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Abstract

In recent work, Kalai, Klivans, Mansour, and Serve-
dio [KKMS05] studied a variant of the “Low-Degree
(Fourier) Algorithm” for learning under the uni-
form probability distribution on{0, 1}n. They showed
that theL1 polynomial regression algorithm yields
agnostic(tolerant to arbitrary noise) learning algo-
rithms with respect to the class of threshold func-
tions — under certain restricted instance distribu-
tions, including uniform on{0, 1}n and Gaussian
on Rn. In this work we show howall learning re-
sults based on the Low-Degree Algorithm can be
generalized to give almost identical agnostic guar-
antees underarbitrary product distributions on in-
stance spacesX1×· · ·×Xn. We also extend these
results to learning undermixturesof product distri-
butions.

The main technical innovation is the use of (Ho-
effding) orthogonal decomposition and the exten-
sion of the “noise sensitivity method” to arbitrary
product spaces. In particular, we give a very sim-
ple proof that threshold functions over arbitrary
product spaces haveδ-noise sensitivityO(

√
δ), re-

solving an open problem suggested by Peres [Per04].

1 Introduction

In this paper we study binary classification learning prob-
lems over arbitrary instance spacesX = X1 × · · · × Xn. In
other words, each instance hasn “categorical attributes”, the
ith attribute taking values in the setXi. For now we assume
that eachXi has cardinality at mostpoly(n).1

It is convenient for learning algorithms to encode instances
fromX as vectors in{0, 1}|X1|+···+|Xn| via the “one-out-of-
k encoding”; e.g., an attribute fromX1 = {red, green, blue}
is replaced by one of(1, 0, 0), (0, 1, 0), or (0, 0, 1). Consider
now the following familiar learning algorithm:
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1Given real-valued attributes, the reader may think of bucketing
them intopoly(n) buckets.

Given m examples of training data
(~x1, y1), . . . , (~xm, ym) ∈ X × {−1, 1},

1. Expand each instance~xi into a vector
from {0, 1}|X1|+···+|Xn| via the “one-out-
of-k” encoding.

2. Consider “features” which are products of
up tod of the new0-1 attributes.

3. Find the linear functionW in the feature
space that best fits the training labels un-
der some loss measureℓ: e.g., squared
loss, hinge loss, orL1 loss.

4. Output the hypothesissgn(W − θ), where
θ ∈ [−1, 1] is chosen to minimize the hy-
pothesis’ training error.

We will refer to this algorithm as “degree-d polynomial
regression (with lossℓ)”. When ℓ is the hinge loss, this
is equivalent to the soft margin SVM algorithm with the
degree-d polynomial kernel and no regularization [CV95].2

Whenℓ is the squared loss and the data is drawn i.i.d. from
the uniform distribution onX = {0, 1}n, the algorithm is ef-
fectively equivalent to the Low-Degree Algorithm of Linial,
Mansour, and Nisan [LMN93] — see [KKMS05]. Using
techniques from convex optimization (indeed, linear program-
ming for L1 or hinge loss, and just basic linear algebra for
squared loss), it is known that the algorithm can be per-
formed in timepoly(m, nd). For all known proofs of good
generalization for the algorithm,m = nΘ(d)/ǫ training ex-
amples are necessary (and sufficient). Hence we will view
the degree-d polynomial regression algorithm as requiring
poly(nd/ǫ) time and examples. (Because of this, whether or
not one uses the “kernel trick” is a moot point.)

Although SVM-based algorithms are very popular in prac-
tice, the scenarios in which theyprovablylearn successfully
are relatively few (see Section 1.2 below) — especially when
there is error in the labels. Our goal in this paper is to broaden
the class of scenarios in which learning with polynomial re-
gression has provable, polynomial-time guarantees.

2Except for the minor difference of choosing an optimalθ rather
than fixingθ = 0.



1.1 The learning framework

We study binary classification learning in the natural “ag-
nostic model” [KSS94] (sometimes described as the model
with arbitrary classification noise). We assume access to
training data drawn i.i.d. from some distributionD on X ,
where the labels are provided by an arbitrary unknown “tar-
get” function t : X → {−1, 1}. The task is to output
a hypothesish : X → {−1, 1} which is a good predic-
tor on future examples fromD. We define the “error of
h” to be err(h) = Prx∼D[h(x) 6= t(x)].3 We compare
the error of an algorithm’s hypothesis with the best error
achievable among functions in a fixed classC of functions
X → {−1, 1}. DefineOpt = inff∈C err(f). We say that an
algorithmA “agnostically learns with respect toC” if, given
ǫ > 0 and access to training data, it outputs a hypothesis
h which satisfiesE[err(h)] ≤ Opt + ǫ. Here the expecta-
tion is with respect to the training data drawn.4 The running
time (and number of training examples) used are measured
as functions ofn andǫ.

Instead of an instance distributionD onX and a targett :
X → {−1, 1}, one can more generally allow a distribution
D′ onX×{−1, 1}; in this case,err(h) = Pr(x,y)∼D′ [h(x) 6=
y]. Our learning results also hold in this model just as in
[KKMS05]; however we use the simpler definition for ease
of presentation, except in Section 5.3.

In the special case whent is promised to be inC we are
in the scenario of PAC learning [Val84]. This corresponds to
the caseOpt = 0. SinceC is usually chosen (by necessity)
to be a relatively simple class, the PAC model’s assumption
that there is a perfect classifier inC is generally considered
somewhat unrealistic. This is why we work in the agnostic
model.

Finally, since strong hardness results are known [KSS94,
LBW95, KKMS05, GR06] for agnostic learning under gen-
eral distributionsD, we are forced to make some distribu-
tional assumptions. The main assumption in this paper is
thatD is aproduct probability distributiononX ; i.e., then
attributes are independent. For a discussion of this assump-
tion and extensions, see Section 1.3.

1.2 When polynomial regression works

Although the SVM algorithm is very popular in practice, the
scenarios in which it provably learns successfully are rela-
tively few. Let us consider the SVM algorithm with degree-
d polynomial kernel. The traditional SVM analysis is pred-
icated on the assumption that the data is perfectly linearly
separable in the polynomial feature space. Indeed, the heuris-
tic arguments in support of good generalization are predi-
cated on the data being separablewith large margin. Even
just the assumption of perfect separation may well be unrea-
sonable. For example, suppose the targett is the very simple

3In this paper, boldface denotes random variables.
4The definition of agnostic learning is sometimes taken to re-

quire error at mostOpt + ǫ with high probability, rather than in
expectation. However this is known [KKMS05] to require almost
negligible additional overhead.

function given by the intersection of two homogeneous lin-
ear threshold functions overRn; i.e.,

t : Rn → {−1, 1}, t(x) = sgn(w1 · x) ∧ sgn(w2 · x).

It is known [MP69] that this target cannot be classified by the
sign of a degree-d polynomial in the attributes foranyfinite
d; this holds even whenn = 2. Alternatively, whent is the
intersection of two linear threshold functions over{0, 1}n, it
is not currently known ift can be classified by the sign of a
degree-d polynomial for anyd < n − 1. [OS03]

Because of this problem, one usually considers the “soft
margin SVM algorithm” [CV95]. As mentioned, when this
is run with no “regularization”, the algorithm is essentially
equivalent to degree-d polynomial regression with hinge loss.
To show that this algorithm even has a chance of learning
efficiently, one must be able to show that simple target func-
tions can at least beapproximatelyclassified by the sign of
low-degree polynomials. Of course, even stating any such
result requires distributional assumptions. Let us make the
following definition:

Definition 1.1 LetD be a probability distribution on{0, 1}N

and let t : {0, 1}N → R. We say thatt is ǫ-concentrated
up to degreed (underD) if there exists a polynomialp :
{0, 1}N → R of degree at mostd which has squared loss at
mostǫ underD; i.e.,Ex∼D[(p(x) − t(x))2] ≤ ǫ.

