σ∈Σ

∣∣∣∣∣∑
τ∈Σ

C(e|w=τ )(σ)(D1(τ)−D2(τ))

∣∣∣∣∣ .

If we let

D̂1(τ) = D1(τ)−min(D1(τ), D2(τ))

D̂2(τ) = D2(τ)−min(D1(τ), D2(τ)),

then

d(C(e|w=D1), C(e|w=D2))

=
1
2

∑
σ∈Σ

∣∣∣∣∣∑
τ∈Σ

C(e|w=τ )(σ)(D̂1(τ)− D̂2(τ))

∣∣∣∣∣ .

Since
∑

τ∈Σ D̂1(τ) = 1 −
∑

τ∈Σ min(D1(τ), D2(τ)) and
likewise for D2,

d(D1, D2) =
1
2

∑
τ∈Σ

∣∣∣D1(τ)−D2(τ)
∣∣∣

=
1
2

∑
τ∈Σ

∣∣∣D̂1(τ)− D̂2(τ)
∣∣∣

=
∑
τ∈Σ

D̂1(τ) =
∑
τ∈Σ

D̂2(τ).

If d(D1, D2) > 0, then the distributions D′
1 and D′

2 where

D′
1(τ) = D̂1(τ)/d(D1, D2)

D′
2(τ) = D̂2(τ)/d(D1, D2)

satisfy the requisite properties. Otherwise, any two distribu-
tions with disjoint support will do.

4 Test Paths
The concept of a test path has been central in previous work
on learning deterministic circuits by means of value injec-
tion queries [AACR07, AACW06]. A test path for a wire w
is a value injection experiment in which the free gates form a
directed path in the circuit graph from w to the output wire.
All the other wires in the circuit are fixed; this includes the
inputs of w. A side wire with respect to a test path p is a
wire fixed by p that is input to a free wire in p. A test path
may help the learning algorithm determine the effects of as-
signing different values to the wire w. The test-path lemmas
from [AACR07, AACW06] may be re-stated as follows.

Lemma 7 Let C be a deterministic circuit. If for some value
injection experiment e, wire w and alphabet symbols σ and
τ it is the case that

C(p|w=σ) = C(p|w=τ )

for every test path p ≤ e then also

C(e|w=σ) = C(e|w=τ ).

Nontrivial complications arise in attempting to carry over
this test path lemma to general probabilistic circuits, as we
now show. The following lemma shows that for alphabets
of size at least four, there are transitively reduced probabilis-
tic circuits for which the test-path lemma fails completely.
(A less intuitive version of this construction shows that this
phenomenon occurs also at alphabet size three.)

Lemma 8 If |Σ| = 4, there exists a probabilistic circuit C,
value injection experiment e, wire w and alphabet symbols
σ and τ such that although for every test path p ≤ e for w,
d(C(p|w=σ), C(p|w=τ )) = 0, it is nevertheless the case that
d(C(e|w=σ), C(e|w=τ )) = 1.

Proof: Assume Σ = {00, 01, 10, 11}, and define probabilis-
tic gate functions T , L, R, and X as follows.

T (00) =T (11) = U({00, 11}),
T (01) =T (10) = U({01, 10}),
L(00) =L(01) = 00,

L(10) =L(11) = 01,

R(00) =R(10) = 00,

R(01) =R(11) = 01,

and X(ab, cd) = 0(b⊕ d), where ⊕ is sum modulo 2.
The circuit C has 5 wires, connected as in Figure 2. The

output wire is w5; note that C is transitively reduced.

w1 = U({00,01})

w2 = T(w1)

w3 = L(w2) w4 = R(w2)

w5 = X(w3,w4)

Figure 2: The circuit C; w5 is the output wire.

Consider the experiment e that leaves all the wires free.
We have C(e|w1=00) = 00 and C(e|w1=01) = 01, and thus
d(C(e|w1=00), C(e|w1=01)) = 1. However, the only test
paths for w1 fix w3 and leave all other wires free or fix w4

and leave all other wires free. Calculation verifies that fixing
w3 or w4 to any value and leaving the other wires free yields
the output distribution U({00, 01}) regardless of whether w1

is fixed to 00 or 01. Thus, for every test path p for w1, we
have d(C(p|w1=00), C(p|w1=01)) = 0.

4.1 A Bound for Boolean Probabilistic Circuits
Surprisingly, for Boolean probabilistic circuits there is a use-
ful quantitative relationship between the differences exposed
by test paths and the differences exposed by arbitrary exper-
iments.



