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Abstract

Undirected graphs are often used to describe
high dimensional distributions. Under spar-
sity conditions, the graph can be estimated us-
ing /1 penalization methods. However, cur-
rent methods assume that the data are inde-
pendent and identically distributed. If the dis-
tribution, and hence the graph, evolves over
time then the data are not longer identically
distributed. In this paper, we show how to es-
timate the sequence of graphs for non-identically
distributed data, where the distribution evolves
over time.

1 Introduction

Let Z = (Z1,...,Z,)T be a random vector with dis-
tribution P. The distribution can be represented by an
undirected grapldr = (V, F'). The vertex set’ has one
vertex for each component of the vector The edge set

F' consists of pairgj, k) that are joined by an edge. If
Z; is independent of, given the other variables, then
(4, k) is notin F. WhenZ is Gaussian, missing edges
correspond to zeroes in the inverse covariance matrix
¥~1!. Suppose we have independent, identically dis-
tributed dataD = (Z1,...,Z,..., Z") from P. When

p is small, the graph may be estimated fr@mby test-

ing which partial correlations are not significantly differ
ent from zero [DP04]. Whep is large, estimating- is
much more difficult. However, if the graph is sparse and

the data are Gaussian, then several methods can succes

fully estimateG; see [MB06, BGd08, FHTO07, LFO7,
BLO8, RBLZO07].

All these methods assume that the graphical struc-
ture is stable over time. But it is easy to imagine cases
where such stability would fail. For exampl&! could
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represent a large vector of stock prices at titneThe
conditional independence structure between stocks could
easily change over time. Another example is gene ex-
pression levels. As a cell moves through its metabolic
cycle, the conditional independence relations between
proteins could change.

In this paper we develop a nonparametric method
for estimating time varying graphical structure for mul-
tivariate Gaussian distributions usirfg regularization
method. We show that, as long as the covariances change
smoothly over time, we can estimate the covariance ma-
trix well (in predictive risk) even whem is large. We
make the following theoretical contributions: (i) non-
parametric predictive risk consistency and rate of con-
vergence of the covariance matrices, (ii) consistency and
rate of convergence in Frobenius norm of the inverse
covariance matrix, (iii) large deviation results for co-
variance matrices for non-identically distributed obser-
vations, and (iv) conditions that guarantee smoothness
of the covariances. In addition, we provide simulation
evidence that we can recover graphical structure. We
believe these are the first such results on time varying
undirected graphs.

2 The Model and Method

Let Z* ~ N(0,%(t)) be independent. It will be useful
toindextime as = 0,1/n,2/n,...,1and thus the data
areD,, = (Z': t = 0,1/n,...,1). Associated with
each eact¢! is its undirected grapli(¢). Under the
assumption that the law(Z*) of Z* changes smoothly,
we estimate the graph sequer@él), G(2),...,. The
raphG(t) is determined by the zeroes Bft) ~!. This

ethod can be used to investigate a simple time series

model of the form:W°? ~ N (0, ¥(0)), and

Wt=w'"t+ 27" where Z' ~ N(0,%(t)).
Ultimately, we are interested in the general time series
model where th&/!'s are dependent and the graphs change
over time. For simplicity, however, we assume indepen-
dence but allow the graphs to change. Indeed, it is the
changing graph, rather than the dependence, that is the
biggest hurdle to deal with.

In the iid case, recent work [BGd08, FHTO7] has
considered; -penalized maximum likelihood estimators



over the entire set of positive definite matrices,

~

Y, = arglznirol {tr(E_lgn) +log|Z[+ A=} (@)

Where§n is the sample covariance matrix. In the non-iid
case our approach is to estimaté¢) at timet by

S : -13 -1
Ya(t) = arg min {tr(Z715,(t) + log [S + A= H1 }

Zs Wst ZS Z.Z
e Y
is a weighted covariance matrix, with weights, =
K (lsh;t') given by a symmetric nonnegative function

where S,,(t)

kernel over time; in other wordsy,, (¢) is just the ker-
nel estimator of the covariance at timeAn attraction

of this approach is that it can use existing software for
covariance estimation in the iid setting.

2.1 Notation

We use the following notation throughout the rest of the
paper. For any matri¥¥” = (w;;), let |W| denote the
determinant of¥, tr(W) the trace ofV. Letmax(W)

and pmin (W) be the largest and smallest eigenvalues,
respectively. We writdV™ = diag(W) for a diagonal
matrix with the same diagonal &, andiWW® = W —

W ™. The matrix Frobenius norm is given ByV || . =

\/2_i 22 wi;. The operator norm{W || is given by
Omax(WWT). We write| - |; for the ¢, norm of a ma-

trix vectorized, i.e., for a matrixiW'|; = |[vecW |,
>_i 2 lwij|, and write[[ W ||, for the number of non-

zero entries in the matrix. We us¥(t) = X1(¢).

3 Risk Consistency

In this section we define the loss and risk. Consider es-
timates:,, (¢t) andG,,(t) = (V, F,,). The first risk func-
tion is

U(G(t),Gu(t)) = EL(G(t),G,(t))  (3)

where L(G(t), G (1)) = |F(t) A ﬁn(t)‘, that is, the
size of the symmetric difference between two edge sets.
We say that,, (t) is sparsistentf U (G(t), Gy (t)) Zo

asn — oo.

The second risk is defined as follows. L&t ~
N(0, %) and letX be a positive definite matrix. Let

R(X) = tr(71%) + log |2]. (4)
Note that, up to an additive constant,
R(X) = —2FEy(log f=(Z)),

where fx is the density folV (0, X). We say tha@n(t)
is persistenfGR04] with respect to a class of positive

definite matricesS, if R(S,) — minses, R(Z) = 0.
In the iid casef; regularization yields a persistent esti-
mator, as we now show.

