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Abstract

We show how models for prediction with expert
advice can be defined concisely and clearly using
hidden Markov models (HMMs); standard HMM
algorithms can then be used to efficiently calculate
how the expert predictions should be weighted ac-
cording to the model. We cast many existing mod-
els as HMMs and recover the best known running
times in each case. We also describe two new mod-
els: the switch distribution, which was recently de-
veloped to improve Bayesian/Minimum Descrip-
tion Length model selection, and a new generali-
sation of the fixed share algorithm based on run-
length coding. We give loss bounds for all models
and shed new light on the relationships between
them.

1 Introduction
We cannot predict exactly how complicated processes such
as the weather, the stock market, social interactions and so
on, will develop into the future. Nevertheless, people do
make weather forecasts and buy shares all the time. Such
predictions can be based on formal models, or on human ex-
pertise or intuition. An investment company may even want
to choose between portfolios on the basis of a combination
of these kinds of predictors. In such scenarios, predictors
typically cannot be considered “true”. Thus, we may well
end up in a position where we have a whole collection of
prediction strategies, orexperts, each of whom hassomein-
sight intosomeaspects of the process of interest. We address
the question how a given set of experts can be combined into
a single predictive strategy that is as good as, or if possible
even better than, the best individual expert.

The setup is as follows. LetΞ be a finite set of experts.
Each expertξ ∈ Ξ issues a distributionPξ(xn+1|xn) on the
next outcomexn+1 given the previous observationsxn :=
x1, . . . , xn. Here, each outcomexi is an element of some
countable spaceX , and random variables are written in bold
face. The probability that an expert assigns to a sequence
of outcomes is given by the chain rule:Pξ(x

n) = Pξ(x1) ·
Pξ(x2|x1) · . . . · Pξ(xn|xn−1).

A standard Bayesian approach to combine the expert pre-
dictions is to define a priorw on the expertsΞ which in-
duces a joint distribution with mass functionP (xn, ξ) =

w(ξ)Pξ(x
n). Inference is then based on this joint distri-

bution. We can compute, for example: (a) themarginal
probabilityof the dataP (xn) =

∑

ξ∈Ξ w(ξ)Pξ(x
n), (b) the

predictive distributionon the next outcomeP (xn+1|xn) =
P (xn, xn+1)/P (xn), which defines a prediction strategy that
combines those of the individual experts, or (c) theposterior
distributionon the expertsP (ξ|xn) = Pξ(xn)w(ξ)/P (xn),
which tells us how the experts’ predictions should be weighted.
This simple probabilistic approach has the advantage that it
is computationally easy: predictingn outcomes using|Ξ| ex-
perts requires onlyO(n · |Ξ|) time. Additionally, this Bayes-
ian strategy guarantees that the overall probability of thedata
is only a factorw(ξ̂) smaller than the probability of the data
according to the best available expertξ̂. On the flip side, with
this strategy we never do anybetter than ξ̂ either: we have
Pξ̂(x

n) ≥ P (xn) ≥ Pξ̂(x
n)w(ξ̂), which means that poten-

tially valuable insights from the other experts are not usedto
our advantage!

More sophisticated combinations of prediction strategies
can be found in the literature under various headings, includ-
ing (Bayesian) statistics, source coding and universal predic-
tion. In the latter the experts’ predictions are not necessarily
probabilistic, and scored using an arbitrary loss function. In
this paper we consider only logarithmic loss, although our re-
sults can probably be generalised to the framework described
in, e.g. [12].

The three main contributions of this paper are the follow-
ing. First, we introduce prior distributions onsequencesof
experts, which allows unified description of many existing
models. Second, we show how HMMs can be used as an in-
tuitive graphical language to describe such priors and obtain
computationally efficient prediction strategies. Third, we use
this new approach to describe and analyse several important
existing models, as well as one recent and one completely
new model for expert tracking.

1.1 Overview

In §2 we develop a new, more general framework for com-
bining expert predictions, where we consider the possibility
that theoptimal weights used to mix the expert predictions
may vary over time, i.e. as the sample size increases. We
stick to Bayesian methodology, but we define the prior dis-
tribution as a probability measure onsequences of experts
rather than on experts. The prior probability of a sequence



ξ1, ξ2, . . . is the probability that we rely on expertξ1’s pre-
diction of the first outcome and expertξ2’s prediction of the
second outcome, etc. This allows for the expression of more
sophisticated models for the combination of expert predic-
tions. For example, the nature of the data generating process
may evolve over time; consequently different experts may be
better during different periods of time. It is also possiblethat
not the data generating process, but the experts themselves
change as more and more outcomes are being observed: they
may learn from past mistakes, possibly at different rates, or
they may have occasional bad days, etc. In both situations
we may hope to benefit from more sophisticated modelling.

Of course, not all models for combining expert predic-
tions are computationally feasible.§3 describes a methodol-
ogy for the specification of models that allow efficient eval-
uation. We achieve this by using hidden Markov models
(HMMs) on two levels. On the first level, we use an HMM
as a formal specification of a distribution on sequences of
expertsas defined in§2. We introduce a graphical language
to conveniently represent its structure. These graphs help
to understand and compare existing models and to design
new ones. We then modify this first HMM to construct a
second HMM that specifies the distribution on sequences of
outcomes. Subsequently, we can use the standard dynamic
programming algorithms for HMMs (forward, backward and
Viterbi) on both levels to efficiently calculate most relevant
quantities, most importantly the marginal probability of the
observed outcomesP (xn) and posterior weights on the next
expert given the previous observationsP (ξn+1|xn).

It turns out that many existing models for prediction with
expert advice can be specified as HMMs. We provide an
overview in§4 by giving the graphical representations of the
HMMs corresponding to the following three models. First,
universal elementwise mixtures (sometimes called mixture
models) that learn the optimal mixture parameter from data.
Second, Herbster and Warmuth’s fixed share algorithm for
tracking the best expert [4, 5]. Third, universal share, which
was introduced by Volf and Willems asthe switching method
[11] and later independently proposed by Bousquet [1]. Here
the goal is to learn the optimal fixed-share parameter from
data. We render each model as a prior on sequences of ex-
perts by giving its HMM. The size of the HMM immediately
determines the required running time for the forward algo-
rithm. The generalisation relationships between these mod-
els as well as their running times are displayed in Figure 1.
In each case this running time coincides with that of the best
known algorithm. We also give a loss bound for each model,
relating the loss of the model to the loss of the best competi-
tor among a set of alternatives in the worst case. Such loss
bounds can help select between different models for specific
prediction tasks.

