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Abstract

Inrecent work, Kalai, Klivans, Mansour, and Serve-
dio [KKMSO05] studied a variant of the “Low-Degree
(Fourier) Algorithm” for learning under the uni-
form probability distribution o0, 1}™. They showed
that theL, polynomial regression algorithm yields
agnostiq(tolerant to arbitrary noise) learning algo-
rithms with respect to the class of threshold func-
tions — under certain restricted instance distribu-
tions, including uniform or{0, 1}™ and Gaussian
onR™. In this work we show hovell learning re-
sults based on the Low-Degree Algorithm can be
generalized to give almost identical agnostic guar-
antees undearbitrary product distributions on in-
stance spacek; x - - - x X,,. We also extend these
results to learning undenixturesof product distri-
butions.

The main technical innovation is the use of (Ho-
effding) orthogonal decomposition and the exten-
sion of the “noise sensitivity method” to arbitrary
product spaces. In particular, we give a very sim-
ple proof that threshold functions over arbitrary
product spaces havenoise sensitivityD(v/3), re-
solving an open problem suggested by Peres [Per04].

1 Introduction

In this paper we study binary classification learning prob-
lems over arbitrary instance spacks= X; x --- x X,. In
other words, each instance ha%categorical attributes”, the
ith attribute taking values in the s&t,. For now we assume
that eachX; has cardinality at mostoly(n).t

Given m examples of training data
(flvyl)v R (fmvy’m) € X X {_17 1}'

1. Expand each instanc@&; into a vector
from {0, 1}1X1l+-+Xnl yia the “one-out-
of-k” encoding.

2. Consider “features” which are products af
up tod of the new0-1 attributes.

3. Find the linear functionV' in the feature
space that best fits the training labels un
der some loss measure e.g., squared
loss, hinge loss, ok loss.

4. Output the hypothesign(W — 6), where
0 € [-1,1] is chosen to minimize the hy-
pothesis’ training error.

We will refer to this algorithm as “degregpolynomial
regression (with los€)”. When ¢ is the hinge loss, this
is equivalent to the soft margin SVM algorithm with the
degreed polynomial kernel and no regularization [CV95].
When/ is the squared loss and the data is drawn i.i.d. from
the uniform distribution ot = {0, 1}", the algorithm is ef-
fectively equivalent to the Low-Degree Algorithm of Linjal
Mansour, and Nisan [LMN93] — see [KKMSO05]. Using
techniques from convex optimization (indeed, linear pangr
ming for L; or hinge loss, and just basic linear algebra for
squared loss), it is known that the algorithm can be per-
formed in timepoly(m,n?). For all known proofs of good
generalization for the algorithmy = n®(? /¢ training ex-
amples are necessary (and sufficient). Hence we will view
the degreet polynomial regression algorithm as requiring
poly(n?/e) time and examples. (Because of this, whether or

Itis convenient for learning algorithms to encode instance NOt one uses the “kernel trick” is a moot point.)

from X as vectors {0, 1}1X1/++1Xx] yvia the “one-out-of-
k encoding”; e.g., an attribute frotki; = {red, green, blue
is replaced by one dft, 0, 0), (0, 1,0), or (0,0, 1). Consider
now the following familiar learning algorithm:
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'Given real-valued attributes, the reader may think of btinge
them intopoly(n) buckets.

Although SVM-based algorithms are very popular in prac-
tice, the scenarios in which th@yovablylearn successfully
are relatively few (see Section 1.2 below) — especially when
there is errorin the labels. Our goal in this paper is to bemad
the class of scenarios in which learning with polynomial re-
gression has provable, polynomial-time guarantees.

2Except for the minor difference of choosing an optiaither
than fixingé = 0.



1.1 The learning framework function given by the intersection of two homogeneous lin-

We study binary classification learning in the natural “ag- ear threshold functions ova"; i.e.,

nostic model” [KSS94] (sometimes described as the model ¢ : R — {—1,1}, t(x) = sgn(w; - ) Asgn(ws - x).

with arbitrary classification noise). We assume access 10 tjs known [MP69] that this target cannot be classified by the
training data drawn i.i.d. from some distributidnon X, = gign of a degreetpolynomial in the attributes faany finite
where the labels are provided by an arbitrary unknown “tar- ;. "his holds even when — 2. Alternatively, whery is the
get” functiont : X — {-1,1}. The task is t0 output  jytersection of two linear threshold functions oyer 1}, it

a hypothesish : X — {-1,1} which is a 900(}! predic- s not currently known i can be classified by the sign of a
tor on future examples fror®. We define the “error of degreed polynomial for anyd < n — 1. [0S03]

h” to be err(h) = Pryplh(x) # t(x)].> We compare

the error of an algorithm’s hypothesis with the best error Because of this problem, one usually considers the “soft
achievable among functions in a fixed classf functions margin SVM algorithm” [CV95]. As mentioned, when this
A — {—1,1}. DefineOpt = inf ec err(f). We saythatan s ryn with no “regularization”, the algorithm is esserigal
algorithm.A "agnostically learns with respect @ if, given  ~ gquivalentto degreépolynomial regression with hinge loss.

¢ > 0 and access to training data, it outputs a hypothesis 14 show that this algorithm even has a chance of learning
h which satisfiest[err(h)] < Opt + ¢. Here the expecta-  efficiently, one must be able to show that simple target func-
tion is with respect to the training data drafvithe running  tions can at least bapproximatelyclassified by the sign of
time (and number of training examples) used are measure ow-degree polynomials. Of course, even stating any such
as functions of ande. result requires distributional assumptions. Let us make th

. o following definition:
Instead of an instance distributi@on X and a target :

X — {—1,1}, one can more generally allow a distribution Definition 1.1 LetD be a probability distribution o0, 1}
D' onX'x{—1,1};inthis caseerr(h) = Pr(g ) p [h(z) # and lett : {0,1}Y — R. We say that is e-concen_trated
y]. Our learning results also hold in this model just as in UP to]\gegreei (underD) if there exists a polynomias :
[KKMS05]; however we use the simpler definition for ease {0,1}" — R of degree at most which h2as squared loss at
of presentation, except in Section 5.3. moste underD; i.e., Ezp[(p(x) — t(x))*] < e.

. ) ) . Itis well known that under the above conditiohs= sgn(p)
~Inthe special case wheris promised to be i€ we are  has classification error at mostinderD. Further, it is rel-
in the scenario of PAC learning [Val84]. This corresponds to atively easy to show that i€ is a class of functions each
the caseéOpt = 0. SinceC is usually chosen (by necessity) of which ise-concentrated up to degrdethen the degreé-

to be a relatively simple class, the PAC model's assumption polynomial regression algorithm with squared loss will PAC
that there is a perfect classifier ¢his generally considered  |earnC to accuracyO(e) underD.

somewhat unrealistic. This is why we work in the agnostic

model. The first result along these lines was due to Linial, Man-
sour, and Nisan [LMN93] who introduced the “Low-Degree

Finally, since strong hardness results are known [KSS94, Algorithm” for PAC-learning under the uniform distributio
LBWO5, KKMS05, GRO6] for agnostic learning under gen- on {0,1}". They showed that iff : {0,1}" — {-1,1}
eral distributionsD, we are forced to make some distribu- is computed by a circuit of size and depthc then it ise-
tional assumptions. The main assumption in this paper is concentrated up to degré@(log(s/¢)))¢ under the uniform
thatD is aproduct probability distributioron X’; i.e., then distribution. Some generalizations of this result [FI$#s01]
attributes are independent. For a discussion of this assump are discussed in Section 4.
tion and extensions, see Section 1.3.

