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Abstract

We continue the investigation of natural conditions
for a similarity function to allow learning, without
requiring the similarity function to be a valid ker-
nel, or referring to an implicit high-dimensional
space. We provide a new notion of a “good sim-
ilarity function” that builds upon the previous def-
inition of Balcan and Blum (2006) but improves
on it in two important ways. First, as with the pre-
vious definition, any large-margin kernel is also a
good similarity function in our sense, but the trans-
lation now results in a much milder increase in the
labeled sample complexity. Second, we prove that
for distribution-specific PAC learning, our new no-
tion is strictly more powerful than the traditional
notion of a large-margin kernel. In particular, we
show that for any hypothesis classC there exists
a similarity function under our definition allowing
learning withO(log |C|) labeled examples. How-
ever, in a lower bound which may be of indepen-
dent interest, we show that for any classC of pair-
wise uncorrelated functions, there isnokernel with
marginγ ≥ 8/

√

|C| for all f ∈ C, even if one
allows average hinge-loss as large as 0.5. Thus,
the sample complexity for learning such classes
with SVMs isΩ(|C|). This extends work of Ben-
David et al. (2003) and Forster and Simon (2006)
who give hardness results with comparable margin
bounds, but at much lower error rates.

Our new notion of similarity relies uponL1 reg-
ularized learning, and our separation result is re-
lated to a separation result between what is learn-
able withL1 vs.L2 regularization.

1 Introduction

Kernel functions have become an extremely popular tool in
machine learning, with an attractive theory as well (Scholkopf
& Smola, 2002; Herbrich, 2002; Shawe-Taylor & Cristian-
ini, 2004; Scholkopf et al., 2004). This theory views a kernel
as implicitly mapping data points into a possibly very high
dimensional space, and describes a kernel function as being
good for a given learning problem if data is separable by a

large margin in that implicit space. However, while quite el-
egant, this theory does not necessarily correspond to the in-
tuition of a good kernel as a good measure of similarity, and
the underlying margin in the implicit space usually is not ap-
parent in “natural” representations of the data. Therefore, it
may be difficult for a domain expert to use the theory to help
design an appropriate kernel for the learning task at hand.
Moreover, the requirement of positive semi-definiteness may
rule out the most natural pairwise similarity functions forthe
given problem domain.

In recent work, Balcan and Blum (2006) developed an
alternative, more general theory of learning with pairwise
similarity functions that may not necessarily be valid posi-
tive semi-definite kernels. Specifically, this work developed
sufficient conditions for a similarity function to allow oneto
learn well) that does not require reference to implicit spaces,
and does not require the function to be positive semi-definite
(or even symmetric). While this theory provably general-
izes the standard theory in that any good kernel function in
the usual sense can be shown to also be a good similarity
function under this definition, the translation does incur a
penalty. Subsequently, Srebro (2007) tightly quantified the
gap between the learning guarantees based on kernel-based
learning, and those that can be obtained by using the ker-
nel as a similarity function in this way. In particular, Srebro
(2007) shows that a kernel of marginγ is guaranteed to be
a similarity function of marginΩ(ǫγ2) at hinge-lossǫ, and
furthermore there exist examples for which this is tight. To
sum up, while the theory of Balcan and Blum (2006) applies
to a wider class of pairwise functions than the standard no-
tion of kernel learning, it might be quantitatively inferior in
those cases that both notions apply.

In this work we develop a new notion of a good sim-
ilarity function that broadens the definition of Balcan and
Blum (2006) while still guaranteeing learnability. As with
the previous definition, our notion talks in terms of natu-
ral similarity-based properties and does not require positive
semi-definiteness or reference to implicit spaces. However,
our new notion improves on the previous definition in two
important respects:

First, our new notion provides a better kernel-to-similarity
translation. Any large-margin kernel function is a good sim-
ilarity function under our definition, and while we still incur
some loss in the parameters, this loss is much smaller than
under the prior definition, especially in terms of the final la-
beled sample-complexity bounds. In particular, when using



a valid kernel function as a similarity function, a substan-
tial portion of the previous sample-complexity bound can be
transferred over to merely a need forunlabeled examples.

Second, we show that our new definition allows for good
similarity functions to exist for concept classes for which
there isno good kernel. In particular, for any concept class
C and sufficiently unconcentrated distributionD, we show
there exists a similarity function under our definition with
parameters yielding a labeled sample complexity bound of
O(1

ǫ log |C|) to achieve errorǫ, matching the ideal sample
complexity for a generic hypothesis class. In fact, we also
extend this result to classes of finite VC-dimension rather
than finite cardinality. In contrast, we show there exist classes
C such that under the uniform distribution over the instance
space, there is no kernel with margin8/

√

|C| for all f ∈ C
even if one allows0.5 average hinge-loss. Thus, the margin-
based guarantee on sample complexity for learning such classes
with kernels isΩ(|C|). This extends work of Ben-David
et al. (2003) and Forster and Simon (2006) who give hard-
ness results with comparable margin bounds, but at much
lower error rates. Warmuth and Vishwanathan (2005) pro-
vide lower bounds for kernels with similar error rates, but
their results hold only for regression (not hinge loss). Note
that given access to unlabeled data, any similarity function
under the definition of Balcan and Blum (2006) can be con-
verted to a kernel function with approximately the same pa-
rameters. Thus, our lower bound for kernel functions applies
to that definition as well. These results establish a gap in
the representational power of similarity functions under our
new definition relative to the representational power of either
kernels or similarity functions under the old definition.

Both our new definition and that of Balcan and Blum
(2006) are based on the idea of a similarity function being
good for a learning problem if there exists a non-negligible
subsetR of “reasonable points” such that most examplesx
are on average more similar to the reasonable points of their
own label than to the reasonable points of the other label.
(Formally, the “reasonableness” of an example may be given
by a weight between 0 and 1 and viewed as probabilistic or
fractional.) However, the previous definition combined the
two quantities of interest—the probability mass of reason-
able points and the gap in average similarity to reasonable
points of each label—into a single margin parameter. The
new notion keeps these quantities distinct, which turns outto
make a substantial difference both in terms of broadness of
applicability and in terms of the labeled sample complexity
bounds that result.

Note that we distinguish between labeled and unlabeled
sample complexities: while the total number of examples
needed depends polynomially on the two quantities of in-
terest, the number of labeled examples depends only log-
arithmically on the probability mass of the reasonable set
and therefore may be much smaller under the new definition.
This is especially beneficial in situations in which unlabeled
data is plentiful (or the distribution is known and so unla-
beled data is free), but labeled data is scarce.

Another way to view the distinction between the two no-
tions of similarity is that we now require good predictions us-
ing a weight function with bounded expectation, rather than
bounded supremum: compare the old Definition 4 and the

variant of the new definition given as Definition 17. (We do
in fact still have a bound on the supremum, but this bound
only affects the labeled sampled complexity logarithmically.)
In Theorem 19 we make the connection between the two ver-
sions of the new definition explicit.

Conditioning on a subset of reasonable points, or equiv-
alently bounding the expectation of the weight function, al-
lows us to base our learnability results onL1-regularized lin-
ear learning. The actual learning rule we get, given in Equa-
tion (4.6), is very similar, and even identical, to learningrules
suggested by various authors and commonly used in prac-
tice as an alternative to Support Vector Machines (Bennett
& Campbell, 2000; Roth, 2001; Guigue et al., 2005; Singer,
2000; Tipping, 2001). Here we give a firm theoretical basis
to this learning rule, with explicit learning guarantees, and
relate it to simple and intuitive properties of the similarity
function or kernel used (see the discussion at the end of Sec-
tion 4).

