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Abstract

We show how models for prediction with expert
advice can be defined concisely and clearly using
hidden Markov models (HMMs); standard HMM
algorithms can then be used to efficiently calculate
how the expert predictions should be weighted ac-
cording to the model. We cast many existing mod-
els as HMMs and recover the best known running
times in each case. We also describe two new mod-
els: the switch distribution, which was recently de-
veloped to improve Bayesian/Minimum Descrip-
tion Length model selection, and a new generali-
sation of the fixed share algorithm based on run-
length coding. We give loss bounds for all models
and shed new light on the relationships between
them.

Introduction

w(&)Pe(z™). Inference is then based on this joint distri-
bution. We can compute, for example: (a) thmarginal
probability of the datal’(2") = > ..z w(§) Px(2"), (b) the
predictive distributionon the next outcom® (x,,11|z") =
P(z™, x,1)/P(2™), which defines a prediction strategy that
combines those of the individual experts, or (c) plesterior
distributionon the expert®(&|2™) = Pe (™)w(&)/P(x™),
which tells us how the experts’ predictions should be weight
This simple probabilistic approach has the advantage that i
is computationally easy: predictingoutcomes using=| ex-
perts requires onlQ(n - |Z|) time. Additionally, this Bayes-
ian strategy guarantees that the overall probability ofitte

is only a factorw(&) smaller than the probability of the data
according to the best available experOn the flip side, with
this strategy we never do ametterthan¢ either: we have

Pg(z") = P(2") = Pg(z")w(¢), which means that poten-
tially valuable insights from the other experts are not used
our advantage!

More sophisticated combinations of prediction strategies

We cannot predict exactly how complicated processes suchcan pe found in the literature under various headings, ghclu
as the_ weather, t_he stock market, social interactions and SOng (Bayesian) statistics, source coding and universalipre
on, will develop into the future. Nevertheless, people do tion. |n the latter the experts’ predictions are not neadysa
make weather forecasts and buy shares all the time. Suchyopapilistic, and scored using an arbitrary loss function
predictions can be based on formal models, or on human ex-thjs paper we consider only logarithmic loss, although esr r
pertise or intuition. An investment company may even want gyjts can probably be generalised to the framework destribe
to choose between portfolios on the basis of a combmatlonin, e.g. [12].

of these kinds of predictors. In such scenarios, predictors  tpe three main contributions of this paper are the follow-
typically cannot be considered *true’. Thus, we may well ing. First, we introduce prior distributions aequencesf

end up in a position where we have a whole collection of experts, which allows unified description of many existing

prediction strategies, @xperts each of whom hasomein- models. Second, we show how HMMs can be used as an in-
sight intosomeaspects of the process of interest. We addresstuitive graphical language to describe such priors andiobta

the_qulestlondhot\_/v a gtlvetn setﬂ?ftexperts cag be Comfb'”ed .'Eltocomputationally efficient prediction strategies. Thire use
a singie prediclive strategy that IS as good as, or it poSsIdl s new approach to describe and analyse several important

eve_lr]hbette’: than, th? tl)lest 'n(il_'édgal e;gpirt. t of ; existing models, as well as one recent and one completely
e setup is as follows. e a finite set of experts. S el for expert tracking.

Each expert € = issues a distributiof; (x,,+1|z™) on the
next outcomer,, .1 given the previous observation§ :=
r1,...,T,. Here, each outcome; is an element of some
countable spac&’, and random variables are written in bold In §2 we develop a new, more general framework for com-
face. The probability that an expert assigns to a sequencebining expert predictions, where we consider the possjbili

1.1 Overview

of outcomes is given by the chain rul&: (z") = Pe(x1) -
Pe(xo|z1) - ... Pe(mp|z™™t).

A standard Bayesian approach to combine the expert pre-stick to Bayesian methodology, but we define the prior dis-
dictions is to define a priow on the expert& which in-
duces a joint distribution with mass functidh(z"™,¢{) =

that theoptimal weights used to mix the expert predictions
may vary over time i.e. as the sample size increases. We

tribution as a probability measure @equences of experts
rather than on experts. The prior probability of a sequence



&1,&, . .. is the probability that we rely on expeft’s pre- Figure 1 Expert sequence priors: generalisation relation-
diction of the first outcome and expet's prediction of the ships and run time

second outcome, etc. This allows for the expression of more
sophisticated models for the combination of expert predic-
tions. For example, the nature of the data generating psoces
may evolve over time; consequently different experts may be
better during different periods of time. It is also possiiblat

not the data generating process, but the experts themselves
change as more and more outcomes are being observed: the}
may learn from past mistakes, possibly at different rates, o
they may have occasional bad days, etc. In both situations
we may hope to benefit from more sophisticated modelling.

Of course, not all models for combining expert predic-
tions are computationally feasiblg3 describes a methodol-
ogy for the specification of models that allow efficient eval-
uation. We achieve this by using hidden Markov models =~
(HMMs) on two levels. On the first level, we use an HMM universal run-length universal
as a formal specification of a distribution on sequences of [ share ] ( model ] overconfident|  O(n”|Z])
expertsas defined ir§2. We introduce a graphical language experts
to conveniently represent its structure. These graphs help- - -~~~ ~"-"~"~~-~"------------=--=----

to understand and compare existing models and to design—  versal
new ones. We then modify this first HMM to construct a elememwis% Oo(n'=h
f mixture

fixed
elementwise
mixture

overconfident O(n|E])

experts

second HMM that specifies the distribution on sequences o
outcomes Subsequently, we can use the standard dynamic
programming algorithms for HMMs (forward, backward and
Viterbi) on both levels to efficiently calculate most relava
guantities, most importantly the marginal probability bét

successive outcomes that are typically well-predictechiey t

observed outcomes) and posterorweigh on the e Sne ST, R enth coces are picalyapoled dyect

expertgiven the previous O?S?Naﬂdﬁ@"“u ) o _on expert sequences instead. Again, we provide the graph-
Itturns out that many existing models for prediction with ical representation of their defining HMMs as well as loss

expert advice can be specified as HMMs. We provide an pounds. We conclude by comparing the two models.
overview ing4 by giving the graphical representations of the