) ) Another result using this idea was due to Klivans, O’Donnell

1.2 When polynomial regression works and Servedio [KOS04]. They introduced the “noise sensi-

Although the SVM algorithm is very popular in practice, the tivity method” for showing concentration results under the
scenarios in which it provably learns successfully are-rela uniform d|str|but|gn or{0, 1}". In particular, they showed
tively few. Let us consider the SVM algorithm with degree- thatanyt : {0,1}" — {—1,1} expressible as a function of
d polynomial kernel. The traditional SVM analysis is pred- * I|n2ear2 threshold functions is-concentrated up to degree
icated on the assumption that the data is perfectly linearly O(k”/€”) under the uniform distribution.
separable in the polynomial feature space. Indeed, thésheur _ .
tic arguments in support of good generalization are predi-  1hese works obtained PAC learning guarantees for the
cated on the data being separawith large margin Even polynomial regression algorithm — i.e., guarantees onlgtho
just the assumption of perfect separation may well be unrea-iNg under the somewhat unrealistic assumption @at =
sonable. For example, suppose the tatgethe very simple  0- A significant step towards handling noise was taken in
[KKMSO05]. Therein it was observed that low-degréé-
%In this paper, boldface denotes random variables. approximability bounds implyZ,-approximability bounds
“The definition of agnostic learning is sometimes taken to re- (&nd hinge loss bounds), and further, such bounds imply that
quire error at mosOpt + ¢ with high probability, rather than in  the polynomial regression algorithm works in tagnostic
expectation. However this is known [KKMS05] to require asho  learning model. Specifically, their work contains the falto
negligible additional overhead. ing theorem:



Theorem 1.2 ([KKMSO05]) LetD be a distributionor{0, 1} | X;, x --- x X;,| is still at mostpoly(n), one can proceed
and letC be a class of function§0, 1}V — {—1,1} each to use the polynomial regression algorithm. Here we see the
of which ise2-concentrated up to degretunderD. Then usefulness of being able to handle arbitrary product thigtri
the degreed polynomial regression algorithm with; loss tions on arbitrary product sets.

(or hinge loss [Kal06]) usepoly(N?/¢) time and examples,

and agnostically learns with respectdounderD. In many reasonable cases our results can also tolerate
_ . . . the attribute sets(; having superpolynomial size. What is
Thus one gets agnost|cnlea.rn|ng algorithms under the uni- o4y necessary is that the probability distribution octea
form distribution on{0, 1}" with respect to the class of AC v "i¢’ sty concentrated on polynomially many attributes.
circuits (timenP°"v'°&(*/9)) and the class of functions &f  |ndeed, we can further handle the common case when at-
thresholds (time:°(**/<") — note that the latter is poly-  tributes are real-valued. As long as the probability distri
nomial time assuming and e are constants. Kalai et al.  butions on real-valued attributes are not extremely skewed
also obtained related results for agnostically learninthwi  (e.g., Gaussian, exponential, Laplace, Pareto, chi-squar)
respect to single threshold functions under Gaussian @3d lo our learning results go through after doing a naive “bucket-
concave distributions oR™. ing” scheme.

1.3 Overview of our leamning results Finally, being able to learn under arbitrary product dis-
We view the work of [KKMSO05] as the first provable guaran-  tributions opens the door to learning undeixtures of prod-
tee that one can learn interesting, broad classes of furgctio uct distributions Such mixtures — especially mixtures of
under the realistic noise model of agnostic learning (and in Gaussians — are widely used as data distribution models
particular, that SVM-type methods can have this guarantee) in learning theory. We show that agnostic learning under
One shortcoming of the present state of knowledge is that wemixtures can be reduced to agnostic learning under single
have good concentration bounds for classes essentially onl product distributions. If the mixture distribution is prsely
with respect to the uniform distribution of90, 1}™ and the known to the algorithm, it can learn even under a mixture of
Gaussian distribution oR™.5 polynomially many product distributions. Otherwise, when
the mixture is unknown, we first need to use an algorithm
In this work we significantly broaden the class of distri- for learning (or clustering) a mixture of product distrilmuts
butions for which we can prove good concentration bounds, from unlabeled examples. This is a difficult but well-stutlie
and hence for which we can prove the polynomial regres- problem. Using results of Feldman, O’Donnell, and Serve-
sion algorithm performs well. Roughly speaking, we show dio [FOS05, FOS06] we can extend all of our agnostic learn-
how to generalize any concentration result for the uniform ing results to learning under mixtures of constantly many
distribution on{0, 1}" into the same concentration result for product distributions with each¥;| < O(1) and constantly
arbitrary product distributionsD on instance space¥ = many (axis-aligned) Gaussian distributions.
X1 XX X,

: . S o 1.4 Outline of technical results
We believe this is a significant generalization for several

reasons. First, even just for the instance spgkd}” the In Section 2 we recall the orthogonal decomposition of func-
class of arbitrary product distributions is much more r@éaso tions on product spaces, as well as the more recently-studie
able than the single distribution in which each attributeas notions of concentration and noise sensitivity on suchepac

1 with probability exactlyl /2. Our results are even stronger In particular, we observe that if one can prove a good noise
than this, though: they give an algorithm that works simulta sensitivity bound for a clasS under a product distribution
neously for any product distribution ovanyinstance space II, then [KKMSO05] implies that the polynomial regression
X =X, x -+ x X,, where eachX;| < poly(n). algorithm yields a good agnostic learner with respeaf to
underIl.

Because we can handle non-binary attributes, the restric-
tion to product spaces becomes much less severe. A com- Section 3 contains the key reduction from noise sensi-
mon criticism of learning results under the uniform distri- tivity in general product spaces to noise sensitivity urtder
bution or product distributions of0, 1}™ is that they make  uniform distribution on{0, 1}". Itis carried out in the model
the potentially unreasonable assumption that attributes a case of linear threshold functions, which Peres [PerO4}guto
independent. However with our results, one can somewhathaveg-noise sensitivity at mosb(v/3). We give a surpris-
circumvent this. Suppose one believes that the attributesingly simple proof of the following:
Xy,..., X, are mostly independent, but some groups of them

(e.q., heig_ht and weight) have mutual dependenc!es. Onernheorem 3.2 Letf : X — {—1,1} be a linear threshold

g?n then)?lmply group ltogether any_gepengiexnt attribute setsynction, wheret = X; x --- x X,, has the product distri-
i1, - -5 X4, INtO @ single “super-attribute” sef’;, x - - - x . _