It is well known that under the above conditions,h := sgn(p)
has classification error at mostǫ underD. Further, it is rel-
atively easy to show that ifC is a class of functions each
of which isǫ-concentrated up to degreed, then the degree-d
polynomial regression algorithm with squared loss will PAC-
learnC to accuracyO(ǫ) underD.

The first result along these lines was due to Linial, Man-
sour, and Nisan [LMN93] who introduced the “Low-Degree
Algorithm” for PAC-learning under the uniform distribution
on {0, 1}n. They showed that iff : {0, 1}n → {−1, 1}
is computed by a circuit of sizes and depthc then it is ǫ-
concentrated up to degree(O(log(s/ǫ)))c under the uniform
distribution. Some generalizations of this result [FJS91,Hås01]
are discussed in Section 4.

Another result using this idea was due to Klivans, O’Donnell,
and Servedio [KOS04]. They introduced the “noise sensi-
tivity method” for showing concentration results under the
uniform distribution on{0, 1}n. In particular, they showed
that anyt : {0, 1}n → {−1, 1} expressible as a function of
k linear threshold functions isǫ-concentrated up to degree
O(k2/ǫ2) under the uniform distribution.

These works obtained PAC learning guarantees for the
polynomial regression algorithm — i.e., guarantees only hold-
ing under the somewhat unrealistic assumption thatOpt =
0. A significant step towards handling noise was taken in
[KKMS05]. Therein it was observed that low-degreeL2

2-
approximability bounds implyL1-approximability bounds
(and hinge loss bounds), and further, such bounds imply that
the polynomial regression algorithm works in theagnostic
learning model. Specifically, their work contains the follow-
ing theorem:



Theorem 1.2 ([KKMS05]) LetD be a distribution on{0, 1}N

and letC be a class of functions{0, 1}N → {−1, 1} each
of which isǫ2-concentrated up to degreed underD. Then
the degree-d polynomial regression algorithm withL1 loss
(or hinge loss [Kal06]) usespoly(Nd/ǫ) time and examples,
and agnostically learns with respect toC underD.

Thus one gets agnostic learning algorithms under the uni-
form distribution on{0, 1}n with respect to the class of AC0

circuits (timenpolylog(n/ǫ)) and the class of functions ofk
thresholds (timenO(k2/ǫ4)) — note that the latter is poly-
nomial time assumingk and ǫ are constants. Kalai et al.
also obtained related results for agnostically learning with
respect to single threshold functions under Gaussian and log-
concave distributions onRn.

1.3 Overview of our learning results

We view the work of [KKMS05] as the first provable guaran-
tee that one can learn interesting, broad classes of functions
under the realistic noise model of agnostic learning (and in
particular, that SVM-type methods can have this guarantee).
One shortcoming of the present state of knowledge is that we
have good concentration bounds for classes essentially only
with respect to the uniform distribution on{0, 1}n and the
Gaussian distribution onRn.5

In this work we significantly broaden the class of distri-
butions for which we can prove good concentration bounds,
and hence for which we can prove the polynomial regres-
sion algorithm performs well. Roughly speaking, we show
how to generalize any concentration result for the uniform
distribution on{0, 1}n into the same concentration result for
arbitrary product distributionsD on instance spacesX =
X1 × · · · × Xn.

We believe this is a significant generalization for several
reasons. First, even just for the instance space{0, 1}n the
class of arbitrary product distributions is much more reason-
able than the single distribution in which each attribute is0 or
1 with probability exactly1/2. Our results are even stronger
than this, though: they give an algorithm that works simulta-
neously for any product distribution overany instance space
X = X1 × · · · × Xn where each|Xi| ≤ poly(n).

Because we can handle non-binary attributes, the restric-
tion to product spaces becomes much less severe. A com-
mon criticism of learning results under the uniform distri-
bution or product distributions on{0, 1}n is that they make
the potentially unreasonable assumption that attributes are
independent. However with our results, one can somewhat
circumvent this. Suppose one believes that the attributes
X1, . . . , Xn are mostly independent, but some groups of them
(e.g., height and weight) have mutual dependencies. One
can then simply group together any dependent attribute sets
Xi1 , . . . , Xit

into a single “super-attribute” set(Xi1 × · · · ×
Xit

). Assuming that this eliminates dependencies — i.e., the
new (super-)attributes are all independent — and that each

5[FJS91] gives bounds for AC0 under constant-bounded product
distributions on{0, 1}n; [KKMS05] gives inexplicit bounds for a
single threshold function under log-concave distributions onRn.

|Xi1 × · · · × Xit
| is still at mostpoly(n), one can proceed

to use the polynomial regression algorithm. Here we see the
usefulness of being able to handle arbitrary product distribu-
tions on arbitrary product sets.

In many reasonable cases our results can also tolerate
the attribute setsXi having superpolynomial size. What is
really necessary is that the probability distribution on each
Xi is mostly concentrated on polynomially many attributes.
Indeed, we can further handle the common case when at-
tributes are real-valued. As long as the probability distri-
butions on real-valued attributes are not extremely skewed
(e.g., Gaussian, exponential, Laplace, Pareto, chi-square, . . . )
our learning results go through after doing a naive “bucket-
ing” scheme.

Finally, being able to learn under arbitrary product dis-
tributions opens the door to learning undermixtures of prod-
uct distributions. Such mixtures — especially mixtures of
Gaussians — are widely used as data distribution models
in learning theory. We show that agnostic learning under
mixtures can be reduced to agnostic learning under single
product distributions. If the mixture distribution is precisely
known to the algorithm, it can learn even under a mixture of
polynomially many product distributions. Otherwise, when
the mixture is unknown, we first need to use an algorithm
for learning (or clustering) a mixture of product distributions
from unlabeled examples. This is a difficult but well-studied
problem. Using results of Feldman, O’Donnell, and Serve-
dio [FOS05, FOS06] we can extend all of our agnostic learn-
ing results to learning under mixtures of constantly many
product distributions with each|Xi| ≤ O(1) and constantly
many (axis-aligned) Gaussian distributions.

1.4 Outline of technical results

In Section 2 we recall the orthogonal decomposition of func-
tions on product spaces, as well as the more recently-studied
notions of concentration and noise sensitivity on such spaces.
In particular, we observe that if one can prove a good noise
sensitivity bound for a classC under a product distribution
Π, then [KKMS05] implies that the polynomial regression
algorithm yields a good agnostic learner with respect toC
underΠ.

Section 3 contains the key reduction from noise sensi-
tivity in general product spaces to noise sensitivity underthe
uniform distribution on{0, 1}n. It is carried out in the model
case of linear threshold functions, which Peres [Per04] proved
haveδ-noise sensitivity at mostO(

√
δ). We give a surpris-

ingly simple proof of the following:

Theorem 3.2 Let f : X → {−1, 1} be a linear threshold
function, whereX = X1 × · · · × Xn has the product distri-
butionΠ = π1 × · · · × πn. ThenNSδ(f) ≤ O(

√
δ).

Proving this just in the case of ap-biased distribution on
{0, 1}n was an open problem suggested in [Per04]. This
noise sensitivity bound thus gives us the following learning
result:



Theorem 3.4 Let Π = π1 × · · · × πn be any product dis-
tribution over an instance spaceX = X1 × · · ·×Xn, where
we assume|Xi| ≤ poly(n) for eachi. Let C denote the
class of functions ofk linear threshold functions overX .
Takingd = O(k2/ǫ4), the degree-d polynomial regression
algorithm withL1 loss (or hinge loss) usesnO(k2/ǫ4) time
and examples and agnostically learns with respect toC.