Besides the models found in the literature, Figure 1 also
includes two new generalisations of fixed share: the switch
distribution and the run-length model. These models are the
subject of§5. The switch distribution was introduced in [10]
as a practical means of improving Bayes/Minimum Descrip-
tion Length prediction to achieve the optimal rate of con-
vergence in nonparametric settings. Here we give the con-
crete HMM that allows for its linear time computation. The
run-length model is based on a distribution on the number of

Figure 1 Expert sequence priors: generalisation relation-
ships and run time
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successive outcomes that are typically well-predicted by the
same expert. Run-length codes are typically applied directly
to the data, but in our novel application they define the prior
on expert sequences instead. Again, we provide the graph-
ical representation of their defining HMMs as well as loss
bounds. We conclude by comparing the two models.

2 Expert Sequence Priors

In this section we explain how expert tracking can be de-
scribed in probability theory using expert sequence priors
(ES-priors). These ES-priors are distributions on the space of
infinite sequences of experts that are used to express regular-
ities in the development of the relative quality of the experts’
predictions. As illustrations we render Bayesian mixtures
and elementwise mixtures as ES-priors. In the next section
we show how ES-priors can be implemented efficiently by
hidden Markov models.

Notation We denote byN the natural numbers including
zero, and byZ+ the natural numbers excluding zero. LetQ
be a set. We denote the cardinality ofQ by |Q|. For any
natural numbern, we let the variableqn range over then-
fold Cartesian productQn, and we writeqn = 〈q1, . . . , qn〉.
We also letqω range overQω — the set of infinite sequences
overQ — and writeqω = 〈q1, . . .〉. We read the statement
qλ ∈ Q≤ω to first bindλ ≤ ω and subsequentlyqλ ∈ Qλ. If
qλ is a sequence, andκ ≤ λ, then we denote byqκ the prefix
of qλ of lengthκ.

Forecasting System LetX be a countable outcome space.
We use the notationX ∗ for the set of all finite sequences over
X and let△(X ) denote the set of all probability mass func-
tions onX . A (prequential)X -forecasting system(PFS) is a
functionP : X ∗ → △(X ) that maps sequences of previous
observations to a predictive distribution on the next outcome.



Prequential forecasting systems were introduced by Dawid
in [2].

Distributions We also use probability measures on spaces
of infinite sequences. In such a space, a basic event is the
set of all continuations of a given prefix. We identify such
events with their prefix. Thus a distribution onXω is defined
by a functionP : X ∗ → [0, 1] that satisfiesP (ǫ) = 1, where
ǫ is the empty sequence, and for alln ≥ 0, all xn ∈ Xn

we have
∑

x∈X P (x1, . . . , xn, x) = P (xn). We identify
P with the distribution it defines. We writeP (xn|xm) for
P (xn)/P (xm) if 0 ≤ m ≤ n.

Note that forecasting systems continue to make predic-
tions even after they have assigned probability0 to a pre-
vious outcome, while distributions’ predictions become un-
defined. Nonetheless we use the same notation: we write
P (xn+1|xn) for the probability that a forecasting systemP
assigns to then + 1st outcome given the firstn outcomes, as
if P were a distribution.

ES-Priors The slogan of this paper iswe do not under-
stand the data. Instead of modelling the data, we work with
experts. We assume that there is a fixed set of expertsΞ, and
that each expertξ ∈ Ξ predicts using a forecasting system
Pξ.

We are interested in switching between different fore-
casting systems at different sample sizes. For a sequence of
experts with prefixξn, the combined forecast, where expert
ξi predicts theith outcome, is denoted

Pξn(xn) :=
n∏

i=1

Pξi
(xi|xi−1).

Adopting Bayesian methodology, we impose a priorπ on
infinite sequences of experts; this prior is called anexpert
sequence prior(ES-prior). Inference is then based on the
distribution on the joint space(X × Ξ)

ω, called theES-joint,
which is defined as follows:

P
(

〈ξ1, x1〉 , . . . , 〈ξn, xn〉
)

:= π(ξn)Pξn(xn). (1)

We adopt shorthand notation for events: we writeP (S),
whereS is a subsequence ofξn and/or ofxn, for the proba-
bility underP of the set of sequences of pairs which matchS
exactly. For example, the marginal probability of a sequence
of outcomes is:

P (xn) =
∑

ξn∈Ξn

P (ξn, xn). (2)

Compare this to the usual Bayesian statistics, where a model
class

{
Pθ | θ ∈ Θ

}
is also endowed with a prior distribution

w on Θ. Then, after observing outcomesxn, inference is
based on the posteriorP (θ|xn) on the parameter, which is
never actually observed. Our approach is exactly the same,
but we always considerΘ = Ξω. Thus as usual our predic-
tions are based on the posteriorP (ξω|xn). However, since
the predictive distribution ofxn+1 only depends onξn+1

(andxn) we always marginalise as follows:

P (ξn+1|xn) =

∑

ξn P (ξn, xn) · π(ξn+1|ξn)
∑

ξn P (ξn, xn)
. (3)

At each moment in time we predict the data using the poste-
rior, which is a mixture over our experts’ predictions. Ideally,
the ES-priorπ should be chosen such that the posterior coin-
cides with the optimal mixture weights of the experts at each
sample size. The traditional interpretation of our ES-prior as
a representation of belief about an unknown “true” expert se-
quence is tenuous, as normally experts do not generate data,
they only predict it. Moreover, by mixing different expert
sequences, it is often possible to predict significantly better
than by using any single sequence of experts, a feature that
is crucial to the performance of many of the models that will
be described below and in§4. In the remainder of this paper
we motivate ES-priors by giving performance guarantees in
the form of bounds on running time and loss.

2.1 Examples

We now show how two ubiquitous models can be rendered
as ES-priors.

Example 2.1.1(Bayesian Mixtures). Let Ξ be a set of ex-
perts, and letPξ be a PFS for eachξ ∈ Ξ. Suppose that we do
not know which expert will make the best predictions. Fol-
lowing the usual Bayesian methodology, we combine their
predictions by conceiving a priorw onΞ, which (depending
on the adhered philosophy) may or may not be interpreted
as an expression of one’s beliefs in this respect. Then the
standard Bayesian mixturePbayesis given by

Pbayes(x
n) =

∑

ξ∈Ξ

Pξ(x
n)w(ξ). (4)

Recall thatPξ(x
n) means

∏n
i=1 Pξ(xi|xi). The Bayesian

mixture is not an ES-joint, but it can easily be transformed
into one by using the ES-prior that assigns probabilityw(ξ)
to the identically-ξ sequence for eachξ ∈ Ξ:

πbayes(ξ
n) =

{

w(k) if ξi = k for all i = 1, . . . , n,
0 o.w.

We will use the adjective “Bayesian” generously through-
out this paper, but when we writethe standard Bayesian ES-
prior this always refers toπbayes. 3

Example 2.1.2(Elementwise Mixtures). The elementwise
mixture1 is formed from some mixture weightsα ∈ △(Ξ)
by

Pmix,α(xn) :=
n∏

i=1




∑

ξ∈Ξ

Pξ(xi|xi−1)α(ξ)



 .