HMMs corresponding to t_he following three models. First, 2 Expert Sequence Priors

universal elementwise mixtures (sometimes called mixture

models) that learn the optimal mixture parameter from data. In this section we explain how expert tracking can be de-
Second, Herbster and Warmuth’s fixed share algorithm for scribed in probability theory using expert sequence priors
tracking the best expert [4, 5]. Third, universal share,cihi  (ES-priors). These ES-priors are distributions on thespéc
was introduced by Volf and Willems #ise switching method  infinite sequences of experts that are used to express regula
[11] and later independently proposed by Bousquet [1]. Here ities in the development of the relative quality of the exger
the goal is to learn the optimal fixed-share parameter from predictions. As illustrations we render Bayesian mixtures
data. We render each model as a prior on sequences of exand elementwise mixtures as ES-priors. In the next section
perts by giving its HMM. The size of the HMM immediately we show how ES-priors can be implemented efficiently by
determines the required running time for the forward algo- hidden Markov models.

rithm. The generalisation relationships between these-mod
els as well as their running times are displayed in Figure 1.
In each case this running time coincides with that of the best
known algorithm. We also give a loss bound for each model, : n

relating the loss of the model to the loss of the best competi- Natural numben, we let the variable™ range over the:-
tor among a set of alternatives in the worst case. Such losg0!d Cartesian produa®™, and we writeg” = (g1, ..., qn)-

bounds can help select between different models for specific /e alS0 lel* range over” — the set of infinite sequences
prediction tasks. over@ — and writeq* = (g1, ...). We read the statement

A <w i i A
. . . . ¢ € Q=¥ to first bind\ < w and subsequently* € Q*. If
~ Besides the models found in the literature, Fl.gure lalso ¢\ is a sequence, and< )\, then we denote by" the prefix
includes two new generalisations of fixed share: the switch ¢ ¢ of lengths.

distribution and the run-length model. These models are the
subject ofg5. The switch distribution was introduced in [10] Forecasting System Let X’ be a countable outcome space.
as a practical means of improving Bayes/Minimum Descrip- We use the notatioA™ for the set of all finite sequences over
tion Length prediction to achieve the optimal rate of con- X and letA(X') denote the set of all probability mass func-
vergence in nonparametric settings. Here we give the con-tions onX’. A (prequential)X'-forecasting systerfPFS) is a

crete HMM that allows for its linear time computation. The functionP : X* — A(X) that maps sequences of previous
run-length model is based on a distribution on the number of observations to a predictive distribution on the next ooteo

Notation We denote byN the natural numbers including
zero, and byZ, the natural numbers excluding zero. l(gt
be a set. We denote the cardinality @fby |Q|. For any



Prequential forecasting systems were introduced by Dawid At each moment in time we predict the data using the poste-
in [2]. rior, which is a mixture over our experts’ predictions. Itga
T . the ES-priorr should be chosen such that the posterior coin-
Distributions  We also use probability measures on spaces ciges with the optimal mixture weights of the experts at each
of infinite sequences. In such a space, a basic event is theample size. The traditional interpretation of our ES-pai®
set of all continuations of a given prefix. We identify such 5 representation of belief about an unknown “true” expert se
events with their prefix. Thus a distribution aft’ is defined quence is tenuous, as normally experts do not generate data,
by a functionP” : X — [0, 1] that satisfies’(e) = 1, where  thay only predict it. Moreover, by mixing different expert

¢ is the empty sequence, and for all> 0, all 2" € &™ sequences, it is often possible to predict significantlyevet
we haved o P(z1,...,on,2) = P(z"). We identify  than py using any single sequence of experts, a feature that
P with the distribution it defines. We writé(z"|z™) for is crucial to the performance of many of the models that will
P(a™)/P(z™)if 0 <m < n. _ _ be described below and fi#. In the remainder of this paper

~ Note that forecasting systems continue to make predic- we motivate ES-priors by giving performance guarantees in
tions even after they have assigned probabiitio a pre-  the form of bounds on running time and loss.

vious outcome, while distributions’ predictions become un
defined. Nonetheless we use the same notation: we write
P(xzn41]2™) for the probability that a forecasting systen

assigns to the + 1st outcome given the first outcomes, as e now show how two ubiquitous models can be rendered
if P were a distribution. as ES-priors.

2.1 Examples

ES-Priors The slogan of this paper iwe do not under- _ .
stand the datalnstead of modelling the data, we work with Example 2.1.1(Bayesian Mixtures) Let = be a set of ex-

experts. We assume that there is a fixed set of exfgedsd perts, and lef’: be a PFS for eache =. Suppose that we do
that each experf ¢ = predicts using a forecasting system not know which expert will make the best predictions. Fol-
Pe. lowing the usual Bayesian methodology, we combine their

We are interested in switching between different fore- predictions by conceiving a prias on =, which (depending
casting systems at different sample sizes. For a sequence ofn the adhered philosophy) may or may not be interpreted
experts with prefix™, the combined forecast, where expert as an expression of one’s beliefs in this respect. Then the

&; predicts theth outcome, is denoted standard Bayesian mixtuéayesis given by
Pen (2m) = H P, (zs|z*71). Poayedz™) = pr(zn>w(§) (4)
i=1 ceE

Adopting Bayesian methodology, we impose a prioon
infinite sequences of experts; this prior is calledexpert
sequence prio(ES-prior). Inference is then based on the
distribution on the joint spacgt x Z)“, called theES-joint
which is defined as follows:

P(<§1;$1>7"'7<£n;$n>) = W(gn)Pf’l(zn)' 1) Wbaye{fn) _ {w(k) if& =kforalli=1,....n,

Recall thatP:(z™) means[],_, P:(z;|z"). The Bayesian
mixture is not an ES-joint, but it can easily be transformed
into one by using the ES-prior that assigns probability)

to the identically¢ sequence for eache =:

0 0.W.
We adopt shorthand notation for events: we wiités),

whereS is a subsequence gf and/or ofz”, for the proba- e will use the adjective “Bayesian” generously through-
bility under P of the set of sequences of pairs which magch  t this paper, but when we write standard Bayesian ES-

exactly. For example, the marginal probability of a seqeenc oy this always refers tapayes o
of outcomes is: Y
P(z") = Z P(g", ™). 2 Example 2.1.2(Elementwise Mixtures) The elementwise
gnezn mixturet is formed from some mixture weights € A(Z)

Compare this to the usual Bayesian statistics, where a modelby

class{ Py | 6 € ©} is also endowed with a prior distribution .

