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Abstract

We continue the investigation of natural conditions
for a similarity function to allow learning, without
requiring the similarity function to be a valid ker-
nel, or referring to an implicit high-dimensional
space. We provide a new notion of a “good sim-
ilarity function” that builds upon the previous def-
inition of Balcan and Blum (2006) but improves
on it in two important ways. First, as with the pre-
vious definition, any large-margin kernel is also a
good similarity function in our sense, but the trans-
lation now results in a much milder increase in the
labeled sample complexity. Second, we prove that
for distribution-specific PAC learning, our new no-
tion is strictly more powerful than the traditional
notion of a large-margin kernel. In particular, we
show that for any hypothesis cla§sthere exists

a similarity function under our definition allowing
learning withO(log |C|) labeled examples. How-
ever, in a lower bound which may be of indepen-
dent interest, we show that for any clasof pair-
wise uncorrelated functions, thereigkernel with
marginy > 8/+/|C| for all f € C, even if one
allows average hinge-loss as large as 0.5. Thus,
the sample complexity for learning such classes
with SVMs isQ(|C|). This extends work of Ben-
David et al. (2003) and Forster and Simon (2006)
who give hardness results with comparable margin
bounds, but at much lower error rates.

Our new notion of similarity relies upo#; reg-
ularized learning, and our separation result is re-
lated to a separation result between what is learn-
able with L, vs. L, regularization.

Introduction

large margin in that implicit space. However, while quite el
egant, this theory does not necessarily correspond to the in
tuition of a good kernel as a good measure of similarity, and
the underlying margin in the implicit space usually is not ap
parent in “natural” representations of the data. Therefibre
may be difficult for a domain expert to use the theory to help
design an appropriate kernel for the learning task at hand.
Moreover, the requirement of positive semi-definitenesg ma
rule out the most natural pairwise similarity functions foe
given problem domain.

In recent work, Balcan and Blum (2006) developed an
alternative, more general theory of learning with pairwise
similarity functions that may not necessarily be valid posi
tive semi-definite kernels. Specifically, this work deveddp
sufficient conditions for a similarity function to allow ote
learn well) that does not require reference to implicit gsc
and does not require the function to be positive semi-definit
(or even symmetric). While this theory provably general-
izes the standard theory in that any good kernel function in
the usual sense can be shown to also be a good similarity
function under this definition, the translation does incur a
penalty. Subsequently, Srebro (2007) tightly quantifiesl th
gap between the learning guarantees based on kernel-based
learning, and those that can be obtained by using the ker-
nel as a similarity function in this way. In particular, Sreb
(2007) shows that a kernel of marginis guaranteed to be
a similarity function of margir2(ey?) at hinge-loss, and
furthermore there exist examples for which this is tight. To
sum up, while the theory of Balcan and Blum (2006) applies
to a wider class of pairwise functions than the standard no-
tion of kernel learning, it might be quantitatively inferim
those cases that both notions apply.

In this work we develop a new notion of a good sim-
ilarity function that broadens the definition of Balcan and
Blum (2006) while still guaranteeing learnability. As with
the previous definition, our notion talks in terms of natu-
ral similarity-based properties and does not require pa@sit
semi-definiteness or reference to implicit spaces. However
our new notion improves on the previous definition in two

Kernel functions have become an extremely popular tool in important respects:

machine learning, with an attractive theory as well (Scbhpfk
& Smola, 2002; Herbrich, 2002; Shawe-Taylor & Cristian-

First, our new notion provides a better kernel-to-simtlari
translation. Any large-margin kernel function is a good-sim

ini, 2004; Scholkopf et al., 2004). This theory views a kérne ilarity function under our definition, and while we still inc

as implicitly mapping data points into a possibly very high some loss in the parameters, this loss is much smaller than
dimensional space, and describes a kernel function as beinginder the prior definition, especially in terms of the final la
good for a given learning problem if data is separable by a beled sample-complexity bounds. In particular, when using



a valid kernel function as a similarity function, a substan- variant of the new definition given as Definition 17. (We do
tial portion of the previous sample-complexity bound can be in fact still have a bound on the supremum, but this bound
transferred over to merely a need forlabeled examples. only affects the labeled sampled complexity logarithmichl
Second, we show that our new definition allows for good !N Theorem 19 we make the connection between the two ver-
similarity functions to exist for concept classes for which sions of the new definition explicit. _ _
there isno good kernel. In particular, for any concept class Conditioning on a subset of reasonable points, or equiv-