Let e be an experiment and w a wire. Define Π(e, w) to
be the set of all directed paths from w to the output wire on
free wires in e. Let S(e) be the set of wires that originate a
free shortcut, that is, the set of free wires w such that there
exists a path p ∈ Π(e, w) with two free wires to which w is
an input. Define

κ(e, w) =
∑

p∈Π(e,w)

2|p∩S(e)|.

Lemma 9 Let C be a probabilistic circuit, e be a distribu-
tion injection experiment, w and u be free wires where w is
an input to u, and D0 be a value distribution. Let β = 2 if
w ∈ S(e) and β = 1 otherwise. Then

κ(e, w) = κ(e|u=D0 , w) + κ(e|w=1, u) · β.

Proof: The first term of the sum counts paths that don’t con-
tain u, and the second counts paths that do. Let e′ = e|u=D0

and e′′ = e|w=1. We have

κ(e, w) =
∑

p∈Π(e,w)

2|p∩S(e)|

=
∑

p∈Π(e,w)
u 6∈p

2|p∩S(e)| +
∑

p∈Π(e,w)
u∈p

2|p∩S(e)|

=
∑

p∈Π(e′,w)

2|p∩S(e′)| +
∑

p∈Π(e′′,u)

2|p∩S(e′′)|β

= κ(e′, w) + κ(e′′, u) · β,

since each path p 3 u from w corresponds to the path p\{w}
from u.

Lemma 10 Let C be a Boolean probabilistic circuit, e be a
distribution injection experiment, w be a wire, and D1, D2

be value distributions. If there exists ε ≥ 0 such that for all
w-test paths p ≤ e,

d(C(p|w=D1), C(p|w=D2)) ≤ ε,

then

d(C(e|w=D1), C(e|w=D2)) ≤ κ(e, w) · ε.

Proof: By induction on φ(e), the number of free wires in e.
By Lemma 6, assume that support(D1)∩support(D2) = ∅.
The critical feature of the Boolean case is that it follows that
D1 = 0 and D2 = 1 without loss of generality—it is impor-
tant to the following proof that D1 and D2 be deterministic.

If φ(e) = 1, then either

d(C(e|w=0), C(e|w=1)) = 0,

or w is the output, e is a w-test path, and κ(e, w) = 1. Oth-
erwise, the inductive hypothesis is that the lemma holds for
all experiments e′ with φ(e′) < φ(e).

Except for w, the experiments e|w=0 and e|w=1 agree on
all constrained wires, so by Lemmas 4 and 5, assume without
loss of generality that every wire with no free path from w is
in fact fixed. Since C is acyclic, there exists a free wire u 6=
w whose only unfixed input is w. Let g be the gate assigned

by C to u and let B0 = g(e|w=0) and B1 = g(e|w=1), so
that

C(e|w=0) = C(e|w=0,u=B0)
C(e|w=1) = C(e|w=1,u=B1).

By the triangle inequality,

d(C(e|w=0), C(e|w=1))
≤ d(C(e|w=0,u=B0), C(e|w=1,u=B0))

+ d(C(e|w=1,u=B0), C(e|w=1,u=B1)).

The inductive hypothesis bounds the first term of the sum by
κ(e′, w) · ε, where e′ = e|u=B0 . We now derive a bound
on u-test paths so that the inductive hypothesis applies to the
second term as well. Let β = 2 if w ∈ S(e) and β = 1
otherwise. Let e′′ = e|w=1 and suppose p ≤ e′′ is a u-test
path. Then

d(C(p|u=B0), C(p|u=B1))
≤ d(C(p|w=1,u=B0), C(p|w=0,u=B0))

+ d(C(p|w=0,u=B0), C(p|w=1,u=B1))
= d(C(p|w=0,u=B0), C(p|w=1,u=B0))

+ d(C(p|w=0,u=∗), C(p|w=1,u=∗))
≤ βε,

since both terms of the sum are bounded by ε, and the first
is nonzero only if w is an input to some free wire in p other
than u. Thus

d(C(e′′|u=0), C(e′′|u=1)) ≤ κ(e′′, u) · βε,

and,

d(C(e|w=0), C(e|w=1))

≤ κ(e′, w) · ε + κ(e′′, u) · βε

= κ(e, w) · ε,
by Lemma 9.

In the case of transitively reduced circuits, S(e) = ∅, and
κ(e, w) = π(e, w), where π(e, w) = |Π(e, w)|, the number
of directed paths on free wires in e from w to the output wire.