In Section 4 we discuss how to extend concentration re-
sults for other concept classes from uniform on{0, 1}n to
arbitrary product distributions on product spacesX = X1 ×
· · · ×Xn. Of course, it’s not immediately clear, given a con-
cept classC of functions on{0, 1}n, what it even means for it
to be generalized to functions onX . We discuss a reasonable
such notion based on one-out-of-k encoding, and illustrate it
in the case ofAC0 functions. The idea in this section is sim-
ple: any concentration result under uniform on{0, 1}n eas-
ily implies a (slightly weaker) noise sensitivity bound; this
can be translated into the same noise sensitivity bound under
any product distribution using the methods of Section 3. In
turn, that implies a concentration bound in the general prod-
uct space. As an example, we prove the following:

Theorem 4.2 Let C be the class of functionsX1 × · · · ×
Xn → {−1, 1} computed by unbounded fan-in circuit of
size at mosts and depth at mostc (under the one-out-of-k
encoding). Assume|Xi| ≤ poly(n) for eachi. LetΠ be any
product distribution onX1 × · · · × Xn. Then polynomial
regression agnostically learns with respect toC under arbi-
trary product distributions in timen(O(log(s/ǫ)))c−1/ǫ2 .

Section 5 describes extensions of our learning algorithm
to cases beyond those in which one has exactly a product
distribution on an instance spaceX = X1 × · · · × Xn with
each|Xi| ≤ poly(n): these extensions include distributions
“bounded by” or “close to” product distributions, as well as
certain cases when theXi’s have superpolynomial cardinal-
ity or areR. We end Section 5 with a discussion of learning
under mixtures of product distributions. Here there is a dis-
tinction between learning when the mixture distribution is
knownto the algorithm and when it isunknown. In the for-
mer case we prove, e.g.:

Theorem 5.16 Let D be anyknown mixture ofpoly(n)
product distributions over an instance spaceX = X1×· · ·×
Xn, where we assume|Xi| ≤ poly(n) for eachi. Then there
is a nO(k2/ǫ4)-time algorithm for agnostically learning with
respect to the class of functions ofk linear threshold func-
tions overX underD.

In the latter case, by relying on algorithms for learning
mixture distributions from unlabeled data, we prove:

Theorem 5.18 Let D be anyunknownmixture ofO(1)
product distributions over an instance spaceX = X1×· · ·×
Xn, where we assume either: a)|Xi| ≤ O(1) for eachi; or
b) eachXi = R and each product distribution is a mixture of
axis-aligned (poly(n)-bounded) Gaussians. Then there is a
nO(k2/ǫ4)-time algorithm for agnostically learning with re-
spect to the class of functions ofk linear threshold functions
overX underD.

2 Product probability spaces

In this section we consider functionsf : X → R, where
X = X1×· · ·×Xn is a product set. We will also assumeX
is endowed with some product probability distributionΠ =
π1 × · · · × πn. All occurrences ofPr[·] andE[·] are with
respect to this distribution unless otherwise noted, and we
usually writex for a random element ofX drawn fromΠ.
For simplicity we assume that each setXi is finite.6 The
vector spaceL2(X , Π) of all functionsf : X → R is viewed
as an inner product space under the inner product〈f, g〉 =
E[f(x)g(x)]. We will also use the notation

‖f‖2 =
√

〈f, f〉 =
√

E[f(x)2].

2.1 Orthogonal decomposition

As eachXi is just an abstract set, there is not an inher-
ent notion of a degree-d polynomial onX . Ultimately the
polynomial regression algorithm identifiesX with a subset
of {0, 1}|X1|+···+|Xn| via the“one-out-of-k encoding” and
works with polynomials over this space. However to prove
concentration results, we need to take a more abstract ap-
proach and consider the “(Hoeffding) orthogonal decompo-
sition” of functions on product spaces; see [vM47, Hoe48,
KR82, Ste86]. In this section we recall this notion with our
own notation.

Definition 2.1 We say a functionf : X1 × · · · × Xn → R
is a simple function of orderd if it depends on at mostd
coordinates.

Definition 2.2 We say a functionf : X1 × · · · × Xn → R
is a function of orderd if it is a linear combination of simple
functions of orderd. The set of all such functions is a linear
subspace ofL2(X , Π) and we denote it byH≤d(X , Π).

Definition 2.3 We say a functionf : X1 × · · ·×Xn → R is
a function of order exactlyd if it is a function of orderd and
it is orthogonal to all functions of orderd−1; i.e., 〈f, g〉 = 0
for all g ∈ H≤d−1(X , Π). This is again a linear subspace
of L2(X , Π) and we denote it byH=d(X , Π).

Proposition 2.4 The spaceL2(X , Π) is the orthogonal di-
rect sum of theH=d(X , Π) spaces,

L2(X , Π) =

n
⊕

d=0

H=d(X , Π).

Definition 2.5 By virtue of the previous proposition, every
functionf : X1 × · · · ×Xn → R can be uniquely expressed
as

f = f=0 + f=1 + f=2 + · · · + f=n,

wheref=d : X1×· · ·×Xn → R denotes the projection off
into H=d(X , Π). We callf=d theorderd part off . We will
also write

f≤d = f=0 + f=1 + f=2 + · · · + f=d.

6In fact, we will only need that eachL2(Xi, πi) has a countable
basis.



In the sequel we will write simplyH=d in place ofH=d(X , Π),
etc. Although we will not need it, we recall a further refine-
ment of this decomposition:

Definition 2.6 For eachS ⊆ [n] we defineH≤S to be the
subspace consisting of all functions depending only on the
coordinates inS. We defineHS to be the further subspace
consisting of those functions inH≤S that are orthogonal to
all functions inH≤R for eachR ( S.

Proposition 2.7 The spaceL2(X , Π) is the orthogonal di-
rect sum of theHS spaces,L2(X , Π) =

⊕

S⊆[n] HS . Hence
every functionf : X1 × · · · × Xn → R can be uniquely ex-
pressed asf =

∑

S⊆[n] f
S , wherefS : X1×· · ·×Xn → R

denotes the projection off into HS . Denoting alsof≤S =
∑

R⊆S fR for the projection off into H≤S , we have the
following interpretations:

f≤S(y1, . . . , yn) = E[f(x1, . . . , xn) | xi = yi ∀ i ∈ S];

fS(x1, . . . , xn) =
∑

R⊆S

(−1)|S|−|R|f≤R.

Finally, we connect the orthogonal decomposition of func-
tionsf : X → R with their analogue under the one-out-of-k
encoding:

Proposition 2.8 A functionf : X → R is of orderd if and
only if its analoguef : {0, 1}|X1|+···+|Xn| → R under the
one-out-of-k encoding is expressible as a polynomial of de-
gree at mostd.

2.2 Low-order concentration

As in the previous section we consider functionsf : X → R
under a product distributionΠ. We will be especially inter-
ested in classifiers, functionsf : X → {−1, 1}. Our goal
is to understand and develop conditions under which suchf
can be approximated in squared loss by low-degree polyno-
mials.

By basic linear algebra, we have the following:

Proposition 2.9 Givenf : X → R, the best order-d ap-
proximator tof under squared loss isf≤d. I.e.,

min
g of orderd

E[(f(x)−g(x))2] = ‖f−f≤d‖2
2 =

n
∑

i=d+1

‖f=i‖2
2.

Definition 2.10 Given f : X → R we say thatf is ǫ-
concentrated up to orderd if

∑n
i=d+1 ‖f=i‖2

2 ≤ ǫ.

By Proposition 2.8 we conclude the following:

Proposition 2.11 Letf : X → R and identifyf with a func-
tion {0, 1}N → R under the one-out-of-k encoding. Then
there exists a polynomialp : {0, 1}N → R of degree at most
d which ǫ-approximatesf in squared loss underΠ if and
only if f is ǫ-concentrated up to orderd.