w on ©. Then, after observing outcomes$, inference is ) o il
based on the posterid?(6|z™) on the parameter, which is Prixa(@") := H Z Pe(aila™")a(€)
never actually observed. Our approach is exactly the same,
but we always considéd = =“. Thus as usual our predic-
tions are based on the posteriB(£¢“|«™). However, since

the predictive distribution ofe,,.; only depends or,, ;1
(andz™) we always marginalise as follows:

i=1 \¢e=

In the preceding definition, it may seem that elementwise
mixtures do not fit in the framework of ES-priors. But we

S P(EM ™) - 7 1) These mixtures are sometimes just called mixtures, or predi
P(bnsila™) = gn PE"2") - T(Eni1lé 3) tive mixtures. We use the term elementwise mixtures bottéor
e Zgn P(gn, an) scriptive clarity and to avoid confusion with Bayesian mis.




can rewrite this definition in the required form as follows: ahidden Markov modein O if () is a countable sef), C @,
n P e AQ),P:Q — A(Q) and P, is an O-forecasting
Prix.o(z™) = H Z Pe(zilz' ™Y a(€) system for each € Q.

=10eE Terminology and Notation We call elements of) states

- = P el (5a) We call the states iy, productiveand the other statesflent
- Z H e (il )al&) We callP, theinitial distribution, let I denote its support (i.e.

gresni=1 I:={q€ Q| R(g) >0})and calll the set ofnitial states
— Pon (2 )70 n We callP thestochastic transition functioiWe letS, denote
en (") Tmix,a (§7), X q

o the support of?(¢), and callg’ € S, adirect successoof

q. We abbreviat®(q)(¢') toP(¢ — ¢’). Afinite or infinite

which is the ES-joint based on the prior sequence of stateg € Q= is called abranchthroughA.
. A branchg” is called arun if either A = 0 (so¢* = ), or

(e = ). 5h q1 € Tandg; 41 € S, forall 1 < i < A. Afinite rung™ 7é €

Tmix,a (§") };[1 (&) (5b) is calleda run tog,,. For each branci*, we denote byqu its

subsequence of productive states. We denote the elements of
3 by ¢, ¢b etc. We call an HMMcontinuousf ¢ is infinite

for each infinite rury®.

We mentioned above that ES-priors cannot be interpreted a%estriction
expressions of belief about individual expert sequencks T

is a prime example, as the ES-prior is crafted such that its
posteriormmix o (§n41]£™) €xactly coincides with the desired

mixtureof experts. Definition 2. An HMM A defines the following distribution
on sequences of states, (¢) := 1, and for\ > 1

Thus, the ES-prior for elementwise mixtures is just the prod
uct distribution ofa. o

In this paper we will only work with continu-
ous HMMs. This restriction is necessary for the following to
be well-defined.

3 Expert Tracking using HMMs

A—1
We explained in the previous section how expert tracking N .—p Pla: Y
can be implemented using expert sequence priors. In this ") o) H (6 = ¢i+1)
section we specify ES-priors using hidden Markov models _ _ S
(HMMs). The advantage of using HMMs is that the com- Then via the PFSsA induces the joint distributior®, on
plexity of the resulting expert tracking procedure can lsglre  runs and sequences of outcomes.d’et O™ be a sequence
off directly from the structure of the HMM. We first give a  of outcomes and lef* # ¢ be a run with at least productive
short overview of the particular kind of HMMs that we use states, then
throughout this paper. We then show how HMMs can be n
used to specify ES-priors. As illustrations we render the ES Py(0", ¢*) = mal(q) H Pq?(0i|0i71)-

i=1

i=1

priors that we obtained for Bayesian mixtures and element-

wise mixtures in the previous sections as HMMs.sdhwe

provide an overview of ES-priors and their defining HMMs The value ofP, at arguments™, ¢* that do not fulfil the con-
that are found in the literature. dition above is determined by the additivity axiom of proba-

bility.
3.1 Hidden Markov Models Overview ity

Hidden Markov models (HMMs) are a well-known tool for The Forward Algorithm  For a given HMMA and data
specifying probability distributions on sequences witmte 0", theforward algorithm(c.f. [9]) computes the marginal
poral structure. Furthermore, these distributions arey ver Probability P, (o™). The forward algorithm operates by per-
appealing algorithmically: many important probabiliteen ~ colating weights along the transitions of the HMM. The run-
be computed efficiently for HMMs. These properties make Ning time is proportional to the number of transitions that
HMMs ideal models of expert sequences: ES-priors. For anneed to be considered. Details can be found in [6]. In this
introduction to HMMs, see [9]. We require a slightly more Ppaper we present all HMMs unfolded, so that each transition
general notion that incorporates silent states and fotiegas ~ Needs to be considered exactly once, and hence the running
systems as explained below. time can be read off easily.
We define our HMMs on a generic set of outcong@s .
to avoid confusion in later sect?ons, where we use HMMs 3-2 HMMs as ES-Priors
in two different contexts. First i83.2, we use HMMs to In applications HMMs are often used to model data. This is
define ES-priors, and instantia¢ with the set of experts  often useful if there are local correlations between outeam
=. Then in§3.4 we modify the HMM that defines the ES- A graphical model depicting this approach is displayed in
prior to incorporate the experts’ predictions, whereu@ois Figure 2a.
instantiated with the set of observable outcorites In this paper we use HMMs as ES-priors, that is, to spec-
ify temporal correlations between the performance ofexur
perts Thus instead of concrete observations our HMMs will
“produce” sequences of experts, that are never actually ob-
A= <Q, Qp B, P, <Pq>q€Qp> served. Figure 2b. illustrates this approach.

Definition 1. Let O be a finite set of outcomes. We call a
quintuple



Using HMMs as priors allows us to use the standard al- Figure 3 Standard Bayesian mixture.
gorithms for HMMSs to answer questions about the prior. For (A1) (n2)
example, we can use the forward algorithm to compute the
prior probability of the sequence of one hundred experts wit
expert number one at all odd indices and expert number two
atall even indices. However, we are obviously also intexkst
in questions about the data rather than about the prigB8.th
we show how joints based on HMM priors (Figure 2¢) can be
transformed into ordinary HMMs (Figure 2a) with at most a
|Z|-fold increase in size, allowing us to use the standard algo-
rithms for HMMs not only for the experts, but for the data as
well, with the same increase in complexity. This is the best
we can generally hope for, as we now need to integrate overwe draw an arrow fronV, to N, if ¢’ is a direct successor
all possible expert sequences instead of considering only aof 4. We often reify the |n|t|al dlstrlbutlmP by including a
single one. Here we first consider properties of HMMs that virtual node, drawn as an open circle, exgwith an outgo-
represent ES-priors. ing arrow to .V, for each initial statey € /. The transition
probability P(¢ — ¢’) is not displayed in the graph.