X;,). Assuming that this eliminates dependencies —i.e., the butionIT = m; x - - x 7. ThenNSs(f) < O(V9).

new (super-)attributes are all independent — and that each _ o . . L
(super-) P Proving this just in the case of @biased distribution on

5[FJS91] gives bounds for AQunder constant-bounded product {0, 1}™ was an open problem suggested in [Per04]. This

distributions on{0, 1}"™; [KKMSO05] gives inexplicit bounds for a  noise sensitivity bound thus gives us the following leagnin
single threshold function under log-concave distribugionR™. result:



Theorem 3.4 LetIl = 7; x --- x 7, be any productdis- 2 Product probability spaces

tribution over an instance spacé = X; x --- x X, where . . . )

we assumeX;| < poly(n) for eachi. LetC denote the [N this section we consider functions: X — R, where
class of functions of: linear threshold functions ove. A = Xy x---x X, is aproduct set. We will also assunie
Takingd = O(k?/¢?), the degreet polynomial regression IS endowed with some product probability distributitin=
algorithm with L, loss (or hinge loss) uses®(+*/<") time m X - X . All occurrences ofPr[] andE[] are with

and examples and agnostically learns with respect.to respect to this distribution unless otherwise noted, and we
P 9 y pect usually writex for a random element ot drawn fromII.

For simplicity we assume that each s€t is finite® The
vector spacd.?(X, IT) of all functionsf : X — R is viewed
as an inner product space under the inner prodficf) =
E[f(x)g(x)]. We will also use the notation

In Section 4 we discuss how to extend concentration re-
sults for other concept classes from uniform gh 1} to
arbitrary product distributions on product spadés- X; x
.- x X,. Of course, it's not immediately clear, given a con-
cept clasg of functions on{0, 1}", what it even means for it _ _ D)
to be generalized to func?i{ons}dn We discuss a reasonable 171l = Vi, f) = VE[f (@)?]
such notion based on one-outfencoding, and illustrate it 2.1 Orthogonal decomposition
in the case ofAC? functions. The idea in this section is sim- L . .
ple: any concentration result under uniform fi 11" eas- As eachX; is just an abstract set, there is not an inher-
ily implies a (slightly weaker) noise sensitivity boundjgh €Nt notion of a degree-polynomial on¥'. Ultimately the
can be translated into the same noise sensitivity boundrunde POlynomial regression algorithm identifigs with a subset
any product distribution using the methods of Section 3. In of {0,1}*1T+¥:[ via the“one-out-ofk encoding” and
turn, that implies a concentration bound in the generalprod Works with polynomials over this space. However to prove

uct space. As an example, we prove the following: concentration results, we need to take a more abstract ap-

proach and consider the “(Hoeffding) orthogonal decompo-
Theorem 4.2 LetC be the class of function¥; x --- x sition” of functions on product spaces; see [vM47, Hoe48,
X, — {—1,1} computed by unbounded fan-in circuit of KR82, Ste86]. In this section we recall this notion with our
size at most and depth at most (under the one-out-of- own notation.

encoding). AssumeX;| < poly(n) for eachi. LetII be any

product distribution onX; x --- x X,. Then polynomial  Definition 2.1 We say a functiorf : X; x --- x X,, — R
regression agnostically learns with respecttainder arbi- - is a simple function of ordetl if it depends on at most
trary product distributions in timey(C(es(s/€)))*" /" coordinates.

Section 5 describes extensions of our learning algorithm Definition 2.2 We say a functiorf : X; x --- x X,, — R
to cases beyond those in which one has exactly a productis afunction of orderd if it is a linear combination of simple
distribution on an instance spage= X; x --- x X,, with functions of orderi. The set of all such functions is a linear
each|X;| < poly(n): these extensions include distributions subspace of.?(X, II) and we denote it b= (X, II).
“bounded by” or “close to” product distributions, as well as
certain cases when th¥€;’s have superpolynomial cardinal-  Definition 2.3 We say a functiorf : X; x --- x X,, — Ris
ity or areR. We end Section 5 with a discussion of learning  a function of order exactlyl if it is a function of orderd and
under mixtures of product distributions. Here there is a dis itis orthogonal to all functions of ordet—1; i.e., (f,g) =0
tinction between learning when the mixture distribution is for all ¢ € H=4~(x,II). This is again a linear subspace
knownto the algorithm and when it isnknown In the for- of L?(X,II) and we denote it by(=¢(X, I1).
mer case we prove, e.g.:

Proposition 2.4 The spacel.?(X, II) is the orthogonal di-

Theorem 5.16 Let D be anyknown mixture ofpoly(n) rect sum of thé{=2( X’ IT) spaces

product distributions over an instance spate= X x - - - x
X, where we assum&;| < poly(n) for eachi. Then there n
is an©+*/<")_time algorithm for agnostically learning with L*(x,10) = @ H=(x,10).
respect to the class of functions lofinear threshold func- d=0
tions overX’ underD.

Definition 2.5 By virtue of the previous proposition, every

In the latter case, by relying on algorithms for learning functionf : X; x --- x X,, — R can be uniquely expressed

mixture distributions from unlabeled data, we prove: as

. F=+ "+
Theorem 5.18 Let D be anyunknownmixture of O(1) 4 o
product distributions over an instance spate= X; x - - - x yvheref; P Xy X Xy — R denotes the projection gf

b) eachX; = R and each product distribution is a mixture of ~ alS0 write

axis-aligned poly(n)-bounded) Gaussians. Then there is a L R S R
nOk*/<) time algorithm for agnostically learning with re-
spect to the class of functions/ofinear threshold functions 8In fact, we will only need that each? (X;, 7;) has a countable
overX underD. basis.



In the sequel we will write simpl§/=? in place ofH=%(X’, 1), Theorem 2.12 LetII = 7 x ---

etc. Although we will not need it, we recall a further refine-
ment of this decomposition:

Definition 2.6 For eachS C [n] we defineH=" to be the

x 7, be a product dis-
tribution on X = X; x --- x X,,. Write N for the total
number of possible attribute values, = | X |+ - -+ | X,

LetC be a class of function® — {—1, 1} each of which is
e2-concentrated up to ordet underIl. Then the degred-

subspace consisting of all functions depending only on the polynomial regression algorithm with; loss (or hinge loss)

coordinates inS. We defing{* to be the further subspace
consisting of those functions #<° that are orthogonal to
all functions inH=% for eachR C S.

Proposition 2.7 The spacel.?(X, 1) is the orthogonal di-
rect sum of thé{* spacesL?(X,1I) = @gc(,) H®. Hence

every functionf : X; x --- x X,, — R can be uniquely ex-
pressed ag = > gc(, 7, wheref% : Xix - x X, = R

denotes the projection gf into #°. Denoting alsof <° =
> rcs [ for the projection off into H=®, we have the

following interpretations:
fSS(ylv s ;yn) = E[f(mla .-

fS(xl, ceyTp) = Z(_l)‘s‘_‘R‘fSR.