Combining this with the KKMS Theorem 1.2, we get the
following learning result about polynomial regression:

Theorem 2.12 Let Π = π1 × · · · × πn be a product dis-
tribution onX = X1 × · · · × Xn. Write N for the total
number of possible attribute values,N = |X1|+ · · ·+ |Xn|.
LetC be a class of functionsX → {−1, 1} each of which is
ǫ2-concentrated up to orderd underΠ. Then the degree-d
polynomial regression algorithm withL1 loss (or hinge loss)
usespoly(Nd/ǫ) time and examples, and agnostically learns
with respect toC underΠ.

We will now show how to prove low-order concentration
results by extending the “noise sensitivity method” of [KOS04]
to general product spaces.

2.3 Noise sensitivity

We recall the generalization of noise sensitivity [BKS99] to
general product spaces, described in [MOO05].

Definition 2.13 Givenx ∈ X1 × · · · × Xn and0 ≤ ρ ≤ 1,
we define aρ-noisy copy ofx to be a random variabley
with distributionNρ(x), where this denotes that eachyi is
chosen to equalxi with probability ρ and to be randomly
drawn fromπi with probability1 − ρ, independently across
i.

Definition 2.14 Thenoise operatorTρ on functionsf : X →
R is given by

(Tρf)(x) = Ey∼Nρ(x)[f(y)].

Thenoise stabilityof f at ρ is

Sρ(f) = 〈f, Tρf〉.
Whenf : X → {−1, 1} we also define thenoise sensitivity
of f at δ ∈ [0, 1] to be

NSδ(f) = 1
2 − 1

2S1−δ(f) = Pr
x∼Π

y∼N1−δ(x)

[f(x) 6= f(y)].

The connection between noise stability, sensitivity, and
concentration comes from the following two facts:

Proposition 2.15 ([MOO05]) For anyf : X → R,

Sρ(f) =

n
∑

i=0

ρi‖f=i‖2
2.

Proposition 2.16 ([KOS04]) SupposeNSδ(f) ≤ ǫ. Thenf
is 2

1−1/e ǫ-concentrated up to order1/δ.

For example, Peres proved the following theorem:

Theorem 2.17 ([Per04]) If f : {0, 1}n → {−1, 1} is a lin-
ear threshold function then

NSδ(f) ≤ O(1)
√

δ

(under the uniform distribution on{0, 1}n). From [O’D03]
we have that theO(1) can be taken to be54 for every value
of n andδ.

It clearly follows that iff is any function ofk linear thresh-
old functions thenNSδ(f) ≤ 5

4k
√

δ. Combining this with
Proposition 2.16:

Theorem 2.18 ([KOS04]) Let f : {0, 1}n → {−1, 1} be
any function ofk linear threshold functions. Thenf is (4k/

√
d)-

concentrated up to orderd under the uniform distribution,
for anyd ≥ 1. In particular, f is ǫ2-concentrated up to or-
derO(k2/ǫ4).



3 Noise sensitivity of threshold functions in
product spaces

In this section we show that Peres’s theorem can be extended
to hold for linear threshold functions in all product spaces.

Definition 3.1 We say a functionf : X1 × · · · × Xn →
{−1, 1} is a linear threshold functionif its analoguef :
{0, 1}N → {−1, 1} under one-out-of-k encoding is express-
ible as a linear threshold function. Equivalently,f is a linear
threshold function if there exist weight functionswi : Xi →
R, i = 1 . . . n, and a numberθ ∈ R such that

f(x1, . . . , xn) = sgn

(

n
∑

i=1

wi(xi) − θ

)

.

No version of Peres’s Theorem 2.17 was previously known
to hold even in the simple case of linear threshold func-
tions on{0, 1}n under ap-biased product distribution with
p 6= 1/2. Understanding just this nonsymmetric case was
left as an open question in [Per04]. We now show that thresh-
old functions over general product spaces are no more noise
sensitive than threshold functions over{0, 1}n under the uni-
form distribution.

Theorem 3.2 Let f : X → {−1, 1} be a linear threshold
function, whereX = X1 × · · · × Xn has the product distri-
butionΠ = π1 × · · · × πn. ThenNSδ(f) ≤ 5

4

√
δ.

Proof: For a pair of instancesz0, z1 ∈ X and a vector
x ∈ {0, 1}n, we introduce the notationzx for the instance
whoseith attribute(zx)i is theith attribute ofzxi

. For any
fixed z0, z1 ∈ X we can definegz0,z1 : {0, 1}n → {−1, 1}
such thatgz0,z1(x) = f(zx). Note that this function is a lin-
ear threshold function in the traditional binary sense.

Let z0, z1 now denote independent random draws from
Π, and letx denote a uniformly random vector from{0, 1}n.
We have thatzx is distributed as a random draw fromΠ.
Further picky ∈ {0, 1}n to be aδ-noisy copy ofx, i.e.
y ∼ Nδ(x). Thenzy is distributed asNδ(zx). We now
have

NSδ(f) = Pr
z0,z1,x,y

[f(zx) 6= f(zy)]

= E
z0,z1

[

Pr
x,y

[f(zx) 6= f(zy)]

]

= E
z0,z1

[

Pr
x,y

[gz0,z1(x) 6= gz0,z1(y)]

]

.

Oncez0 andz1 are fixed, the quantity in the expectation is
just the noise sensitivity atδ of the binary linear threshold
functiongz0,z1 , which we can bound by54

√
δ using Theo-

rem 2.17. So

NSδ(f) = E
z0,z1

[

Pr
x,y

[gz0,z1(x) 6= gz0,z1(y)]

]

≤ E
z0,z1

[

5
4

√
δ
]

= 5
4

√
δ,

which is what we wanted to show.2

As with Theorem 2.18, we conclude:

Theorem 3.3 Let f : X → {−1, 1} be any function ofk
linear threshold functions, whereX = X1×· · ·×Xn has the
product distributionΠ = π1×· · ·×πn. Thenf is (4k/

√
d)-

concentrated up to orderd, for anyd ≥ 1. In particular,f is
ǫ2-concentrated up to orderO(k2/ǫ4).

By combining Theorem 3.3 with our main learning theo-
rem, Theorem 2.12, we conclude:

Theorem 3.4 LetΠ = π1 × · · · × πn be any product distri-
bution over an instance spaceX = X1 × · · · × Xn, where
we assume|Xi| ≤ poly(n) for eachi. Let C denote the
class of functions ofk linear threshold functions overX .
Takingd = O(k2/ǫ4), the degree-d polynomial regression
algorithm withL1 loss (or hinge loss) usesnO(k2/ǫ4) time
and examples and agnostically learns with respect toC.

4 Concentration for other classes under
product distributions

In this section we illustrate how essentially any result about
ǫ-concentration of classes of functions under the uniform dis-
tribution on{0, 1}n can be translated into a similar result for
general product distributions. Besides linear threshold func-
tions, the other main example of concentration comes from
the original application of the Low Degree Algorithm [LMN93]:
learning AC0 functions in quasipolynomial time. Recall that
AC0 is the class of functions computed by unbounded fan-in
circuits of constant depth and polynomial size. We will use
this as a running example.

SupposeC is a class of functionsX → {−1, 1}, where
X = X1 × · · · × Xn. As usual, under the one-out-of-k en-
coding we can think ofC as a class of functions{0, 1}N →
{−1, 1}. In our example, this gives a reasonable notion of
“AC0 circuits on general product setsX ”. Suppose further
that C ⊇ C is any class of functions{0, 1}N → {−1, 1}
which is closed under negation of inputs and closed under
fixing inputs to0 or 1. In our example, the class of AC0

circuits indeed has this basic property (as does the more pre-
cisely specified class of all circuits with size at mosts and
depth at mostc).