Structure of this paper: After presenting background on
the previous definitions and their relation to kernels in Sec-
tion 2, we present our new notion of a good similarity func-
tion in Section 3. In Section 4 we show that our new broader
notions still imply learnability. In Section 5 we give our sep-
aration results, showing that our new notion is strictly more
general than the notion of a large margin kernel. In Section 6
we show that any large margin kernel is also a good similar-
ity function in our sense, and finally in Section 7 we discuss
learning with multiple similarity functions.

2 Background and Notation

We consider a learning problem specified as follows. We are
given access to labeled examples(x, ℓ) drawn from some
distribution P over X × {−1, 1}, whereX is an abstract
instance space. We will sometimes useD to denote the dis-
tribution overx, and for simplicity, we will assume a deter-
ministic target function, so that(x, ℓ) = (x, ℓ(x)). The goal
of a learning algorithm is to produce a classification function
g : X → {−1, 1} whose error ratePr(x,ℓ)∼P [g(x) 6= ℓ] is
low. We will consider learning algorithms whose only access
to pointsx is through a pairwise similarity functionK(x, x′)
mapping pairs of points to values in the range[−1, 1]. Specif-
ically,

Definition 1 A similarity functionover X is any pairwise
functionK : X×X → [−1, 1]. We say thatK is a symmetric
similarity function ifK(x, x′) = K(x′, x) for all x, x′.

Our goal is to describe “goodness” properties that are
sufficient for a similarity function to allow one to learn well
that ideally are intuitive and subsume the usual notion of
good kernel function.

A similarity function K is a valid kernel function if it
is positive-semidefinite, i.e. there exists a functionφ from
the instance spaceX into some (implicit) Hilbert “φ-space”
such thatK(x, x′) = 〈φ(x), φ(x′)〉. See, e.g., Smola and
Schölkopf (2002) for a discussion on conditions for a map-
ping being a kernel function. Throughout this work, and
without loss of generality, we will only consider kernels such
thatK(x, x) ≤ 1 for all x ∈ X (any kernelK can be con-
verted into this form by, for instance, defining̃K(x, x′) =



K(x, x′)/
√

K(x, x)K(x′, x′)). We say thatK is (ǫ, γ)-
kernel goodfor a given learning problemP if there exists
a vectorβ in the φ-space that has errorǫ at marginγ; for
simplicity we consider only separators through the origin.
Specifically:

Definition 2 K is an (ǫ, γ)-good kernel function if there
exists a vectorβ, ‖β‖ ≤ 1 such that

Pr
(x,ℓ)∼P

[ℓ〈φ(x), β〉 ≥ γ] ≥ 1 − ǫ.

We say thatK is γ-kernel goodif it is (ǫ, γ)-kernel goodfor
ǫ = 0; i.e., it has zero error at marginγ.

Given a kernel that is(ǫ, γ)-kernel-good for some learn-
ing problemP , a predictor with error rate at mostǫ + ǫacc
can be learned (with high probability) from a sample of1

Õ
(

(ǫ + ǫacc)/(γ2ǫ2acc)
)

random examples fromP by min-
imizing the number of marginγ violations on the sample
(McAllester, 2003). However, minimizing the number of
margin violations on the sample is a difficult optimization
problem: it is NP-hard, and even NP-hard to approximate
(Arora et al., 1997; Feldman et al., 2006; Guruswami &
Raghavendra, 2006). Instead, it is common to minimize the
so-calledhinge lossrelative to a margin.

Definition 3 We say thatK is (ǫ, γ)-kernel goodin hinge-
lossif there exists a vectorβ, ‖β‖ ≤ 1 such that

E(x,ℓ)∼P [[1 − ℓ〈β, φ(x)〉/γ]+] ≤ ǫ,

where[1 − z]+ = max(1 − z, 0) is the hinge loss.

Given a kernel that is(ǫ, γ)-kernel-good in hinge-loss, a
predictor with error rate at mostǫ + ǫacc can be efficiently
learned from a sample of sizẽO

(

(ǫ + ǫacc)/(γ2ǫ2acc)
)

with
high probability by minimizing the average hinge loss rela-
tive to marginγ on the sample (Bartlett & Mendelson, 2003).

We now present the definition of a good similarity func-
tion from (Balcan & Blum, 2006; Srebro, 2007).

Definition 4 (Previous, Margin Violations) A pairwise func-
tion K is an (ǫ, γ)-good similarity function for a learning
problemP if there existsa weighting functionw : X →
[0, 1] such that at least a1 − ǫ probability mass of examples
(x, ℓ) satisfy:

E(x′,ℓ′)∼P [ℓℓ′w(x′)K(x, x′)] ≥ γ. (2.1)

That is, if the underlying distribution is 50/50 positive and
negative, this is saying that the average weighted similar-
ity of an examplex to random examplesx′ of its own label
should be2γ larger than the average weighted similarity of
x to random examplesx′ of the other label.

Balcan and Blum (2006) show how a predictor with error
rate at mostǫ+ǫacccan be learned from̃O

(

(ǫ + ǫacc)/(γ2ǫ2acc)
)

samples using an(ǫ, γ)-good similarity functionK: First
draw fromP an (unlabeled) sampleS = {x′

1, . . . , x
′
d} of

d = (4/γ)2 ln(4/(δǫacc)) random “landmarks”, and con-
struct the mappingφS : X → R

d defined asφS
i(x) =

1√
d
K(x, x′

i), i ∈ {1, . . . , d}. With probability at least1 − δ

1The Õ(·) notation hides logarithmic factors in the arguments
and in the failure probability.

over the random sampleS, the induced distributionφS(P ) in
Rd has a separator of error at mostǫ+ǫacc/2 at margin at least
γ/2. Now, draw a fresh sample, map it into the transformed
space usingφS , and then learn a good linear separator in the
transformed space. The total sample complexity is domi-
nated by theÕ

(

(ǫ + ǫacc)d/ǫ2acc)
)

= Õ
(

(ǫ + ǫacc)/(γ2ǫ2acc)
)

sample complexity of learning in the transformed space, yield-
ing the same overall sample complexity as with an(ǫ, γ)-
good kernel function.

The above bounds refer to learning a linear separator by
minimizing the error over the training sample. As mentioned
earlier, this minimization problem is NP-hard even to ap-
proximate. Again, we can instead consider the hinge-loss
rather than the number of margin violations. Balcan and
Blum (2006) and Srebro (2007) therefore provide the fol-
lowing hinge-loss version of their definition:

Definition 5 (Previous, Hinge Loss)A similarity functionK
is an (ǫ, γ)-good similarity function in hinge loss for a
learning problemP if there exists a weighting functionw(x′)
∈ [0, 1] for all x′ ∈ X such that

E(x,ℓ)∼P

[

[1 − ℓg(x)/γ]+

]

≤ ǫ, (2.2)

whereg(x) = E(x′,ℓ′)∼P [ℓ′w(x′)K(x, x′)] is the similarity-
based prediction made usingw(), and recall that[1− z]+ =
max(0, 1 − z) is the hinge-loss.

The same algorithm as above, but now using SVM to mini-
mize hinge-loss in the transformed space, allows one to effi-
ciently use a similarity function satisfying this definition to
find a predictor of errorǫ+ǫaccusingÕ

(

(ǫ + ǫacc)/(γ2ǫ2acc)
)

examples.

3 New Notions of Good Similarity Functions

In this section we provide new notions of good similarity
functions generalizing Definitions 4 and 5 that we prove have
a number of important advantages.