The maximum likelihood estimate minimizes
R (2) = tr(X718,,) + log [,

whereS,, is the sample covariance matrix. Minimizing
}A%H(E) without constraints give§n = §n. We would
like to minimize R, () subject tg|S1||; < L. This
would give the “best” sparse grapgh, but it is not a
convex optimization problem. Hence we estimalg
by solving a convex relaxation problem as written in (1)
instead. Algorithms for carrying out this optimization
are given by [BGd08, FHTO7]. Giveh,,, Vn, let
Sn={Z:%>0,|57", < La}. (5)

We define the oracle estimator and write (1) as (7)

S*(n) = arg min R(2), (6)
S, = in R, (3). 7
arg min R (2) (7)

Note that one can choose to only penalize off-diagonal
elements of2~! as in [RBLZ07], if desired. We have
the following result, whose proof appears in Section 3.2.

Theorem 1 Suppose that, < n* for some¢ > 0 and
n

1/2
1ng77,

for (5). Then for the sequence of empirical estimators
as defined in (7) andl*(n), ¥n as in(6),

R(E,) - R(Z*(n)) S 0.

3.1 Risk Consistency for the Non-identical Case

In the non-iid case we estimal&(t) at timet < [0, 1].
GivenXi(t), let

Ra(Z(0) = tx(2(6) 7 5 (1)) + log [Z(0)]

For a given?; boundL,,, we defineﬁn(t) as the mini-
mizer of R,,(X) subjecttoX € S,,,

- B . s

Y, (t) = arg Jnin {tr(Z718,(t)) + log 2]} (8)
whereS,, (¢) is given in (2), withK (-) a symmetric non-
negative function with compact support:

A1l The kernel functiok has a bounded suppdrt1, 1].

Lemma 2 LetX(t) = [o;x(t)]. Suppose the following
conditions hold:

1. There exist€, > 0, C' such thainax; j sup, |U,§'k(t)|
< Cy andmax; & sup, |0, (t)] < C.

2. pn < nf for somet > 0.

3. h, =xn1/3,
Thenmaxj,k |§n(ta]7 k) - E(tajv k)| = OP( nl;t)/ggn)

forall t > 0.



Proof: By the triangle inequality,

1S (t, 4, k) = B(t, 5, k)| < [Sn(t, 5, k) —BSa(t,j, k)| +
|E§n(t,j,/€)—2(t,j,/€)|
In Lemma 14 we show that

In Lemma 15, we show that
P (|§n(t,j, k) — ES,(t,5,k))] > e) < exp {—c1hnne?}
for somec; > 0. Hence,
P (n}’%x S, (t, 4, k) — ES,(t, 4, k)| > e) <
)} and 9)

o (52)

O

exp{—nh Ce? — 2¢1logn/(nhy)

max;  [Sn(t,j, k) — BS,(t, 5, k)| =
Hence the result holds fdr,, =< n=1/3.

With the use of Lemma 2, the proof of the following
follows the same lines as that of Theorem 1.

Theorem 3 Suppose all conditions in Lemma 2 and the
following hold:

— o (n'/%/\logn) .

Then,vt > 0, for the sequence of estimators as in (8),

(10)

R(E, (1) — R(E* (1)) 5 0.
Remark 4 If a local linear smoother is substituted for
a kernel smoother, the rate can be improved froh¥®
to n?/® as the bias will be bounded &@¥(h2) in (3.1)

Remark 5 Suppose thats, j, if 6;; # 0, we have);; =
Q(1). Then Condition(10) allows that|©[;, = L,;
hence ifp = n® and¢ < 1/3, we have thaf|©||, =
Q(p). Hence the family of graphs that we can guaran-
tee persistency for, although sparse, is likely to include
connected graphs, for example, whe(p) edges were
formed randomly amongnodes.

The smoothness condition in Lemma 2 is expressed in |R(

terms of the elements & (¢t) = [oy;(¢)]. It might be
more natural to impose smoothness@(t) = X (t) !
instead. In fact, smoothness ®f implies smoothness
of ¥, as the next result shows. Let us first specify two
assumptions. We use’(z) as a shorthand far;; ().

Definition 6 For a functionu : [0,1] — R, let|ju|| =
SUPzeio,1] lu(x)].

A2 There exists some constaiit < oo such that

max sup |o;(t)] < Sop < oo, hence (11)

i=1...p ¢¢[0,1]

IN

So. (12)

Jmax oo

A3 Letb;;(t), Vi, j, be twice differentiable functions such
that;,(t) < oo and@”( ) < o0,Vt € [0,1]. In addi-
tion, there exist constanﬁl Sy < 00 such that

P

sup ZZZZW )0 ()] < S (13)
te[0,1] 25 =1 i=1 j—1
P

sup ZD < Sy, (14)

tel0,1] .27 =1
where the first inequality guarantees that

SUP¢e(o,1] D ohe1 2= |04 ()] < V/S1 < o0

Lemma 7 Denote the elements 6f(t) = X(t)~! by
0;,(t). Under A 2 and A 3, the smoothness condition in
Lemma 2 holds.

The proof is in Section 6. In Section 7, we show some
preliminary results on achieving upper bounds on quan-
tities that appear in Condition 1 of Lemma 2 through

the sparsity level of the inverse covariance matrix, i.e.,
104l ¥t € [0,1].

3.2 Proof of Theorem 1
Note thatvn, supgcs, |R(X)

ZIE | 10, &

where it follows from [RBLZ07] that
b = max| S0 (4, k) = So(j; k)| = Op(+/logp/n).
. . 1/2
Hence, minimizing oves,, with L,, = o (ﬁ) ,

supses, |[R(Z) — Ra(2)| = op(1). By the definitions
of *(n) € S, andﬁ € Sp, We immediately have
R(X*(n)) < R(E,) andR, (£,) < R,(3*(n)); thus
0 < R(E,) - R(E*(n)

R(in) - ﬁn(§n> + ﬁn(§n> — R(X%(n))
R(En) — Rn(E,) + Ry (2 (n)) — R(E"(n))
Using the triangle inequality and,,, ©* (n) € Sy,