Now by repeating the proof of Theorem 3.2, it is easy
to see that any upper bound one can prove on the noise sen-
sitivity of functions inC under the uniform distribution on
{0, 1}N immediately translates an identical bound on the
noise sensitivity of functions inC on X under any product
distribution. The only thing to notice is that the functions
gz0,z1 arising in that proof will be in the classC. Thus we
are reduced to proving noise sensitivity bounds for functions
on{0, 1}n under the uniform distribution.

Furthermore, any result onǫ-concentration of functions
on{0, 1}n under the uniform distribution can be easily trans-
lated into a noise sensitivity bound which is not much worse:

Proposition 4.1 Suppose thatf : {0, 1}n → {−1, 1} is ǫ-
concentrated up to degreed under the uniform distribution
on{0, 1}n. ThenNSǫ/d(f) ≤ ǫ.



Proof: Using traditional Fourier notation instead of orthog-
onal decomposition notation, we have

S1−ǫ/d(f) =
∑

S⊆[n]

(1 − ǫ/d)|S|f̂(S)2

≥ (1 − ǫ/d)d(1 − ǫ) ≥ (1 − ǫ)2,

where the first inequality used the fact thatf is ǫ-concentrated
up to degreed. Thus

NS1−ǫ/d(f) = 1
2 − 1

2S1−ǫ/d(f) ≤ 1
2 − 1

2 (1 − ǫ)2 ≤ ǫ.

2

Finally, applying Proposition 2.16, we getO(ǫ)-concentration
up to orderd/ǫ for the original classC of functionsX →
{−1, 1}, under any product distribution onX . This leads to
an agnostic learning result forC under arbitrary product dis-
tributions which is the same as the one would get forC under
the uniform distribution on{0, 1}n, except for an extra fac-
tor of ǫ in the running time’s exponent.

For example, with regard to AC0 functions, [LMN93,
Hås01] proved the following:

Theorem 4.2 Let f : {0, 1}n → {−1, 1} be computable
by an unbounded fan-in circuit of size at mosts and depth at
most c. Then f is ǫ-concentrated up to degree
d = (O(log(s/ǫ)))c−1.

We therefore may conclude:

Theorem 4.3 Let C be the class of functionsX1 × · · · ×
Xn → {−1, 1} computed by unbounded fan-in circuit of
size at mosts and depth at mostc (under the one-out-of-k
encoding). Assume|Xi| ≤ poly(n) for eachi. LetΠ be any
product distribution onX1 × · · · ×Xn. Then everyf ∈ C is

2
1−1/e ǫ-concentrated up to orderd = (O(log(s/ǫ)))c−1/ǫ.
As a consequence, polynomial regression agnostically learns
with respect toC under arbitrary product distributions in
timen(O(log(s/ǫ)))c−1/ǫ2 .

This result should be compared to the following theorem
from Furst, Jackson, and Smith [FJS91] for PAC-learning
under bounded product distributions on{0, 1}n:

Theorem 4.4 ([FJS91])The classC of functions{0, 1}n →
{−1, 1} computed by unbounded fan-in circuit of size at most
s and depth at mostc can be PAC-learned under any product
distribution in timen(O((1/p) log(s/ǫ)))c+O(1)

, assuming the
mean of each coordinate is in the range[p, 1 − p].

The advantage of the result from [FJS91] is that it does
not pay the extra1/ǫ2 in the exponent. The advantages of
our result is that it holds under arbitrary product distributions
on product sets. (Our result is in the agnostic model, but
the result of [FJS91] could also be by applying the results
of [KKMS05].)

5 Extensions

5.1 Distributions close to or dominated by product
distributions

We begin with some simple observations showing that the
underlying distribution need not bepreciselya product distri-
bution. First, the following fact can be considered standard:

Proposition 5.1 Suppose that under distributionD, algo-
rithm A agnostically learns with respect to classC, usingm
examples to achieve errorǫ. If D′ is any distribution satisfy-
ing‖D′−D‖1 ≤ ǫ/m, thenA also agnostically learns under
D′, usingm examples to achieve error2ǫ + 2ǫ/m ≤ 4ǫ.

Proof: The key fact we use is that ifX is a random variable
with |X| ≤ 1 always, then|ED′ [X] − ED[X]| ≤ ‖D′ −
D‖1. This implies that for any hypothesish, |errD′(h) −
errD(h)| ≤ ǫ/m. In particular, it follows thatOptD′ ≤
OptD + ǫ/m. Further, leth be the random variable denoting
the hypothesisA produces when given examples fromD⊗m.
By assumption, we have

E
D⊗m

[errD(h)] ≤ OptD + ǫ

which is at mostOptD′+ǫ+ǫ/m. Since‖D′⊗m−D⊗m‖1 ≤
m(ǫ/m) = ǫ, the key fact applied toerrD(h) implies

E
D′⊗m

[errD(h)] ≤ OptD′ + ǫ + ǫ/m + ǫ.

Finally, as we saw,errD′(h) ≤ errD(h)+ǫ/m always. Thus

E
D′⊗m

[errD′(h)] ≤ OptD′ + 2ǫ + 2ǫ/m,

completing the proof.2

We will use the above result later when learning under
mixtures of product distributions.

A simple extension to the case when the distribution is
“dominated” by a product distribution was already pointed
out in [KKMS05]:

Observation 5.2 LetD be a distribution onX which is “C-
dominated” by a product probability distributionΠ = π1 ×
· · · × πn; i.e., for all x ∈ X , D(x) ≤ CΠ(x). If f is ǫ-
concentrated up to degreed underΠ, thenf isCǫ-concentrated
up to degreed underD.

Hence:

Theorem 5.3 Suppose we are in the setting of Theorem 3.4
except thatΠ is any distribution which isC-dominated by
a product probability distribution. Then the degree-d poly-
nomial regression algorithm learns with respect toC with
d = O(C2k2/ǫ4) and hencenO(C2k2/ǫ4) time and exam-
ples.

5.2 Larger attribute domains

So far we have assumed that each attribute spaceXi is only
of polynomial cardinality. This can fairly easily be relaxed
to the assumption that most of the probability mass in each
(Xi, πi) is concentrated on polynomially many atoms. Let
us begin with some basic preliminaries:



Notation 5.4 Given a distributionπ on a setX , as well as a
subsetX ′ ⊆ X , we use the notationπ′ for the distribution on
X ′ given by conditioningπ on this set. (We always assume
π(X ′) 6= 0.)

Fact 5.5 LetX = X1×· · ·×Xn and letΠ = π1×· · ·×πn

be a product distribution onX . Let X ′
i ⊆ Xi, i = 1 . . . n,

and writeΠ′ for the distributionΠ conditioned on the set
X ′ = X ′

1 × · · · × X ′
n. ThenΠ′ is the product distribution

π′
1 × · · · × π′

n.

We now observe that ifX ′ is a “large” subset ofX , then
any two functions which are close inL2(X , Π) are also close
in L2(X ′, Π′):

Proposition 5.6 In the setting of Fact 5.5, suppose that
Prxi∼πi

[xi 6∈ X ′
i] ≤ 1/(2n) for all i. Then for any two

functionsf : X → R andg : X → R,

‖f |X ′ − g|X ′‖2
2,Π′ ≤ 2 · ‖f − g‖2

2,Π

wheref |X ′ : X ′ → R denotes the restriction off toX ′, and
similarly for g|X ′.

Proof: Writing h = f − g, we have

‖h‖2
2,Π = E

x∼Π
[h(x)2]

= Pr
x∼Π

[x ∈ X ′] · E
x∼Π

[h(x)2 | x ∈ X ′]

+ Pr
x∼Π

[x /∈ X ′] · E
x∼Π

[h(x)2 | x /∈ X ′].