Corollary 11 Let C be a transitively reduced Boolean prob-
abilistic circuit, e be a distribution injection experiment, and
w be a wire. If there exists ε ≥ 0 such that for all w-test
paths p ≤ e,

d(C(p|w=0), C(p|w=1)) ≤ ε,

then
d(C(e|w=0), C(e|w=1)) ≤ π(e, w) · ε.

5 Learning Boolean Probabilistic Circuits
The amount of attenuation given by Lemma 10 allows us
to adapt the CircuitBuilder algorithm [AACW06] to learn
Boolean probabilistic circuits with constant fan-in and log
depth in polynomial time.

Theorem 12 Given constants c and k there is a nonadap-
tive learning algorithm that with probability at least (1− δ)
successfully ε-approximately learns any Boolean probabilis-
tic circuit with n wires, gates of fan-in at most k and depth
at most c log n using value injection queries in time bounded
by a polynomial in n, 1/ε and log(1/δ).



We adapt the Circuit Builder algorithm from [AACW06]
to prove Theorem 12 and call the resulting algorithm Prob-
abilistic Circuit Builder (PCB). The algorithm constructs a
set U of experiments such that every test path is equivalent
to some experiment in U , obtains a sufficiently good estimate
of the output distribution for each experiment in U , and then
builds a circuit approximately behaviorally equivalent to the
target circuit by repeatedly adding sufficiently accurate gates
all of whose inputs are in the partially constructed circuit.

Let the target circuit be C and let positive constants δ, ε,
k and c be given such that the fan-in of C is bounded by k
and the depth of C is bounded by c log n. For such a circuit,
π(e, w) is bounded above by kc log n, so the quantity κ(e, w)
is bounded above by

κ(n) = kc log n · 2c log n = nc(log k+1) = nO(1).

The PCB algorithm is nonadaptive: it computes a set
U of value injection experiments, repeats each value injec-
tion query for e ∈ U sufficiently many times to estimate
the expected value of C(e) with enough accuracy, and then
uses the results of the queries to build a circuit C ′ that is
ε-behaviorally equivalent to C.

In choosing the experiments U , the goal is that for every
potential test path, U includes an equivalent experiment. The
structure of the circuit, however, is not known a priori, a dif-
ficulty that we overcome by the same method as [AACW06].
Let U∗ be a universal set of value injection experiments such
that for every set of kc log n wires and every assignment
of symbols from Σ ∪ {∗} to those wires, some experiment
e ∈ U∗ agrees with the values assigned to those wires. As
in [AACW06], it is possible to construct such a set U of size

2O(kc log n) log n = nO(kc)

in time polynomial in its size.
For every wire w and test path p for w, there is an exper-

iment in U∗ that leaves the path wires of p free and fixes the
side wires of p to their values in p. Consequently, p and this
experiment agree on the output wire. Although it is tempting
now to set U = U∗, there is no easy way to determine which
experiment a test path corresponds to, making it difficult for
PCB to perform comparisons where w is fixed to different
values. For b = 0, 1, then, let Ub contain every experiment
e|w=b such that e ∈ U∗ and w is free in e. Now we can take
U = U∗ ∪ U0 ∪ U1.

For each e ∈ U , PCB repeatedly makes a value injec-
tion query with e to estimate the distribution of C(e). By
Hoeffding’s bound, we have that

m = O((nκ(n)/ε)2 log(|U |/δ))

trials per experiment e suffice to guarantee that with proba-
bility at least 1− δ, for all e ∈ U ,

d(C(e), Ĉ(e)) ≤ ε/(5nκ(n)). (1)

If (1) holds, then we can compute good estimates for a class
of distribution experiments. Let e ∈ U∗ be a value injection
experiment, w be a wire that e leaves free, and D be a value
distribution. Then let

Ĉ(e|w=D) =
∑
σ∈Σ

D(σ)Ĉ(e|w=σ).

We have

d(C(e|w=D), Ĉ(e|w=D))

≤
∑
σ∈Σ

D(σ)d(C(e|w=σ), Ĉ(e|w=σ))

≤ ε/(5nκ(n)).

From this point on, we assume that the estimates are cor-
rect and show that PCB successfully builds a circuit C ′ that
is ε-behaviorally equivalent to C.

PCB builds the circuit C ′ one gate at a time. Initially C ′

has no gates assigned to wires. The algorithm tries repeat-
edly to find a wire w and a gate g such that g is ε/n-correct
for w in C and all of g’s inputs are in C ′. When this is no
longer possible, PCB outputs C ′ and halts.