~

- R,(3)| <

- So(4, k)| < 6n |27,

IN

Sn) = R(Z* ()| <

IR(E,) = Ra(Sn) + R (% (n) — R(E"(n))]
< [R(En) = Ru(Sn)| + | Ra(S*(n) = R(E" ()]
< 2 sup |R(Z) — Rn(X)|. Thusve > 0,

eSS,
the event{’R(in) - R(E*(n))‘ > e} is contained in
the event{supzesn IR(Z) — Rn(2)] > 6/2}. Thus,
for L,, = o((n/logn)'/?), andVe > 0, asn — oo,

p (’R(fjn) - R(E*(n))’ > e) <

P (Supzesn IR(D) - Ro(S)] > e/z) ~0. O



4 Frobenius Norm Consistency

In this section, we show an explicit convergence rate

in the Frobenius norm for estimatin@(t), vt, where

p, |F| grow with n, so long as the covariances change
smoothly overt. Note that certain smoothness assump-
tions on a matriX4?” would guarantee the corresponding

smoothness conditions on its inverdé—!, so long as

W is non-singular, as we show in Section 6. We first

write our time-varying estimato®,, (¢) for £~1(¢) at
timet € [0,1] as the minimizer of the; regularized

negative smoothed log-likelihood over the entire set of

positive definite matrices,
On(t) = arg min {tr(©8,(t)) —log |0+, |01} (15)

Consider now the set
T, = {A :A=B—-0y,B,0) >0, ||AHF :M’I’n},
where

(p+s)logn

T =
n n2/3

= dpvp+s—0.

Claim 9 Under A 4, for allA € 7,, such that|Al||r =
o(1)asin(19), ©¢ + vA = 0,Yv € I D [0,1].

(19)

Proof: It is sufficient to show tha®¢ + (1 + ¢)A >
0 and®y — A = 0 for somel > ¢ > 0. Indeed,
Somin(G)O + (1 + E)A) > (Pmin(G)O) - (1 + 5) ||A||2 >
0 for e < 1, given thatp,in(09) = Q(2Mr,) and
1AL, < [Allr = Mr,. Similarly, @i, (O — £A) >

where),, is a non-negative regularization parameter, and somm(@o) —e|lAll, >0fore < 1. D

S, (t) is the smoothed sample covariance matrix using a

kernel function as defined in (2).

Now fix a point of interest,. In the following, we
useXy = (o045 (to)) to denote the true covariance matrix
atthis time. Le®, = %' be its inverse matrix. Define
the setS = {(¢,7) : 0;;(to) # 0, i # j}. Then|S| = s.

Thus we have thalog det(©¢ + vA) is infinitely
differentiable on the open intervél > [0, 1] of v. This
allows us to use the Taylor’s formula with integral re-
mainder to obtain the following lemma:

Lemma 10 With probabilityl — 1/n¢ for somec > 2,

Note that|S| is twice the number of edges in the graph G(A) > 0forall A € 7,,.

G(to). We make the following assumptions.

A4 Letp+s=o (n(2/3)/1ogn) andpmin(Xo) > k >
0, hencepm.x(©9) < 1/k. For some sufficiently large

constantM, let iy (©g) = <2M %)-

The proof draws upon techniques from [RBLZ07], with

Proof: Let us used as a shorthand for

vecAT (/1(1 —v)(6g +vA) ' ®

(0 + vA)ldv> vecA,
0

where® is the Kronecker product (V' = (wi;)mxn.
P = (bkg)pxq, thenW @ P = (w;j P)mpxngq), @and

modifications necessary to handle the fact that we pe- vecA € RP” is A, vectorized. Now, the Taylor ex-

nalize|©|, rather than©°|; as in their case.

Theorem 8 Let(:)n(t) be the minimizer defined §45).
Suppose all conditions in Lemma 2 and A 4 hold. If

[logn
YRR then

(p—i—s)logn) (@19)

n2/3

X

An

[0, (t) = Ol F = Op <2M

Proof: Let0 be a matrix with all entries being zero. Let
Q(O) = (68,(to)) —log|O] + 6] -
(005 (t0)) + log |©o| — A|Ool1
=t ((© - ©0)(5u(t) ~ o)) -
(log [©] — log [Og]) + tr ((© — ©9)%0)
+ MOl = [©0]1). 17)

5) minimizesQ(©), or equivalentlyﬁn =0 -6, min-
imizesG(A) = Q(0y + A). HenceG(0) = 0 and
G(©,) < G(0) = 0 by definition. Define for some

constant’, 6,, = C, \/%-

C1 [logn 6,
eV nE T e

Now, let

Ap = forsome 0 <e < 1. (18)

pansion gives
log|©0 + A| — log |Og] = E log |©0 + vA||p=0A +
Jo (1 = )L, logdet(Qg + vA)dv = tr(ToA) + A,

where by symmetrytr(3pA) = tr(0© — ©¢)X. Hence
G(A) = (20)
A+t tr (A(§n - 20)) 2 (180 + Al — [80]1) .
For an index sef and a matriXV = [w;;], write Wg =
(wi;I((3,75) € S)), wherel(-) is an indicator function.
RecallS = {(i,7) : ©¢i; # 0, i # j} and letSc =
{(i,7) : ©oij =0, i # j}. Hence® = O™ + 0% +
©%., O in our notation. Note that we haw&s. = 0,

09 + A% = [0 + A%l + AL,
|@8|1 = |®OS|1, hence
05 + A% —10Fh > |Ag], —|Ag],,
O + A1 —[Og)1 > —[AM],

where the last two steps follow from the triangle in-
equality. Therefore

[©0 + A1 — |©g)1 =
08 + A% — 0§ | + [OF +
0] o
|Age], = |Ag], = 1AL

A T S
(21)




Now, from Lemma 2max; x |Sn (¢, j, k) — o (¢, j, k)| _
Op (anlo/@) Op(d,). By (9), with probabilityl —

‘tr(A(gn - zo))‘ <6, |Al,, hence by (21)

r (A(?n - 20)) + A (180 + Aly — [€0]1)

> =0 |AYy = 0n | AL ], = 0n |A,

“An| A+ A |AL], = An yA I,
> (G + An) (AL +]AZ],) + (A —60) |AL],
> —(§n+/\n)(|A\|1+|A§|l),where (22)

(O + An) (AL + |AE])

< (Gn+ M) (VDIA™ | + V5[ ASIF)

< (Bn+ M) (VBIIA™ 7 + V5 Al R)

< (0o + M) max{y/p, s} ([|A[|F + A% )
< (Gn + An) max{ /P, Vs} V2| Al

< n1+€\/p+5\/_”AHF (23)

Combining (20), (22), and (23), we have with probabil-

ity 1 — -1, forall A € 7,

G(A) = A= (80 + ) (1A +|A%])
k> 1+¢
> ﬁI\AII%— \/p+sf||AHF
T
k2 \/5(1—1-5)
= |lA]? —0n Vp+
E 6aV2(1+¢)
= |A||F<2+ M. vp+s| >0

for M sufficiently large, where the bound oh comes
from Lemma 11 by [RBLZ07]. O

Lemma 11 ([RBLZ07]) For somer = o(1), under A 4,
vecAT (fol (1—2)(0g +vA)~?