UsingEx∼Π[h(x) | x /∈ X ′] ≥ 0, we have

‖h‖2
2,Π ≥ Pr

x∼Π
[x ∈ X ′] · E

x∼Π
[h(x)2 | x ∈ X ′]

= Pr
x∼Π

[x ∈ X ′] · E
x∼Π′

[h(x)2].

But by the union bound

Pr
x∼Π

[x /∈ X ′] ≤
n
∑

i=1

Pr
xi∼Πi

[xi /∈ X ′
i] ≤ n · 1/(2n) = 1/2,

soPrx∼Π[x ∈ X ′] ≥ 1/2. Thus

2 · ‖h‖2
2,Π ≥ E

x∼Π′
[h(x)2] = ‖f |X ′ − g|X ′‖2

2,Π′ ,

completing the proof.2

Corollary 5.7 In the setting of the previous proposition, if
f is ǫ-concentrated up to orderd underΠ, thenf |X ′ is 2ǫ-
concentrated up to orderd underΠ′.

Proof: It suffices to observe that ifg : X → R is a function
of orderd, theng|X ′ is also a function of orderd. 2

We can now describe an extended learning algorithm which
works when the attribute spaces are mostly supported on sets
of polynomial cardinality:

Definition 5.8 We say that a finite probability space(X, π)
is (η, r)-boundedif there exists a subsetX ′ ⊆ X of cardi-
nality at most|X ′| ≤ r such thatPrx∼π[x /∈ X ′] ≤ η.

Our algorithm will learn whenever alln attribute sets are,
say,(ǫ/n, poly(n))-bounded. The first step of the algorithm
will be to determine a set of attribute values which contain
almost all of the probability mass.

Lemma 5.9 Let (X, π) be an (η, r)-bounded probability
space. LetZ be a set ofm = r ln(r/δ)/η samples drawn
independently fromπ. DefineY to be the set{x ∈ X :
x was sampled inZ}. Then with probability at least1 − δ,
the setY satisfiesPrx∼π[x /∈ Y ] ≤ 2η.

Proof: In fact, we will prove the slightly stronger state-
ment that with probability at least1 − δ the setY satisfies
Prx∼π[x /∈ Y ∩X ′] ≤ 2η, whereX ′ is any set fulfilling the
(η, r)-boundedness condition of(X, π).

To prove the claim, we split the sampling procedure into
r epochs, where we drawln(r/δ)/η samples in each epoch.
Let Yi be the set of all atoms inX sampled among the first
i epochs, withY0 denoting the empty set. We will prove
that with probability at least1 − δ, the following holds for
all epochsi ∈ [r]: eitherYi−1 satisfiesPrx∼π[x /∈ Yi−1 ∩
X ′] ≤ 2η, or (Yi∩X ′)\Yi−1 6= ∅ (i.e., we see a “new” atom
from X ′ in theith epoch).

Let’s first note that satisfying the above conditions im-
plies that in the endPrx∼π[x /∈ Y ∩ X ′] ≤ 2η. This is
straightforward: if at any epochYi−1 satisfiesPrx∼π[x /∈
Yi−1∩X ′] ≤ 2η then we’re done becauseY ⊇ Yi−1. Other-
wise, in allr epochs we see a new atom fromX ′, and hence
at the end of the sampling we will have seenr distinct atoms
of X ′; then|X ′| ≤ r implies that our finalY ⊇ X ′.

Now to complete the proof let us bound the probability
that for a giveni ∈ [r] theYi−1 does not satisfyPrx∼π[x /∈
Yi−1 ∩ X ′] ≤ 2η and we do not see a new element ofX ′ in
theith epoch. Note that ifPrx∼π[x /∈ Yi−1∩X ′] > 2η, then
the fact thatPrx∼π[x /∈ X ′] ≤ η implies thatPrx∼π[x ∈
X ′ \ Yi−1] > η. So the probability that we do not observe
any element ofX ′ \ Yi−1 in ln(r/δ)/η samples is

Pr
x∼π

[x /∈ X ′ \ Yi−1]
ln(r/δ)/η ≤ (1 − η)ln(r/δ)/η

≤ e−η·ln(r/δ)/η = δ/r.

By applying the union bound, we see that there is probability
at mostδ that any of ther epochs fails, so we’re done.2

We now give our extended learning algorithm:

1. Draw a setZ1 of m1 unlabeled examples.

2. Draw a setZ2 of m2 labeled examples.

3. Delete fromZ2 any instance/label pair
where the instance contains an attribute
value not appearing inZ1.

4. Run the degree-d polynomial regression
algorithm onZ2.



Theorem 5.10 LetΠ = π1×· · ·×πn be a product distribu-
tion on the setX = X1 × · · · × Xn and assume each prob-
ability space(Xi, πi) is (ǫ/n, r)-bounded. WriteN = nr.
Let C be a class of functionsX → {−1, 1} each of which
is ǫ2-concentrated up to orderd. Setm1 = poly(N/ǫ) and
m2 = poly(Nd/ǫ). The above algorithm usespoly(Nd/ǫ)
time and examples and agnostically learns with respect toC
underΠ.

Proof: For simplicity we will equivalently prove that the al-
gorithm outputs a hypothesis with error at mostOpt+O(ǫ),
rather thanOpt + ǫ.

We first want to establish that with probability at least
1 − ǫ, the set of attributes observed in the sampleZ1 covers
almost all of the probability mass ofΠ. For eachi ∈ [n],
let X ′

i be the set of attribute values fromXi observed in at
least one of the samples inZ1. Using the fact that each
(Xi, πi) is (ǫ/n, r)-bounded, Lemma 5.9 implies that for
sufficiently largem1 = poly(N/ǫ) log(1/ǫ), eachX ′

i will
satisfyPrxi∼πi

[xi /∈ X ′
i] ≤ 2ǫ/n except with probability at

mostǫ/n. Applying the union bound, allX ′
i simultaneously

satisfy the condition with probability at least1−ǫ. We hence-
forth assume this happens. WritingX ′ = X ′

1 × · · · × X ′
n,

we note that, by the union bound,Prx∼Π[x 6∈ X ′] ≤ 2ǫ.

The second thing we establish is that we do not throw
away too many examples in Step 3 of the algorithm. We
have just observed that the probability a given example in
Z2 is deleted is at most2ǫ. We may assume2ǫ ≤ 1/2, and
then a Chernoff bound (andm2 ≫ log(1/ǫ)) easily implies
that with probability at least1 − ǫ, at most, say, two-thirds
of all examples are deleted. Assuming this happens, we have
that even after deletion,Z2 still contains at leastpoly(Nd/ǫ)
many examples.

We now come to the main part of the proof, which is
based on the observation that the undeleted examples inZ2

are distributed as i.i.d. draws from the restricted productdis-
tributionΠ′ gotten by conditioningΠ onX ′. Thus we are in
a position to apply our main learning result, Theorem 2.12.
The polynomial regression part of the above algorithm in-
deed usespoly(Nd/ǫ) time and examples, and it remains to
analyze the error of the hypothesis it outputs.

First, we use the fact that each functionf in C is ǫ2-
concentrated up to orderd to conclude that each function
f |X ′ in “C|X ′” is 2ǫ2-concentrated up to orderd. This uses
Proposition 5.6 and the fact that we may assume2ǫ ≤ 1/2.
Next, the guarantee of Theorem 2.12 is that when learning
the target classifiert (viewed as a functionX → {−1, 1} or
X ′ → {−1, 1}), the expected error underΠ′ of the hypothe-
sish produced is at mostOpt′ + O(ǫ), where

Opt′ = min
f ′∈C|X′

Pr
x∼Π′

[f ′(x) 6= t(x)].