In the preceding definition, it may seem that elementwise
mixtures do not fit in the framework of ES-priors. But we

1These mixtures are sometimes just called mixtures, or predic-
tive mixtures. We use the term elementwise mixtures both forde-
scriptive clarity and to avoid confusion with Bayesian mixtures.



can rewrite this definition in the required form as follows:

Pmix,α(xn) =

n∏

i=1

∑

ξ∈Ξ

Pξ(xi|xi−1)α(ξ)

=
∑

ξn∈Ξn

n∏

i=1

Pξi
(xi|xi−1)α(ξi)

=
∑

ξn

Pξn(xn)πmix,α(ξn),

(5a)

which is the ES-joint based on the prior

πmix,α(ξn) :=

n∏

i=1

α(ξi). (5b)

Thus, the ES-prior for elementwise mixtures is just the prod-
uct distribution ofα. 3

We mentioned above that ES-priors cannot be interpreted as
expressions of belief about individual expert sequences. This
is a prime example, as the ES-prior is crafted such that its
posteriorπmix,α(ξn+1|ξn) exactly coincides with the desired
mixtureof experts.

3 Expert Tracking using HMMs

We explained in the previous section how expert tracking
can be implemented using expert sequence priors. In this
section we specify ES-priors using hidden Markov models
(HMMs). The advantage of using HMMs is that the com-
plexity of the resulting expert tracking procedure can be read
off directly from the structure of the HMM. We first give a
short overview of the particular kind of HMMs that we use
throughout this paper. We then show how HMMs can be
used to specify ES-priors. As illustrations we render the ES-
priors that we obtained for Bayesian mixtures and element-
wise mixtures in the previous sections as HMMs. In§4 we
provide an overview of ES-priors and their defining HMMs
that are found in the literature.

3.1 Hidden Markov Models Overview

Hidden Markov models (HMMs) are a well-known tool for
specifying probability distributions on sequences with tem-
poral structure. Furthermore, these distributions are very
appealing algorithmically: many important probabilitiescan
be computed efficiently for HMMs. These properties make
HMMs ideal models of expert sequences: ES-priors. For an
introduction to HMMs, see [9]. We require a slightly more
general notion that incorporates silent states and forecasting
systems as explained below.

We define our HMMs on a generic set of outcomesO
to avoid confusion in later sections, where we use HMMs
in two different contexts. First in§3.2, we use HMMs to
define ES-priors, and instantiateO with the set of experts
Ξ. Then in§3.4 we modify the HMM that defines the ES-
prior to incorporate the experts’ predictions, whereuponO is
instantiated with the set of observable outcomesX .

Definition 1. Let O be a finite set of outcomes. We call a
quintuple

A =
〈

Q, Qp, P◦, P,
〈
Pq

〉

q∈Qp

〉

ahidden Markov modelonO if Q is a countable set,Qp ⊆ Q,
P◦ ∈ △(Q), P : Q → △(Q) andPq is anO-forecasting
system for eachq ∈ Qp.

Terminology and Notation We call elements ofQ states.
We call the states inQp productiveand the other statessilent.
We callP◦ theinitial distribution, letI denote its support (i.e.
I :=

{
q ∈ Q | P◦(q) > 0

}
) and callI the set ofinitial states.

We callP thestochastic transition function. We letSq denote
the support ofP(q), and callq′ ∈ Sq a direct successorof
q. We abbreviateP(q)(q′) to P(q → q′). A finite or infinite
sequence of statesqλ ∈ Q≤ω is called abranchthroughA.
A branchqλ is called arun if either λ = 0 (so qλ = ǫ), or
q1 ∈ I andqi+1 ∈ Sqi

for all 1 ≤ i < λ. A finite runqn 6= ǫ
is calleda run toqn. For each branchqλ, we denote byqλ

p its
subsequence of productive states. We denote the elements of
qλ

p by qp
1, qp

2 etc. We call an HMMcontinuousif qω
p is infinite

for each infinite runqω.

Restriction In this paper we will only work with continu-
ous HMMs. This restriction is necessary for the following to
be well-defined.

Definition 2. An HMM A defines the following distribution
on sequences of states.πA(ǫ) := 1, and forλ ≥ 1

πA(qλ) := P◦(q1)

λ−1∏

i=1

P(qi → qi+1).

Then via the PFSs,A induces the joint distributionPA on
runs and sequences of outcomes. Leton ∈ On be a sequence
of outcomes and letqλ 6= ǫ be a run with at leastn productive
states, then

PA(on, qλ) := πA(qλ)

n∏

i=1

Pq
p
i
(oi|oi−1).

The value ofPA at argumentson, qλ that do not fulfil the con-
dition above is determined by the additivity axiom of proba-
bility.

The Forward Algorithm For a given HMMA and data
on, the forward algorithm(c.f. [9]) computes the marginal
probabilityPA(on). The forward algorithm operates by per-
colating weights along the transitions of the HMM. The run-
ning time is proportional to the number of transitions that
need to be considered. Details can be found in [6]. In this
paper we present all HMMs unfolded, so that each transition
needs to be considered exactly once, and hence the running
time can be read off easily.

3.2 HMMs as ES-Priors

In applications HMMs are often used to model data. This is
often useful if there are local correlations between outcomes.
A graphical model depicting this approach is displayed in
Figure 2a.

In this paper we use HMMs as ES-priors, that is, to spec-
ify temporal correlations between the performance of ourex-
perts. Thus instead of concrete observations our HMMs will
“produce” sequences of experts, that are never actually ob-
served. Figure 2b. illustrates this approach.



Using HMMs as priors allows us to use the standard al-
gorithms for HMMs to answer questions about the prior. For
example, we can use the forward algorithm to compute the
prior probability of the sequence of one hundred experts with
expert number one at all odd indices and expert number two
at all even indices. However, we are obviously also interested
in questions about the data rather than about the prior. In§3.4
we show how joints based on HMM priors (Figure 2c) can be
transformed into ordinary HMMs (Figure 2a) with at most a
|Ξ|-fold increase in size, allowing us to use the standard algo-
rithms for HMMs not only for the experts, but for the data as
well, with the same increase in complexity. This is the best
we can generally hope for, as we now need to integrate over
all possible expert sequences instead of considering only a
single one. Here we first consider properties of HMMs that
represent ES-priors.

Restriction HMM priors “generate”, or define the distri-
bution on, sequences of experts. But contrary to the data,
which are observed, no concrete sequence of experts is re-
alised. This means that we cannot conveniently condition
the distribution on experts in a productive stateqp

n on the se-
quence of previously produced expertsξn−1. In other words,
we can only use an HMM onΞ as an ES-prior if the forecast-
ing systems in its states are simply distributions, so that all
dependencies between consecutive experts are carried by the
state. This is necessary to avoid having to sum over all (ex-
ponentially many) possible expert sequences.