> A% £, forall A € T,.
We next show the following claim.

Claim 12 If G(A) > 0,VA € T, thenG(A) > 0 for
al AinV, ={A:A=D-0yD = 0,]|Al|lr >
Mr,, forr, asin(19)}. Hence ifG(A) > 0,VA €
7., thenG(A) > 0forall A € 7,, U V,.

Proof: Now by contradiction supposgé(A’) < 0 for

someA’ € V,,. LetAy = HA’ " A’ ThusAg = 00 +

(1-0)A",where0 < 1—-6= IIA/H < 1 by definition

of Ay. HenceA, € 7, given that®g + Ag = 0 by

Claim 13. Hence by convexity af(A), we have that
G(Ag) < 0G(0) + (1 — 0)G(A’) < 0, contradicting
thatG(Ag) > 0forAg €7,. O

By Claim 12 and the fact tha#(A,,) < G(0) = 0
we have the following: IfG(A) > 0,VA € 7y, then

An gz (T,, U V), that is, |A, ||z < Mr,, given that
— 09, where®,,, 9 = 0. Therefore

O
P (IBullr > Mr,) = 1P (Al < Mr,)
< 1-P(G(A)>0,VYAET,)
P (G(A) < 0forsomeA € 7,) < ic

n

l>
| \

We thus establish th#t&nﬂp <Op(Mry,). O

Claim 13 Let B be ap x p matrix. If B = 0 andB +
D > 0,thenB +vD > 0forall v € [0, 1].

Proof: We only need to check far € (0,1), wherel —
v>0;Ver € RP,byB = 0andB+D > 0,2" Bz > 0
andz” (B + D)z > 0; hencer” Dx > —z7 Bx. Thus
2T (B+vD)z = 2T Bx+vaT Dz > (1-v)2" Bz > 0.
m

5 Large Deviation Inequalities

Before we go on, we explain the notation that we fol-
low throughout this section. We switch notation from
t to x and form a regression problem for non-iid data.
Given an interval of0, 1], the point of interest is;p =

1. We form a design matrix by sampling a setrof-
dimensional Gaussian random vectdrsatt = 0, 1/n,
2/n,...,1, whereZt ~ N(0,%;) are independently
distributed. In this section, we index the random vectors
Z with k =0,1,...,n such thatZ,, = Z* for k = nt,
with corresponding covariance matrix denoted M.
Hence

Zy = (Zk1y- s Zip)t ~ N(0,%), Ve (24)
These are independent but not identically distributed.

We will need to generalize the usual inequalities. In
Section A, via a boxcar kernel function, we use moment

generating functions to show that for= S e ZeZE,
S —cn€2
P[5 — Xij(wo)| > €) <e (25)
whereP™ = P; x - - - x P,, denotes the product measure.

® (B9 +vA)~ 1dv) vecA We look across: t|me -varying Gaussian vectors, and

roughly, we comparEw with 2, (o), whereX(zg) =

Y, is the covariance matrix in the end of the window
for t, = n. Furthermore, we derive inequalities in Sec-
tion 5.1 for a general kernel function.

5.1 Bounds For Kernel Smoothing

In this section, we derive large deviation inequalities for
the covariance matrix based on kernel regression estima-
tions. Recall that we assume that the symmetric nonneg-
ative kernel functior{ has a bounded suppd#t1, 1] in

A 1. This kernel has the property that:

2/OUK(v)dv < 2/OK(v)dv=1 (26)
-1

—1

0
2/ v K@)dv < 1.
-1

(27)



In order to estimate,, instead of taking an average of

sample variances/covariances over the fasamples,

we use the weighting scheme such that data closg to

receives larger weights than those that are far away.
Y(z) = (0ij(z)). Letus definer, = & = 1, and

Vi:l,...,n,zi:tf’nland
2 Ty — X0 K (17210)
o) = K (P52 ) = e @9

where the approximation is due to replacing the sum

with the Riemann integral:

n n 2 0

li(xg) = —K ~ 2 K(v)dv =
> ti) ;nh( )=2 [ KW
due to the fact thak(v) has compact support [r-1, 1]
andh < 1. LetXy, = (0y5(zx)),Vk = 1,...,n, where
0ij(zK) = COV(Zyi, Zkj) = pij(zr)oi(vk)oj(zr) and
pi; (z1) is the correlation coefficient betweéh and Z;
at timex. Recall that we have independdify; Zy;)

Ti — To

We now use Taylor’s Formula to replaeeg; (zo + hv)
and obtaire [°, , K (v)oy;(wo + hv)dv =

" 2
Let2 f K(v) (O'i_j (xo) + hvaf»(xo) + 70”(1}(1)2))(}“))
= 0;j(z0) + 2 f_ol K(v) (hva (o) + ) dv,

>dv

dv

C(hv)?
2

0

where 2/

C(hv)?

K(v) <hm;j (z0) +

1

0 2
Ch
= 2haéj(:c0)/ ( )d’U =+ T U2K(’U)d’u
-1 -1
Ch?
< hoj;(wo) + ——, wherey(v) — 2o < ho.

ThUS(I)l (Z,]) — Oij (,To) = O(h)

We now move on to the large deviation bound for all
entries of the smoothed empirical covariance matrix.