To prove the correctness of PCB, we first establish two
lemmas connecting gates, paths and experiments. Given a
Boolean probabilistic circuit C and a probabilistic gate g, g
is η-correct for wire w with respect to C if for every value
injection experiment e that fixes the input wires for g we have
d(C(e), C(e|w=g(e))) ≤ η, where g(e) denotes the coin flip
determined by g when its inputs are fixed as in e. Recall that
φ(e) denotes the number of free wires in experiment e.

Lemma 13 Let C and C ′ be probabilistic circuits on wires
W , and let e be a distribution injection experiment. If for
every wire w, the gate g for w in C ′ is η-correct for w with
respect to C, then

d(C(e), C ′(e)) ≤ φ(e) · η.

Proof: By induction on φ(e), the number of free wires in e.
If φ(e) = 0, then e constrains the output wire, and trivially,
d(C(e), C ′(e)) = 0. Otherwise, the inductive hypothesis is
that C and C ′ are η-behaviorally equivalent with respect to
all experiments with fewer free gates.

By Lemma 2, assume that e is in fact a value injection
experiment. Since C ′ is acyclic, there exists a free wire w
in e such that the inputs to w in C ′ are fixed in e to some k-
tuple (σ1, . . . , σk) ∈ Σk. Letting f be the probabilistic gate
function for w in C ′, we have C ′(e) = C ′(e|w=f(σ1,...,σk)),
and

d(C(e), C ′(e))
≤ d(C(e), C(e|w=f(σ1,...,σk))

+ d(C(e|w=f(σ1,...,σk)), C ′(e|w=f(σ1,...,σk)))

≤ η + (φ(e)− 1) · η = φ(e) · η

by the fact that f is η-correct and the inductive hypothesis.

Next we show that test paths are sufficient to determine
whether a gate is η-correct for a wire in C.

Lemma 14 Let C be a Boolean probabilistic circuit, w a
wire and g′ a probabilistic gate. If for every test path p for
w that fixes all the inputs of g′, d(C(p), C(p|w=g′(p))) ≤
η/κ(C), where κ(C) is the maximum value of κC′(e, w)
over all circuits C ′ with the same set of wires, all experi-
ments e, and all wires w, then g′ is η-correct for w with
respect to C.



Proof: Let g be the actual gate that C assigns to w. Let e
be a value injection experiment that fixes every input of g′. e
may not fix all of g’s inputs, but since C is acyclic, g’s inputs
are not reachable from w. By Lemmas 4 and 5, there exists
an experiment e′ ≤ e that fixes g’s inputs, with

d(C(e′), C(e′|w=g′(e′))) ≥ d(C(e), C(e|w=g′(e))).

Since e′ fixes all of g’s inputs, C(e′) = C(e′|w=g(e′)). It is
given that for all test paths p that fix all inputs of g and g′

that

d(C(p|w=g(p)), C(p|w=g′(p))) ≤ η/κ(C),

so it follows by Lemma 10 that

d(C(e′|w=g(e′)), C(e′|w=g′(e′)))

≤ κ(e′, w) · η/κ(C)
≤ η,

and g′ is η-correct for w.

To prove the correctness of PCB, we argue as follows.
Let V be the set of wires to which C ′ does not assign a gate.
Then since C is acyclic, there is some wire w ∈ V such that
none of w’s inputs in C belong to V . PCB looks for a gate g′

such that for each experiment e ∈ U∗ that leaves w free and
fixes all inputs of g′,

d(Ĉ(e), Ĉ(e|w=g′(e))) ≤ 3ε/(5nκ(n)). (2)

Then

d(C(e), Ĉ(e)) ≤ ε/(5nκ(n))

d(Ĉ(e|w=g′(e)), C(e|w=g′(e))) ≤ ε/(5nκ(n)),

and

d(C(e|w=g′(e)), C(e|w=g(e))) ≤ ε/(nκ(n))

by (1) and the triangle inequality. It follows by Lemma 14
that g′ is ε/n-correct for w in C. Let g be the gate that C
assigns to w and suppose that d(g(e), g′(e)) ≤ ε/(5nκ(n))
for all experiments e that fix g’s inputs. Then

d(Ĉ(e), C(e)) ≤ ε/(5nκ(n))
d(C(e), C(e|w=g(e))) = 0

d(C(e|w=g(e)), C(e|w=g′(e))) ≤ ε/(5nκ(n))

d(C(e|w=g′(e)), Ĉ(e|w=g′(e))) ≤ ε/(5nκ(n))

and g′ satisfies (2). Therefore, PCB will continue to make
progress.