Restriction HMM priors “generate”, or define the distri-
bution on, sequences of experts. But contrary to the data,3.3 Examples
which are observed, no concrete sequence of experts is re;
alised. This means that we cannot conveniently condition
the distribution on experts in a productive stefeon the se-
quence of previously produced expefts . In other words,
we can only use an HMM oE as an ES-prior if the forecast-
ing systems in its states are simply distributions, so that a Example 3.3.1(HMM for Bayesian Mixtures) The Bayes-
dependencies between consecutive experts are carried by thian mixture ES-priofrpayesas introduced in Example 2.1.1
state. This is necessary to avoid having to sum over all (ex- represents the hypothesis that a single expert predidtfdoes
ponentially many) possible expert sequences. all sample sizes. A simple deterministic HMM &rthat gen-
erates the prioftpayesis given byApayes= (Q, Qp, B, P, A),
here

We are now ready to g|ve the deterministic HMMs that cor-
respond to the ES-priors of our earlier examples figd.:
Bayesian mixtures and elementwise mixtures with fixed pa-
rameters.

Deterministic Under the restriction above, but in the pres-

ence of silent states, we can make any HMM deterministic
in the sense that each forecasting system assigns prapabili @@y == xZ; A(n) =& R({1)=w() (6a)
one to a single outcome. We just replace each productive P((&n) — (En+1) =1 (6b)

stateg € Qp by the following gadget: The diagram of (6) is displayed in Figure 3. From the pic-

ture of the HMM it is clear that it computes the Bayesian
mixture. Hence, using (4), the loss of the HMM with prior
w is bounded for all data™ and all expertg € = by

—10g Phpaed ™) +log Pe(2") < —logw(&).  (7)

In particular this bound holds fof = argmay P (z"), so
we predict as well as the single best expert witinstant
overhead. AlsoPy,, . (z") can obviously be computed in
O(n|Z]) using its definition (4). We show in [6] that com-
silent state has transition probabili (o) to a state thatde- ~ Puting itusing the HMM prior above gives the same running
terministically outputs outcome We often make the func-  imeO(n|=|), a perfect match. ©
tional relationship explicit and by callingQ, Q,, B, P,A) a Example 3.3.2(HMM for Elementwise Mixtures) We now
deterministic HMMon O if A : Q, — O. Here we slightly present the deterministic HMMuix, o that implements the
abuse notation; the last component of a (general) HMM as- ES-prior rmix . 0f Example 2.1.2. Its diagram is displayed
signs aPFSto each productive state, while the last compo- in Figure 4. The HMM has a single silent state per out-
nent of a deterministic HMM assigns atcometo each  come, and its transition probabilities are the mixture \nesg

é
é
1

In the left diagram, the statg has distribution”, on out-
comesO = {A,...,E}. In the right diagram, the leftmost

productive states. a. Formally,Anix,« IS given usingl = Qs U Q, by
Sequential prediction using a general HMM or its deter- o N P(p.0) =1
ministic counterpart costs the same amount of work|Hhe Qs = {p} x 2(p,0) = (8a)
fold increase in the number of states is compensated by the Qp=ExZy An)=¢
|O|-fold reduction in the number of outcomes that need to be R
considered per state. P = (En 1)) (al) (8b)
(€,n) — (p,n) 1

Diagrams Deterministic HMMs can be graphically repre- . .
sented by pictures. In general, we draw a nagefor each The vector-style definition oP is shorthand for oné per
stateq. We draw a small black dot, e.@, for a silent state,  line. We show in [6] that this HMM allows us to compute

and an ellipse labelled (q), e.9.(D), for a productive state. ~ Lam.. (") in time O(n[Z]). <



Figure 2 HMMs. ¢°, ¢, andz; are thei™™ productive state, expert and observation.

(a) Standard use of HMM
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(c) Application to data
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Figure 4 Fixed elementwise mixture
(A2)

(A1)

3.4 The HMM for Data

We obtain our model for the data (Figure 2c¢) by composing
an HMM prior on=* with a PFSF; for each exper§ € =.

We now show that the resulting marginal distribution on data
can be implemented by a single HMM an(Figure 2a)with

the same number of states as the HMM pribet P: be an
X-forecasting system for eache =, and let the ES-prior,,

be given by the deterministic HMM = (Q, Q,, P, P, A)
on=. Then the marginal distribution of the data (see (1)) is
given by

Pa(a") = 3 ma(€) [ Pe(aila ™).
en i=1

The HMM X :— <Q,QP,R,P, <PA(q)> 4, ) on X in-
q€Clp

duces the same marginal distribution (see Definition 2)tTha
is, Px(z™) = Py(z™). MoreoverX contains only the fore-
casting systems that also existirand it retains the structure
of A. In particular this means that the algorithms for HMMs
have thesamerunning time on the prioA as on the marginal
X.

4 Zoology

We have presented two examples so far, the Bayesian
mixture and the elementwise mixture with fixed coefficients
(Examples 3.3.1 and 3.3.2). The latter model is parame-
terised. Choosing a fixed value for the parameter before-
hand is often difficult. The first model we discuss learns the
optimal parameter value on-line, at the cost of only a small
additional loss. We then proceed to discuss a number of im-
portant existing expert models.

4.1 Universal Elementwise Mixtures

A distribution is “universal” for a family of distributiong

it incurs small additional loss compared to the best member
of the family. A standard Bayesian mixture constitutes the
simplest example. It is universal for the fixed expert model,
where the unknown parameter is the used expert. For the
uniform prior, the additional loss (7) is at mdsg|=|.