In the definitions of Balcan and Blum (2006), a weight
w(x′) ∈ [0, 1] was used in defining the quantity of interest
E(x′,ℓ′)∼P [ℓ′w(x′)K(x, x′)]. Here, it will instead be more
convenient to think ofw as the expected value of an indica-
tor random variableR(x) ∈ {0, 1} where we will view the
(probabilistic) set{x : R(x) = 1} as a set of “reasonable
points”. Formally, we will then be sampling from the joint
distributionP (x, ℓ(x), R(x)) = P (x, ℓ(x))P (R(x)|x) but
we will sometimes omit the explicit dependence onR when
it is clear from context. Our new definition is now as follows.

Definition 6 (Main, Margin Violations) A similarity func-
tion K is an(ǫ, γ, τ)-good similarity function for a learn-
ing problemP if thereexistsa (random) indicator function
R(x) defining a (probabilistic) set of “reasonable points”
such that the following conditions hold:

1. A1 − ǫ probability mass of examples(x, ℓ) satisfy

E(x′,ℓ′)∼P [ℓℓ′K(x, x′) | R(x′)] ≥ γ (3.1)

2. Prx′ [R(x′)] ≥ τ .



If the reasonable setR is 50/50 positive and negative (i.e.,
Prx′ [ℓ(x′) = 1|R(x′)] = 1/2), we can interpret the condi-
tion as stating that most examplesx are on average2γ more
similar to random reasonable examplesx′ of their own label
than to random reasonable examplesx′ of the other label.
The second condition is that at least aτ fraction of the points
should be reasonable.

We also consider a hinge-loss version of the definition:

Definition 7 (Main, Hinge Loss) A similarity functionK is
an (ǫ, γ, τ)-good similarity function in hinge loss for a
learning problemP if thereexistsa (probabilistic) setR of
“reasonable points” such that the following conditions hold:

1. We have

E(x,ℓ)∼P

[

[1 − ℓg(x)/γ]+

]

≤ ǫ, (3.2)

whereg(x) = E(x′,ℓ′,R(x′))[ℓ
′K(x, x′) | R(x′)].

2. Prx′ [R(x′)] ≥ τ .

It is not hard to see that an(ǫ, γ)-good similarity function
under Definitions 4 and 5 is also an(ǫ, γ, γ)-good similarity
function under Definitions 6 and 7, respectively. In the re-
verse direction, an(ǫ, γ, τ)-good similarity function under
Definitions 6 and 7 is an(ǫ, γτ)-good similarity function un-
der Definitions 4 and 5 (respectively). For formal proofs, see
Theorems 23 and 24 in Appendix A.

As we will see, under both old and new definitions, the
number of labeled samples required for learning grows as
1/γ2. The key distinction between them is that we introduce
a new parameter,τ , that primarily affects the number ofun-
labeledexamples required. This decoupling of the number
of labeled and unlabeled examples enables us to handle a
wider variety of situations with an improved labeled sample
complexity. In particular, in translating from a kernel to a
similarity function, we will find that much of the loss can
now be placed into theτ parameter.

In the following we prove three types of results about
this new notion of similarity. The first is that similarity func-
tions satisfying these conditions are sufficient for learning
(in polynomial time in the case of Definition 7), with a sam-
ple size ofO( 1

γ2 ln( 1
γτ )) labeled examples andO( 1

τγ2 ) unla-
beled examples. This is particularly useful in settings where
unlabeled data is plentiful and cheap—such settings are in-
creasingly common in learning applications (Mitchell, 2006;
Chapelle et al., 2006)—or for distribution-specific learning
where unlabeled data may be viewed as free.

The second main theorem we prove is thatanyclassC,
over a sufficiently unconcentrated distribution on examples,
has a(0, 1, 1/(2|C|))-good similarity function (under either
definition 6 or 7), whereas there exist classesC that have
no (0.5, 8/

√

|C|)-good kernel functions in hinge loss. This
provides a clear separation between the similarity and kernel
notions in terms of the parameters controlling labeled sam-
ple complexity. The final main theorem we prove is that any
large-margin kernel function also satisfies our similaritydefi-
nitions, with substantially less loss in the parameters control-
ling labeled sample complexity compared to the definition of
(Balcan & Blum, 2006). For example, ifK is a(0, γ)-good
kernel, then it is an(ǫ′, ǫ′γ2)-good similarity function under

Definitions 4 and 5, and this is tight (Srebro, 2007), result-
ing in a sample complexity of̃O

(

1/(γ4ǫ3)
)

to achieve error
ǫ. However, we can showK is an(ǫ′, γ2, ǫ′)-good similar-
ity function under the new definition,2 resulting in a sample
complexity of onlyÕ

(

1/(γ4ǫ)
)

.

4 Good Similarity Functions Allow Learning
The basic approach proposed for learning using a similarity
function is similar to that of Balcan and Blum (2006). First,a
feature space is constructed, consisting of similarities to ran-
domly chosen landmarks. Then, a linear predictor is sought
in this feature space. However, under the previous defini-
tions, we were guaranteed largeL2-margin in this feature
space, whereas under the new definitions we are guaranteed
largeL1-margin in the feature space.

After recalling the notion of anL1-margin and its as-
sociated learning guarantee, we first establish that, for an
(ǫ, γ, τ)-good similarity function, the feature map constructed
using Õ

(

1/(τγ2)
)

landmarks indeed has (with high prob-
ability) a largeL1-margin separator. Using this result, we
then obtain a learning guarantee by following the strategy
outlined above.

In speaking ofL1-marginγ, we refer to separation with
a marginγ by a unit-L1-norm linear separator, in a unit-
L∞-bounded feature space. Formally, letφ : x 7→ φ(x),
φ(x) ∈ R

d, with ‖φ(x)‖∞ ≤ 1 be a mapping of the data
to a d-dimensional feature space. We say that a linear pre-
dictor α ∈ R

d, achieves errorǫ relative toL1-marginγ if
Prx,ℓ(x)(ℓ(x)〈α, φ(x)〉 ≥ γ) ≥ 1 − ǫ (this is the standard
margin constraint) and‖α‖1 = 1.

Given ad-dimensional feature map under which there
exists some (unknown) zero-error linear separator withL1-
marginγ, we can efficiently learn a predictor with error at

mostǫacc usingO
(

log d
ǫaccγ2

)

examples (with high probability).

This can be done using the Winnow algorithm with a stan-
dard online-to-batch conversion (Littlestone, 1989). If we
can only guarantee the existence of a separator with error
ǫ > 0 relative toL1-marginγ, then a predictor with error
ǫ + ǫacc can be theoretically learned (with high probability)
from a sample ofÕ

(

(log d)/(γ2ǫ2acc)
)

examples by mini-
mizing the number ofL1-marginγ violations on the sample
(Zhang, 2002).

We are now ready to state the main result enabling learn-
ing using good similarity functions:

Theorem 8 Let K be an(ǫ, γ, τ)-good similarity function
for a learning problemP . Let S = {x′

1, x
′
2, . . . , x

′
d} be a

(potentially unlabeled) sample of

d =
2

τ

(

log(2/δ) + 8
log(2/δ)

γ2

)

landmarks drawn fromP . Consider the mappingφS : X →
R

d defined as follows:φS
i(x) = K(x, x′

i), i ∈ {1, . . . , d}.
Then, with probability at least1− δ over the random sample
S, the induced distributionφS(P ) in Rd has a separator of
error at mostǫ + δ relative toL1 margin at leastγ/2.

2Formally, the translation produces an(ǫ′, γ2/c, ǫ′c)-good sim-
ilarity function for somec ≤ 1. However, smaller values ofc only
improve the bounds.