C and sufficiently unconcentrated distributidn we show
there exists a similarity function under our definition with

alently bounding the expectation of the weight function, al
lows us to base our learnability results bprregularized lin-

parameters yielding a labeled sample complexity bound of €ar learning. The actual learning rule we get, given in Equa-

O(Llog|C|) to achieve erroe, matching the ideal sample

tion (4.6), is very similar, and even identical, to learniates

complexity for a generic hypothesis class. In fact, we also suggested by various authors and commonly used in prac-
extend this result to classes of finite VC-dimension rather tice as an alternative to Support Vector Machines (Bennett
than finite cardinality. In contrast, we show there exisssks & Campbell, 2000; Roth, 2001; Guigue et al., 2005; Singer,
C such that under the uniform distribution over the instance 2000; Tipping, 2001). Here we give a firm theoretical basis

space, there is no kernel with margipi\/|C| for all f € C
even if one allowd).5 average hinge-loss. Thus, the margin-

to this learning rule, with explicit learning guaranteesda
relate it to simple and intuitive properties of the simitgri

based guarantee on Samp'e Comp|exity for |earning Sucb@asfunction or kernel used (See the discussion at the end of Sec-

with kernels isQ(|C|). This extends work of Ben-David
et al. (2003) and Forster and Simon (2006) who give hard-

ness results with comparable margin bounds, but at much

lower error rates. Warmuth and Vishwanathan (2005) pro-
vide lower bounds for kernels with similar error rates, but
their results hold only for regression (not hinge loss). éNot
that given access to unlabeled data, any similarity functio
under the definition of Balcan and Blum (2006) can be con-
verted to a kernel function with approximately the same pa-
rameters. Thus, our lower bound for kernel functions agplie
to that definition as well. These results establish a gap in
the representational power of similarity functions under o
new definition relative to the representational power dieit
kernels or similarity functions under the old definition.

Both our new definition and that of Balcan and Blum
(2006) are based on the idea of a similarity function being
good for a learning problem if there exists a non-negligible
subsetR of “reasonable points” such that most examptes

tion 4).

Structure of this paper: After presenting background on
the previous definitions and their relation to kernels in-Sec
tion 2, we present our new notion of a good similarity func-
tion in Section 3. In Section 4 we show that our new broader
notions still imply learnability. In Section 5 we give ourse
aration results, showing that our new notion is strictly enor
general than the notion of a large margin kernel. In Section 6
we show that any large margin kernel is also a good similar-
ity function in our sense, and finally in Section 7 we discuss
learning with multiple similarity functions.

2 Background and Notation

We consider a learning problem specified as follows. We are
given access to labeled examples¢) drawn from some
distribution P over X x {—1,1}, where X is an abstract
instance space. We will sometimes usd¢o denote the dis-

are on average more similar to the reasonable points of theirtribution overz, and for simplicity, we will assume a deter-

own label than to the reasonable points of the other label.

ministic target function, so thdt:, /) = (x, ¢(x)). The goal

(Formally, the “reasonableness” of an example may be given of a learning algorithm is to produce a classification funicti

by a weight between 0 and 1 and viewed as probabilistic or
fractional.) However, the previous definition combined the
two quantities of interest—the probability mass of reason-

g : X — {—1,1} whose error rat&r, »..p[g(z) # (] is
low. We will consider learning algorithms whose only access
to pointsz is through a pairwise similarity functioR (x, =’)

able points and the gap in average similarity to reasonablemapping pairs of points to valuesin the rarjgé, 1]. Specif-

points of each label—into a single margin parameter. The
new notion keeps these quantities distinct, which turnsmut
make a substantial difference both in terms of broadness o
applicability and in terms of the labeled sample complexity
bounds that result.

Note that we distinguish between labeled and unlabeled

sample complexities: while the total number of examples
needed depends polynomially on the two quantities of in-

terest, the number of labeled examples depends only log-

arithmically on the probability mass of the reasonable set

and therefore may be much smaller under the new definition.

This is especially beneficial in situations in which unlaguel
data is plentiful (or the distribution is known and so unla-
beled data is free), but labeled data is scarce.