RCS

) | i =y VieS];

Finally, we connect the orthogonal decomposition of func-

tions f : X — R with their analogue under the one-out/of-
encoding:

Proposition 2.8 A functionf : X — R is of orderd if and
only if its analoguef : {0, 1}/X:/++XxI — R under the

usespoly(N?/¢) time and examples, and agnostically learns
with respect t&C underlIl.

We will now show how to prove low-order concentration
results by extending the “noise sensitivity method” of [KG3$
to general product spaces.

2.3 Noise sensitivity

We recall the generalization of noise sensitivity [BKS99] t
general product spaces, described in [MOOO05].

Definition 2.13 Givenx € X; x --- x X, and0 < p <1,
we define ap-noisy copy ofx to be a random variabley
with distribution N, (x), where this denotes that eagf; is
chosen to equat; with probability p and to be randomly
drawn frommr; with probability1l — p, independently across
1.

Definition 2.14 Thenoise operatdf, on functionsf : X —
R is given by
(1) (@) = Eyn, @f ()]
Thenoise stabilityof f at p is
So(f) = (T f)-

one-out-ofk encoding is expressible as a polynomial of de- Whenf : & — {—1,1} we also define theoise sensitivity

gree at mostl.

2.2 Low-order concentration

As in the previous section we consider functighsX — R
under a product distributiofl. We will be especially inter-
ested in classifiers, functions: X — {—1,1}. Our goal
is to understand and develop conditions under which guch

can be approximated in squared loss by low-degree polyno-

mials.

By basic linear algebra, we have the following:

Proposition 2.9 Given f : X — R, the best orde# ap-
proximator tof under squared loss i=“. l.e.,

=Ir=F=03= > 173

i=d+1

min  E[(f(z)—g(x))?]

g of orderd

Definition 2.10 Given f : X — R we say thatf is e-
concentrated up to orderif 7", [|f713 < e.

By Proposition 2.8 we conclude the following:

Proposition 2.11 Let f : X — R and identifyf with a func-
tion {0,1}¥ — R under the one-out-of-encoding. Then
there exists a polynomial: {0,1}" — R of degree at most
d which e-approximatesf in squared loss undell if and
only if f is e-concentrated up to ordet.

Combining this with the KKMS Theorem 1.2, we get the
following learning result about polynomial regression:

of faté € [0,1] to be

NS;(f) =4 - 3815()= Pr

y~Ni_5(x)

[f (=) # f(y)l.

The connection between noise stability, sensitivity, and
concentration comes from the following two facts:

Proposition 2.15 ([MOQO05]) Forany f : X — R,
Se(f)=D_rllF=13.
=0

_Proposition 2.16 ([KOS04]) Suppos&Ss(f) < e. Thenf

is %We-concentrated up to ordelr/é.

For example, Peres proved the following theorem:
Theorem 2.17 ([Per04]) If f : {0,1}" — {-1,1}isalin-
ear threshold function then

NSs(f) < O(1)vs

(under the uniform distribution 0f0, 1}™). From [O’D03]
we have that th€)(1) can be taken to bé for every value
ofn andj.

It clearly follows that if f is any function ofk linear thresh-
old functions therlNS;(f) < %k\/g. Combining this with
Proposition 2.16:

Theorem 2.18 ([KOS04]) Letf : {0,1}" — {—1,1} be
any function ok linear threshold functions. Thefis (4% /+/d)-
concentrated up to orded under the uniform distribution,

for anyd > 1. In particular, f is e2-concentrated up to or-
derO(k?/e*).



3 Noise sensitivity of threshold functions in Theorem3.3Let f : X — {—1,1} be any function ok
product spaces linear thrgshpld functions, whel = X x-- XXy, has the
_ . product distributionll = 7y x - - - x 7,,. Thenf is (4k/v/d)-
In this section we show that Peres’s theorem can be extendedoncentrated up to ordet, for anyd > 1. In particular, f is
to hold for linear threshold functions in all product spaces  (2.concentrated up to orded (k2 /e*).

Definition 3.1 We say a functiorf : X; x --- x X, —
{—1,1} is alinear threshold functionf its analoguef :
{0,1}" — {—1, 1} under one-out-of encoding is express-
ible as a linear threshold function. Equivalentfyis a linear
threshold function if there exist weight functions: X; —
R,7=1...n,and a numbeé € R such that

By combining Theorem 3.3 with our main learning theo-
rem, Theorem 2.12, we conclude:

Theorem 3.4 Letll = m; x --- x m, be any product distri-

bution over an instance spacé = X; x --- x X,,, where

we assumeX;| < poly(n) for eachi. LetC denote the
- class of functions ok linear threshold functions ovek'.

f(@1,...,20) = sgn (Z wi(zi) — 9) . Takingd = O(k?/e*), the degreet polynomial regression
=t algorithm with L loss (or hinge loss) uses®**/<") time
No version of Peres’s Theorem 2.17 was previously knowrand examples and agnostically learns with respect.to

to hold even in the simple case of linear threshold func-

tions on{0, 1}" under ap-biased product distribution with 4 Concentration for other classes under

p # 1/2. Understanding just this nonsymmetric case was C

left as an open question in [Per04]. We now show thatthresh-  Product distributions

old fL.‘tr.'Ct'?r?S Ot\r’]er gre]:nkejrfal prt(_)duct sga;:ersl ar% noﬂr1nore_n0|sqn this section we illustrate how essentially any resultwtbo
sensitive than threshold functions over 1} under the uni- e-concentration of classes of functions under the uniforsn di

form distribution. tribution on{0, 1}™ can be translated into a similar result for

Theorem 3.2 Let f : X — {—1,1} be a linear threshold general productdis_tributions. Besides Iinear_threshoﬁutf

function, where¥ = X; x --- x X,, has the product distri- :Elr?ns,_the (l)therllmail_n ex?tr;:plf of Boncent&?tlontﬁonaLr}(;;n

; _ 5 e original application of the Low Degree Algorithm

bution1l = m; x --- x 7. ThenNSs(f) < V. learning AC functions in quasipolynomial time. Recall that

Proof: For a pair of instancesy,z; € X and a vector ACY is the class of functions computed by unbounded fan-in

z € {0,1}", we introduce the notation, for the instance  Circuits of constant depth and polynomial size. We will use

whoseith attribute(z, ), is theith attribute ofz,,. Forany  thisasarunning example.

fixed zo,z1 € X we can defing,, ,, : {0,1}" — {-1,1} . .

such thay., ., (z) = f(z.). Note that this function is a lin- Supposg’ is a class of functiong” — {-1,1}, where

ear threshold function in the traditional binary sense. X = X3 x--- x X,,. As usual, under the one-out-éfen-
coding we can think of as a class of function®, 1}V —

Let zo, z; now denote independent random draws from {—1,1}. In our example, this gives a reasonable notion of

I1, and letz denote a uniformly random vector frofn, 1}". “AC" circuits on general product sels”. Suppose further

We have thatz, is distributed as a random draw from ~ thatC 2 C'is any class of functiong0, 1}V — {-1,1}