Deterministic Under the restriction above, but in the pres-
ence of silent states, we can make any HMM deterministic
in the sense that each forecasting system assigns probability
one to a single outcome. We just replace each productive
stateq ∈ Qp by the following gadget:

q 7→

A

B

C

D

E

In the left diagram, the stateq has distributionPq on out-
comesO = {A, . . . , E}. In the right diagram, the leftmost
silent state has transition probabilityPq(o) to a state that de-
terministically outputs outcomeo. We often make the func-
tional relationship explicit and by calling

〈
Q, Qp, P◦, P, Λ

〉
a

deterministic HMMonO if Λ : Qp → O. Here we slightly
abuse notation; the last component of a (general) HMM as-
signs aPFS to each productive state, while the last compo-
nent of a deterministic HMM assigns anoutcometo each
productive states.

Sequential prediction using a general HMM or its deter-
ministic counterpart costs the same amount of work: the|O|-
fold increase in the number of states is compensated by the
|O|-fold reduction in the number of outcomes that need to be
considered per state.

Diagrams Deterministic HMMs can be graphically repre-
sented by pictures. In general, we draw a nodeNq for each
stateq. We draw a small black dot, e.g., for a silent state,
and an ellipse labelledΛ(q), e.g. D , for a productive state.

Figure 3 Standard Bayesian mixture.
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We draw an arrow fromNq to Nq′ if q′ is a direct successor
of q. We often reify the initial distributionP◦ by including a
virtual node, drawn as an open circle, e.g., with an outgo-
ing arrow toNq for each initial stateq ∈ I. The transition
probabilityP (q → q′) is not displayed in the graph.

3.3 Examples

We are now ready to give the deterministic HMMs that cor-
respond to the ES-priors of our earlier examples from§2.1:
Bayesian mixtures and elementwise mixtures with fixed pa-
rameters.

Example 3.3.1(HMM for Bayesian Mixtures). The Bayes-
ian mixture ES-priorπbayesas introduced in Example 2.1.1
represents the hypothesis that a single expert predicts best for
all sample sizes. A simple deterministic HMM onΞ that gen-
erates the priorπbayesis given byAbayes=

〈
Q, Qp, P◦, P, Λ

〉
,

where

Q, Qp = Ξ × Z+ Λ(ξ, n) = ξ P◦ (ξ, 1) = w(ξ) (6a)

P
(
〈ξ, n〉 → 〈ξ, n + 1〉

)
= 1 (6b)

The diagram of (6) is displayed in Figure 3. From the pic-
ture of the HMM it is clear that it computes the Bayesian
mixture. Hence, using (4), the loss of the HMM with prior
w is bounded for all dataxn and all expertsξ ∈ Ξ by

− logPAbayes(x
n) + log Pξ(x

n) ≤ − log w(ξ). (7)

In particular this bound holds for̂ξ = argmaxξ Pξ(x
n), so

we predict as well as the single best expert withconstant
overhead. AlsoPAbayes(x

n) can obviously be computed in
O(n|Ξ|) using its definition (4). We show in [6] that com-
puting it using the HMM prior above gives the same running
timeO(n|Ξ|), a perfect match. 3

Example 3.3.2(HMM for Elementwise Mixtures). We now
present the deterministic HMMAmix,α that implements the
ES-priorπmix,α of Example 2.1.2. Its diagram is displayed
in Figure 4. The HMM has a single silent state per out-
come, and its transition probabilities are the mixture weights
α. Formally,Amix,α is given usingQ = Qs ∪ Qp by

Qs = {p} × N P◦(p, 0) = 1

Qp = Ξ × Z+ Λ(ξ, n) = ξ
(8a)

P

(

〈p, n〉 → 〈ξ, n + 1〉
〈ξ, n〉 → 〈p, n〉

)

=

(

α(ξ)

1

)

(8b)

The vector-style definition ofP is shorthand for oneP per
line. We show in [6] that this HMM allows us to compute
PAmix,α

(xn) in timeO(n|Ξ|). 3



Figure 2 HMMs. q
p
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Figure 4 Fixed elementwise mixture
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3.4 The HMM for Data

We obtain our model for the data (Figure 2c) by composing
an HMM prior onΞω with a PFSPξ for each expertξ ∈ Ξ.
We now show that the resulting marginal distribution on data
can be implemented by a single HMM onX (Figure 2a)with
the same number of states as the HMM prior. Let Pξ be an
X -forecasting system for eachξ ∈ Ξ, and let the ES-priorπA

be given by the deterministic HMMA =
〈
Q, Qp, P◦, P, Λ

〉

on Ξ. Then the marginal distribution of the data (see (1)) is
given by

PA(xn) =
∑

ξn

πA(ξn)

n∏

i=1

Pξi
(xi|xi−1).

The HMM X :=

〈

Q, Qp, P◦, P,
〈

PΛ(q)

〉

q∈Qp

〉

on X in-

duces the same marginal distribution (see Definition 2). That
is, PX(xn) = PA(xn). Moreover,X contains only the fore-
casting systems that also exist inA and it retains the structure
of A. In particular this means that the algorithms for HMMs
have thesamerunning time on the priorA as on the marginal
X.

4 Zoology

Perhaps the simplest way to predict using a number of ex-
perts is to pick one of them and mirror her predictions ex-
actly. Beyond this “fixed expert model”, we have consid-
ered two methods of combining experts so far, namely tak-
ing Bayesian mixtures, and taking elementwise mixtures as
described in§3.3. Figure 1 shows these and a number of
other, more sophisticated methods that fit in our framework.
The arrows indicate which methods are generalised by which
other methods. They have been partitioned in groups that can
be computed in the same amount of time using HMMs.

We have presented two examples so far, the Bayesian
mixture and the elementwise mixture with fixed coefficients
(Examples 3.3.1 and 3.3.2). The latter model is parame-
terised. Choosing a fixed value for the parameter before-
hand is often difficult. The first model we discuss learns the
optimal parameter value on-line, at the cost of only a small
additional loss. We then proceed to discuss a number of im-
portant existing expert models.

4.1 Universal Elementwise Mixtures

A distribution is “universal” for a family of distributionsif
it incurs small additional loss compared to the best member
of the family. A standard Bayesian mixture constitutes the
simplest example. It is universal for the fixed expert model,
where the unknown parameter is the used expert. For the
uniform prior, the additional loss (7) is at mostlog|Ξ|.