Proof: First, note that since|K(x, x)| ≤ 1 for all x, we have
∥

∥φS(x)
∥

∥

∞ ≤ 1.
Consider the linear separatorα ∈ R

d, given byαi =
ℓ(x′

i)R(x′
i)/d1 whered1 =

∑

i R(x′
i) is the number of land-

marks withR(x′) = 1. This normalization ensures‖α‖1 =
1. Note that we takeR(x′

i) to be drawn jointly withx′
i. If it

is random, than it is randomly instantiated to either zero or
one.

We have, for anyx, ℓ(x):

ℓ(x)
〈

α, φS(x)
〉

=

∑d
i=1 ℓ(x)ℓ(x′

i)R(x′
i)K(x, x′

i)

d1
(4.1)

This is an empirical average ofd1 terms

−1 ≤ ℓ(x)ℓ(x′)K(x, x′) ≤ 1

for which R(x′) = 1. For anyx we can apply Hoeffding’s
inequality, and obtain that with probability at least1 − δ2/2
over the choice ofS, we have:

ℓ(x)
〈

α, φS(x)
〉

≥

Ex′ [K(x, x′)ℓ(x′)ℓ(x)|R(x′)] −

√

2 log( 2
δ2 )

d1
(4.2)

Since the above holds for anyx with probability at least
1−δ2/2 overS, it also holds with probability at least1−δ2/2
over the choice ofx andS. We can write this as:

ES∼P d

[

Pr
x∼P

( violation)
]

≤ δ2/2 (4.3)

where “violation” refers to violating (4.2). Applying Markov’s
inequality we get that with probability at least1 − δ/2 over
the choice ofS, at mostδ fraction of points violate (4.2).
Recalling Definition 6, at most an additionalǫ fraction of the
points violate (3.1). But for the remaining1− ǫ− δ fraction
of the points, for which both (4.2) and (3.1) hold, we have:

ℓ(x)
〈

α, φS(x)
〉

≥ γ −

√

2 log( 1
δ2 )

d1
. (4.4)

To bound the second term we need an upper bound ond1, the
number of reasonable landmarks. The probability of each
of the d landmarks being reasonable is at leastτ and so
the number of reasonable landmarks follows a Binomial dis-
tribution, ensuringd1 ≥ 8 log(1/δ)/γ2 with probability at

least1 − δ/2. When this happens, we have
√

2 log( 1

δ2
)

d1

≤
γ/2. We get then, that with probability at least1 − δ, for at
least1 − ǫ − δ of the points:

ℓ(x)
〈

α, φS(x)
〉

≥ γ/2. (4.5)

For the realizable(ǫ = 0) case, we obtain:

Corollary 9 If K is an(0, γ, τ)-good similarity function then
with high probability we can efficiently find a predictor with
error at mostǫacc from an unlabeled sample of sizedu =

Õ
(

1
γ2τ

)

and from a labeled sample of sizedl = Õ
(

log du

γ2ǫacc

)

.

Proof: We have proved in Theorem 8 that ifK is(0, γ, τ)-
good similarity function, then with high probability thereex-
ists a low-error (at mostδ) large-margin (at leastγ2 ) separa-
tor in the transformed space under mappingφS . Thus, all we
need now to learn well is to draw a new fresh sampleS̃, map
it into the transformed space usingφS , and then apply a good
algorithm for learning linear separators in the new space that
produces a hypothesis of error at mostǫacc with probability
at least1 − δ. In particular, remember that the vectorα has
error at mostδ atL1 marginγ/2 overφS(P ), where the map-
pingφS produces examples ofL∞ norm at most1. In order
to enjoy the better learning guarantees of the separable case,
we will set δ small enough so that no bad points appear in
the sample. The Corollary now follows from theL1-margin
learning guarantee in the separable case, discussed earlier in
the Section.

For the general(ǫ > 0) case, Theorem 8 implies that by

following our two-stage approach, first usingdu = Õ
(

1
γ2τ

)

unlabeled examples as landmarks in order to constructφS(·),
and then using a fresh sample of sizedl = Õ

(

1
γ2ǫ2acc

ln du

)

to

learn a low-errorL1-marginγ separator inφS(·), we have:

Corollary 10 If K is a(ǫ, γ, τ)-good similarity function then
by minimizingL1 margin violations we can find a predictor
with error at mostǫacc from an unlabeled sample of sizedu =

Õ
(

1
γ2τ

)

and from a labeled sample of sizedl = Õ
(

log du

γ2ǫ2acc

)

.

The procedure described above, although well defined,
involves a difficult optimization problem: minimizing the
number ofL1-margin violations. In order to obtain a compu-
tationally tractable procedure, we consider the hinge-loss in-
stead of the margin error. In a feature space with‖φ(x)‖∞ ≤
1 as above, we say that a unit-L1-norm predictorα, ‖α‖1 =
1, has expected hinge-lossE [[1 − ℓ(x)〈α, φ(x)〉/γ]+] rel-
ative toL1-marginγ. Now, if we know there is some (un-
known) predictor with hinge-lossǫ relativeL1-marginγ, than
a predictor with errorǫ + ǫacc can be learned (with high
probability) from a sample of̃O

(

log d/(γ2ǫ2acc)
)

examples
by minimizing the empirical average hinge-loss relative to
L1-marginγ on the sample (Zhang, 2002).

Before proceeding to discussing the optimization prob-
lem of minimizing the average hinge-loss relative to a fixed
L1-margin, let us establish the analogue of Theorem 8 for
the hinge-loss:

Theorem 11 Let K be an(ǫ, γ, τ)-good similarity function
in hinge-loss for a learning problemP . For anyǫ1 > 0 and
0 < λ < γǫ1/4 let S = {x′

1, x
′
2, . . . , x

′
d} be a sample

of sized = 2
τ

(

log(2/δ) + 16 log(2/δ)/(ǫ1γ)2
)

drawn from
P . With probability at least1 − δ over the random sample
S, the induced distributionφS(P ) in Rd, for φS as defined
in Theorem 8, has a separator achieving hinge-loss at most
ǫ + ǫ1 at marginγ.

Proof: We use the same construction as in Theorem 8.



Corollary 12 K is an (ǫ, γ, τ)-good similarity function in
hinge loss then we can efficiently find a predictor with er-
ror at mostǫ + ǫacc from an unlabeled sample of sizedu =

Õ
(

1
γ2ǫ2accτ

)

and from a labeled sample of sizedl = Õ
(

log du

γ2ǫ2acc

)

.

For the hinge-loss, our two stage procedure boils down
to solving the following optimization problem w.r.t.α:

minimize
dl

∑

i=1



1 −
du
∑

j=1

αjℓ(xi)K(xi, x
′
j)





+

s.t.
du
∑

j=1

|αj | ≤ 1/γ

(4.6)

This is a linear program and can thus be solved in polynomial
time, establishing the efficiency in Corollary 12.

An optimization problem similar to (4.6), though usu-
ally with the same set of points used both as landmarks and
as training examples, is actually fairly commonly used as a
learning rule in practice (Bennett & Campbell, 2000; Roth,
2001; Guigue et al., 2005). Such a learning rule is typi-
cally discussed as an alternative to SVMs. In fact, Tipping
(2001) suggest the Relevance Vector Machine (RVM) as a
Bayesian alternative to SVMs. The MAP estimate of the
RVM is given by an optimization problem similar to (4.6),
though with a loss function different from the hinge loss (the
hinge-loss cannot be obtained as a log-likelihood). Similarly,
Singer (2000) suggests Norm-Penalized Leveraging Proce-
dures as a boosting-like approach that mimics SVMs. Again,
although the specific loss functions studied by Singer are dif-
ferent from the hinge-loss, the method (with a norm expo-
nent of 1, as in Singer’s experiments) otherwise corresponds
to a coordinate-descent minimization of (4.6). In both cases,
no learning guarantees are provided.