To bound the running time of PCB we argue as follows.
The set U of experiments is of cardinality nO(kc) and can be
constructed in time polynomial in its size. Each experiment
in U is repeated

O((nκ(n)/ε)2 log(|U |/δ))

times; recall that κ(n) = O(nc(log k+1)). PCB chooses a
gate for a wire n times. Each gate it tests must be subjected
to a polynomial number of experiments; in order to be as-
sured of a sufficiently good approximation, it must iterate
over O(nk) sets of inputs times |Σ|k entries times a poly-
nomial number of points in [0, 1]Σ to be assured of finding
a sufficiently good approximation to a true gate. Thus the
running time of PCB is polynomial in n, 1/ε and 1/δ.

6 Lower Bounds
We consider lower bounds on the path attenuation factors for
Boolean probabilistic circuits. The following lemma shows
that the bound of π(e, w) for transitively reduced Boolean
probabilistic circuits in Corollary 11 is tight infinitely often.

Lemma 15 There is an infinite set of transitively reduced
probabilistic Boolean circuits such that for each circuit C in
the family, there exists a value injection experiment e and a
wire w such that

d(C(e|w=0), C(ew=1)) = 1

and for every test path p for w we have

d(C(p|w=0), C(p|w=1)) = 1/π(e, w).

Proof: For each positive integer `, define the circuit C` to be
a chain of ` copies of the circuit C1 in Figure 1 with wire w4

of one copy identified with wire w1 of the next copy. More
formally, the 3d + 1 wires are w0,4 and wi,j for i = 1, . . . , d
and j = 2, 3, 4. The output wire is wd,4. The wire w0,4

has no inputs and is determined by an unbiased coin flip,
that is, U({0, 1}). The wires wi,2 and wi,3 are the outputs
of deterministic identity gates with input wi−1,4. The wire
wi,4 = A(wi,2, wi,3) is the result of applying the two-input
averaging gate A to the wires wi,2 and wi,3.

The experiment e leaves all of the wires free. Let w de-
note the wire w0,4. Clearly there are 2` paths on free gates
in e from w to the output gate, that is, π(w, e) = 2`. For
experiment e we have C(e|w=0) = 0 and C(e|w=1) = 1,
so d(C(e|w=0), C(e|w=1) = 1. However, any test path p
for w must fix one of the wires wi,2 or wi,3 for each i =
1, . . . , d. As the signal proceeds through each level, it is at-
tenuated by 1/2, so the final result for any test path p for w
is d(C(p|w=0), C(p|w=1)) = 1/2` = 1/π(e, w).

A generalization of this construction shows that for any
transitively reduced circuit graph, there is an assignment of
Boolean probabilistic functions that matches the attenuation
factor of π(e, w).

Lemma 16 Let G be a transitively reduced directed graph
with a designated output node in which there is a path from
every node to the output node. There is a Boolean proba-
bilistic circuit C whose circuit graph is G such that for every
value injection experiment e and for every test path p ≤ e
and every wire w,

d(C(e|w=1), C(e|w=0))
≥ π(e, w) · d(C(p|w=1), C(p|w=0)).

Proof: (Proof omitted in this abstract.)

Can the general bound in Lemma 10 be improved to the
bound for transitively reduced circuits in Corollary 11? The
following example shows that the better bound is in general
not attainable if the circuit is not transitively reduced. It gives
a family of circuits of depth 2d for which the worst-case ratio
of the differences shown for w by an experiment e and the
best path for w is (5/4)dπ(e, w).



Lemma 17 There exists an infinite set of Boolean proba-
bilistic circuits D1, D2, . . . such that for each ` there ex-
ists a value injection experiment e and a wire w such that
π(e, w) = 4` and

d(D`(e|w=0), D`(e|w=1)) = (5/7)`,

but for any test path p for w,

d(D`(p|w=0), D`(p|w=1)) = (1/7)`.

Proof: We first define a Boolean probabilistic circuit D1 and
then connect ` copies of it in series to get D`. The wires of
D1 are w1, . . . , w5. They are connected as in Figure 3; the
output wire is w5. Note that the edge (w1, w5) means that the
circuit graph is not transitively reduced. The gate function G

w1 = U({0,1})

w2 = w1 w3 = w1 w4 = w1

w5 = G(w1,w2,w3,w4)

Figure 3: The circuit D1; w5 is the output wire.

is defined by giving its expected value as a function of its
inputs:

E[G(w1, w2, w3, w4)] = ((1−w1)+2w2 +2w3 +2w4)/7.