In Example 3.3.2, we described elementwise mixtures
with fixed coefficients as ES-priors. Prior knowledge about
the mixture coefficients is often unavailable. We now expand
this model to learn the optimal mixture coefficients from the
data, resulting in a distribution that is universal for the fixed
elementwise mixtures. To this end we place a prior distribu-
tion w on the space of mixture weights△(Ξ). Using (5) we
obtain the following marginal distribution:

Pumix(x
n) =

∫

△(Ξ)

Pmix,α(xn)w(α) dα

=

∫

△(Ξ)

∑

ξn

Pξn(xn)πmix,α(ξn)w(α) dα

=
∑

ξn

Pξn(xn)πumix(ξ
n), where

πumix(ξ
n) =

∫

△(Ξ)

πmix,α(ξn)w(α) dα.

(9)

ThusPumix is the ES-joint with ES-priorπumix. This applies
more generally: parametersα can be integrated out of an ES-
prior regardless of which experts are used, since the expert
predictionsPξn(xn) do not depend onα.

We will proceed to calculate a loss bound for the uni-
versal elementwise mixture model, showing that it really is
universal. After that we will describe how it can be imple-
mented as an HMM.

4.1.1 A Loss Bound
In this section we relate the loss of a universal elementwise
mixture with the loss obtained by the maximum likelihood
elementwise mixture. While mixture models occur regularly



in the statistical literature, we are not aware of any appear-
ance in universal prediction. Therefore, to the best of our
knowledge, the following simple loss bound is new. Our
goal is to obtain a bound in terms of properties of the prior.
A difficulty here is that there are many expert sequences
exhibiting mixture frequencies close to the maximum like-
lihood mixture weights, so that each individual expert se-
quence contributes relatively little to the total probability (9).
The following theorem is a general tool to deal with such sit-
uations.

Theorem 3. Let π, ρ be ES-priors s.t.ρ is zero wheneverπ
is. Then for allxn, reading0/0 = 0,

Pρ(x
n)

Pπ(xn)
≤ max

ξn

ρ(ξn)

π(ξn)
.

Proof. ClearlyPρ is zero wheneverPπ is. Thus

Pρ(x
n)

Pπ(xn)
=

∑

ξn Pρ(x
n, ξn)

∑

ξn Pπ(xn, ξn)
≤ max

ξn

Pρ(x
n, ξn)

Pπ(xn, ξn)

= max
ξn

Pξn(xn)ρ(ξn)

Pξn(xn)π(ξn)
= max

ξn

ρ(ξn)

π(ξn)
.

Using this theorem, we obtain a loss bound for universal ele-
mentwise mixtures that can be computed prior to observation
and without reference to the experts’ PFSs.

Corollary 4. LetPumix be the universal elementwise mixture
model defined using the(1

2 , . . . , 1
2 )-Dirichlet prior (that is,

Jeffreys’ prior) as the priorw(α) in (9). Letα̂(xn) maximise
the likelihoodPmix,α(xn) w.r.t. α. Then for allxn the addi-
tional loss incurred by the universal elementwise mixture is
bounded thus

− logPumix(x
n) + log Pmix,α̂(xn)(x

n) ≤ |Ξ| − 1

2
log

n

π
+ c

for a fixed constantc.

Proof. By Theorem 3

− log Pumix(x
n) + log Pmix,α̂(xn)(x

n) ≤

max
ξn

(

− log πumix(ξ
n) + log πmix,α̂(xn)(ξ

n)
)

. (10)

We now bound the right hand side. Letα̂(ξn) maximise
πmix,α(ξn) w.r.t. α. Then for allxn andξn

πmix,α̂(xn)(ξ
n) ≤ πmix,α̂(ξn)(ξ

n). (11)

For the
(

1
2 , . . . , 1

2

)
-Dirichlet prior, for allξn

− logπumix(ξ
n) + log πmix,α̂(ξn)(ξ

n) ≤ |Ξ| − 1

2
log

n

π
+ c

for some fixed constantc (see e.g. [13]) Combination with
(11) and (10) completes the proof.

Since the overhead incurred as a penalty for not knowing the
optimal parameter̂α(xn) in advance is only logarithmic in
the sample sizen, we find thatPumix is universal in a strong
sense for the fixed elementwise mixtures.

Figure 5 Universal elementwise mixture (two experts only)
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4.1.2 HMM
While universal elementwise mixtures can be described us-
ing the ES-priorπumix defined in (9), unfortunately any HMM
that computes it needs a state for each possible count vec-
tor, and is therefore huge if the number of experts is large.
The HMM Aumix for an arbitrary number of experts using
the
(

1
2 , . . . , 1

2

)
-Dirichlet prior is given usingQ = Qs ∪ Qp

by

Qs = N
Ξ Qp = N

Ξ × Ξ P◦(0) = 1 Λ(~n, ξ) = ξ

P

(

〈~n〉 → 〈~n, ξ〉
〈~n, ξ〉 →

〈
~n + 1ξ

〉

)

=





1/2+nξ

|Ξ|/2+
P

ξ
nξ

1



 (12)

We writeNΞ for the set of assignments of counts to experts;
0 for the all zero assignment, and1ξ marks one count for
expertξ. We show the diagram ofAumix for the practical
limit of two experts in Figure 5. In this case, the forward
algorithm has running timeO(n2). Each productive state in
Figure 5 corresponds to a vector of two counts(n1, n2) that
sum to the sample sizen, with the interpretation that of the
n experts, the first was usedn1 times while the second was
usedn2 times. These counts are a sufficient statistic for the
multinomial model class: per (5b) and (9) the probability of
the next expert only depends on the counts, and these prob-
abilities are exactly the successor probabilities of the silent
states (12).

Other priors onα are possible. In particular, when all
mass is placed on a single value ofα, we retrieve the ele-
mentwise mixture with fixed coefficients.

4.2 Fixed Share

The first publication that considers a scenario where the best
predicting expert may change with the sample size is Herb-
ster and Warmuth’s paper ontracking the best expert[4, 5].
They partition the data of sizen intom segments, where each
segment is associated with an expert, and give algorithms to



Figure 6 Fixed share
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predict almost as well as the bestpartition where the best ex-
pert is selected per segment. They give two algorithms called
fixed share and dynamic share. The second algorithm does
not fit in our framework; furthermore its motivation applies
only to loss functions other than log-loss. We focus on fixed
share, which is in fact identical to our algorithm applied to
the HMM depicted in Figure 6, where all arcsinto the silent
states have fixed probabilityα ∈ [0, 1] and all arcsfrom the
silent states have some fixed distributionw onΞ.2 The same
algorithm is also described as an instance of the Aggregating
Algorithm in [12]. Fixed share reduces to fixed elementwise
mixtures by settingα = 1 and to Bayesian mixtures by set-
ting α = 0. Formally, usingQ = Qs ∪ Qp:

Qs = {p} × N P◦(p, 0) = 1

Qp = Ξ × Z+ Λ(ξ, n) = ξ
(13a)