The motivation for using (4.6) as an alternative to SVMs
is usually that theL1-regularization onα leads to sparsity,
and hence to “few support vectors” (although Vincent and
Bengio (2002), who also discuss (4.6), argue for more direct
ways of obtaining such sparsity), and also that the linear pro-
gram (4.6) might be easier to solve than the SVM quadratic
program. However, we are not aware of a previous discus-
sion on how learning using (4.6) relates to learning using
a SVM, or on learning guarantees using (4.6) in terms of
properties of the similarity functionK. Guarantees solely in
terms of the feature space in which we seek lowL1-margin
(φS in our notation) are problematic, as this feature space is
generated randomly from data.

In fact, in order to enjoy the SVM guarantees while using
L1 regularization to obtain sparsity, some authors suggest
regularizing both theL1 norm ‖α‖1 of the coefficient vec-
tor α (as in (4.6)), and the norm‖β‖ of the corresponding
predictorβ =

∑

j αjφ(x′
j) in the Hilbert space implied by

K, whereK(x, x′) = 〈φ(x), φ(x′)〉, as when using a SVM
with K as a kernel (Osuna & Girosi, 1999; Gunn & Kandola,
2002).

Here, we provide a natural condition on the similarity
functionK (Definition 7), that justifies the learning rule (4.6).
Furthermore, we show (in Section 6) than any similarity func-
tion that is good as a kernel, and can ensure SVM learning,

is also good as a similarity function and can thus also ensure
learning using the learning rule (4.6) (though possibly with
some deterioration of the learning guarantees). These argu-
ments can be used to justify (4.6) as an alternative to SVMs.

Before concluding this discussion, we would like to men-
tion that Girosi (1998) previously established a rather differ-
ent connection between regularizing theL1 norm‖α‖1 and
regularizing the norm of the corresponding predictorβ in the
implied Hilbert space. Girosi considered a hard-margin SVR
(Support Vector Regression Machine, i.e. requiring each pre-
diction to be within(ℓ(x)−ǫ, ℓ(x)+ǫ)), in the noiseless case
where the mappingx 7→ ℓ(x) is in the Hilbert space. In this
setting, Girosi showed that a hard-margin SVR is equivalent
to minimizing the distancein the implied Hilbert spacebe-
tween the correct mappingx 7→ ℓ(x) and the predictions
x 7→ ∑

j αjK(x, x′
j), with anL1 regularization term‖α‖1.

However, this distance between prediction functions is very
different than the objective in (4.6), and again refers backto
the implied feature space which we are trying to avoid.

5 Separation Results

In this Section, we show an example of a finite concept class
for which no kernel yields good learning guarantees when
used as a kernel, but for which there does exist a good simi-
larity function yielding the optimal sample complexity. That
is, we show that some concept classes cannot be reasonably
represented by kernels, but can be reasonably represented by
similarity functions.

Specifically, we consider a classC of n pairwise uncor-
related functions. This is a finite class of cardinality|C| = n,
and so if the target belongs toC thenO(1

ǫ log n) samples are
enough for learning a predictor with errorǫ.

Indeed, we show here that forany concept classC, so
long as the distributionD is sufficiently unconcentrated, there
exists a similarity function that is(0, 1, 1

2|C|)-good under our
definition for everyf ∈ C. This yields a (labeled) sam-
ple complexityO(1

ǫ log |C|) to achieve errorǫ, matching the
ideal sample complexity. In other words, for distribution-
specific learning (where unlabeled data may be viewed as
free) and finite classes, there is nointrinsic loss in sample-
complexity incurred by choosing to learn via similarity func-
tions. In fact, we also extend this result to classes of bounded
VC-dimension rather than bounded cardinality.

In contrast, we show that ifC is a class ofn functions
that are pairwise uncorrelated with respect to distribution D,
then no kernel is (ǫ, γ)-good in hinge-loss for allf ∈ C
even forǫ = 0.5 andγ = 8/

√
n. This extends work of

(Ben-David et al., 2003; Forster & Simon, 2006) who give
hardness results with comparable margin bounds, but at a
much lower error rate. Thus, this shows thereis an intrinsic
loss incurred by using kernels together with margin bounds,
since this results in a sample complexity bound of at least
Ω(|C|), rather than the idealO(log |C|).

We thus demonstrate a gap between the kind of prior
knowledge can be represented with kernels as opposed to
general similarity functions and demonstrate that similarity
functions are strictly more expressive (up to the degradation
in parameters discussed earlier).

Definition 13 We say that a distributionD over X is α-



unconcentratedif the probability mass on any givenx ∈ X
is at mostα.

Theorem 14 For any class finite class of functionsC and
for any 1/|C|-unconcentrated distributionD over the in-
stance spaceX , there exists a similarity functionK that is a
(0, 1, 1

2|C|)-good similarity function for allf ∈ C.

Proof: Let C = {f1, . . . , fn}. Now, let us partitionX into
n regionsRi of at least1/(2n) probability mass each, which
we can do sinceD is 1/n-unconcentrated. Finally, define
K(x, x′) for x′ in Ri to befi(x)fi(x

′). We claim that for
this similarity function,Ri is a set of “reasonable points”
establishing marginγ = 1 for targetfi. Specifically,

E[K(x, x′)fi(x)fi(x
′)|x′ ∈ Ri]

= E[fi(x)fi(x
′)fi(x)fi(x

′)]

= 1.

SincePr(Ri) ≥ 1
2n , this implies that under distributionD,

K is a(0, 1, 1
2n )-good similarity function for allfi ∈ C.

Note 1: We can extend this argument to any classC of
small VC dimension. In particular, for any distributionD,
the classC has anǫ-coverCǫ of size(1/ǫ)O(d/ǫ), whered
is the VC-dimension ofC (Benedek & Itai, 1988). By The-
orem 14, we can have a(0, 1, 1/|Cǫ|)-good similarity func-
tion for the coverCǫ, which in turn implies an(ǫ, 1, 1/|Cǫ|)-
good similarity function for the original set (even in hinge
loss sinceγ = 1). Plugging in our bound on|Cǫ|, we get an
(ǫ, 1, ǫO(d/ǫ))-good similarity function forC. Thus, the la-
beled sample complexity we get for learning with similarity
functions is onlyO((d/ǫ) log(1/ǫ)), and again there is no
intrinsic loss in sample complexity bounds due to learning
with similarity functions.

Note 2: The need for the underlying distribution to be un-
concentrated stems from our use of this distribution for both
labeled and unlabeled data. We could further extend our
definition of “good similarity function” to allow for the un-
labeled pointsx′ to come from some other distributionD′

given apriori, such as the uniform distribution over the in-
stance spaceX . Now, the expectation overx′ and the prob-
ability mass ofR would both be with respect toD′, and the
generic learning algorithm would draw pointsx′

i from D′

rather thanD. In this case, we would only needD′ to be
unconcentrated, rather thanD.

We now prove our lower bound for margin-based learn-
ing with kernels.

Theorem 15 Let C be a class ofn pairwise uncorrelated
functions over distributionD. Then, there is no kernel that
for all f ∈ C is (ǫ, γ)-good in hinge-loss even forǫ = 0.5
andγ = 8/

√
n.