O

C1 (07 (0)o? (z0)+07; (w0))

forall k = 1,...,n such thatE(Zy; Zy;) = oi;(xk). Lemma 15 Fore < 1 (QK(%*IO) ()0 ( k))’
maxg=1,..., n oi(zr)o;(x
Let " where( is defined in Claim 18, for son& > 0,
lz% xk_xo (1), hence 5 g
né=h Tij\ Tk )y P (|Sn(t,z,j) —ES,(t,i,5)] > e) < exp {—Cnhe’}.
BY (o) ZuZay = Y Helro)ouy (o) = (i), P1o0k Letusdefinel = ZuuZ, — oz
k=1 = & . S
We thus decompose and bound for point of interigst P ('S"(t’ 59) = ESa(t:4,5)] > E)
> l(20) ZkiZij — 0ij(w0)| < P <Z U(20) Zri Zig — Y _ (o) oij (1) > e>
k=1 k=1 k=1
n For everyt > 0, we have by Markov’s inequality
EZE;C(CEO)ZMZ/@J‘ —0ij(zo)| + n
nk:l . P (Z nly(xo) A > ne)
ka(ffo)zkizkj - Esz(wo)zmzkj (29) =1
1 =1 _ P( tzk 1% (ml mo)Ak > ente)
= Zék(:co)Z;ﬂ-ij — (I)l(i,j) + |‘I)1(’L,_]) — O'ij(.ro)| . Eet 22:1 %K(Iizxo )Ak (30)
k=1 — ente '

Before we start our analysis on large deviations, we first

look at the bias term.

Lemma 14 Suppose there exist$ > 0 such that
maxsup |0 (¢,4,7)| < C. Then
] t

J) = oi; ()| = O(h).

Proof: W.L.0.g, lett = to, henceES,, (t,i, j) = 1 (i, ).

vt € [0,1], max|ES,(t,i,
7

We use the Riemann integral to approximate the sum,

1 n

n

2

h

Dy (i,5) = — K (@) oij (k)

%

Before we continue, for a given let us first define the
following quantities, where, j are omitted froni, (¢, 5)

Lk —To

o ap = FK (55

) (oi(xr)oj(zr) + 04 (1))
o by = 3K (£520) (04 (k)0 (x1) —0ij (1)) thus

_ 2 b2
o By = L3 h U, @y =3 gt
343 4 40
L
o M =maxp—1,. n (%K (zk—;z“) crl-(xk)crj(:zrk))

We now establish some convenient comparisons; see Sec-
tion B.1 and B.2 for their proofs.

Claim 16 ¢ < 4L and2* < 2M?, where both equal-
ities are estabhshed at;; (:ck) =1,Vk.



Lemma 17 Forb, < ay < 3,Vk, 237 | In
< nt®y + nt? Py + nt? By + Int' Dy,

1
(1—ak)(14bk)

To show the following, we first replace the sum with a

Riemann integral, and then use Taylor's Formula to ap-

proximateo;(xy), o;(xk), andoy;(zg), Yk = 1,...,n
with o;,0; o;; and their first derivatives at, respec-

tively, plus some remainder terms; see Section B.3 for

details.

Claim 18 For h = n~—¢for somel > ¢ > 0, there exists
some constanf’; > 0 such that

C1(a7 (o) (w0) + 07 (20))
- .

q)Q(Zv.]) =

Lemmal9 computes the moment generating function fors €Xp

2K (20 Zy; - Zy;. The proof proceeds exactly as
that of Lemma 21 after substitutiguith 22 K (£:-20)
everywhere.

Lemma 19 Let2L K (Z:-20) (1+p;;(w))oi (zk)oj (k)
< 1,VEk. Forbg < ai < 1.

%K(L“;zo)zkizkj

Ee = ((1 = ap)(1+bg)) 2.

Remark 20 Thus when we seét= <, the bound onr

4Py !
implies thath, < a < 1/2,Vk:
t(L+ pij(zx))oi(wr)oj(zy)
€oi(wg)oj(wk)
2P,

ag

IN

1
2toi(z)oj(zr) = < 7

We can now finish showing the large deviation bound

for max; ; |S;; — ES; |. Given thatd,,..., A, are
independent, we have

n
Ee! Tio FH (S50 ) A _ [ Ee?x(=7)A
k=1

2 2t T — Xg
— kl:llexp (_EK ( - ) U”(:vk)>
fetsCaea
k=1

4Py

—nte |

=e

IO)Uij(mk) BK(”;IO)ZMZM

_Eeh,

N R 1
e—nte—nt@n (4,5)+3 > h—iIn Ty

9
< exp (—nte + nt?®y + nt3 Py + gnt4<1>4> ,

where the last step is due to Remark 20 and Lemma 17.

Now let us consider takingthat minimizes
exp (—nte + nt?®y + nt3 Py + %nt4<1>4); Lett = ﬁ:

4 (—nte + nt*®y + nt3®s + Int*®4) < —5; Now
given that;Tz2 < 4, Claim 16 and 18:
L)) T — To
P(ZEK( - )Ak>ne>
k=1
2 3 9 4
< exp | —nte + nt“ Py + nt°P3 + gnt Dy
< —ne? n ne? n nez eds 9 ne? 2y
ex — o
=P\ 43, T 160, ' 640, 3% | 52560, B

—3ne?
200,

e 3nhe?
xp | — )
=P 20C1 (07 (o) (o) + 07 (20))

Do
M

(CL(1 + p35(w0))o? (o) (o)) /D
(=772) o) (@)
(Cr(1+ p(0))0? (x0)a73 (20))
Maxk=1,..n (2K (”—;10) oi(zk)o; (:vk)) '

Finally, let's check the requirement an<

2
maxg—1,..n (2K

O

For completeness, we compute the moment generat-

ing function forZ, ; Zy, ;.

Lemma 21 Lett(1 + p;j(zx))oi(zr)o;(zk) < 1,VE,
so thatby, < ai < 1, omittingzy, everywhere,
Eetzk’izk’j —

1 1/2
((1 —t(oioj +0ij)(1 + t(oio; — O’ij))) '

Proof: W.l.o.g., leti = 1 andj = 2.