P






〈p, n〉 → 〈ξ, n + 1〉
〈ξ, n〉 → 〈p, n〉
〈ξ, n〉 → 〈ξ, n + 1〉




 =






w(ξ)

α

1 − α




 (13b)

Each productive state represents that a particular expert is
used at a certain sample size. Once a transition to a silent
state is made, all history is forgotten and a new expert is
chosen according tow.3

Let L̂ denote the loss achieved by the best partition, with
switching rateα∗ := m/(n−1). LetLfs,α denote the loss of
fixed share with uniformw and parameterα. Herbster and
Warmuth prove4

Lfs,α−L̂ ≤ (n−1)H(α∗, α)+(m−1) log(|Ξ|−1)+log|Ξ| ,
which we for brevity loosen slightly to

Lfs,α − L̂ ≤ nH(α∗, α) + m log|Ξ| . (14)

HereH(α∗, α) = −α∗ log α − (1 − α∗) log(1 − α) is the
cross entropy. The best loss guarantee is obtained forα =
α∗, in which case the cross entropy reduces to the binary
entropyH(α). A drawback of the method is that the optimal

2This is actually a slight generalisation: the original algorithm
uses a uniformw(ξ) = 1/|Ξ|.

3Contrary to the original fixed share, we allow switching to the
same expert. In the HMM framework this is necessary to achieve
running-timeO(n|Ξ|). Under uniformw, non-reflexive switching
with fixed rateα can be simulated by reflexive switching with fixed
rateβ = α|Ξ|

|Ξ|−1
(providedβ ≤ 1). For non-uniformw, the rate

becomes expert-dependent.
4This bound can be obtained for the fixed share HMM using the

previous footnote.

value ofα has to be known in advance in order to minimise
the loss. In Sections§4.3 and§5 we describe a number of
generalisations of fixed share that avoid this problem.

4.3 Universal Share

Volf and Willems describe universal share (they call itthe
switching method) [11], which is very similar to a probabilis-
tic version of Herbster and Warmuth’s fixed share algorithm,
except that they put a prior on the unknown parameter, so
that their algorithm adaptively learns the optimal value dur-
ing prediction. In formula:

Pus(x
n) =

∫

Pfs,α(xn)w(α) dα.

In [1], Bousquet shows that the overhead for not know-
ing the optimal parameter value is equal to the overhead of
estimating a Bernoulli parameter: letLfs,α be as before, and
let Lus = − logPus(x

n) denote the loss of universal share
with Jeffreys’ priorw(α) = α−1/2(1 − α)−1/2/π. Then

Lus− min
α

Lfs,α ≤ 1 + 1
2 log n. (15)

ThusPus is universal for the model class
{
Pfs,α | α ∈ [0, 1]

}

that consists of all ES-joints where the ES-priors are distri-
butions with a fixed switching rate.

Universal share requires quadratic running timeO(n2|Ξ|),
restricting its use to moderately small data sets. In [8], Mon-
teleoni and Jaakkola place a discrete prior on the parameter
that divides its mass over

√
n well-chosen points, in a setting

where the ultimate sample sizen is known beforehand. This
way they still manage to achieve (15) up to a constant, while
reducing the running time toO(n

√
n|Ξ|).

The HMM for universal share with the
(

1
2 , 1

2

)
-Dirichlet

prior on the switching rateα is displayed in Figure 7. It is
formally specified (usingQ = Qs ∪ Qp) by:

Qs = {p, q} ×
{
〈m, n〉 ∈ N2 | m ≤ n

}

Qp = Ξ ×
{
〈m, n〉 ∈ N2 | m < n

}
Λ(ξ, m, n) = ξ

P◦(p, 0, 0) = 1

P








〈p, m, n〉 → 〈ξ, m, n + 1〉
〈q, m, n〉 → 〈p, m + 1, n〉
〈ξ, m, n〉 → 〈q, m, n〉
〈ξ, m, n〉 → 〈ξ, m, n + 1〉








=









w(ξ)

1

(m + 1
2 )
/

n

(n − m − 1
2 )
/

n









(16)

Each productive state〈ξ, n, m〉 represents the fact that at
sample sizen expertξ is used, while there have beenm
switches in the past. Note that the last two lines of (16) are
subtly different from the corresponding topmost line of (12).
In a sample of sizen there aren possible positions to use
a given expert, while there are onlyn − 1 possible switch
positions.

The presence of the switch count in the state is the new
ingredient compared to fixed share. It allows us to adapt
the switching probability to the data, but it also renders the
number of states quadratic. We discuss reducing the number
of states without sacrificing much performance in [6].

5 New Models to Switch between Experts
So far we have considered two models for switching between
experts: fixed share and its generalisation, universal share.



Figure 7 Universal share
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While fixed share is an extremely efficient algorithm, it re-
quires that the frequency of switching between experts is es-
timated a priori, which can be hard in practice. Moreover, we
may have prior knowledge about how the switching proba-
bility will change over time, but unless we know the ultimate
sample size in advance, we may be forced to accept a linear
overhead compared to the best parameter value. Universal
share overcomes this problem by marginalising over the un-
known parameter, but has quadratic running time.

The first model considered in this section, the switch
distribution, avoids both problems. It is parameterless and
has essentially the same running time as fixed share. It also
achieves a loss bound competitive to that of universal share.
Moreover, for a bounded number of switches the bound has
even better asymptotics.

The second model is called the run-length model because
it uses a run-length code (c.f. [7]) as an ES-prior. This may
be useful because, while both fixed and universal share model
the distance between switches with a geometric distribution,
the real distribution on these distances may be different. This
is the case if, for example, the switches are highly clus-
tered. This additional expressive power comes at the cost of
quadratic running time, but we discuss a special case where
this may be reduced to linear.

We conclude this section with a comparison of the two
expert switching models.

5.1 Switch Distribution

The switch distribution is a recent model for combining ex-
pert predictions. Like fixed share, it is intended for settings
where the best predicting expert is expected to change as a
function of the sample size, but it has two major innovations.

First, we let the probability of switching to a different expert
decrease with the sample size. This allows us to derive a loss
bound close to that of the fixed share algorithm, without the
need to tune any parameters.5 Second, the switch distribu-
tion has a special provision to ensure that in the case where
the number of switches remains bounded, the incurred loss
overhead isO(1).

The switch distribution was introduced in [10], which
addresses a long standing open problem in statistical model
class selection known as the “AIC vs BIC dilemma”. Here
we disregard such applications and treat the switch distri-
bution like the other models for combining expert predic-
tions. In §5.1.1, we describe an HMM that corresponds to
the switch distribution; this illuminates the relationship be-
tween the switch distribution and the fixed share algorithm
which it in fact generalises. We provide a loss bound for the
switch distribution in§5.1.2.