Further picky € {0,1}" to be ad-noisy copy ofz, i.e. which is closed under negation of inputs and closed under

y ~ Nj(z). Thenz, is distributed asVs(z,). We now fixing inputs to0 or 1. In our example, the class of AC

have circuits indeed has this basic property (as does the more pre
cisely specified class of all circuits with size at mesind

NSs(f) = _ Pr y[f(zm) # [(zy)] depth at most).
- E {Pr[f(zm) # f(zy)]] Now by repeating the proof of Theorem 3.2, it is easy
Zo,Z1 |2y to see that any upper bound one can prove on the noise sen-

sitivity of functions inC under the uniform distribution on
= ZO]?ZI {55[920721(”’) 7 gz07zl(y)]:| : {0,1}" immediately translates an identical bound on the
_ o __noise sensitivity of functions i€ on X under any product
Oncez, andz; are fixed, the quantity in the expectation is djstribution. The only thing to notice is that the functions
just the noise sensitivity at of the binary linear threshold z,.=, arising in that proof will be in the clasd. Thus we

function g, ., , which we can bound by /5 using Theo-  are reduced to proving noise sensitivity bounds for fumctio
rem2.17. So on {0, 1}™ under the uniform distribution.
NS;(f) = _E |:Pr[gzo-,zl(w) # zo,21 (y)]} Furthermore, any result onconcentration of functions
Z0,21 | XY . . . . .
on{0, 1}™ under the uniform distribution can be easily trans-
< E [2V5] = 2V5, lated into a noise sensitivity bound which is not much worse:
0,#<1
which is what we wanted to showl Proposition 4.1 Suppose that : {0,1}" — {-1,1}ise-

concentrated up to degretunder the uniform distribution
As with Theorem 2.18, we conclude: on{0,1}". ThenNS, 4(f) < e.



Proof: Using traditional Fourier notation instead of orthog-
onal decomposition notation, we have

Si—esalf) = Y (1—e/d)¥If(S)?

SCln]
>(1- e/d)d(l —€) > (1—¢)?,

where the first inequality used the fact tifas e-concentrated
up to degreel. Thus

NSi_e/a(f) =3 = 3S1_epa(f) <3 —3(1—€) <e

N|=

O

Finally, applying Proposition 2.16, we gé{e)-concentration

up to orderd/e for the original clas€ of functionsX —
{—1, 1}, under any product distribution oti. This leads to
an agnostic learning result férunder arbitrary product dis-
tributions which is the same as the one would getfander
the uniform distribution o0, 1}™, except for an extra fac-
tor of € in the running time’s exponent.

For example, with regard to ACfunctions, [LMN93,
Has01] proved the following:

Theorem4.2 Let f : {0,1}" — {—1,1} be computable
by an unbounded fan-in circuit of size at mestnd depth at
most c. Then f is e-concentrated up to degree

d = (O(log(s/e€)))**.
We therefore may conclude:

Theorem 4.3 Let C be the class of function&; x --- x
X, — {-1,1} computed by unbounded fan-in circuit of
size at most and depth at most (under the one-out-of-
encoding). AssumeX;| < poly(n) for eachi. LetII be any
product distribution onX; x --- x X,,. Theneveryf € Cis
=17 €-concentrated up to ordet = (O(log(s/€)))“ " /e.
As a consequence, polynomial regression agnosticallykear
with respect toC under arbitrary product distributions in
time n(OUog(s/e)) ™!/

This result should be compared to the following theorem
from Furst, Jackson, and Smith [FJS91] for PAC-learning
under bounded product distributions @ 1}":

Theorem 4.4 ([F3S91]) The clas< of functions{0,1}" —
{—1, 1} computed by unbounded fan-in circuit of size at most
s and depth at mostcan be PAC-learned under any product
distribution in timen(C((1/p)1og(s/ON 7Y " assuming the
mean of each coordinate is in the ranjgel — p).

The advantage of the result from [FJS91] is that it does
not pay the extrd /e in the exponent. The advantages of
our resultis that it holds under arbitrary product disttibns

5 Extensions

5.1 Distributions close to or dominated by product
distributions

We begin with some simple observations showing that the
underlying distribution need not Ipeeciselya product distri-
bution. First, the following fact can be considered staddar

Proposition 5.1 Suppose that under distributioR®, algo-
rithm A agnostically learns with respect to claSsusingm
examples to achieve errer If D’ is any distribution satisfy-
ing |D'—D||1 < ¢/m, thenA also agnostically learns under
D', usingm examples to achieve err@e + 2¢/m < 4e.

Proof: The key fact we use is that X is a random variable
with | X| < 1 always, thenEp/ [X] — Ep[X]| < ||D' —
D||;. This implies that for any hypothesis |errp: (h) —
errp(h)| < e/m. In particular, it follows thatOpty, <
Optp + ¢/m. Further, leth be the random variable denoting
the hypothesist produces when given examples fr@¥™.
By assumption, we have

Dg)m [errp(h)] < Optp + €
which is at mosOptp, +e+4¢/m. Since|| D" —DE™||; <
m(e/m) = ¢, the key fact applied terrp (k) implies

];]@ [errp(h)] < Optp, + € +¢/m +e.
’D/ m

< errp(h)+e¢/malways. Thus

Finally, as we sawsrrp (h) <
S OptD/ + 26 + 2€/m,

E [errp (h))

D/®m

completing the proofd

We will use the above result later when learning under
mixtures of product distributions.

A simple extension to the case when the distribution is
“dominated” by a product distribution was already pointed
out in [KKMSO05]:

Observation 5.2 LetD be a distribution on¥’ which is “C-
dominated” by a product probability distributiol = 7w x

- X Ty e, foralz € X, D(x) < Cl(z). If fise-
concentrated up to degrelunderll, thenf is C'e-concentrated
up to degreel underD.

Hence:

Theorem 5.3 Suppose we are in the setting of Theorem 3.4
except thatfll is any distribution which i€-dominated by

a product probability distribution. Then the degréepoly-
nomial regression algorithm learns with respect@owith

d = O(C?k*/e*) and hencen®(C*¥*/<") time and exam-
ples.

5.2 Larger attribute domains

So far we have assumed that each attribute spgds only
of polynomial cardinality. This can fairly easily be relake

on product sets. (Our result is in the agnostic model, but to the assumption that most of the probability mass in each
the result of [FIS91] could also be by applying the results (X;, ;) is concentrated on polynomially many atoms. Let
of [KKMSO05].) us begin with some basic preliminaries:



Notation 5.4 Given a distributionr on a setX, as well as a
subsetX’ C X, we use the notation’ for the distribution on
X' given by conditioningr on this set. (We always assume

(X') #0.)

Fact5.5LetXY = X; x---x X, andletll = my x---x 7w,
be a product distribution otk’. Let X C X;,i =1...n,
and write IT' for the distributionII conditioned on the set
X' = X x---x X/. ThenIl' is the product distribution
X e Xl

We now observe that i’ is a “large” subset oft’, then
any two functions which are close it? (X, IT) are also close
in L2(X',1'):

Proposition 5.6 In the setting of Fact 5.5, suppose that
Pro,~m i ¢ X!] < 1/(2n) for all <. Then for any two
functionsf : X — Randg : X — R,

112 = glarll3 o < 2 [1f = g3 0

wheref|x/ : X’ — R denotes the restriction ¢gfto X, and
similarly for g| .