By definition, there is a functionf ∈ C satisfying

Pr
x∼Π

[f(x) 6= t(x)] = Opt.

SincePrx∼Π[x /∈ X ′] ≤ 2ǫ, it is easy to see thatf |X ′ has
error at mostOpt+2ǫ ont underΠ′. ThusOpt′ ≤ Opt+2ǫ,

and we conclude that the expected error underΠ′ of h on t is
at mostOpt + 2ǫ + O(ǫ) = Opt + O(ǫ). Finally, the same
observation implies that the expected error underΠ of h on
t is at mostOpt + 2ǫ + O(ǫ) = Opt + O(ǫ).

We have thus established that with probability at least
1−2ǫ, the polynomial regression part of the above algorithm
outputs a hypothesis with expected error at mostOpt+O(ǫ).
It follows that the overall expected error is at mostOpt +
O(ǫ), as desired.2

5.3 Real-valued attributes

We next consider the particular case of learning with re-
spect to linear threshold functions, but when some of the at-
tributes arereal-valued. This case is relatively easily handled
by discretizing the ranges of the distributions and using the
previously discussed techniques. Our approach works for a
very wide variety of distributions onR; these distributions
need not even be continuous. We only need the distributions
to satisfy “polynomial boundedness and anti-concentration”
bounds.

Definition 5.11 We say that a distributionD over R is B-
polynomially boundedif for all η > 0, there is an intervalI
of length at mostpoly(B/η) such thatPrx∼D[x 6∈ I] ≤ η.

Definition 5.12 Given a real-valued random variablex with
distributionD, recall that theLévy (anti-)concentration func-
tion Q(x; λ) is defined by

Q(x; λ) = sup
t∈R

Pr
x∼D

[x ∈ [t − λ/2, t + λ/2]] .

We say thatD hasB-polynomial anti-concentrationif Q(D; λ) ≤
poly(B) ·λc for some positivec > 0. Note that ifD is a con-
tinuous distribution with pdf everywhere at mostB then it
hasB-polynomial anti-concentration (withc = 1 in fact).

Having polynomial boundedness and concentration is an
extremely mild condition; for example, the following famil-
iar continuous distributions are allB-polynomial bounded
and haveB-polynomial anti-concentration:Gaussianswith
1/B ≤ σ2 ≤ B; exponentialdistributions with1/B ≤
λ ≤ B; Laplacedistributions with scale parameter with
1/B ≤ b ≤ B; Pareto distributions with shape param-
eter 1/B ≤ k ≤ B; chi-squaredistributions with vari-
ance1/B ≤ σ2 ≤ B (for 1 degree of freedom, the anti-
concentration “c” needs to be1/2); etc.

(Furthermore, in most cases even the condition on the
parameter being in[1/B, B] can be eliminated. For exam-
ple, suppose the first coordinate has a Gaussian distribution
with standard deviationσ. With O(log(1/δ)) examples, one
can with probability at least1 − δ estimateσ to within a
multiplicative factor of2. Having done so, one can multi-
ply all examples’ first coordinate by an appropriate constant
so as to get a Gaussian distribution with standard deviation
in [1/2, 2]. Further, this does not change the underlying ag-
nostic learning problem, since the class of linear threshold
functions is closed under scaling a coordinate. For clarityof
exposition, we leave further considerations of this sort tothe



reader.)

We now describe the effect that discretizing a real-valued
distribution can have with respect to functions of linear thresh-
old functions. It is convenient to switch from working with
a distribution onX and target functionX → {−1, 1} to just
having a distributionD onX ×{−1, 1}— see the discussion
after definition of agnostic learning in Section 1.1. As usual,
assume thatX = X1×· · ·×Xn is a product set and that the
marginal distribution ofD onX is a product distribution.

Suppose we have one coordinate with a real-valued dis-
tribution; without loss of generality, sayX1 = R, and write
D1 for the marginal distribution ofD on X1. When we re-
fer to a “linear threshold function” onX , we assume that the
“weight function” w1 : X1 → R for coordinate1 is just
w1(x1) = c1x1 for some nonzero constantc1.

Lemma 5.13 LetC denote the class of functions ofk linear
threshold functions overX . As usual, write

Opt = inf
f∈C

errD(f), whereerrD(f) = Pr
(x,y)∼D

[f(x) 6= y].

Consider discretizingX1 = R by mapping eachx1 ∈ R to
rdτ (x1), the nearest integer multiple ofτ to xi. WriteX ′

1 =
τZ and letD′ denote the distribution onX ′

1×X2×· · ·Xn×
{−1, 1} induced fromD by the discretization.7 Write Opt′

for the quantity analogous toOpt for D′. Then ifD1 hasB-
polynomial anti-concentration, it holds thatOpt′ ≤ Opt +
k · poly(B) · τΩ(1).

Proof: It suffices to show that for anyf ∈ C,

k · poly(B) · τΩ(1) ≥ |errD(f) − errD′(f)|

=

∣

∣

∣

∣

Pr
(x,y)∼D

[f(x) 6= y] − Pr
(x,y)∼D′

[f(x) 6= y]

∣

∣

∣

∣

.

Writing Π for the marginal ofD on X , we can prove the
above by proving

Pr
x∼Π

[f(x) 6= f(rdτ (x1), x2, . . . , xn)] ≤ k ·poly(B)·τΩ(1) .

Sincef is a function of somek linear threshold functions,
by the union bound it suffices to show

Pr
x∼Π

[h(x) 6= h(rdτ (x1), x2, . . . , xn)] ≤ poly(B) · τΩ(1)

for any linear threshold functionh. We can do this by show-
ing

Pr
x1∼D1

Y

[sgn(c1x1+Y ) 6= sgn(c1rdτ (x1)+Y )] ≤ poly(B)·τΩ(1),

whereY is the random variable distributed according to the
other part of the linear threshold functionh. Note thatY and
x1 are independent becauseΠ is a product distribution. Now
since|x1−rdτ (x1)| is always at mostτ/2, we can only have
sgn(c1x1 + Y ) 6= sgn(c1rdτ (x1) + Y ) if

|c1x1 + Y | ≤ |c1|τ/2 ⇔ |x1 + Y /c1| ≤ τ/2.

7This can lead to inconsistent labels, which is why we switched
toD rather than have a target function.

It is an easy and well-known fact that ifx andy are indepen-
dent random variables thenQ(x + y; λ) ≤ Q(x; λ); hence

Pr
x1∼D1

Y

[|x1 + Y /c1| ≤ τ/2] ≤ Q(x1; τ/2).

ButD1 hasB-polynomial anti-concentration, soQ(x1; τ/t) ≤
poly(B) · τΩ(1), as needed.2

By repeating this lemma up ton times, it follows that
even if alln coordinate distributions are real-valued, so long
as they havepoly(n)-polynomial anti-concentration we will
suffer little error. Specifically (assumingk ≤ poly(n) as
well), by takingτ = poly(ǫ/n) we get that discretization
only leads to an additional error ofǫ.

Finally, note that if a distributionDi ispoly(n)-polynomially
bounded then its discretized version is(ǫ/n, poly(n/ǫ))-bounded
in the sense of Section 5.2; this lets us apply Theorem 5.10.
Summarizing:

Theorem 5.14 LetΠ = π1×· · ·×πn be a product distribu-
tion on the setX = X1 × · · · × Xn. For the finiteXi’s, as-
sume each is(ǫ/n, poly(n/ǫ))-bounded. For the realXi’s,
assume the associatedπi is poly(n)-polynomially bounded
and haspoly(n)-polynomial anti-concentration. LetC de-
note the class of functions of at mostk ≤ poly(n) linear
threshold functions overX . Then there is apoly(n/ǫ)k2/ǫ4

time algorithm which agnostically learns with respect toC
underΠ.