Another way to view the distinction between the two no-
tions of similarity is that we now require good predictiorss u
ing a weight function with bounded expectation, rather than
bounded supremum: compare the old Definition 4 and the

ically,

fDefinition 1 A similarity functionover X is any pairwise

functionkK : X xX — [—1, 1]. We say thal( is a symmetric
similarity function if K (x, 2’) = K (', x) for all x, 2’

Our goal is to describe “goodness” properties that are
sufficient for a similarity function to allow one to learn wel
that ideally are intuitive and subsume the usual notion of
good kernel function.

A similarity function K is a valid kernel function if it
is positive-semidefinite, i.e. there exists a functidifrom
the instance spac¥ into some (implicit) Hilbert *%-space”
such thatK (z,2') = (¢(z),#(2’)). See, e.g., Smola and
Scholkopf (2002) for a discussion on conditions for a map-
ping being a kernel function. Throughout this work, and
without loss of generality, we will only consider kernelsbku
that K (z,z) < 1forall z € X (any kernelK can be con-

verted into this form by, for instance, definidg(z, 2')



K(x,a")//K(z,2)K(2',2")). We say thatK is (e,~)-
kernel goodfor a given learning problen#® if there exists

a vectorj in the ¢-space that has errerat margin-; for
simplicity we consider only separators through the origin.
Specifically:

Definition 2 K is an (¢,~y)-good kernel functionif there
exists a vectop, ||3]| < 1 such that
P >1—ce
RMCCOR I

We say thatX is y-kernel goodf it is (e, v)-kernel goodor
e = 0;i.e., it has zero error at margin

Given a kernel that ig¢, v)-kernel-good for some learn-
ing problemP, a predictor with error rate at most+ eacc
can be learned (with high probability) from a samplé of
O((€ + €acd) /(Y2 €2e0)) random examples fron® by min-
imizing the number of margin violations on the sample
(McAllester, 2003). However, minimizing the number of
margin violations on the sample is a difficult optimization
problem: it is NP-hard, and even NP-hard to approximate
(Arora et al., 1997; Feldman et al., 2006; Guruswami &

Raghavendra, 2006). Instead, it is common to minimize the

so-callechinge losgelative to a margin.

Definition 3 We say thatK is (¢,~y)-kernel goodn hinge-
lossif there exists a vectas, || 5]| < 1 such that

Ew.o~p[[1 = £(8,6(2))/7]+] < €
where[l — z]+ = max(1 — z,0) is the hinge loss.

Given a kernel that ig¢, v)-kernel-good in hinge-loss, a
predictor with error rate at most+ eacc can be efficiently
learned from a sample of siz8((e + eaco)/ (v €ace)) With
high probability by minimizing the average hinge loss rela-
tive to marginy on the sample (Bartlett & Mendelson, 2003).

We now present the definition of a good similarity func-
tion from (Balcan & Blum, 2006; Srebro, 2007).

Definition 4 (Previous, Margin Violations) A pairwise func-
tion K is an (e, v)-good similarity function for a learning
problem P if there existsa weighting functiornw : X —
[0, 1] such that at least @ — ¢ probability mass of examples
(z, ) satisfy:

E(m’,f’)fvp[gélw(xl)K(IaII)] > . (21)

That is, if the underlying distribution is 50/50 positivedan

negative, this is saying that the average weighted similar-

ity of an exampler to random examples’ of its own label
should be2v larger than the average weighted similarity of
x to random examples’ of the other label.

Balcan and Blum (2006) show how a predictor with error
rate at most-+eacccan be learned from@ ((e + €aco)/ (12€20)
samples using afe, v)-good similarity functionk: First
draw from P an (unlabeled) sampl§ = {zf,...,2/} of
(4/7)?In(4/(d€ace)) random “landmarks”, and con-
struct the mapping® : X — R9 defined asp”; ()

5K (z,2}),i € {1,...,d}. With probability at least — §

The O(-) notation hides logarithmic factors in the arguments
and in the failure probability.

over the random samplg the induced distribution® (P) in
R%has a separator of error at meste,.¢/2 at margin at least
~/2. Now, draw a fresh sample, map it into the transformed
space using®, and then learn a good linear separator in the
transformed space. The total sample complexity is domi-
nated by thE@((e + eacc)d/eacc)) O((€+ €acd / (V2€2e0)
sample complexity of learning in the transformed spacddyie
ing the same overall sample complexity as with (any)-
good kernel function.