Proof: Let C = {f1, . . . , fn}. We begin with the basic
fourier setup (Linial et al., 1989; Mansour, 1994). Given
two functionsf andg, define〈f, g〉 = Ex[f(x)g(x)] to be
their correlation with respect to distributionD. (This is their
inner-product if we viewf as a vector whosejth coordinate

is f(xj)[D(xj)]
1/2). Because the functionsfi ∈ C are pair-

wise uncorrelated, we have〈fi, fj〉 = 0 for all i 6= j, and
because thefi are boolean functions we have〈fi, fi〉 = 1
for all i. Thus they form at least part of an orthonormal ba-
sis, and for any hypothesish (i.e. any mappingX → {±1})
we have

∑

fi∈C

〈h, fi〉2 ≤ 1.

So, this implies
∑

fi∈C

|〈h, fi〉| ≤
√

n.

or equivalently

Efi∈C |〈h, fi〉| ≤ 1/
√

n. (5.1)

In other words, for any hypothesish, if we pick the target
at random fromC, the expected magnitude of the correlation
betweenh and the target is at most1/

√
n.

We now consider the implications of having a good ker-
nel. Suppose for contradiction that there exists a kernelK
that is(0.5, γ)-good in hinge loss for everyfi ∈ C. What
we will show is this implies that for anyfi ∈ C, the ex-
pected value of|〈h, fi〉| for a randomlinear separatorh in
the φ-space is greater thanγ/8. If we can prove this, then
we are done because this implies there mustexistanh that
hasEfi∈C |〈h, f〉| > γ/8, which contradicts equation (5.1)
for γ = 8/

√
n.

So, we just have to prove the statement about random lin-
ear separators. Letw∗ denote the vector in theφ-space that
has hinge-loss at most0.5 at marginγ for target functionfi.
For any examplex, defineγx to be the margin ofφ(x) with
respect tow∗, and defineαx = sin−1(γx) to be the angular
margin ofφ(x) with respect tow∗.3 Now, consider choos-
ing a random vectorh in the φ-space, where we associate
h(x) = sign(h · φ(x)). Since we only care about the abso-
lute value|〈h, fi〉|, and since〈−h, fi〉 = −〈h, fi〉, it suffices
to show thatEh[〈h, fi〉 | h · w∗ ≥ 0] > γ/8. We do this as
follows.

First, for any examplex, we claim that:

Pr
h

[(h(x) 6= fi(x)|h · w∗ ≥ 0] = 1/2 − αx/π. (5.2)

This is because we look at the2-dimensional plane defined
byφ(x) andw∗, and consider the half-circle of‖h‖ = 1 such
thath ·w∗ ≥ 0, then (5.2) is the portion of the half-circle that
labelsφ(x) incorrectly. Thus, we have:

Eh[err(h)|h · w∗ ≥ 0] = Ex[1/2 − αx/π],

and so, using〈h, fi〉 = 1 − 2 err(h), we have:

Eh[〈h, fi〉 | h · w∗ ≥ 0] = 2Ex[αx]/π.

Finally, we just need to relate angular margin and hinge
loss: if Lx is the hinge-loss ofφ(x), then a crude bound on
αx is

αx ≥ γ(1 − (π/2)Lx).

3So,αx is a bit larger in magnitude thanγx. This works in our
favor when the margin is positive, and we just need to be careful
when the margin in negative.



Since we assumed thatEx[Lx] ≤ 0.5, we have:

Ex[αx] ≥ γ(1 − π/4).

Putting this together we get expected magnitude of correla-
tion of a random halfspace is at least2γ(1 − π/4)/π > γ/8
as desired, proving the theorem.

An example of a classC satisfying the above conditions
is the class of parity functions over{0, 1}lgn, which are pair-
wise uncorrelated with respect to the uniform distribution.
Note that the uniform distribution is1/|C|-unconcentrated,
and thus thereis a good similarity function. (In particular,
one could useK(xi, xj) = fj(xi)fj(xj), wherefj is the
parity function associated with indicator vectorxj .)

We can extend Theorem 15 to classes of large Statistical
Query dimension as well. In particular, the SQ-dimension
of a classC with respect to distributionD is the sized of
the largest set of functions{f1, f2, . . . , fd} ⊆ C such that
|〈fi, fj〉| ≤ 1/d3 for all i 6= j (Blum et al., 1994). In this
case, we just need to adjust the Fourier analysis part of the
argument to handle the fact that the functions may not be
completely uncorrelated.

Theorem 16 LetC be a class of functions of SQ-dimension
d with respect to distributionD. Then, there is no kernel that
for all f ∈ C is (ǫ, γ)-good in hinge-loss even forǫ = 0.5

andγ = 16/
√

d.

Proof: Let f1, . . . , fd bed functions inC such that|〈fi, fj〉|
≤ 1/d3 for all i 6= j. We can define an orthogonal set
of functionsf ′

1, f
′
2, . . . , f

′
d as follows: letf ′

1 = f1, f ′
2 =

f2 − f1〈f2, f1〉, and in general letf ′
i be the portion offi or-

thogonal to the space spanned byf1, . . . , fi−1. (That is,f ′
i =

fi − proj(fi, span(f1, . . . , fi−1)), where “proj” is orthogo-
nal projection.) Since thef ′

i are orthogonal and have length
at most 1, for any boolean functionh we have

∑

i 〈h, f ′
i〉

2 ≤
1 and thereforeEi|〈h, f ′

i〉| ≤ 1/
√

d. Finally, since〈fi, fj〉 ≤
1/d3 for all i 6= j, one can show this implies that|fi − f ′

i | ≤
1/d for all i. So,Ei|〈h, fi〉| ≤ 1/

√
d + 1/d ≤ 2/

√
d. The

rest of the argument in the proof of Theorem 15 now applies
with γ = 16/

√
d.

For example, the class of size-n decision trees over{0, 1}n

hasnΩ(log n) pairwise uncorrelated functions over the uni-
form distribution (in particular, any parity oflog n variables
can be written as ann-node decision tree). So, this means
we cannot have a kernel with margin1/poly(n) for all size-
n decision trees over{0, 1}n. However, wecanhave a simi-
larity function with margin1, though theτ parameter (which
controls running time) will be exponentially small.

6 Relation between kernels and similarity
functions

As is shown in the Appendix (Theorem 25), if a similarity
function K is indeed a kernel, and it is(ǫ, γ, τ)-good as a
similarity function (possibly in hinge-loss), than it is also
(ǫ, γ)-good as a kernel (respectively, in hinge loss). That
is, although the notion of a good similarity function is more
widely applicable, for those similarity functions that arepos-
itive semidefinite, a good similarity function is also a good

kernel. We now show the converse: if a kernel function is
good in the kernel sense, it is also good in the similarity
sense, though with some degradation of the margin. This
degradation is much smaller than the one incurred previously
by Balcan and Blum (2006) and Srebro (2007). Specifically,
we can show that ifK is a (0, γ)-good kernel, thenK is
(ǫ, γ2, ǫ)-good similarity function for anyǫ (formally, it is
(ǫ, γ2/c, ǫc)-good for somec ≤ 1).

To prove this relationship, we introduce an intermediate
notion of a good similarity function.

Definition 17 (Intermediate, Margin Violations) A similar-
ity functionK is astrongly (ǫ, γ, M)-good similarity func-
tion for a learning problemP if thereexistsa bounded weight-
ing functionw over X , w(x′) ∈ [0, M ] for all x′ ∈ X ,
E[w] ≤ 1 such that at least a1 − ǫ probability mass of ex-
amplesx satisfy:

Ex′∼P [ℓ(x)ℓ(x′)w(x′)K(x, x′)] ≥ γ. (6.1)

Definition 18 (Intermediate, Hinge Loss) A similarity func-
tion K is a strongly (ǫ, γ, M)-good similarity function in
hinge lossfor a learning problemP if there exists a weight-
ing functionw(x′) ∈ [0, M ] for all x′ ∈ X , E[w] ≤ 1 such
that

Ex

[

[1 − ℓ(x)g(x)/γ]+

]

≤ ǫ, (6.2)

whereg(x) = Ex′∼P [ℓ(x′)w(x′)K(x, x′)] is the similarity-
based prediction made usingw(·).