Let e be the experiment that leaves all five wires free. It is
clear that

d(D1(e|w=0), D1(e|w=1)) = 5/7.

We now show that for any test path p for w1,

d(D1(pw=0), D1(p|w=1)) = 1/7.

The possible test paths p for w1 either fix all of w2, w3, w4

or all but one of them. Thus, as we change from w1 = 0
to w1 = 1 in such a test path, the assignments to wires
(w1, w2, w3, w4) change in one of four possible ways:

(0, b2, b3, b4) to (1, b2, b3, b4)

(0, 0, b3, b4) to (1, 1, b3, b4)

(0, b2, 0, b4) to (1, b2, 1, b4)

(0, b2, b3, 0) to (1, b2, b3, 1)

Checking each of these possible changes against the defini-
tion of G, we see that each change produces a difference of
1/7, as claimed. (This example can be modified to give a dif-
ference of 1 versus 1/5; details are omitted in this abstract.)
Thus, D1 gives the base case of the claim in the lemma.

To construct D`, we take ` copies of D1 and identify
wire w5 in one copy with wire w1 in the next copy, making
the wire w5 of the final copy the output wire of the whole

circuit. Let w denote the wire w1 in the first such copy. Then
π(e, w) = 4` and

d(D`(e|w=0), D`(ew=1)) = (5/7)`.

For any test path p, the signal is attenuated by a factor of 1/7
for each level, and we have

d(D`(p|w=0), D`(p|w=1)) = 1/7`.

The construction can be generalized to k+1 wires for any
odd k+1, which increases the attenuation. In the base circuit
there are k paths and an attenuation factor of 1/(2k−3), and
the worst-case ratio of differences for an experiment and its
test paths in D` approaches 2`π(e, w) as k goes to infinity.

7 Non-Boolean Circuits Revisited
The sharp contrast in results for transitively reduced circuits
with alphabet size at least three, for which test paths may
show no difference (Lemma 8) and those with alphabet size
two, for which test paths must show a significant difference
(Lemma 10) motivate us to consider a generalization of the
kinds of experiments we consider, to function injection ex-
periments. This generalization allows us to extend the results
of Lemma 10 to non-Boolean alphabets.

In a value injection experiment, each wire is either fixed
to a constant value or left free. In a function injection ex-
periment, these possibilities are expanded to permit a trans-
formation of the value that the wire would take if it were
left free. As an example, consider a transformation in which
the values are linearly ordered and all values below a certain
threshold are mapped to the minimum value and all other
values are mapped to the maximum value. It is conceivable
that this kind of transformation could be feasible in some do-
mains; in any case, the theoretical consequences are quite in-
teresting. We first give a general definition of function injec-
tion, but in the results below we are primarily concerned with
2-partitions, that is, transformations that are like the above
example in that they partition the values into two blocks and
map each block to a fixed element of the block.

An alphabet transformation is a function f that maps
symbols to distributions over symbols. An alphabet transfor-
mation is deterministic if it assigns only deterministic dis-
tributions, in which case we think of it as a map from sym-
bols to symbols. A deterministic alphabet transformation f
is a k-partition if there exists a partition of Σ into at most
k disjoint nonempty sets Σi such that for each i there exists
σi ∈ Σi such that f(Σi) = {σi}. We use 2-partitions to re-
duce the case of larger alphabets to the binary case. Note that
the 2-partitions of a binary alphabet include the identity and
the two constant functions, but not the negation function.

If D is a value distribution and f is an alphabet transfor-
mation, then f(D) is the value distribution in which

(f(D))(σ) =
∑
τ∈Σ

D(τ)(f(τ))(σ).

A function injection experiment is a mapping e with do-
main W that assigns to each wire the symbol ∗ or a symbol
from Σ or an alphabet transformation f . Then e leaves w
free if e(w) = ∗, fixes w if e(w) ∈ Σ, and transforms



w if e(w) is an alphabet transformation f . We extend the
ordering ≤ on experiments by stipulating that each alpha-
bet transformation f ≤ ∗. A 2-partition experiment is a
function injection experiment in which every alphabet trans-
formation is a 2-partition.