The above bounds refer to learning a linear separator by
minimizing the error over the training sample. As mentioned
earlier, this minimization problem is NP-hard even to ap-
proximate. Again, we can instead consider the hinge-loss
rather than the number of margin violations. Balcan and
Blum (2006) and Srebro (2007) therefore provide the fol-
lowing hinge-loss version of their definition:

Definition 5 (Previous, Hinge Loss)A similarity functioni
is an (e,)-good similarity function in hinge loss for a

learning problenP if there exists a weighting functiomn(x")

€ [0,1] forall 2’ € X such that

Eqo~p|[1—C9(z)/7]+

whereg(z) = B oy~ p[l'w(z') K (z,2')] is the similarity-
based prediction made using), and recall thafl — 2], =
max(0, 1 — z) is the hinge-loss.

2.2)

The same algorithm as above, but now using SVM to mini-
mize hinge-loss in the transformed space, allows one to effi-
ciently use a similarity function satisfying this definiido

find a predictor of erroe + eaccusingO ( (€ + €ace) / (V2€2c0))
examples.

3 New Notions of Good Similarity Functions

In this section we provide new notions of good similarity
functions generalizing Definitions 4 and 5 that we prove have
a number of important advantages.

In the definitions of Balcan and Blum (2006), a weight
w(z’) € [0, 1] was used in defining the quantity of interest
E( oy~p[l'w(z’)K(z,2")]. Here, it will instead be more
convenient to think ofv as the expected value of an indica-
tor random variable?(z) € {0, 1} where we will view the
(probabilistic) set{« : R(z) = 1} as a set of “reasonable
points”. Formally, we will then be sampling from the joint
distribution P(x, ¢(x), R(z)) = P(xz,£¢(z))P(R(x)|x) but
we will sometimes omit the explicit dependence®nvhen
itis clear from context. Our new definition is now as follows.

Definition 6 (Main, Margin Violations) A similarity func-
tion K is an (e, v, 7)-good similarity function for a learn-
ing problemP if there existsa (random) indicator function
R(x) defining a (probabilistic) set of “reasonable points”
such that the following conditions hold:

1. A1 — e probability mass of examplés, ¢) satisfy
E oyopltl K(z,2") | R(z")] (3.1)
2. Pry/[R(2))] > 1.

>



If the reasonable sek is 50/50 positive and negative (i.e., Definitions 4 and 5, and this is tight (Srebro, 2007), result-

Pry/[¢(z") = 1|R(2")] = 1/2), we can interpret the condi-  ing in a sample complexity aD(1/(v%¢*)) to achieve error
tion as stating that most examplesire on averagey more . "However, we can sho is an (¢, 12, ¢')-good similar-
similar to random reasonable exampié®f their own label ity function under the new definitiohresulting in a sample

than to random reasonable exampléof the other label.
The second condition is that at least &raction of the points
should be reasonable. iilar ; ;
We also consider a hinge-loss version of the definition: 4 Good Similarity Functions Allow Learning
The basic approach proposed for learning using a similarity

complexity of onlyO (1/(v%)).

Definition 7 (Main, Hinge Loss) A similarity functionk’ is function is similar to that of Balcan and Blum (2006). Fiest,

an (e, v, 7)-good similarity function in hinge loss for a feature space is constructed, consisting of similaritbeash-
learning problemp if there existsa (probabilistic) setR of domly chosen landmarks. Then, a linear predictor is sought
“reasonable points” such that the following conditions tol in this feature space. However, under the previous defini-

tions, we were guaranteed lardge-margin in this feature

1. We have space, whereas under the new definitions we are guaranteed
E, oop| [l =7 < 3.2 large L, -margin in the feature space. _ _
@o~r|l @)l < 32 After recalling the notion of arn’;-margin and its as-
whereg(z) = By o g 0K (z,2') | R(2')]. sociated learning guarantee, we first establish that, for an
, ("€, R(=")) ’ (e,7, r):good similarity function, the feature map constructed
2. Pros[R(z)] = 7. using O(1/(rv?)) landmarks indeed has (with high prob-

ability) a large L;-margin separator. Using this result, we
then obtain a learning guarantee by following the strategy
outlined above.

In speaking ofL.;-margin-~y, we refer to separation with
a marginy by a unitL-norm linear separator, in a unit-
L.-bounded feature space. Formally, tet: « — ¢(z),
o(x) € R4, with ||¢(x)||,, < 1 be a mapping of the data
to ad-dimensional feature space. We say that a linear pre-
dictor o € R?, achieves erroe relative to L;-margin-y if
Pry oz (£(z)(a, ¢(x)) > 7v) > 1 — e (this is the standard
margin constraint) anfle||, = 1.