These intermediate definitions are closely related to our
main similarity function definitions: in particular, ifK is
a strongly(ǫ, γ, M)-good similarity function for a learning
problemP , then it is also an(ǫ, γ/c, c/M)-good similarity
function for someγ ≤ c ≤ 1.

Theorem 19 If K is a strongly(ǫ, γ, M)-good similarity func-
tion for a learning problemP , then there existsγ ≤ c ≤ 1
such thatK is a (ǫ, γ/c, c/M)-good similarity function for
P . If K is a strongly(ǫ, γ, M)-good similarity function in
hinge loss forP , then there existsγ ≤ c ≤ 1 such thatK is
a (ǫ, γ/c, c/M)-good similarity function forP .

Note that since our guarantees for(ǫ, γ, τ)-good similar-
ity functions depend onτ only throughγ2τ , a decrease in
τ and a proportional increase inγ (as whenc < 1 in The-
orem 19) only improves the guarantees. However, allowing
flexibility in this tradeoff will make the kernel-to-similarity
function translation much easier.
Proof: (of Theorem 19) First, dividew by M to scale its
range to[0, 1], so E[w] = c/M for somec ≤ 1 and the
margin is nowγ/M . Define random indicatorR(x′) to equal
1 with probabilityw(x′) and 0 with probability1 − w(x′),
so we have

τ = Prx′ [R(x′) = 1] = E[w] = c/M,

and we can rewrite (6.1) as

Ex′∼P,R[ℓ(x)ℓ(x′)R(x′)K(x, x′)] ≥ γ/M. (6.3)

Finally, divide both sides of (6.3) byτ = c/M , producing
the conditionalEx′ [ℓ(x)ℓ(x′)K(x, x′) | R(x′)] on the LHS



and a margin ofγ/c on the RHS. The case of hinge-loss is
identical.

We will now establish that a similarity functionK that is
good as a kernel, is also good as a similarity function in this
intermediate sense, and hence, by Theorem 19, also in our
original sense. We begin by considering goodness in hinge-
loss, and will return to margin violations at the end of the
Section.

Theorem 20 If K is (ǫ0, γ)-good kernel in hinge loss for
learning problem (with deterministic labels), then it is also a

strongly(ǫ0 + ǫ1,
γ2

1+ǫ0/2ǫ1
, 1

2ǫ1+ǫ0
)-good similarity in hinge

loss for the learning problem, for anyǫ1 > 0.

Proof: We initially only consider finite discrete distribu-
tions, where:

Pr(xi, yi ) = pi (6.4)

for i = 1 . . . n, with
∑n

i=1 pi = 1 andxi 6= xj for i 6= j.
Let K be any kernel function that is(ǫ0, γ)-kernel good

in hinge loss. Letφ be the implied feature mapping and de-
noteφi = φ(xi). Consider the following weighted-SVM
quadratic optimization problem with regularization parame-
terC:

minimize
1

2
‖β‖2

+ C

n
∑

i=1

pi[1 − yi〈β, φi〉]+ (6.5)

The dual of this problem, with dual variablesαi, is:

maximize
∑

i

αi −
1

2

∑

ij

yiyjαiαjK(xi, xj)

subject to 0 ≤ αi ≤ Cpi

(6.6)

There is no duality gap, and furthermore the primal optimum
β∗ can be expressed in terms of the dual optimumα∗: β∗ =
∑

i α∗
i yiφi.

SinceK is (ǫ0, γ)-kernel-good in hinge-loss, there exists
a predictor‖β0‖ = 1 with average-hinge lossǫ0 relative to
marginγ. The primal optimumβ∗ of (6.5), being the opti-
mum solution, then satisfies:

1

2
‖β∗‖2

+ C
∑

i

pi[1 − yi〈β∗, φi〉]+ ≤

1

2

∥

∥

∥

∥

1

γ
β0

∥

∥

∥

∥

2

+ C
∑

i

pi[1 − yi

〈

1

γ
β0, φi

〉

]+

=
1

2γ2
+ CE

[

[1 − y

〈

1

γ
β0, φ(x)

〉

]+

]

=
1

2γ2
+ Cǫ0

(6.7)

Since both terms on the left hand side are non-negative, each
of them is bounded by the right hand side, and in particular:

C
∑

i

pi[1 − yi〈β∗, φi〉]+ ≤ 1

2γ2
+ Cǫ0 (6.8)

Dividing by C we get a bound on the average hinge-loss of
the predictorβ∗, relative to a margin of one:

E[[1 − y〈β∗, φ(x)〉]+] ≤ 1

2Cγ2
+ ǫ0 (6.9)

We now use the fact thatβ∗ can be written asβ∗ =
∑

i α∗
i yiφi with 0 ≤ α∗

i ≤ Cpi. Let us consider the weights

wi = w(xi) = α∗
i /(Api) ≤ 1 (6.10)

So,wi ≤ C
A andE[w] =

P

i
α∗

i

A . Furthermore, since we
have no duality gap we also have

∑

i

α∗
i − 1

2
‖β∗‖2

=
1

2
‖β∗‖2

+ C
∑

i

pi[1 − yi〈β∗, φi〉]+,

so
∑

i α∗
i ≤ 1

γ2 + Cǫ0.

So, we have for everyx, y:

yEx′,y′ [w(x′)y′K(x, x′)] = y
∑

i

piw(xi)yiK(x, xi)

= y
∑

i

piα
∗
i yiK(x, xi)/(Api)

= y
∑

i

α∗
i yi〈φi, φ(x)〉/A

= y〈β∗, φ(x)〉/A
Multiplying by A and using (6.9):

Ex,y[ [ 1 − AyEx′,y′ [w(x′)y′K(x, x′)] ]+ ] (6.11)

= Ex,y[ [ 1 − y〈β∗, φ(x)〉 ]+ ] ≤ 1

2Cγ2
+ ǫ0

This holds for anyA andC such that
(

1
γ2 + Cǫ0

)

1
A ≤ 1,

and describes the average hinge-loss relative to margin1/A.
We also have the constraintC

A ≤ M . ChoosingM = 1
2ǫ1+ǫ0

,

A = 1+ǫ0/2ǫ1
γ2 , we setC = 1/(2ǫ1γ

2) and get an average
hinge-loss ofǫ0 + ǫ1,

Ex,y

[

[ 1 − yEx′,y′ [w(x′)y′K(x, x′)]/(2ǫ1γ
2) ]+

]

≤ ǫ0+ǫ1
(6.12)

as desired.
This establishes that ifK is (ǫ0, γ)-good kernel in hinge

loss then it is also a strongly(ǫ0+ǫ1,
γ2

1+ǫ0/2ǫ1
, 1

2ǫ1+ǫ0
)-good

similarity in hinge loss, for anyǫ1 > 0, at least for finite
discrete distributions.

To extend the result also to non-discrete distributions, we
can consider the variational “infinite SVM” problem and ap-
ply the same arguments, as in (Srebro, 2007).

We can now use the hinge-loss correspondence to get a
similar result for the margin-violation definitions:

Theorem 21 If K is (ǫ0, γ)-good kernel for a learning prob-
lem (with deterministic labels), then it is also a strongly(ǫ0+
ǫ1, γ

2/2, 1
(1−ǫ0)ǫ1

-good similarity function for the learning
problem, for anyǫ1 > 0.