5.1.1 Switch HMM
Let σω andτω be sequences of distributions on{0, 1} which
we call theswitchandstabilisation probabilities. The switch
HMM Asw, displayed in Figure 8, is defined below using
Q = Qs ∪ Qp:

Qs =
{

p, ps, pu

}
× N P◦(p, 0) = 1 Λ(s, ξ, n) = ξ

Qp = {s, u} × Ξ × Z+ Λ(u, ξ, n) = ξ

P

















〈p, n〉 →
〈
pu, n

〉

〈p, n〉 →
〈
ps, n

〉

〈
pu, n

〉
→ 〈u, ξ, n + 1〉

〈
ps, n

〉
→ 〈s, ξ, n + 1〉

〈s, ξ, n〉 → 〈s, ξ, n + 1〉
〈u, ξ, n〉 → 〈u, ξ, n + 1〉
〈u, ξ, n〉 → 〈p, n〉

















=

















τn(0)

τn(1)

w(ξ)

w(ξ)

1

σn(0)

σn(1)

















This HMM contains two “expert bands”. Consider a pro-
ductive state〈u, ξ, n〉 in the bottom band, which we call the
unstableband, from a generative viewpoint. Two things can
happen. With probabilityσn(0) the process continues hori-
zontally to〈u, ξ, n + 1〉 and the story repeats. We say that
no switch occurs. With probabilityσn(1) the process contin-
ues to the silent state〈p, n〉 directly to the right. We say that
a switch occurs. Then a new choice has to be made. With
probabilityτn(0) the process continues rightward to

〈
pu, n

〉

and then branches out to some productive state
〈
u, ξ′, n + 1

〉

(possiblyξ = ξ′), and the story repeats. With probability
τn(1) the process continues to

〈
ps, n

〉
in the top band, called

thestableband. Also here it branches out to some productive
state

〈
s, ξ′, n + 1

〉
. But from this point onward there are no

choices anymore; expertξ′ is produced forever. We say that
the process hasstabilised.

By choosingτn(1) = 0 and σn(1) = θ for all n we
essentially remove the stable band and arrive at fixed share
with parameterθ. The presence of the stable band enables
us to improve the loss bound of fixed share in the particular

5The idea of decreasing the switch probability as1/(n + 1),
which has not previously been published, was independentlycon-
ceived by Mark Herbster and the authors.



Figure 8 The switch distribution
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case that the number of switches is bounded; in that case,
the stable band allows us to remove the dependency of the
loss bound onn altogether. We will use the particular choice
τn(0) = 1/ 2 for all n, andσn(1) = πT(Z = n|Z ≥ n)
an arbitrary distributionπT on N. This allows us to relate
the switch HMM to the parametric representation that we
present next.

5.1.2 A Loss Bound
We derive a loss bound of the same type as the bound for
the fixed share algorithm (see§4.2). We need the following
lemma, that is proven in [6].

Lemma 5. Fix an expert sequenceξn. Let m denote the
number of blocks inξn, where the blocks are the maximal
subsequences containing only a single expert. Let1 = t1 <
t2 < · · · < tm ≤ n be the indices where the blocks start.
Then

πsw(ξn) ≥ 2−mw(ξ1)

m∏

i=2

w(ξti
)πT(Z = ti|Z > ti−1).

Theorem 6. Fix data xn. Let ξn maximise the likelihood
Pξn(xn) among all expert sequences withm blocks. Lettm
be the index of the first element of the last block inξn. Let
πT(n) = 1/(n(n−1)) andw be uniform. Then the loss over-
head− logPsw(xn)+ log Pξn(xn) of the switch distribution
is bounded by

m + m log|Ξ| + log

(
tm
m

)

+ log(m!).

Proof. We have

− log Psw(xn) + log Pξn(xn) ≤ − log πsw(ξn)

≤ − log



2−mw(ξ1)

m∏

i=2

πT(ti|ti > ti−1)w(ξti
)





= m + m log|Ξ| −
m∑

i=2

log πT(ti|ti > ti−1). (17)

The priorπT may be writtenπT(n) = 1
n−1 − 1

n , so that

πT(ti|ti > ti−1) =
1/(ti(ti − 1))

∑

n>ti−1

(
1

n−1 − 1
n

) =
ti−1

ti(ti − 1)
.

If we substitute this in the last term of (17), the sum tele-
scopes and we are left with

− log(t1)
︸ ︷︷ ︸

= 0

+ log(tm) +

m∑

i=2

log(ti − 1). (18)

If we fix tm, this expression is maximised ift2, . . . , tm−1

take on the valuestm − m + 2, . . . , tm − 1, so that (18)
becomes

tm∑

i=tm−m+1

log i = log

(
tm!

(tm − m)!

)

= log

(
tm
m

)

+ log(m!).

The theorem follows using this upper bound.

Note that this loss bound is a function of the index of the
last switchtm rather than of the sample sizen; this means
that in the important scenario where the number of switches
remains bounded inn, the loss compared to the best partition
is O(1).

The bound compares quite favourably with the loss bound
for the fixed share algorithm (see§4.2). We can tighten our
bound slightly by using the fact that we allow switches to the
same expert, as also remarked in Footnote 3 on page 8. For
brevity we do not pursue this here, but the difference is ex-
actly that between (14) and the original bound for the fixed
share algorithm.

We now investigate how much worse the above guaran-
tees are compared to (14). The overhead of fixed share is
bounded from above bynH(α) + m log(|Ξ|). We first un-
derestimate this worst-case loss by substituting the optimal
valueα = m/n, and rewrite

nH(α) ≥ nH(m/n) ≥ log

(
n

m

)

.

Second we overestimate the loss of the switch distribution
by substituting the worst casetm = n. We then find the
maximal difference between the two bounds to be
(

m + m log|Ξ| + log

(
n

m

)

+ log(m!)

)

−
(

log

(
n

m

)

+ m log|Ξ|
)

= m + log(m!) ≤ m + m log m. (19)

Thus using the switch distribution instead of fixed share
lowers the guarantee by at mostm + m log m bits, which is
significant only if the number of switches is relatively large.
On the flip side, using the switch distribution does not require
any prior knowledge about the data (i.e. the maximum like-
lihood switching rate). This is a big advantage in a setting
where we desire to maintain the bound sequentially. This is
impossible with the fixed share algorithm in case the optimal
value ofα varies withn.



5.2 Run-length Model

Run-length codes have been used extensively in the con-
text of data compression, see e.g. [7]. Rather than applying
run length codes directly to the observations, we reinterpret
the corresponding probability distributions as ES-priors, be-
cause they may constitute good models for the distances be-
tween consecutive switches.