E (e'7172) = E (E (e'%71|Z3))

tp1o0 t202(1 — p?
Eexp<( 0222 1 I 1(2 012)>Z22)

~1/2
(1 ) (tPIQUl n t?a?(1 - P%2)) 05)
g9 2

1 1/2
(1 — (2tprao109 + t20703(1 — P%z)))

1 1/2
- ((1 —t(1+ pr2)oroz) (1 + (1 — P12)0’102)>

where2tpia0102 +t20303(1 — p3y) < 1. This requires
thatt < W which is equivalent t@tp 20109+

2)0102
t?cia3(1 — p3,) — 1 < 0. One can check that if we
requiret(14 p12)o102 < 1, which implies thato; 0o <
1—tpi120102 and hence20%0'§ < (1 —tp120'10'2)2, the
lemma holds. O



6 Smoothness and Sparsity of}, via ©;! Theorem 25 Given A 2 and A 3vi, j, Vo € [0, 1],

In this section we show that if we assu@éx) = (0;;(z)) sup |of(z)| < 28351 + 835 < oo
are smooth and twice differentiable functionsofe z€[0,1]

[0,1],1.e.,0;;(z) < oo andd;;(x) < coforx € [0,1],Vi, 7,

and satlsfyéfi% then the smoothness conditions of LemmaProof: By (33) and the triangle inequality,

are satisfied. The following is a standard result in matrix T
analysis. |07 (@)] = |57 (2)D(2)2; ()]
p p
Lemma 22 Let©(¢) € RP*P has entries that are dif- < D
ferentiable functions af € [0, 1]. Assuming tha®(¢) is s v ‘0 |]; ;' kel
always non-singular, then b p T
d _ d < S5y D20 (2)S(2)0 ()] + (67 ()]
Z[Z()] = —Z(H)Z [0()]S(¢). P
Lemma 23 Suppos®(t) € RP*? has entries that each = 25351 + 535,

are twice differentiable functions @f Assuming that p p /
O(t) is always non-singular, then where by A 3,5 Jk—y 2 2p— [0 (@)] < 52, and

d2 p p
-5 [B(®)] = Z()D(1)3(1), where >N 16 (2)5(2) 0 ()]
k=1 ¢=1
() =22 femIsm L o] - L o) N
dt dt de = 2222 0@ @)oy (@)
Proof: The existence of the second order derivatives for k=1/¢=1i=1 j=1

entries ofS(t) is due to the fact thaf(t) and & [©(t)] p P P
are both differentiablet € [0, 1]; indeed by Lemma 22, Jex o (@) DY Y0 05 (2)6), (

d2 d d j| k=1/¢=1 i=1 j=1

IN

20] = = | =30 = [OM]Z()

< S5y5:. O
d d d[d
= ——X)]|=001)]2(1t) —2)= | =|0t)]2(t
2 PO O =305 [dt (O )} 7 Some Implications of a Very Sparsed
2
= —i[E(t)]i[G)(t)]E(t) — E(t)d_[@(t)]z(t) — We usel! to denote Lebesgue measureRnThe aim
dt dt dt? of this section is to prove some bounds that correspond
E(t)i[G(t)]i[E(t)] to A 3, butonly for£* a.e.z € [0, 1], based on a single
dt dt sparsity assumption 0@ as inA 5. We letE C [0, 1]
d d represent the “bad” set with' (E) = 0. and£! a.e.
= X0 (25[9@)]2@)5[@ dt2 ) (), g€ [0,1] refer to points in the sgb, 1] \ E such that
£1([0,1] \ E) = 1. When|©(z)||, < s + p for all
hence the lemma holds by the definition/oft). O z € [0,1], we immediately obtain Theorem 26, whose
Let X(z) = (045(z)),Vx € [0,1]. LetX(z) = proof appears in Section 7.1. We like to point out that al-
(Z1(x), B2(2),...,%,(x)), whereX;(z) € RP denotes though we apply Theorem 26 t and deduce smooth-
a column vector. By Lemma 23, ness ofY, we could apply it the other way around. In

, B T , particular, it might be interesting to apply it to the cor-
oy(x) = =X (2)0'()8;(2), (32) relation coefficient matriXp;;), where the diagonal en-
ol (x) = ET(.I')D(SC)E () (33) tries remain invariant. We us@’(z) and©®”(z) to de-

ij i ASOL f " .

note(0..(x)) and(6};(x)) respectivelyvz.
where®'(z) = (0};(x)) , vz € [0,1]. J J

Lemma 24 Given A 2 and A 3yz < [0, 1], AS Assume thalO(z)[|, < s +p Vo € [0,1].
()] <S5/ S < . A6 354, S5 < oo such that

Proof: |o;(x)| = |27 ()0 (z)5;(2))| Sy = max ||6;]|> and S5 = max |0} . (34)

ij ° ij °
P P
< ax |0’ DD 16ie(@)] < S5+/Sh. We state a theorem, the proof of which is in Section 7.1
k=1 £=1 and a corollary.
O

We denote the elements 6X(x) by 6,.(x). Letg; ~ 1heorem 26 UnderAS, we havglo”(z)ll, < [[6'(z)lly
represent a column vector 6¥. <|e@)l, <s+pforLtaexel0,1].



Corollary 27 GivenA2and A5, foL! a.e.z € [0, 1]
o7 ()] < S5v/Sals +p) < oo (35)

Proof: By proof of Lemma 24,

|07 ()] < maxi—1...p 07 ]loc 2ojt 20—y [0 (@)]-
Hence by Theorem 26, fat! a.e.z € [0, 1], |o};(z)| <
£:1 25:1 |00 (2)]

1©'()lly < S§v/Sa(s +p). O

Lemma 28 UnderA 5 and 6, for£! a.e.z € [0, 1],

Do D3 (@ @) <

maX;=1....p ||C7i2Hoo
< 8§ maxi,g [0l .,

(s + p)? max] |0 ]|7
i » hence

Proof: By the triangle inequality, foc! a.e.x € [0, 1],
ot (2)] = |2TD2-|

= Z oik(x)0j¢(x)Die ()

k=1 /(=1
p p
< max o2 303 Dl
k=1 (=1
P P P P
< ZZ 0 20,0 + 55> D 167
k=1 (=1 k=1 (=1
= 250( + )28, + S (s + p)Ss,
where forl! a.e.z € [0, 1],
p p p p p p
DD TR0 <D D 3D [0kt
k=1 ¢=1 k=1/¢=1 i=1 j=1
P P P P
< max HUzHoo ZZZZ | ;cieéj‘
k=1 ¢=1 i=1 j=1
< So(s+p)*Sy
and> ¥ _, >0, 107, < (s + p)Ss. The first inequal-

ity is due to the following observation: at mgst+ p)?