Proof: If K is (0, γ)-good as a kernel, it is also(0, γ) good
as a kernel in hinge loss, and we can apply Theorem 20 to
obtain thatK is also(ǫ0/2, γ1, τ1)-good, whereγ1 = γ2

andτ1 = 1/ǫ1. We can then bound the number of margin
violations atγ2 = γ1/2 by half the hinge loss at marginγ1

to obtain the desired result.



If K is only (ǫ, γ)-good as a kernel, we follow a similar
procedure to that described in (Srebro, 2007), and consider
a distribution conditioned only on those places where there
is no error. Returning to the original distribution, we must
scale the weights up by an amount proportional to the prob-
ability of the event we conditioned on (i.e. the probabilityof
no margin violation). This yields the desired bound.

7 Learning with Multiple Similarity
Functions

Suppose that rather than having a single similarity function,
we were instead givenn functionsK1, ..., Kn, and our hope
is that some convex combination of them will satisfy Defini-
tion 6. Is this sufficient to be able to learn well? (Note that
a convex combination of similarity functions is guaranteed
to have range[−1, 1] and so be a legal similarity function.)
The following generalization of Theorem 8 shows that this is
indeed the case. (The analog of Theorem 11 can be derived
similarly.)

Theorem 22 SupposeK1, . . . , Kn are similarity functions
such that some (unknown) convex combination of them is
(ǫ, γ, τ)-good. For anyδ > 0, let S = {x′

1, x
′
2, . . . , x

′
d}

be a sample of sized = 16 log(1/δ)
τγ2 drawn fromP . Consider

the mappingφS : X → R
nd defined as follows:φS

i(x) =
(K1(x, x′

1), . . . , Kn(x, x′
1), . . . , K1(x, x′

d), . . . , Kn(x, x′
d)).

With probability at least1 − δ over the random sample
S, the induced distributionφS(P ) in Rnd has a separator of
error at mostǫ + δ at L1, L∞ margin at leastγ/2.

Proof: Let K = α1K1 + . . . + αnKn be an(ǫ, γ, τ)-good
convex-combination of theKi. By Theorem 8, had we in-
stead performed the mapping:φ̃S : X → Rd defined as

φ̃S(x) = (K(x, x′
1), . . . , K(x, x′

d)),

then with probability1 − δ, the induced distributioñφS(P )
in Rd would have a separator of error at mostǫ + δ at mar-
gin at leastγ/2. Let β̂ be the vector corresponding to such
a separator in that space. Now, let us convertβ̂ into a vec-
tor in Rnd by replacing each coordinatêβj with then values
(α1β̂j , . . . , αnβ̂j). Call the resulting vector̃β. Notice that

by design, for anyx we have
〈

β̃, φS(x)
〉

=
〈

β̂, φ̃S(x)
〉

.

Furthermore,
∥

∥

∥
β̃
∥

∥

∥

1
=

∥

∥

∥
β̂
∥

∥

∥

1
. Thus, the vector̃β under distri-

butionφS(P ) has the same properties as the vectorβ̂ under
φ̃S(P ). This implies the desired result.

Note that we get significantly better bounds here than
in (Balcan & Blum, 2006), since the margin does not drop
by a factor of 1√

n
.

8 Conclusions

We provide a new notion of a “good similarity function” that
we prove is strictly more powerful than the traditional notion
of a large-margin kernel. Our new notion relies uponL1

regularized learning, and our separation result is relatedto a

separation result between what is learnable withL1 vs. L2

regularization. In a lower bound of independent interest, we
show that ifC is a class ofn pairwise uncorrelated functions,
thennokernel is(ǫ, γ)-good in hinge-loss for allf ∈ C even
for ǫ = 0.5 andγ = 8/

√
n.

It would be interesting to explore whether the lower bound
could be extended to covermargin violationswith a constant
error rateǫ > 0 rather than only hinge-loss. In addition,
it would be particularly interesting to develop even broader
natural notions of good similarity functions, that allow for
functions that are not positive-semidefinite and yet provide
even better kernel-to-similarity translations (e.g., notsquar-
ing the margin parameter).
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A Kernels and Similarity Functions

Theorem 23 If K is an (ǫ, γ)-good similarity function un-
der Definitions 4 and 5, thenK is also an(ǫ, γ, γ)-good
similarity function under Definitions 6 and 7, respectively.

Proof: If we setPr(R(x) | x) = w(x), we get that in order
for any pointx to fulfill equation (2.1), we must have

Pr(R(x)) = E[w(x)] ≥ E[ℓℓ′w(x′)K(x, x′)] ≥ γ.

Furthermore, for anyx, ℓ for which (2.1) is satisfied, we have

E[ℓℓ′K(x, x′)|R(x′)] = E[ℓℓ′K(x, x′)w(x′)]/ Pr(R(x))

≥ E[ℓℓ′K(x, x′)w(x′)] ≥ γ (A.1)

.

Theorem 24 If K is an(ǫ, γ, τ)-good similarity function un-
der Definitions 6 and 7, thenK is an(ǫ, γτ)-good similarity
function under Definitions 4 and 5 (respectively).

Proof: Settingw(x) = Pr(R(x) | x) we have for anyx, ℓ
satisfying (3.1) that

E[ℓℓ′K(x, x′)w(x′)] = E[ℓℓ′K(x, x′)R(x′)] =

E[ℓℓ′K(x, x′)|R(x′)] Pr(R(x′)) ≥ γτ. (A.2)

A similar calculation establishes the correspondence for the
hinge loss.

We show in the following that a kernel good as a similar-
ity function is also good as a kernel.

Theorem 25 If K is a valid kernel function, and is(ǫ, γ, τ)-
good similarity for some learning problem, then it is also
(ǫ, γ)-kernel-good for the learning problem. IfK is (ǫ, γ, τ)-
good similarity in hinge loss, then it is also(ǫ, γ)-kernel-
good in hinge loss.

Proof: Consider a similarity functionK that is a valid ker-
nel, i.e. K(x, x′) = 〈φ(x), φ(x′)〉 for some mappingφ of
x to a Hilbert spaceH. For any input distribution and any
probabilistic set of reasonable pointsR of the input we will
construct a linear predictorβw ∈ H, with ‖βw‖ ≤ 1, such
that similarity-based predictions usingR are the same as the
linear predictions made withβR.



Define the following linear predictorβR ∈ H:

βR = Ex′ [ℓ(x′)φ(x′)|R(x′)]. (A.3)

The predictorβw has norm at most:

‖βR‖ = ‖Ex′ [ℓ(x′)φ(x′)|R(x′)]‖ ≤ max
x′

‖ℓ(x′)φ(x′)‖

≤ max ‖φ(x′)‖ = max
√

K(x′, x′) ≤ 1 (A.4)

where the second inequality follows from|ℓ(x′)| ≤ 1.
The predictions made byβR are:

〈βR, φ(x)〉 = 〈Ex′ [ℓ(x′)φ(x′)|R(x′)], φ(x)〉 =

Ex′ [ℓ(x′)〈φ(x′), φ(x)〉|R(x′)] = Ex′ [ℓ(x′))K(x, x′)|R(x′)]
(A.5)

That is, usingβR is the same as using similarity-based pre-
diction with R. In particular, the margin violation rate, as
well as the hinge loss, with respect to any marginγ, is the
same for predictions made using eitherR or βR. This is
enough to establish Theorem 25: IfK is (ǫ, γ)-good (per-
haps for to the hinge-loss), there exists some validR that
yields margin violation error rate (resp. hinge loss) at most ǫ
with respect to marginγ, and soβR yields the same margin
violation (resp. hinge loss) with respect to the same mar-
gin, establishingK is (ǫ, γ)-kernel-good (resp. for the hinge
loss).