Given ad-dimensional feature map under which there

Itis not hard to see that gm, v)-good similarity function
under Definitions 4 and 5 is also &n +y, v)-good similarity
function under Definitions 6 and 7, respectively. In the re-
verse direction, are, v, 7)-good similarity function under
Definitions 6 and 7 is ate, y7)-good similarity function un-
der Definitions 4 and 5 (respectively). For formal proofg se
Theorems 23 and 24 in Appendix A.

As we will see, under both old and new definitions, the
number of labeled samples required for learning grows as
1/~2. The key distinction between them is that we introduce
a new parametet, that primarily affects the number oh-
labeledexamples required. This decoupling of the number . . _
of labeled and unlabeled examples enables us to handle £XIStS Some (unknown) zero-error linear separator ith
wider variety of situations with an improved labeled sample Marginy, we can efficiently learn a predictor with error at
complexity. In particular, in translating from a kernel to a mosteaccusingO ( logd) examples (with high probability).

2
similarity function, we will find that much of the loss can  This can be doneeugng the Winnow algorithm with a stan-
now be placed into the parameter. dard online-to-batch conversion (Littlestone, 1989). ¥ w
_In the following we prove three types of results about can only guarantee the existence of a separator with error
this new notion of similarity. The first is that similarity fic- ¢ > 0 relative to L;-margin~, then a predictor with error

tions satisfying these conditions are sufficient for leagni ¢ 4 ¢, . can be theoretically learned (with high probability)
(in p(_)lynom|all tlmelm the case of Definition 7), \lmth asam- fom a sample of@((log d)/ (22, ) examples by mini-
ple size of0(-7 In(-7)) labeled examples ar@( =) unla-  izing the number of.,-marginy violations on the sample
beled examples. This is particularly useful in settingswehe  (zhang, 2002).
unlabeled data is plentiful and cheap—such settings are in-~ \we are now ready to state the main result enabling learn-
creasingly common in learning applications (Mitchell, B00  jng using good similarity functions:
Chapelle et al., 2006)—or for distribution-specific leaugi S )
where unlabeled data may be viewed as free. Theorem 8 Let K be an(e, v, 7)-good similarity function
The second main theorem we prove is thay classC, for a learning problemP. LetS = {z},25,...,2;} be a
over a sufficiently unconcentrated distribution on exaraple  (Potentially unlabeled) sample of
has a(0,1,1/(2|C|))-good similarity function (under either 2 log(2/9)
definition 6 or 7), whereas there exist classéshat have d=— <1og(2/6) T ST)
no (0.5,8/+/]C)-good kernel functions in hinge loss. This
provides a clear separation between the similarity andetern
notions in terms of the parameters controlling labeled sam-
ple complexity. The final main theorem we prove is that any
large-margin kernel function also satisfies our similadigfi-
nitions, with substantially less loss in the parametergrobn
ling labeled sample complexity compared to the definition of  2rormally, the translation produces &, 42 /c, €' c)-good sim-
(Balcan & Blum, 2006). For example, K is a(0,~)-good ilarity function for somec < 1. However, smaller values efonly
kernel, then it is arfe’, ¢’v?)-good similarity function under  improve the bounds.

landmarks drawn fronP. Consider the mapping® : X —
R? defined as followsp®, (z) = K(x,2}),i € {1,...,d}.
Then, with probability at least — § over the random sample
S, the induced distribution® (P) in R? has a separator of
error at moste + ¢ relative toL; margin at leasty/2.



Proof: First, note that sincgx (z, )| < 1 for all z, we have
lo° @)l <1

Consider the linear separatar € RY, given bya; =
U(z})R(x})/dy whered, = )", R(x}) is the number of land-
marks withR(z") = 1. This normalization ensurggy||, =
1. Note that we takeR(x}) to be drawn jointly withe]. If it
is random, than it is randomly instantiated to either zero or
one.