In Example 3.3.2, we described elementwise mixtures
with fixed coefficients as ES-priors. Prior knowledge about
the mixture coefficients is often unavailable. We now expand
this model to learn the optimal mixture coefficients from the
data, resulting in a distribution that is universal for the=@l
elementwise mixtures. To this end we place a prior distribu-
tion w on the space of mixture weights(=). Using (5) we
obtain the following marginal distribution:

Pumix(2™) = /A(Ef)gmix,a(ﬂﬂn)w(a) do

(mn)ﬂmix,a (E")w(a) da
9)

where

Tumix(§") = /A(;)Tmix,a(gn>w(a> da.

Thus Pynmix is the ES-joint with ES-priofrymix- This applies
more generally: parametefiscan be integrated out of an ES-
prior regardless of which experts are used, since the expert

Perhaps the simplest way to predict using a number of ex- predictionsPe~ (z™) do not depend on.

perts is to pick one of them and mirror her predictions ex- We will proceed to calculate a loss bound for the uni-
actly. Beyond this “fixed expert model”, we have consid- versal elementwise mixture model, showing that it really is
ered two methods of combining experts so far, namely tak- universal. After that we will describe how it can be imple-
ing Bayesian mixtures, and taking elementwise mixtures asmented as an HMM.

described in§3.3. Figure 1 shows these and a number of

other, more sophisticated methods that fit in our framework. 4-1.1 A Loss Bound

The arrows indicate which methods are generalised by which|n this section we relate the loss of a universal elementwise
other methods. They have been partitioned in groups that cammixture with the loss obtained by the maximum likelihood
be computed in the same amount of time using HMMs. elementwise mixture. While mixture models occur regularly



in the statistical literature, we are not aware of any appear Figure 5 Universal elementwise mixture (two experts only)
ance in universal prediction. Therefore, to the best of our
knowledge, the following simple loss bound is new. Our

goal is to obtain a bound in terms of properties of the prior.

A difficulty here is that there are many expert sequences
exhibiting mixture frequencies close to the maximum like-

lihood mixture weights, so that each individual expert se-

guence contributes relatively little to the total probapil9).

The following theorem is a general tool to deal with such sit-

uations.

7

4w

Theorem 3. Let, p be ES-priors s.tp is zero whenever
is. Then for allz™, reading0/0 = 0,

P ple)
Pam) = e

Proof. Clearly P, is zero wheneveP, is. Thus

W

4w

= Imax = Imax

& Pen(a)m(€ ) e m(En)
412 HMM

Using this theorem, we obtain a loss bound for universal ele- While universal elementwise mixtures can be described us-
mentwise mixtures that can be computed prior to observatlonIng the ES-priotrumi defined in (9), unfortunately any HMM
and without reference to the experts’ PFSs. that computes it needs a state for each possible count vec-
tor, and is therefore huge if the number of experts is large.
The HMM Aymix for an arbitrary number of experts using
the (1,..., 1)-Dirichlet prior is given using) = Qs U @,

Py(a") _ Len Ppla™ &) ax 2T E7) Pp(a™,€")
Pr(xm) Y e Pr(am ") Pr(xm,£") N
f@("ﬁ( p(€")
)

Corollary 4. Let P mix be the universal elementwise mixture
model defined using the, ..., 3)-Dirichlet prior (that is,
Jeffreys’ prior) as the priokw(«) in (9). Leta(z™) maximise

the likelihoodPix o (z™) W.r.t. . Then for allz™ the addi- y
tional loss incurred by the universal elementwise mixtgre i Qs=N° @Q,=N°xZ R(0)=1 A(@,&=¢
bounded thus 12t
— — 77,5
" N |E| 1 n P <n> — <n,§> _ |5\/2+E§ ne 12
—log Pumix(z™) + 10g Prix,a(zm) (z™) < —5log—+c (71, &) — (A +1¢) 1 (12)
for a fixed constant. We write N= for the set of assignments of counts to experts;
Proof. By Theorem 3 0 for the all zero assignment, arig marks one count for
expert¢. We show the diagram ofiymix for the practical
— log Pumix(z™) + log Prix a(zny (™) < limit of two experts in Figure 5. In this case, the forward

algorithm has running timé&(n?). Each productive state in
max (— log Tumix (") + 108 Tmix, 4 (2m) (5")) . (10) Figure 5 corresponds to a vector of two couits, n») that
¢ sum to the sample size with the interpretation that of the
We now bound the right hand side. Lé&t¢”) maximise n experts, the first was used times while the second was

Tmix,o (") W.LL. . Then for allz™ and¢”™ used_ng tir_nes. These counts are a sulfficient statistic fqr the
multinomial model class: per (5b) and (9) the probability of
Tmix,a(en) (§") < Tmix,acen) (§")- (11) the next expert only depends on the counts, and these prob-
o ) abilities are exactly the successor probabilities of thensi

For the(3, ..., 1)-Dirichlet prior, for all¢" states (12).

S " Other priors onx are possible. In particylar, when all
—log Tumix(§") + 10g Tmix a(en) (€") < - log = +¢ mass is plac_:ed ona smgle valuecqfwe retrieve the ele-

2 @ mentwise mixture with fixed coefficients.

for some fixed constant (see e.g. [13]) Combination with

4.2 Fixed Share

The first publication that considers a scenario where the bes
Since the overhead incurred as a penalty for not knowing the predicting expert may change with the sample size is Herb-
optimal parametefy(z™) in advance is only logarithmic in  ster and Warmuth’s paper dracking the best expeft, 5].
the sample size, we find thatPmix is universal in a strong  They partition the data of sizeinto m segments, where each
sense for the fixed elementwise mixtures. segment is associated with an expert, and give algorithms to

(11) and (10) completes the proof. O



Figure 6 Fixed share
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predict almost as well as the bestrtition where the best ex-
pertis selected per segment. They give two algorithmsatalle

fixed share and dynamic share. The second algorithm does

not fit in our framework; furthermore its motivation applies
only to loss functions other than log-loss. We focus on fixed
share, which is in fact identical to our algorithm applied to
the HMM depicted in Figure 6, where all arcgo the silent
states have fixed probability € [0, 1] and all arcfrom the
silent states have some fixed distributioon =.> The same
algorithm is also described as an instance of the Aggregatin
Algorithm in [12]. Fixed share reduces to fixed elementwise
mixtures by settingy = 1 and to Bayesian mixtures by set-
ting o = 0. Formally, usingl = Qs U Q:

Qs={p} xN R(p,0)=1

Qp=ExZy A¢n)=¢ (132)
(p,n) = (&;n+1) w(§)

Pl (&n) —(p,n) =| «a (13b)
<§,TL>*><§,TL+1> -«

value ofa has to be known in advance in order to minimise
the loss. In Sectiong4.3 and$5 we describe a number of
generalisations of fixed share that avoid this problem.