5.4 Mixtures of product distributions

So far we have only considered learning under distributions
D that are product distributions. In this section we show how
to handle the commonly-studied case of mixtures of product
distributions.

The first step is to show a generic learning-theoretic re-
duction: Roughly speaking, if we can agnostically learn with
respect to any one of a family of distributions, then we can
agnostically learn with respect to aknownmixture of distri-
butions from this family — even a mixture of polynomially
many such distributions. (In our application the family of
distributions will be the product distributions, but our reduc-
tion does not rely on this.) Although the following theorem
uses relatively standard ideas, we do not know if it has ap-
peared previously in the literature:

Theorem 5.15 Let D be a family of distributions over an
instance spaceX . There is a generic reduction from the
problem of agnostically learning under aknownmixture of
c distributions fromD to the problem of agnostically learn-
ing under a single known distribution fromD. The reduction
incurs a running time slowdown ofpoly(cT )/γ for an addi-
tional error ofγ, whereT denotes the maximum time needed
to computeD(x) for a mixture componentD.

Proof: Suppose we are agnostically learning (with respect to
some classC) under the distributionD which is a mixture of
c distributionsD1, . . . ,Dc with mixing weightsp1, . . . , pc.
We make the assumption that the learning algorithm knows
each of the mixing weightspi, each of the distributionsDi,



and can compute any of the probabilitiesDi(x) in time T .
We assume in the following that theDi’s are discrete distri-
butions, but the case of absolutely continuous distributions
could be treated in essentially the same way.

First, we claim that the algorithm can simulate learn-
ing under any of the single distributionsDi, with slowdown
poly(cT )/pi. This is a standard proof based on rejection
sampling: given an examplex, the algorithm retains it with
probability

ri(x) := pi
Di(x)

D(x)
, (1)

a quantity the algorithm can compute in timepoly(cT ). One
can check that this leads to the correct distributionDi on in-
stances. The probability of retaining an example is easy seen
to be precisely1/pi, leading to the stated slowdown.

The main part of the proof now involves showing that
if the algorithm agnostically learns under eachDi, it can
combine the hypotheses produced into an overall hypothe-
sis which is good underD. We will deal with the issue of
running time (in particular, very smallpi’s) at the end of the
proof. LetOpt denote the minimal error achievable among
functions inC underD, and writeOpti for the analogous
quantity underDi, i = 1 . . . c. Since one could use the same
f ∈ C for eachDi, clearlyOpt ≥ ∑c

i=1 piOpti. By reduc-
tion, the algorithm produces hypothesesh1, . . . , hc satisfy-
ing E[errDi

(hi)] ≤ Opti + ǫ.

We allow our overall algorithm to output arandomized
hypothesish. We will then show thatE[errD(h)] ≤ Opt+ǫ.
where the expectation is over the subalgorithms’ production
of thehi’s plus the “internal coins” ofh. Having shown this,
it follows that our algorithm could equally well produce a de-
terministic hypothesis, just by (randomly) fixing a settingof
h’s internal coins as its last step.

Assume for a moment that the subalgorithms’ hypothe-
ses are fixed,h1, . . . , hc. The randomized overall hypothesis
h : X → {−1, 1} is defined by takingh(x) = hi(x) with
probability exactlyri(x), where the probabilitiesri(x) are as
defined in (1). (Note that they indeed sum to1 and are com-
putable in timepoly(cT ).) Writing t for the target function,
we compute:

E
h’s coins

[errD(h)]

= E
x∼D

[ Pr
h’s coins

[h(x) 6= t(x)]]

= E
x∼D





∑

i:hi(x) 6=t(x)

ri(x)





= E
x∼D





∑

i:hi(x) 6=t(x)

pi(x)
Di(x)

D(x)





=
∑

x∈X

∑

i:hi(x) 6=t(x)

pi(x)Di(x)

=

c
∑

i=1

pi

∑

x:hi(x) 6=t(x)

Di(x) =

c
∑

i=1

pierrDi
(hi).

We now take the expectation over the production of the sub-
hypotheses and conclude

E
h
[errD(h)] =

c
∑

i=1

piE[errDi
(hi)] ≤

c
∑

i=1

pi(Opti + ǫ)

=

c
∑

i=1

piOpti + ǫ ≤ Opt + ǫ, (2)

as claimed.

It remains to deal with smallpi’s and analyze the run-
ning time slowdown. We modify the overall algorithm so
that it only simulates and learns underDi if pi ≥ γ/c. Thus
the simulation slowdown we incur is onlypoly(cT )/γ, as
desired. For anyi with pi < γ/c we use an arbitrary hypoth-
esishi in the above analysis and assume onlyerrDi

(hi) ≤ 1.
It is easy to see that this incurs an additional error in (2) ofat
most

∑

i:pi<γ/c pi ≤ γ, as necessary.2

Combining Theorem 5.15 with, say, Theorem 3.4 (for
simplicity), we may conclude:

Theorem 5.16 LetD be anyknownmixture ofpoly(n) prod-
uct distributions over an instance spaceX = X1×· · ·×Xn,
where we assume|Xi| ≤ poly(n) for eachi. Then there is a
nO(k2/ǫ4)-time algorithm for agnostically learning with re-
spect to the class of functions ofk linear threshold functions
overX underD.

When the mixture of product distributions is not known
a priori, we can first run an algorithm for learning mixtures
of product distributions from unlabeled examples. For ex-
ample, Feldman, O’Donnell, and Servedio [FOS05] proved
the following:

Theorem 5.17 ([FOS05])LetD be an unknown mixture of
c = O(1) many product distributions over an instance space
X = X1 × · · · × Xn, where we assume|Xi| ≤ O(1) for
eachi. There is an algorithm which, given i.i.d. examples
fromD andη > 0, runs in timepoly(n/η) log(1/δ) and with
probability at least1− δ outputs the parameters of a mixture
of c product distributionsD′ satisfying‖D′ −D‖1 ≤ η.

(The theorem was originally stated in terms of KL-divergence
but also holds withL1-distance [FOS05].) In [FOS06] the
same authors gave an analogous result for the case when each
Xi = R and each product distribution is a product of Gaus-
sians with means and variances in[1/poly(n), poly(n)].

We conclude:

Theorem 5.18 LetD be anyunknownmixture ofO(1) prod-
uct distributions over an instance spaceX = X1×· · ·×Xn,
where we assume either: a)|Xi| ≤ O(1) for eachi; or b)
eachXi = R and each product distribution is a mixture of
axis-aligned (poly(n)-bounded) Gaussians. Then there is a
nO(k2/ǫ4)-time algorithm for agnostically learning with re-
spect to the class of functions ofk linear threshold functions
overX underD.



Proof: First use the results of [FOS05, FOS06] withη =

ǫ/nO(k2/ǫ4), producing a known mixture distributionD′ with
‖D′ − D‖1 ≤ ǫ/nO(k2/ǫ4). Then run the algorithm from
Theorem 5.18. The conclusion now follows from Proposi-
tion 5.1.2

6 Conclusions

In this work, we have shown how to perform agnostic learn-
ing under arbitrary product distributions and even under lim-
ited mixtures of product distributions. The main technique
was showing that noise sensitivity bounds under the uni-
form distribution on{0, 1}n yield the same noise sensitivity
bounds under arbitrary product distributions. The running
time and examples required by our algorithm are virtually
the same as those required for learning under the uniform
distribution on{0, 1}n.

While we have established many interesting scenarios for
which polynomial regression works, there is still significant
room for extension. One direction is to seek out new concept
classes and/or distributions for which polynomial regression
achieves polynomial-time agnostic learning. Our work has
dealt mostly in the case where all the attributes are mutually
independent; it would be especially interesting to get learn-
ing under discrete distributions that are far removed from this
assumption.
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