We now define the joint probability distribution on as-
signments of symbols from Σ to wires determined by a func-
tion injection experiment e. If e fixes w, then w is just as-
signed e(w). Otherwise, if the inputs of w have been as-
signed the values σ1, . . . , σk and f is the gate function for
w, we randomly and independently choose a symbol σ ac-
cording to the value distribution f(σ1, . . . , σk). If w is free
in e, then σ is the symbol assigned to w; however, if e(w) is
an alphabet transformation, then a symbol τ is chosen ran-
domly and independently according to the value distribution
e(σ) and assigned to w. That is, when e(w) is an alphabet
transformation, we generate the symbol for w as though it
were free, and then use the distribution e(w) to transform
that symbol. Because C is acyclic, this process assigns a
symbol to every wire of C.

In a function injection query (FIQ), the learning algo-
rithm gives a function injection experiment e and receives a
symbol σ assigned to the output wire of C by the probabil-
ity distribution defined above. A functional test path for a
wire w is a function injection experiment in which the free
and transformed wires are a directed path in the circuit graph
from w to the output wire, and all other wires are fixed.

As an example of how functional test paths help in learn-
ing non-Boolean probabilistic circuits, consider the circuit in
the proof of Lemma 8. We specify a functional test path p
by p(w1) = p(w3) = p(w5) = ∗, p(w4) = 00 and p(w2) is
the alphabet transformation 00 → 00, 01 → 01, 10 → 01,
and 11 → 00. Note that the alphabet transformation is a
2-partition. Then C(p|w1=00) = 00 but C(p|w1=01) = 01
deterministically, so this functional test path witnesses a dif-
ference of 1, as large as the experiment that leaves all the
wires free. Test paths with functions allow us to carry over
the results of Lemma 10 to non-Boolean alphabets.

Lemma 18 Let C be a probabilistic circuit, e be a function
injection experiment, w be a wire, and D1, D2 be value dis-
tributions. If there exists ε ≥ 0 such that for all functional
w-test paths p ≤ e,

d(C(p|w=D1), C(p|w=D2)) ≤ ε,

then

d(C(e|w=D1), C(e|w=D2)) ≤ κ(e, w) · ε.

Proof: The obstacle in Lemma 10 is that when the alpha-
bet is non-Boolean, we may assume only that D1 and D2

have disjoint support, not that they are deterministic. This
obstacle can be overcome by injecting a 2-partition at w. Let
Σ1 = support(D1) and Σ2 = support(D2) and assume
Σ1 ∩ Σ2 = ∅. Then

d(C(e|w=D1), C(e|w=D2))

≤
∑

ρ1∈Σ1
ρ2∈Σ2

D1(ρ1)D2(ρ2)d(C(e|w=ρ1), C(e|w=ρ2))

by the triangle inequality. Let

(σ, τ) = arg max
ρ1∈Σ1
ρ2∈Σ2

d(C(e|w=ρ1), C(e|w=ρ2))

so that

d(C(e|w=D1), C(e|w=D2))
≤ d(D1, D2)d(C(e|w=σ), C(e|w=τ )).

Let f be an alphabet transformation that maps Σ1 to σ and
Σ2 to τ and all other symbols to either σ or τ . Then f is a
2-partition, and

d(C(e|w=D1), C(e|w=D2))
≤ d(C(e|w=f(D1)), C(e|w=f(D2))).

Since f(D1) = σ and f(D2) = τ , the rest of the proof goes
through.

Corollary 19 Let C be a transitively reduced probabilistic
circuit, e be a function injection experiment, w be a wire,
and D1, D2 be value distributions. If there exists ε ≥ 0 such
that for all functional w-test paths p ≤ e,

d(C(p|w=D1), C(p|w=D2)) ≤ ε,

then

d(C(e|w=D1), C(e|w=D2)) ≤ π(e, w) · ε.

Certain natural questions arise in response to the intro-
duction of function injection experiments. We can define
circuits C and C ′ to be strongly behaviorally equivalent
if C(e) = C ′(e) for every function injection query e. Does
behavioral equivalence imply strong behavioral equivalence?
Once again, alphabet size determines the answer: no for al-
phabet size greater than two, yes for alphabet size two.

Lemma 20 For Σ = {0, 1, 2}, there exist deterministic cir-
cuits C1 and C2 that are behaviorally equivalent but not
strongly behaviorally equivalent.

Proof: In both C1 and C2 there are two wires w1 and w2,
where w2 is the output wire. In both circuits the gate for
w2 has input w1 and deterministically maps 0 to 0 and maps
1 and 2 to 1. In C1, w1 is the constant 1 and C2 it is the
constant 2.

Then if e is the value injection experiment that leaves
both wires free, C1(e) = 1 = C2(e). If e fixes either w1

or w2, then also C1(e) = C2(e). Thus C1 is behaviorally
equivalent to C2.