4.3 Universal Share

\olf and Willems describe universal share (they calihi¢
switching methol[11], which is very similar to a probabilis-

tic version of Herbster and Warmuth’s fixed share algorithm,
except that they put a prior on the unknown parameter, so
that their algorithm adaptively learns the optimal value-du
ing prediction. In formula:

Pus(z™) = /Pfsya(z")w(a)da.

In [1], Bousquet shows that the overhead for not know-
ing the optimal parameter value is equal to the overhead of
estimating a Bernoulli parameter: 18§ , be as before, and

let Lys = —log Pus(z™) denote the loss of universal share
with Jeffreys’ priorw(a) = a=/2(1 — a)~1/2 /7. Then

Lys— m(in Liso <14 % log n. (15)
ThusP,sis universal for the model clagss o | o € [0, 1]}
that consists of all ES-joints where the ES-priors are idistr
butions with a fixed switching rate.

Universal share requires quadratic running tit@?|=|),
restricting its use to moderately small data sets. In [8]nMo
teleoni and Jaakkola place a discrete prior on the parameter
that divides its mass overn well-chosen points, in a setting
where the ultimate sample sizds known beforehand. This
way they still manage to achieve (15) up to a constant, while
reducing the running time 10 (n/n|Z|).

The HMM for universal share with the}, £)-Dirichlet

Each productive state represents that a particular expert i Prior on the switching rate: is displayed in Figure 7. It is
used at a certain sample size. Once a transition to a silenformally specified (using) = QU @) by:

state is made, all history is forgotten and a new expert is

chosen according t@.2

Let L denote the loss achieved by the best partition, with
switching ratex* := m/(n—1). Let L , denote the loss of
fixed share with uniformv and parametes.. Herbster and
Warmuth prové

Lisa—L < (n—1)H(a*, @)+ (m—1)log(Z| —1)+log|Z| ,
which we for brevity loosen slightly to
Lis.o — L < nH(a*, o) +mlog|Z|. (14)

Here H(a*, o) = —a*loga — (1 — a*)log(1l — «) is the
cross entropy. The best loss guarantee is obtained fer

Qs = {p,a} x §<m,n> €N?| mgn% A(g,myn) = ¢

Qo= Z x{(m,n)eN?|m<n} B(p,0,0)=1
<p7m7n> - <§aman + 1) ’UJ(S)
(@m,n) — (p.m+1n)| 1
(€&, m,n) — (d,m,n) B (m+3)/n
<€7m7n>_><§aman+1> (n—m—%)/n

(16)

Each productive statéS, n,m) represents the fact that at
sample sizen expert{ is used, while there have been
switches in the past. Note that the last two lines of (16) are
subtly different from the corresponding topmost line of)(12

«*, in which case the cross entropy reduces to the binary In @ sample of size: there aren possible positions to use

entropyH («). A drawback of the method is that the optimal

2This is actually a slight generalisation: the original altjon
uses a uniformw(§) = 1/|Z|.

3Contrary to the original fixed share, we allow switching te th
same expert. In the HMM framework this is necessary to aehiev
running-timeO(n|Z|). Under uniformw, non-reflexive switching
with fixed ratea: can be simulated by reflexive switching with fixed

ratef = \SE‘I (provideds < 1). For non-uniformw, the rate

becomes expert-dependent.

a given expert, while there are only— 1 possible switch
positions.

The presence of the switch count in the state is the new
ingredient compared to fixed share. It allows us to adapt
the switching probability to the data, but it also rendess th
number of states quadratic. We discuss reducing the number
of states without sacrificing much performance in [6].

5 New Models to Switch between Experts

“This bound can be obtained for the fixed share HMM using the So far we have considered two models for switching between

previous footnote.

experts: fixed share and its generalisation, universakeshar



Figure 7 Universal share First, we let the probability of switching to a different exp
decrease with the sample size. This allows us to derive a loss
bound close to that of the fixed share algorithm, without the
need to tune any parametérsSecond, the switch distribu-
tion has a special provision to ensure that in the case where
the number of switches remains bounded, the incurred loss
overhead i$)(1).

The switch distribution was introduced in [10], which
addresses a long standing open problem in statistical model
class selection known as the “AlC vs BIC dilemma”. Here
we disregard such applications and treat the switch distri-
bution like the other models for combining expert predic-
tions. In§5.1.1, we describe an HMM that corresponds to
the switch distribution; this illuminates the relationshie-
tween the switch distribution and the fixed share algorithm
which it in fact generalises. We provide a loss bound for the
switch distribution ing5.1.2.

5.1.1 Switch HMM

Leto“ andr* be sequences of distributions ém 1} which
we call theswitchandstabilisation probabilities The switch
HMM A, displayed in Figure 8, is defined below using

Q = Qs U QD:
Qs={p.Ps;Pu} x N R(p,0)=1 A(s,&n)=¢
QP:{S7U}XEXZ+ A(u,f,n):ﬁ
<p, n> - <pw n> Tn (0)
(1

While fixed share is an extremely efficient algorithm, it re- (p,n) — <p37n> 7a(1)
quires that the frequency of switching between experts-is es <pu, n> —(u,&n+1) w(§)
timated a priori, which can be hard in practice. Moreover, we P . — | w
may have prior knowledge about how the switching proba- (Ps,m) = (8,6,n +1) ©
bility will change over time, but unless we know the ultimate (s;&;m) = (s,{,n+1) 1
sample size in advance, we may be forced to accept a linear u,&,ny — (U, &,n+1) on(0)
overhead compared to the best parameter value. Universal (U, &,1) — (p,n) 1
share overcomes this problem by marginalising over the un- T ’ (1)
known parameter, but has quadratic running time. This HMM contains two “expert bands”. Consider a pro-