elements in the sum of, >, >, >, ‘ogci(x)egj(a:)’
for £ a.e. z € [0,1], that is, except foz, are non-
zero, due to the fact that far€ [0,1] \ N, [|©'(z)||, <
l©(x)||, < s+ pasin Theorem 26. The second in-
equality is obtained similarly using the fact that ot
ae.x€[0,1, 0" @), < [O@)], < s+p. O

Remark 29 For the bad set? C [0, 1] with £}(E) =
0, 0;; () is well defined as shown in Lemma 22, but it

can only be loosely bounded }(p?), as||®'(z)||, =
O(p?), instead ok +p, for z € E; similarly, o}/ () can
only be loosely bounded lgy(p?).

By Lemma 28, using the Lebesgue integral, we can
derive the following corollary.

Corollary 30 UnderA2,A5,and A6,
1

/ (o7 (x )) dr < 255548 +p* + S Ss(s +p) <
0

7.1 Proof of Theorem 26.
Let||O(z)||, < s+pforallz € [0,1].

Lemma 31 Let a functionu : [0,1] — R. Suppose:
has a derivative o’ (finite or not) with£! (u(F)) = 0.
Thenu'(z) = 0 for £! a.e.x € F.

TakeF = {z € [0,1] : 0;;(z) = 0} andu = 6,;. For

L'a.e.x € F,thatis, exceptforaséﬂj of L1(N;j) =
0,0;;(z) =0. LetN = J;; Ni;. By Lemma 31,
Lemma32If z € [0,1] \ N, where£!(N) = 0, if
0;j(z) = 0, thend;,(z) = 0 for all 4, j.

Let Vij = Gij TakeF = {,T S [0,1] : ’Uij(l') = 0}

For L' a.e. z € F, that is, except for a seV;; with
L(Nj) = 0, vj;(x) = 0. Let Ny = J,; N},
Lemma 31,

Lemma 33 If z € [0,1] \ N1, whereL!(Ny) = 0, if
0;(x) = 0, thend};(x) = 0, Vi, j.

Thus this allows to conclude that

Lemma 34 If z € [0,1]\ NUNy, whereL!(NUN;) =
0, if 0;5(z) = 0, thend;;(z) = 0 and¥;’ (x) = 0,4, 5.

Thusforallz € [0, 1[\NUNy, [|©"(z)||, < ||©'(x)
10@)lp <(s+p). O

8 Examples

In this section, we demonstrate the effectiveness of the
method in a simulation. Starting at tinte= ¢y, the
original graph is as shown at the top of Figure 1. The
graph evolves according to a type of Erdés-Rényi ran-
dom graph model. Initially we s& = 0.251,,, where

p = 50. Then, we randomly sele&0) edges and up-
date© as follows: for each new edgg, j), a weight

a > 0 is chosen uniformly at random froi@.1,0.3];

we subtract: from 6,;; andé,;, and increasé,;, 6;; by

a. This keep<E positive definite. When we later delete
an existing edge from the graph, we reverse the above
procedure with its weight. Weights are assigned to the
initial 50 edges, and then we change the graph structure
periodically as follows: Ever00 discrete time steps,
five existing edges are deleted, and five new edges are
added. However, for each of the five new edges, a target
weight is chosen, and the weight on the edge is gradu-
ally changed over the ensuird0 time steps in order
ensure smoothness. Similarly, for each of the five edges
to be deleted, the weight gradually decays to zero over
the ensuin@00 time steps. Thus, almost always, there
areb5 edges in the graph arid edges have weights that
are varying smoothly.

llo =
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Figure 1: Plots from top to bottom show that as the pe-
nalization parameter increases, precision goes up, and

8.1 Regularization Paths

We increase the sample size fram= 200, to 400,
600, and800 and use a Gaussian kernel with bandwidth
h = 288, We use the following metrics to evaluate
model consistency risk fq3) and predictive risk4) in
Figurel as the/; regularization parameterincreases.

o Let ﬁn denote edges in estimatédn(to) and F
denote edges i® (). Let us define

F,\F F,nF

precision = 1 ,
F, F,

F\FE, FE,NF

recall = 1- = .
F F

Figurel shows how they change with

e Predictive risks in(4) are plotted for both the or-
acle estimato(6) and empirical estimators) for
eachn. They are indexed with th& norm of var-
ious estimators vectorized; henge|; for &, (t)
andX*(to) are the same along a vertical line. Note
that |[Z*(t9)1 < |X(to)]1,Vp > 0; for every esti-
matory: (the oracle or empirical|y|; decreases as
p increases, as shown in Figurdor |§3200(t0)|1.

Figure 2 shows a subsequence of estimated graphs as

increases for sample size= 200. The original graph
att, is shown in Figurd.

~

G(pa Fn)

Figure 2:n = 200 andh = 1 with p = 0.14,0.2,0.24
indexing each row. The three columns show sets of

edges inF),, extra edges, and missing edges with respect

then down as no edges are predicted in the end. Recallto the true grapl@ (p, F). This array of plots show that
goes down as the estimated graphs are missing more and1 regularization is effective in selecting the subset of

more edges. The orack* performs the best, given the
same value fol%,, (to)[1 = |X*|1, Vn.

edges in the true modé(ty), even when the samples
beforety, were from graphs that evolved over time.



Edges

0.35 0.4875 0.52 0.5275 0.6125

SO0 R0 R

0.02 0.0825 0.1275 0.21 0.595

Figure 3: There are00 discrete steps if0, 1] such that the edge sét(¢) remains unchanged before or after 0.5.
This sequence of plots shows the times at which each of theedgers added at= 0 appears in the estimated graph
(top row), and the times at which each of the old edges beiplgced is removed from the estimated graph (bottom
row), where the weight decreases from a positive valyé.in 0.3] to zero during the time interva, 0.5]. Solid and
dashed lines denote new and old edges respectively.