The run length model is especially useful if the switches
are clustered, in the sense that some blocks in the expert se-
quence contain relatively few switches, while other blocks
contain many. The fixed share algorithm remains oblivious
to such properties, as its predictions of the expert sequence
are based on a Bernoulli model: the probability of switch-
ing remains the same, regardless of the index of the previous
switch. Essentially the same limitation also applies to the
universal share algorithm, whose switching probability nor-
mally converges as the sample size increases. The switch
distribution is efficient when the switches are clustered to-
ward the beginning of the sample: its switching probability
decreases in the sample size. However, this may be unrealis-
tic and may introduce a new unnecessary loss overhead.

The run-length model is based on the assumption that
the intervalsbetween successive switches are independently
distributed according to some distributionπT. After the uni-
versal share model and the switch distribution, this is a third
generalisation of the fixed share algorithm, which is recov-
ered by taking a geometric distribution forπT. As may be
deduced from the defining HMM, which is given below, we
require quadratic running timeO(n2|Ξ|) to evaluate the run-
length model in general.

5.2.1 Run-length HMM

Let S :=
{
〈m, n〉 ∈ N2 | m < n

}
, and letπT be a distri-

bution onZ+. The specification of the run-length HMM is
given usingQ = Qs ∪ Qp by:

Qs = {q} × S ∪ {p} × N Λ(ξ, m, n) = ξ

Qp = Ξ × S P◦(p, 0) = 1

P








〈p, n〉 → 〈ξ, n, n + 1〉
〈ξ, m, n〉 → 〈ξ, m, n + 1〉
〈ξ, m, n〉 → 〈q, m, n〉
〈q, m, n〉 → 〈p, n〉








=








w(ξ)

πT(Z > n|Z ≥ n)

πT(Z = n|Z ≥ n)

1








5.2.2 A Loss Bound

Fix an expert sequenceξn with m blocks. Fori = 1, . . . , m,
let δi andki denote the length and expert of blocki. From the
definition of the HMM above, we obtain thatπrl(ξ

n) equals

m∑

i=1

− logw(ki)+
m−1∑

i=1

− logπT(Z = δi)− log πT(Z ≥ δm).

Theorem 7. Fix data xn. Let ξn maximise the likelihood
Pξn(xn) among all expert sequences withm blocks. Letw
be the uniform distribution on experts, and letπT be log-
convex. Then the loss overhead is bounded thus

− logPrl(x
n)+log Pξn(xn) ≤ m

(

log |Ξ| − log πT

(
n
m

))

.

Figure 9 The run-length model
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Proof. Let δi denote the length of blocki. We overestimate

− log Prl(x
n) + log Pξn(xn) ≤ − log πrl(ξ

n)

= m log|Ξ| +
m−1∑

i=1

− log πT(Z = δi) − log πT(Z ≥ δm)

≤ m log|Ξ| +
m∑

i=1

− log πT(δi). (20)

Since− log πT is concave, by Jensen’s inequality we have

m∑

i=1

− logπT(δi)

m
≤ − log πT





m∑

i=1

δi

m



 = − log πT

(
n

m

)

.

In other words, the block lengthsδi are all equal in the worst
case. Plugging this into (20) we obtain the theorem.

5.2.3 Finite Support
We have seen that the run-length model reduces to fixed share
if the prior on switch distancesπT is geometric, so that it can
be evaluated in linear time in that case. We also obtain a lin-
ear time algorithm whenπT has finite support, because then
only a constant number of states can receive positive weight
at any sample size. For this reason it can be advantageous
to choose aπT with finite support, even if one expects that
arbitrarily long distances between consecutive switches may



occur. Expert sequences with such longer distances between
switches can still be represented with a truncatedπT using a
sequence of switches from and to the same expert. This way,
long runs of the same expert receive exponentially small, but
positive, probability.

5.3 Comparison

We have discussed two models for switching: the recent
switch distribution and the new run-length model. It is nat-
ural to wonder which model to apply. One possibility is to
compare asymptotic loss bounds. To compare the bounds
given by Theorems 6 and 7, we substitutetm + 1 = n in
the bound for the switch distribution, and use a priorπT for
the run-length model that satisfies− log πT(n) ≤ log n +
2 log log(n + 1) + 3 (for instance an Elias code [3]). The
next step is to determine which bound is better depending on
how fastm grows as a function ofn. It only makes sense to
considerm non-decreasing inn.

Theorem 8. The loss bound of the switch distribution (with
tn = n) is asymptotically lower than that of the run-length
model (withπT as above) ifm = o

(
(log n)

2 ), and asymp-

totically higher ifm = Ω
(
(log n)

2 ).6

Proof sketch.After eliminating terms common to both loss
bounds, it remains to compare

m + m log m to 2m log log

(
n

m
+ 1

)

+ 3.

If m is bounded, the left hand side is clearly lower for suffi-
ciently largen. Otherwise we may divide bym, exponenti-
ate, simplify, and compare

m to (log n − log m)2 ,

from which the theorem follows directly.

For finite samples, the switch distribution can be used in
case the switches are expected to occur early on average, or
if the running time is paramount. Otherwise the run-length
model is preferable.

6 Conclusion

In prediction with expert advice, the goal is to formulate
prediction strategies that perform as well as the best possi-
ble expert (combination). Expert predictions can be com-
bined by taking a weighted mixture at every sample size.
The best weights generally evolve over time. In this pa-
per we introduced expert sequence priors (ES-priors), which
are probability distributions over infinite sequences of ex-
perts, to model the trajectory followed by the optimal mix-
ture weights. Prediction with expert advice then amounts
to marginalising the joint distribution constructed from the
chosen ES-prior and the experts’ predictions.

We employed hidden Markov models (HMMs) to specify
ES-priors. HMMs’ explicit notion of current state and state-
to-state evolution naturally fit the temporal correlationswe
seek to model. For reasons of efficiency we use HMMs with

6Let f, g : N → N. We sayf = o(g) if limn→∞ f(n)/g(n) =
0. We sayf = Ω(g) if ∃c > 0∃n0∀n ≥ n0 : f(n) ≥ cg(n).

silent states. The standard algorithms for HMMs (Forward,
Backward, Viterbi and Baum-Welch) can be used to answer
questions about the ES-prior as well as the induced distribu-
tion on data. The running time of the forward algorithm can
be read off directly from the graphical representation of the
HMM.

Our approach allows unification of many existing expert
models, including mixture models and fixed share. We gave
their defining HMMs and recovered the best known running
times. We also introduced two new parameterless generalisa-
tions of fixed share. The first, called the switch distribution,
was recently introduced to improve model selection perfor-
mance. We rendered its as a small HMM, which shows how
it can be evaluated in linear time. The second, called the run-
length model, uses a run-length code in a novel way, namely
as an ES-prior. This model has quadratic running time. We
compared the loss bounds of the two models asymptotically,
and showed that the run-length model is preferred if the num-
ber of switches grows like(log n)

2 or faster, while the switch
distribution is preferred if it grows slower. We provided
graphical representations and loss bounds for all considered
models.
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