_ The first model considered in this section, the switch gyctive statdu, £, n) in the bottom band, which we call the
distribution, avoids both problems. It is parameterless an nstapleband, from a generative viewpoint. Two things can
has essentially the same running time as fixed share. It alsohappen. With probability-,, (0) the process continues hori-
achieves a loss bound competitive to that of universal share zontally to (u, ¢, n + 1) and the story repeats. We say that
Moreover, for a bounpled number of switches the bound haspg switch occursWith probabilityo,, (1) the process contin-
even better asymptotics. ues to the silent stat@, n) directly to the right. We say that
_ The second modelis called the run-length model becausea switch occurs Then a new choice has to be made. With
it uses a run-length code (c.f. [7]) as an ES-prior. This may probability, (0) the process continues rightward(,, n)
be useful because, while both fixed and universal share mOdeEnd then branches outto some productive state’, n + 1)
the distance between switches with a geometric distribytio . o 30 .
the real distribution on these distances may be differeimits T (Ti?ls)s ;Elgﬁ)ro_cegs)s, gc?rﬂi;ﬁ;&y és?r??rtz t:g'égﬁéoggﬁggy

is the case if, for example, the switches are highly clus- . .
A i o thestableband. Also here it branches out to some productive
tered. This additional expressive power comes at the cost Ofstate(s, &n+ 1>_ But from this point onward there are no

quadratic running time, but we discuss a special case where” " .
this may be reduced to linear choices anymore; expeft is produced forever. We say that

We conclude this section with a comparison of the two thegrocEss haﬂabﬂ;sei 0 ando. (1) — 0 for all
expert switching models. y choosingr, (1) = 0 andoy,(1) = ¢ for all n we

essentially remove the stable band and arrive at fixed share
51 Switch Distribution with parametef). The presence of the stable band enables

. L . us to improve the loss bound of fixed share in the particular
The switch distribution is a recent model for combining ex- P P

pert predictions. Like fixed share, it is intended for sejtin 5The idea of decreasing the switch probability 13§n + 1),

where the best predicting expert is expected to change as avhich has not previously been published, was independently
function of the sample size, but it has two major innovations ceived by Mark Herbster and the authors.



Figure 8 The switch distribution The priorr, may be writtenr,(n) = — — L, so that
A \/I’D \/I’D A)->

1/(t;(t; — 1 ti_
WT(ti|ti >ti71): /( ( - )) ~ = 1

st (mx =) tilti— 1)

(ps.0), e 9 G 9 >
WW If we substitute this in the last term of (17), the sum tele-
© k@ k\e A\e . scopes and we are left with

D =) ~(D) D)-> —log(t1) +log(tm) + z;log(fz‘ -1 (18)
-0 =
/ If we fix ¢,,, this expression is maximised 4§, ..., t,,_1
A ~(A) ~(A) A) > take on the values,, — m + 2,...,t,, — 1, so that (18)

A A » becomes
000/ 42 ®) (&) g i = . m! m !
S L R

The theorem follows using this upper bound. O

D D D> Note that this loss bound is a function of the index of the
last switcht,,, rather than of the sample size this means

case that the number of switches is bounded: in that case,that in the important scenario where the number of switches

the stable band allows us to remove the dependency of theremains bounded in, the loss compared to the best partition

; ; ; isO(1).
I;)s(?))b(imld /%mﬁoiltgl?ithgrr{ dV;/e (Vf ;” isi t(h Ze p:arETEIa;cz())lce The bound compares quite favourably with the loss bound

an arbitrary distributiont; on N. This allows us to relate for the fixed share algorithm (séd.2). We can tighten our

the switch HMM to the parametric representation that we bound slightly by using the fact that we allow switches to the
present next. same expert, as also remarked in Footnote 3 on page 8. For

brevity we do not pursue this here, but the difference is ex-

5.1.2 A Loss Bound actly that between (14) and the original bound for the fixed
We derive a loss bound of the same type as the bound forshare algorithm.

the fixed share algorithm (sé€d.2). We need the following We now investigate how much worse the above guaran-
lemma, that is proven in [6]. tees are compared to (14). The overhead of fixed share is

bounded from above by H (o) + mlog(=|). We first un-
derestimate this worst-case loss by substituting the @btim
valuea = m/n, and rewrite

Lemma 5. Fix an expert sequencg’. Letm denote the
number of blocks iK™, where the blocks are the maximal
subsequences containing only a single expert.1Lett; <

try < -+ < t, < n be the indices where the blocks start. n
H > nH > 1 .
Then N nH(a) > nH(m/n) > log <m)
msw(E") > 27" w(&y) Hw(gti)m(z =t|Z > t;—1). Second we overestimate the loss of the switch distribution
i=2 by substituting the worst casg, = n. We then find the

Theorem 6. Fix dataz". Let¢™ maximise the likelihood =~ Maximal difference between the two bounds to be

Pen (™) among all expert sequences withblocks. Let,,

be the index of the first element of the last block'n Let <m + mlog|E| + log (n> n log(m!)> _
m(n) = 1/(n(n—1)) andw be uniform. Then the loss over- m

head— log Psw(z") + log Pen (2™) of the switch distribution

is bounded by <1Og <n) N mlog|E|>
m

t
log|Z| + 1 " 1 .
m + mlog|Z| + log (m) + log(m!) =m+log(m!) < m+mlogm. (19)
Proof. We have Thus using the switch distribution instead of fixed share
— log Psw(z™) + log Pen (2") < —log msw(§™) lowers the guarantee by at mest+ m log m bits, which is
significant only if the number of switches is relatively larg
“m o On the flip side, using the switch distribution does not regjui
< —log | 27" w(&) H”T(tim > ti-1)w(&,) any prior knowledge about the data (i.e. the maximum like-
i=2 lihood switching rate). This is a big advantage in a setting
_ m where we desire to maintain the bound sequentially. This is
=m+mlog|Z| — > logm(ti[t; > ti_1). (17) impossible with the fixed share algorithm in case the optimal
i=2 value ofa varies withn.



5.2 Run-length Model

Run-length codes have been used extensively in the con-

text of data compression, see e.g. [7]. Rather than applying
run length codes directly to the observations, we reingrpr
the corresponding probability distributions as ES-pribes

cause they may constitute good models for the distances be-

tween consecutive switches.
The run length model is especially useful if the switches

are clustered, in the sense that some blocks in the expert se-

guence contain relatively few switches, while other blocks
contain many. The fixed share algorithm remains oblivious
to such properties, as its predictions of the expert sequenc
are based on a Bernoulli model: the probability of switch-

ing remains the same, regardless of the index of the previous

switch. Essentially the same limitation also applies to the
universal share algorithm, whose switching probability-no

mally converges as the sample size increases. The switch

distribution is efficient when the switches are clustered to
ward the beginning of the sample: its switching probability
decreases in the sample size. However, this may be unrealis
tic and may introduce a new unnecessary loss overhead.