We have, for anyt, {(x):

S (@)l R(2h) K (x, )

7 7 ? 7

()0, 6% (@) = y
1
This is an empirical average df terms

—1 < l(x)l(2")K (2,2

(4.1)

) <1

for which R(z") = 1. For anyz we can apply Hoeffding’s
inequality, and obtain that with probability at ledst- 52 /2
over the choice of, we have:

U(z)(a, ¢°(x)) >

210g(6%)

E. (K (z,2")0(2')l(2)| R(z")] - 4

(4.2)
Since the above holds for anywith probability at least

1—-62/2 overS, it also holds with probability at least-§2 /2
over the choice of andS. We can write this as:
Egpa [ Pr (violation)] < 8%/2 (4.3)
where “violation” refers to violating (4.2). Applying Madv’s
inequality we get that with probability at leakt- 6/2 over
the choice ofS, at mosté fraction of points violate (4.2).
Recalling Definition 6, at most an additioreraction of the

points violate (3.1). But for the remaining— ¢ — § fraction
of the points, for which both (4.2) and (3.1) hold, we have:

210g(5i2)

f(x)<a, ¢S(x)> >y — 4 (4.4)

To bound the second term we need an upper bound gihe

Proof: We have proved in Theorem 8 thathf is(0, v, 7)-
good similarity function, then with high probability theea-

ists a low-error (at mosi) large-margin (at least) separa-
tor in the transformed space under mappirig Thus, all we
need now to learn well is to draw a new fresh sanplenap
itinto the transformed space using, and then apply a good
algorithm for learning linear separators in the new spaae th
produces a hypothesis of error at megi. with probability

at leastl — . In particular, remember that the veciohas
error at mosb at LL; marginy /2 overg® (P), where the map-
ping ¢° produces examples df., norm at most. In order

to enjoy the better learning guarantees of the separabég cas
we will seté small enough so that no bad points appear in
the sample. The Corollary now follows from ttig -margin
learning guarantee in the separable case, discussed @arlie
the Section. |

For the generale > 0) case, Theorem 8 implies that by
following our two-stage approach, first usidg = (’)( T)
unlabeled examples as landmarks in order to constric,

and then using a fresh sample of size= @(# In du) to

learn a low-erroil,-marginy separator iny°(-), we have:

Corollary 10 If Kisa(e,~, 7)-good similarity function then
by minimizingl,; margin violations we can find a predictor
with error at mosk,c. from an unlabeled sample of sidg =

(5(V ) and from a labeled sample of side= O(‘°g du )

acc

The procedure described above, although well defined,
involves a difficult optimization problem: minimizing the
number ofL;-margin violations. In order to obtain a compu-
tationally tractable procedure, we consider the hinge-ios
stead of the margin error. In a feature space Withw )| <
1 as above, we say that a udit-norm predictory, |a|, =
1, has expected hinge-lo&[[1 — ¢(z){c, ¢(x))/v]+] rel-
ative to L;-margin~. Now, if we know there is some (un-
known) predictor with hinge-lossrelative L, -marginy, than
a predictor with errore + e5cc can be learned (with high
probability) from a sample 0® (log d/(y%¢2,)) examples
by minimizing the empirical average hinge-loss relative to

number of reasonable landmarks. The probability of each L;-marginy on the sample (Zhang, 2002).

of the d landmarks being reasonable is at leasand so
the number of reasonable landmarks follows a Binomial dis-
tribution, ensuring?; > 8log(1/§)/~v? with probability at
2lo g(éz)

leastl — §/2. When this happens, we ha <

~/2. We get then, that with probability at least- 6 for at
leastl — e — ¢ of the points:

U(x)(a, 6% (z)) > /2. (4.5)

For the realizabl¢e = 0) case, we obtain:

Corollary 9 If K isan(0, v, 7)-good similarity function then
with high probability we can efficiently find a predictor with
error at mosteaec from an unlabeled sample of sizg =

@(72%) and from a labeled sample of side= @(M).

~2€ace

Before proceedmg to discussing the optimization prob-
lem of m|n|m|2|ng the average hinge-loss relative to a fixed
Li-margin, let us establish the analogue of Theorem 8 for
the hinge-loss:

Theorem 11 Let K be an(e, v, 7)-good similarity function

in hinge-loss for a learning problerR. For anye; > 0 and

0 < X< ne/dletsS = {a'y,2/9,...,2/q} be a sample

of sized = 2 (log(2/6) + 16log(2/6)/(e1)*) drawn from

P. With probability at leastt — § over the random sample

S, the induced distributiom® (P) in R?, for ¢° as defined

in Theorem 8, has a separator achieving hinge-loss at most
€ + €1 at margin~.