However, the 2-partition function injection experiment e
that leaves w2 free and maps the output of w1 according to
the transformation 0 → 0, 1 → 0, 2 → 2 yields C1(e) = 0
and C2(e) = 1. Thus C1 is not strongly behaviorally equiv-
alent to C2.

However, 2-partition function experiments suffice to es-
tablish strong behavioral equivalence.

Lemma 21 Let C and C ′ be probabilistic circuits with the
same alphabet Σ, the same set of wires and the same output
wire. If C(e) = C ′(e) for every 2-partition function experi-
ment e then C and C ′ are strongly behaviorally equivalent.



Proof: By another modification of the proof of Lemma 10.

Because in the Boolean case every 2-partition function
injection query is a value injection query, we have the fol-
lowing.

Corollary 22 For Boolean probabilistic circuits C and C ′,
if C is behaviorally equivalent to C then C ′ is strongly be-
haviorally equivalent to C ′.

8 Discussion and Open Problems
These results concern general probabilistic acyclic circuits,
with no restriction other than fan-in on the kinds of prob-
abilistic gates considered. Particular domains may warrant
specific assumptions about the gates, which may make the
learning problems more tractable. For example, for the prob-
lem of learning the structure of an independent cascade so-
cial network using exact value injection queries, a query-
optimal algorithm is presented in [AAR]. Note that the net-
works in this domain may contain cycles, which complicates
their analysis.

Initial work suggests that Corollary 11 allows us to adapt
the Distinguishing Paths algorithm [AACR07] to learn tran-
sitively reduced Boolean probabilistic circuits, given a bound
on the number of paths in the circuit graph. We would like
to adapt Circuit Builder to use functional test paths to learn
non-Boolean circuits; in this case the universal set must map
wires to the set containing all alphabet symbols from Σ and
all 2-partitions of Σ, of which there are fewer than |Σ|22|Σ|.
Thus, the universal set will still be of size nO(1), suggesting
that a polynomial time algorithm may be attainable in this
case. An open question is whether not-injection reduces the
maximum path attenuation to just the number of paths for
general Boolean probabilistic circuits. A very interesting di-
rection of future work is whether there are computationally
feasible approaches to learning probabilistic circuits that use
experiments more general than paths and thereby avoid the
problem of path attenuation.

9 Acknowledgments
This work was done while Jiang Chen was a member of the
Center for Computational Learning Systems, Columbia Uni-
versity. The authors thank the reviewers of the present paper
for their thoughtful comments.

References
[AACR07] Dana Angluin, James Aspnes, Jiang Chen, and

Lev Reyzin. Learning large-alphabet and ana-
log circuits with value injection queries. In the
20th Annual Conference on Learning Theory,
pages 51–65, 2007.

[AACW06] Dana Angluin, James Aspnes, Jiang Chen, and
Yinghua Wu. Learning a circuit by injecting
values. In Proceedings of the Thirty-Eighth
Annual ACM Symposium on Theory of Com-
puting, pages 584–593, New York, NY, USA,
2006. ACM Press.

[AAR] Dana Angluin, James Aspnes, and Lev Reyzin.
Optimally learning social networks with acti-
vations and supressions. Submitted to COLT
2008.

[AK95] Dana Angluin and Michael Kharitonov. When
won’t membership queries help? J. Comput.
Syst. Sci., 50(2):336–355, 1995.

[AKMM98] Tatsuya Akutsu, Satoru Kuhara, Osamu
Maruyama, and Satoru Miyano. Identifica-
tion of gene regulatory networks by strate-
gic gene disruptions and gene overexpressions.
In SODA ’98: Proceedings of the Ninth An-
nual ACM-SIAM Symposium on Discrete Al-
gorithms, pages 695–702, Philadelphia, PA,
USA, 1998. Society for Industrial and Applied
Mathematics.

[ITK00] T. Ideker, V. Thorsson, and R Karp. Discov-
ery of regulatory interactions through pertur-
bation: Inference and experimental design. In
Pacific Symposium on Biocomputing 5, pages
302–313, 2000.

[KKET03] David Kempe, Jon Kleinberg, and Éva Tardos.
Maximizing the spread of influence through a
social network. In KDD ’03: Proceedings of
the Ninth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Min-
ing, pages 137–146, New York, NY, USA,
2003. ACM.

[KKT05] David Kempe, Jon M. Kleinberg, and Éva Tar-
dos. Influential nodes in a diffusion model for
social networks. In ICALP, pages 1127–1138,
2005.