The run-length model is based on the assumption that
theintervalsbetween successive switches are independently
distributed according to some distributian After the uni-
versal share model and the switch distribution, this is @dthi
generalisation of the fixed share algorithm, which is recov-
ered by taking a geometric distribution foy. As may be
deduced from the defining HMM, which is given below, we
require quadratic running tim@(n?|=|) to evaluate the run-
length model in general.

5.2.1 Run-length HMM

LetS := {(m,n) € N? | m < n}, and letr, be a distri-
bution onZ... The specification of the run-length HMM is
given using@ = Qs U @, by:

Qs={a} xS U {p} xN A(g,m,n) = ¢
Qo==xS B(p,0)=1
(p,n) = (&;n,m+1) w(§)

P (&,m,n) — (&,m,n+1) w(Z >n|Z > n)
<§,m,n> - (q,m,n) WT(Z = n|Z Z n)

<q’m’n> - <p,n> 1

5.2.2 A Loss Bound

Fix an expert sequeng& with m blocks. Fori =1, ..., m,
let§; andk; denote the length and expert of blackrom the
definition of the HMM above, we obtain thaf; (") equals

m m—1
Z —logw(k;)+ Z —logm(Z = 6;)—logm(Z > 6p).
i=1 i=1

Theorem 7. Fix dataz™. Let&™ maximise the likelihood
Pen (z™) among all expert sequences with blocks. Letw
be the uniform distribution on experts, and let be log-
convex. Then the loss overhead is bounded thus

~log Pu(a") +1og Per (2") < m (log 2] — logmr (%) ).

Figure 9 The run-length model

Proof. Let o; denote the length of block We overestimate
—log Py(2") +log Pen (2™) < —logmi(€™)

m—1

= mlog|Z| + Z —logm(Z = 6;) —logm:(Z > 0y)
i=1

< mlog|=| + Y | —logm(d). (20)
i=1

Since— log 7; IS concave, by Jensen’s inequality we have

n
= —logmy (—> .
m

In other words, the block lengtlds are all equal in the worst
case. Plugging this into (20) we obtain the theorem. [

m
i

Zfl%m(&)g—logﬂr Ziz

i=1 i=1

5.2.3 Finite Support

We have seen that the run-length model reduces to fixed share
if the prior on switch distances;, is geometric, so that it can

be evaluated in linear time in that case. We also obtain a lin-
ear time algorithm whem, has finite support, because then
only a constant number of states can receive positive weight
at any sample size. For this reason it can be advantageous
to choose ar; with finite support, even if one expects that
arbitrarily long distances between consecutive switchag m



occur. Expert sequences with such longer distances betweesilent states. The standard algorithms for HMMs (Forward,
switches can still be represented with a truncatedsing a Backward, Viterbi and Baum-Welch) can be used to answer
sequence of switches from and to the same expert. This wayquestions about the ES-prior as well as the induced distribu
long runs of the same expert receive exponentially smal, bu tion on data. The running time of the forward algorithm can
positive, probability. be read off directly from the graphical representation ef th
HMM.

5.3 Comparison Our approach allows unification of many existing expert
We have discussed two models for switching: the recent models, including mixture models and fixed share. We gave
switch distribution and the new run-length model. It is nat- their defining HMMs and recovered the best known running
ural to wonder which model to apply. One possibility is to times. We also introduced two new parameterless generalisa

compare asymptotic loss bounds. To compare the boundgions of fixed share. The first, called the switch distribnfio

given by Theorems 6 and 7, we substittife+ 1 = n in
the bound for the switch distribution, and use a pripifor
the run-length model that satisfieslog 7:(n) < logn +
2loglog(n + 1) + 3 (for instance an Elias code [3]). The

was recently introduced to improve model selection perfor-
mance. We rendered its as a small HMM, which shows how
it can be evaluated in linear time. The second, called the run
length model, uses a run-length code in a novel way, namely

next step is to determine which bound is better depending onas an ES-prior. This model has quadratic running time. We

how fastm grows as a function of. It only makes sense to
considerm non-decreasing in.

Theorem 8. The loss bound of the switch distribution (with
t, = n)is asymptotically lower than that of the run-length

model (withw, as above) ifn = o( (logn)*), and asymp-
totically higher ifm = Q( (logn)* ).

Proof sketch.After eliminating terms common to both loss
bounds, it remains to compare

m+mlogm to 2mloglog(£+1)+3.
m

If m is bounded, the left hand side is clearly lower for suffi-
ciently largen. Otherwise we may divide by, exponenti-
ate, simplify, and compare

m to  (logn —logm)?,
from which the theorem follows directly. O

For finite samples, the switch distribution can be used in

case the switches are expected to occur early on average, or

if the running time is paramount. Otherwise the run-length
model is preferable.

6 Conclusion

In prediction with expert advice, the goal is to formulate
prediction strategies that perform as well as the best possi
ble expert (combination). Expert predictions can be com-
bined by taking a weighted mixture at every sample size.
The best weights generally evolve over time. In this pa-
per we introduced expert sequence priors (ES-priors),lwhic
are probability distributions over infinite sequences of ex
perts, to model the trajectory followed by the optimal mix-

ture weights. Prediction with expert advice then amounts

to marginalising the joint distribution constructed frohet
chosen ES-prior and the experts’ predictions.

We employed hidden Markov models (HMMs) to specify
ES-priors. HMMs’ explicit notion of current state and state
to-state evolution naturally fit the temporal correlatioves
seek to model. For reasons of efficiency we use HMMs with

®Letf,g: N — N. We sayf = o(g) if lim,, .o f(n)/g(n) =
0. We sayf = Q(g) if 3¢ > 03neVn > no : f(n) > cg(n).

compared the loss bounds of the two models asymptotically,
and showed that the run-length model is preferred if the num-

ber of switches grows likdog n)* or faster, while the switch
distribution is preferred if it grows slower. We provided
graphical representations and loss bounds for all coresider
models.
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