8.2 Chasing the Changes [FHTO7] J. Friedr_nan, T. Hasti_e, and R. Tib_shirar_1i.
Finally, we show how quickly the smoothed estimator Sparse inverse covariance estimation with
using GLASSO [FHTO07] can include the edges that are the graphical lassdBiostat 2007.

being added in the beginning of intenjal 1], and get [GHO2]  G. Grégoire and Z. Hamrouni. Change point

rid of edges being replaced, whose weights start to de- estimation by local linear smoothing.J.

crease at = 0 and becom@ atz = 0.5 in Figure3. Multivariate Anal, 83:56-83, 2002. ,
[GRO4] E. Greenshtein and Y. Ritov. Persistency in

high dimensional linear predictor-selection

9 Conclusions and Extensions . o
and the virtue of over-parametrizatiqlour-

We have shown that if the covariance changes smoothly nal of Bernoullji 10:971-988, 2004.

over time, then minimizing a#, -penalized kernel risk  [LFO7] Clifford Lam and Jianging Fan. Spar-

function leads to good estimates of the covariance ma- sistency and rates of convergence in

trix. This, in turn, allows estimation of time varying large covariance matrices estimation, 2007.

graphical structure. The method is easy to apply and is arXiv:0711.3933v1.

feasible in high dimensions. [MB06] N. Meinshausen and P. Buhlmann. High
We are currently addressing several extensions to dimensional graphs and variable selection

this work. First, with stronger conditions we expect that with the lasso. The Annals of Statistics

we can establislsparsistencythat is, we recover the 34(3):1436-1462, 2006.

edges with probability approaching one. Second, we can [RBLZ07] A.J. Rothman, P.J. Bickel, E. Levina, and

relax the smoothness assumption using nonparametric J. Zhu. Sparse permutation invariant covari-

changepoint methods [GHO02] which allow for jumps. ance estimation, 2007. Technical report 467,

Third, we used a very simple time series model; exten- Dept. of Statistics, Univ. of Michigan.

sions to more general time series models are certainly L ..

feasible. A Large Deviation Inequalities for

Boxcar Kernel Function
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Lemma 35 is implied by Lemma 37 for diagonal entries,
and Lemma 38 for non-diagonal entries.

A.1 Inequalities for Squared Sum of Independent

Normals with Changing Variances

Throughout this section, we usé as a shorthand fer;;

as before. Hence? (xy,) = Var(Zy. ;) = oii(z), Vk =
1,...,n. Ignoring the bias term as in (29), we wish to
show that each of the diagonal entries’tf is close to
0?(x0),Vi = 1,...,p. For a boxcar kernel that weighs
uniformly overn samples, we mean strictly, (o)
L ¥k =1,...,n,andh = 1 for (28) in this context.
We omit the mention of or ¢ in all symbols from here
on. The following lemma might be of its independent
interest; hence we include it here. We omit the proof
due to its similarity to that of Lemma 15.

Lemma 37 We letz, ..., z, represent a sequence of
independent Gaussian random variables such that
N(0,0%(zy)). Leto? Ly 1 0%(zk). Using a
boxcar kernel that weighs uniformly over samples,
Ve < co?, for somec > 2, we have

(3¢ — 5)ne?
3c20202 ’

1
P(— 2 >e>§exp{
n max

whereo? . = maxgp—1,... {0 (zx)}.

A2

n

D>

k=1

— 0

Inequalities for Independent Sum of Products
of Correlated Normals

The proof of Lemma 38 follows that of Lemma 15.

2 2 2
Lemma38 Let¥, = 150 e (wzk)wij(wk))

andcy = 5=—. Using a boxcar kernel that weighs uni-

4
formly overn samples foe < WM’
P (I8t

B Proofs for Large Deviation Inequalities

B.1 Proof of Claim 16

We show one inequality; the other one is bounded sim-
ilarly. Vk, we compare thé!" elementsb, j, &4 5, that
appear in the sum fab, and®, respectively:

j) = BSu(t,i.j)| > €) < exp {~cne?}.

(1)4,k o (ai + b%)4t2
Doy (a2 4 b2)4tt
2
- (31252
2 (1 + pij(zr)* + (1 = pij(an)*)
8(1+ p3;(zx))
2
£ a2 (252t
A+p'+0-p* .
) R

B.2 Proof of Lemma 17
We first use the Taylor expansions to obtain:

2 3 4 0 l
N S S S e )
In(l—ag)=—ag 5 3 1 ; 7
where,
() 1, s a; 20}, _ aj,
l; I —5;(%) 51-ar) — 5 — 5
for ar, < 1/2; Similarly,
o aN—1 1
In(1+bx) = (=1) 7 (bx) , Where
n=1
(1) (bg)! > (=1)"(bg)
27( )l( k) >Oand27( )l(k) <0.
=4 =5
Hence for, < ay < ,Vk,
Z m—
2; n(l—ak)(l-i-bk)
zn:ak—bk+aﬁ+bﬁ ap — b}  9ap +bj
- 2 4 6 5 8

k=1

9
nt®, + nt?®s + nt>ds + gnt4(1>4. O

B.3 Proof of Claim 18

We replace the sum with the Riemann integral, and then
use Taylor's Formulato replaeg(xy ), o (zx), ando;; (xk ),

Zh2 (7:50)(2(%) () + o3 (2n))
/:%K% )
/K2 o2 (zo + hv)o
/K2 <01 xo)+hvo($o)+w>2

1 2 2
oj@z;(hv)) N

— 20
h

Q

(u)ajz- (u) + a?j (u)) du

<crj (zo) + hva; (zo) +

o (ys) (hv)? \

(a” (xo) + hvo, (o) +

2 (%
ELK@)
0
1}2’U’U
02/_1 K2(v)dv + O(h)

Ci(1 4 p2;(x0))o7 (o) (zo)
h

whereyg, y1,y2 < hv + zg andCy, Cy are some con-
stants chosen so that all equalities hold. [

(14 p3;(z0))a7 (z0) o (w0)) dv +

(xo + hv) + o? (w0 + hv)) dv