Proof: Writing h = f — g, we have

IhllEn = E [h(z)’]
x~I1
— n. 2 !
= m]:':II“I[:ABEX] mIE]H[h(m) | x € X

+mg%[w ¢ X En[h(:v)2 |z ¢ X'].

UsingE,n[h(x) | ¢ ¢ X’] > 0, we have
/ 2 /
mf:%[meX] EH[h(:c) | x € X'

xr~

Rll3 >

= mI:Iﬁ[w €X' E [h(z)?).

x~I1/

But by the union bound

Priz¢ X<} Prfe ¢ X[]<n-1/(2n)=1/2,
<o,

SOPrg [z € X’] > 1/2. Thus

2-[l5n > B ()] = [ fle = gl

/

completing the proofa

Corollary 5.7 In the setting of the previous proposition, if
f is e-concentrated up to ordef underIl, then f|y/ is 2¢-
concentrated up to ordet underII’.

Proof: It suffices to observe thatif : X — R is a function
of orderd, theng|x- is also a function of ordei. O

We can now describe an extended learning algorithm which
works when the attribute spaces are mostly supported on sets

of polynomial cardinality:

Definition 5.8 We say that a finite probability spa¢&, =)
is (n,r)-boundedf there exists a subset’ C X of cardi-
nality at most X’| < r such thaPr,.[x ¢ X'] < n.

Our algorithm will learn whenever all attribute sets are,
say,(e/n, poly(n))-bounded. The first step of the algorithm
will be to determine a set of attribute values which contain
almost all of the probability mass.

Lemma5.9 Let (X, ) be an(n,r)-bounded probability
space. LetZ be a set ofn = rln(r/d)/n samples drawn
independently fromr. DefineY to be the sef{z € X :
x was sampled it€}. Then with probability at least — 4,
the setY” satisfiePr,. [z ¢ Y] < 2n.

Proof: In fact, we will prove the slightly stronger state-
ment that with probability at leadt— § the setY” satisfies
Prox[z ¢ Y N X'] < 2n, whereX' is any set fulfilling the
(n,r)-boundedness condition 6K, 7).

To prove the claim, we split the sampling procedure into
r epochs, where we dralu(r/d)/n samples in each epoch.
Let Y; be the set of all atoms iX sampled among the first
1 epochs, withY;, denoting the empty set. We will prove
that with probability at least — 4, the following holds for
all epochsi € [r]: eitherY;_; satisfiesPry [z ¢ Y;_1 N
X'l <2n,0r(Y;NX")\Y;_1 # 0 (i.e., we see a “new” atom
from X’ in the:th epoch).

Let’s first note that satisfying the above conditions im-
plies that in the en®rp.[x ¢ Y N X'] < 2. This is
straightforward: if at any epoch;_; satisfiesPry..[x ¢
Y;_1NX’'] < 2nthenwe're done becau3eD Y;_;. Other-
wise, in allr epochs we see a new atom frowi, and hence
at the end of the sampling we will have seedistinct atoms
of X’; then|X’| < r implies that our finat” 2> X'.

Now to complete the proof let us bound the probability
that for a given € [r] theY;_; does not satisfPr,. [z ¢
Y;—1 N X’] < 2p and we do not see a new elementdfin
theith epoch. Note that iPr,. [z ¢ Y; 1N X'] > 25, then
the fact thatPr, [z ¢ X’'] < n implies thatPrp.[x €
X"\ 'Y;_1] > n. So the probability that we do not observe
any element o’ \ Y;_; in In(r/d)/n samples is

Prz ¢ X'\ Y,_(]"0/9/n < (1 —p)nt/O/n

T~

< e~ nIn(r/8)/n _ 5/r.

By applying the union bound, we see that there is probability
at mostj that any of the- epochs fails, so we're donél

We now give our extended learning algorithm:

1. Draw a setZ; of m; unlabeled examples.
2. Draw a setZ, of my labeled examples.

3. Delete fromZ, any instance/label pair
where the instance contains an attribute
value not appearing i ;.

4. Run the degreé-polynomial regression
algorithm onZs.




Theorem 5.10 LetIl = 7; x - - - x 7, be a product distribu-
tion on the seft = X; x --- x X,, and assume each prob-
ability space(X;, ;) is (¢/n,r)-bounded. WriteV = nr.
Let C be a class of function® — {—1,1} each of which
is e2-concentrated up to ordef. Setm; = poly(N/¢) and
msy = poly(N9/¢). The above algorithm usesly(N?/e)
time and examples and agnostically learns with respe€t to
underII.

Proof: For simplicity we will equivalently prove that the al-
gorithm outputs a hypothesis with error at mOgit + O(¢),
rather tharOpt + e.

We first want to establish that with probability at least
1 — ¢, the set of attributes observed in the samglecovers
almost all of the probability mass @f. For eachi € [n],
let X! be the set of attribute values frofj; observed in at
least one of the samples if;. Using the fact that each
(X;,m) is (e¢/n,r)-bounded, Lemma 5.9 implies that for
sufficiently largem; = poly(N/e)log(1/¢), eachX! will
satisfyPrg, ., [x; ¢ X!] < 2¢/n except with probability at
moste/n. Applying the union bound, alk/ simultaneously
satisfy the condition with probability at leakt¢. We hence-
forth assume this happens. Writidg = X{ x --- x X/,
we note that, by the union bourBly [z & X’] < 2e.

The second thing we establish is that we do not throw
away too many examples in Step 3 of the algorithm. We

and we conclude that the expected error uiflesf 4 ont is
at mostOpt + 2¢ + O(e) = Opt + O(¢). Finally, the same
observation implies that the expected error urdesf i on
tis at mostOpt + 2e + O(e) = Opt + O(e).

We have thus established that with probability at least
1—2¢, the polynomial regression part of the above algorithm
outputs a hypothesis with expected error at nayst+ O(e).

It follows that the overall expected error is at méspt +
O(e), as desiredd

5.3 Real-valued attributes

We next consider the particular case of learning with re-
spect to linear threshold functions, but when some of the at-
tributes areeal-valued This case is relatively easily handled
by discretizing the ranges of the distributions and usirgy th
previously discussed techniques. Our approach works for a
very wide variety of distributions ofR; these distributions
need not even be continuous. We only need the distributions
to satisfy “polynomial boundedness and anti-concentndtio
bounds.

Definition 5.11 We say that a distributio® overR is B-
polynomially boundedf for all > 0, there is an interval
of length at mospoly(B/n) such thaPryplx & I] < 1.

Definition 5.12 Given areal-valued random variabdewith

have just observed that the probability a given example in distributionD, recall that thel_évy (anti-)concentration func-

Z, is deleted is at moste. We may assumge < 1/2, and
then a Chernoff bound (and, > log(1/¢)) easily implies
that with probability at least — ¢, at most, say, two-thirds

of all examples are deleted. Assuming this happens, we have

that even after deletioiZ, still contains at leagtoly(N?/e)
many examples.

We now come to the main part of the proof, which is
based on the observation that the undeleted exampl&s in
are distributed as i.i.d. draws from the restricted prodiist
tribution II’ gotten by conditioningl on X’. Thus we are in
a position to apply our main learning result, Theorem 2.12.
The polynomial regression part of the above algorithm in-
deed usepoly(N?/¢) time and examples, and it remains to
analyze the error of the hypothesis it outputs.

First, we use the fact that each functignin C is €2-
concentrated up to ordetf to conclude that each function
flar in “C|x" is 2¢2-concentrated up to order This uses
Proposition 5.6 and the fact that we may assi@me 1/2.

Next, the guarantee of Theorem 2.12 is that when learning

the target classifier (viewed as a functiodd — {—1,1} or
X’ — {-1,1}), the expected error und&f of the hypothe-
sish produced is at mogbpt’ + O(e), where

Pr [f(@) # t(@))
By definition, there is a functiofi € C satisfying
Pr[f(z) #t(x)] = Opt.

SincePrpnfxz ¢ X'] < 2¢, itis easy to see that| - has
error at mosOpt+2e¢ ont underdl’. ThusOpt’ < Opt+2e,

Opt’ = min
P frec

(P

tion Q(x; A) is defined by

Q(x;\) =sup Pr [z € [t — \/2,t+ \/2]].

teR @~D
We say thaD hasB-polynomial anti-concentratiahQ(D; \) <
poly(B) - A¢ for some positive > 0. Note that ifD is a con-
tinuous distribution with pdf everywhere at mdstthen it
has B-polynomial anti-concentration (with = 1 in fact).

Having polynomial boundedness and concentration is an
extremely mild condition; for example, the following famil
iar continuous distributions are al-polynomial bounded
and haveB-polynomial anti-concentrationGaussiansvith
1/B < 02 < B; exponentialdistributions with1/B <
A < B; Laplacedistributions with scale parameter with
1/B < b < B; Paretodistributions with shape param-
eter1/B < k < B; chi-squaredistributions with vari-
ancel/B < ¢% < B (for 1 degree of freedom, the anti-
concentration ¢” needs to bd /2); etc.

(Furthermore, in most cases even the condition on the
parameter being ifil/ B, B] can be eliminated. For exam-
ple, suppose the first coordinate has a Gaussian distributio
with standard deviatioa. With O(log(1/6)) examples, one
can with probability at least — ¢ estimates to within a
multiplicative factor of2. Having done so, one can multi-
ply all examples’ first coordinate by an appropriate cortstan
S0 as to get a Gaussian distribution with standard deviation
in [1/2,2]. Further, this does not change the underlying ag-
nostic learning problem, since the class of linear thrathol
functions is closed under scaling a coordinate. For clafity
exposition, we leave further considerations of this soth&o



reader.)

We now describe the effect that discretizing a real-valued

distribution can have with respect to functions of lineaet-
old functions. It is convenient to switch from working with
a distribution onX’ and target functiolt — {—1,1} to just
having a distributiorD on X’ x {—1, 1} — see the discussion
after definition of agnostic learning in Section 1.1. As Usua
assume that’ = X; x - -- x X,, is a product set and that the
marginal distribution of> on X is a product distribution.

Itis an easy and well-known fact thatifandy are indepen-
dent random variables theép(x + y; \) < Q(x; \); hence
Pr (|1 +Y /1| <7/2] < Q(x1;7/2).

mlel

ButD; hasB-polynomial anti-concentration, $@(x1; 7/t) <
poly(B) - 71, as needed:

By repeating this lemma up to times, it follows that
even if alln coordinate distributions are real-valued, so long
as they haveoly(n)-polynomial anti-concentration we will

Suppose we have one coordinate with a real-valued dis- g frer Jittle error. Specifically (assuming < poly(n) as

tribution; without loss of generality, sa§; = R, and write
D, for the marginal distribution 0P on X;. When we re-
fer to a “linear threshold function” oA&’, we assume that the
“weight function” w; : X; — R for coordinatel is just
wy(x1) = c1z1 for some nonzero constant.

Lemma 5.13 LetC denote the class of functions ofinear
threshold functions ovet’. As usual, write

Pr

whereerr =
p(f) @il

[f(x) # yl.

Consider discretizing{; = R by mapping each:; € R to
rd,(z1), the nearest integer multiple efto z;. Write X| =
7Z and letD’ denote the distribution 0] x Xa x - - - X, X
{~1,1} induced fromD by the discretizatiori. Write Opt’
for the quantity analogous tOpt for D’. Then ifD; hasB-
polynomial anti-concentration, it holds th@tpt’ < Opt +
k- poly(B) - 7).

t = inf
Op }.relcerro(f),

Proof: It suffices to show that for any € C,
k- poly(B) - 7% > |errp(f) — errp/(f)|

[f(x) #y] - [f (=) # yl|-

Pr
(xz,y)~D

Pr
(z,y)~D’

Writing II for the marginal ofD on X, we can prove the
above by proving

m]iIIZI[f(m) # f(rdT(xl)v L2,. ..

Since f is a function of some linear threshold functions,
by the union bound it suffices to show

mlixr‘l[h(:c) # h(rd,(x1), xa, . . .,

,)] < k-poly(B)- 7Y,

)] < poly(B) - 7V

for any linear threshold functioh. We can do this by show-
ing
Pr [sgn(ciz1+Y) # sgn(cird, (x1)+Y)] < poly(B)-r4b)

x1~Dy

whereY is the random variable distributed according to the

other part of the linear threshold functibnNote thaty” and

x; are independent becaudes a product distribution. Now

since|x; —rd. (x1)| is always at most/2, we can only have

sen(crx1 +Y) # sgu(cird, (1) + Y) if
|c1:131+Y|§|c1|T/2 =2 |$1+Y/01|§T/2.

"This can lead to inconsistent labels, which is why we switche
to D rather than have a target function.

well), by takingT = poly(e/n) we get that discretization
only leads to an additional error ef

Finally, note that if a distributio®; is poly (n)-polynomially
boundedthen its discretized versioridgn, poly(n/e€))-bounded
in the sense of Section 5.2; this lets us apply Theorem 5.10.
Summarizing:

Theorem 5.14 LetlIl = 7 x - - - x 7, be a product distribu-
tion on the sety = X; x --- x X,,. For the finiteX;’s, as-
sume each ige/n, poly(n/e))-bounded. For the reak;’s,
assume the associated is poly(n)-polynomially bounded
and haspoly(n)-polynomial anti-concentration. L&t de-
note the class of functions of at mdst< poly(n) linear

threshold functions ovet’. Then there is @oly(n/e)k2/54
time algorithm which agnostically learns with respecto
underTl.

5.4 Mixtures of product distributions

So far we have only considered learning under distributions
D that are product distributions. In this section we show how
to handle the commonly-studied case of mixtures of product
distributions.

The first step is to show a generic learning-theoretic re-
duction: Roughly speaking, if we can agnostically learrhwit
respect to any one of a family of distributions, then we can
agnostically learn with respect tokaownmixture of distri-
butions from this family — even a mixture of polynomially
many such distributions. (In our application the family of
distributions will be the product distributions, but oudte-
tion does not rely on this.) Although the following theorem
uses relatively standard ideas, we do not know if it has ap-
peared previously in the literature:

Theorem 5.15Let © be a family of distributions over an
instance spaceé¥. There is a generic reduction from the

» problem of agnostically learning underkanown mixture of

c distributions from® to the problem of agnostically learn-
ing under a single known distribution fro®. The reduction
incurs a running time slowdown @bly(cT") /~ for an addi-
tional error of v, whereT' denotes the maximum time needed
to computeD(z) for a mixture componer.

Proof: Suppose we are agnostically learning (with respect to
some clasg) under the distributio® which is a mixture of

c distributionsDy, ..., D, with mixing weightsp, ..., p.

We make the assumption that the learning algorithm knows
each of the mixing weightg;, each of the distribution®;,



and can compute any of the probabiliti®s(x) in time T. We now take the expectation over the production of the sub-
We assume in the following that ti12;'s are discrete distri-  hypotheses and conclude

butions, but the case of absolutely continuous distrilmstio
could be treated in essentially the same way. ¢ ¢

Elerrp(h)] = Z}piE[eeri ()] <Y pi(Opt; +¢)

First, we claim that the algorithm can simulate learn- i=1

ing under any of the single distributiof%, with slowdown ¢
poly(¢T')/p;. This is a standard proof based on rejection = piOpt; + €< Opt+e¢, (2)
sampling: given an example the algorithm retains it with i=1
probability as claimed.

r(x) — p.Di—(x) (1)

’ "D(x)’ It remains to deal with smalb;’s and analyze the run-

a quantity the algorithm can compute in tipely (¢T'). One ning time slowdown. We modify the overall algorithm so
can check that this leads to the correct distribufiron in- that it only simulates and learns under if p; > ~/c. Thus
stances. The probability of retaining an example is easy see the simulation slowdown we incur is onlyoly(¢T') /v, as
to be preciselyl /p;, leading to the stated slowdown. desired. For anywith p; < v/c we use an arbitrary hypoth-

esish; in the above analysis and assume anhby, (h;) < 1.
The main part of the proof now involves showing that Itis easy to see that this incurs an additional error in (Ztof
if the algorithm agnostically learns under edbk), it can mOStZZ—:pi@/Cpi < ~, as necessaryl
combine the hypotheses produced into an overall hypothe-
sis which is good undeP. We will deal with the issue of
running time (in particular, very smadl’s) at the end of the
proof. LetOpt denote the minimal error achievable among

functions inC undgrD, and writeOpt; for the analogous  Theorem 5.16 LetD be anyknownmixture ofpoly(n) prod-
quantity unde;, 7 = 1...c. Since one could use the same ¢t distributions over an instance spate= X; x - - - x X,
[ € C foreachD;, clearlyOpt > 3 ;| p;Opt;. By reduc-  \yhere we assume;| < poly(n) for eachi. Then there is a
tion, the algorithm produces hypotheses... ., k. satisfy- nO**/<) time algorithm for agnostically learning with re-

ing Elerrp, (hi)] < Opt; + €. spect to the class of functions/ofinear threshold functions
overX underD.

Combining Theorem 5.15 with, say, Theorem 3.4 (for
simplicity), we may conclude:

We allow our overall algorithm to outputr@ndomized

hypothesig.. We will then show thaEf[errp (k)] < Optte. When the mixture of product distributions is not known
where the expectation is over the subalgorithms’ productio 5 priori, we can first run an algorithm for learning mixtures
of theh,’s plus the “internal coins” oh. Having shown this,  of product distributions from unlabeled examples. For ex-

it follows that our algorithm could equally well produce a de ample, Feldman, O’Donnell, and Servedio [FOS05] proved
terministic hypothesis, just by (randomly) fixing a settifg the following:

h’s internal coins as its last step.

: , Theorem 5.17 ([FOSO05])Let D be an unknown mixture of
Assume for a moment that the subalgorithms’ hypothe- . _ (1) many product distributions over an instance space
ses are fixedy, . .., h.. The randomized overall hypothesis 1 _ X1 % -+ x Xp, where we assumet;| < O(1) for
h: X — {~1,1}is defined by takindi(z) = h;(x) with eachi. There is an algorithm which, given i.i.d. examples
probability exactly-; (), where the probabilities;(z) areas  fomp andn > 0, runs in timepoly (n/7) log(1/8) and with
defined in (1). (Note that they indeed sumitand are com-  opapility at leastl — & outputs the parameters of a mixture

putable in timepoly(cT’).) Writing ¢ for the target function, ¢ . product distribution®’ satisfying||D’ — D, < 7.
we compute:

h’sEoins[eer(h)] (The theorem was originally stated in terms of KL-divergenc
but also holds withZ;-distance [FOS05].) In [FOS06] the
- wPD [h,ﬁgms[h(@ # t()] same authors gave an analogous result for the case when each
r X,; = R and each product distribution is a product of Gaus-
_ B Z ri(@) sians with means and variancegifipoly(n), poly(n)].
x~D
Lizhi(z)#t(®) We conclude:
- E Z pi(z) Di(z) Theorem 5.18 LetD be anyunknownmixture ofO(1) prod-
x~D ieha ()t (@) D(x) uct distributions over an instance spate= X x-- - x X,,,
ol where we assume either: &X;| < O(1) for eachs; or b)
= Z Z pi(x)D;(z) eachX; = R and each product distribution is a mixture of
CEX ithy(z)£H(z) axis-aligned poly(n)-bounded) Gaussians. Then there is a
c c nO**/€")_time algorithm for agnostically learning with re-
= Y pi >, Di(z)=)_ pierrp,(hi). spect to the class of functionsiofinear threshold functions
=1 whi(2) (@) im1 overX’ underD.



Proof: First use the results of [FOS05, FOS06] with= [Kal06]
¢/nO**/<) producing a known mixture distributid® with
|D' — Dy < ¢/n®**/<). Then run the algorithm from
Theorem 5.18. The conclusion now follows from Proposi- [KKMS05]
tion 5.1.0

[KOS04]

6 Conclusions

In this work, we have shown how to perform agnostic learn-

ing under arbitrary product distributions and even under li

ited mixtures of product distributions. The main technique [KR82]
was showing that noise sensitivity bounds under the uni-

form distribution on{0, 1}" yield the same noise sensitivity

bounds under arbitrary product distributions. The running

time and examples required by our algorithm are virtually

the same as those required for learning under the uniform[KSS94]
distribution on{0, 1}".

While we have established many interesting scenarios for [LBW95]
which polynomial regression works, there is still signifita
room for extension. One direction is to seek out new concept
classes and/or distributions for which polynomial regi@ss
achieves polynomial-time agnostic learning. Our work has
dealt mostly in the case where all the attributes are muytuall [LMN93]
independent; it would be especially interesting to getriear
ing under discrete distributions that are far removed friois t
assumption.

[MOOO5]
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