Proof: We use the same construction as in Theorem &l



Corollary 12 K is an (e, v, 7)-good similarity function in
hinge loss then we can efficiently find a predictor with er-
ror at moste + e5cc from an unlabeled sample of sizg =

@(726%) and from a labeled sample of size= @(%) .

Y €ace

For the hinge-loss, our two stage procedure boils down
to solving the following optimization problem w.rd.:

* (4.6)

du
st Y o[ <1/
j=1

Thisis a linear program and can thus be solved in polynomial

time, establishing the efficiency in Corollary 12.
An optimization problem similar to (4.6), though usu-

is also good as a similarity function and can thus also ensure
learning using the learning rule (4.6) (though possiblyhwit
some deterioration of the learning guarantees). These argu
ments can be used to justify (4.6) as an alternative to SVMs.
Before concluding this discussion, we would like to men-
tion that Girosi (1998) previously established a rathefiedif
ent connection between regularizing the norm ||«||, and
regularizing the norm of the corresponding predigian the
implied Hilbert space. Girosi considered a hard-margin SVR
(Support Vector Regression Machine, i.e. requiring eaeh pr
diction to be within(¢(z) —e, £(x) +¢€)), in the noiseless case
where the mapping — ¢(z) is in the Hilbert space. In this
setting, Girosi showed that a hard-margin SVR is equivalent
to minimizing the distancen the implied Hilbert spacée-
tween the correct mapping — ¢(z) and the predictions
x— > oK (z,2';), with an L, regularization term|e|| ;.
However, this distance between prediction functions iy ver
different than the objective in (4.6), and again refers back
the implied feature space which we are trying to avoid.

ally with the same set of points used both as landmarks and
as training examples, is actually fairly commonly used as a .
learning rule in practice (Bennett & Campbell, 2000; Roth, 5 Separation Results

2001; Guigue et al., 2005). Such a learning rule is typi- In this Section, we show an example of a finite concept class
cally discussed as an alternative to SVMs. In fact, Tipping for which no kernel yields good learning guarantees when
(2001) suggest the Relevance Vector Machine (RVM) as aused as a kernel, but for which there does exist a good simi-
Bayesian alternative to SVMs. The MAP estimate of the larity function yielding the optimal sample complexity. ath
RVM is given by an optimization problem similar to (4.6), is, we show that some concept classes cannot be reasonably
though with a loss function different from the hinge loss(th represented by kernels, but can be reasonably represgnted b
hinge-loss cannot be obtained as a log-likelihood). Sifyila  similarity functions.

Singer (2000) suggests Norm-Penalized Leveraging Proce-  Specifically, we consider a clagsof n pairwise uncor-
dures as a boosting-like approach that mimics SVMs. Again, related functions. This is a finite class of cardinali = n,
although the specific loss functions studied by Singer dre di  and so if the target beIongs@‘)thenO(% log n) samples are
ferent from the hinge-loss, the method (with a norm expo- enough for learning a predictor with errar

nent of 1, as in Singer’s experiments) otherwise correspond Indeed, we show here that fany concept clasg’, so

to a coordinate-descent minimization of (4.6). In both sase  |ong as the distributiol is sufficiently unconcentrated, there

no learning guarantees are provided. _ exists a similarity function that g9, 1, 57=)-good under our

. The motivation for usmg.(4.6_) as an alternative to SVMS  (efinition for everyf € C. This yields a (labeled) sam-

is usually that“thil—regulanzatlon 9m leads to sparsity, ple complexityO (L log |C|) to achieve erroe, matching the

and hence to “few support vectors” (although Vincent and jjeq| sample complexity. In other words, for distribution-
Bengio (2002), who also discuss (4.6), argue for more direct gpecific learning (where unlabeled data may be viewed as
ways of obtaining such sparsity), and also that the linear pr  rae) and finite classes, there is marinsic loss in sample-
gram (4.6) might be easier to solve than the SVM quadratic ¢ompexity incurred by choosing to learn via similarity fn
program. However, we are not aware of a previous disCus-iong. |n fact, we also extend this result to classes of bednd
sion on how learning using (4.6) relates to learning using \/c_dimension rather than bounded cardinality.

a SVM, or on learning guarantees using (4.6) in terms of
properties of the similarity functio’. Guarantees solely in
terms of the feature space in which we seek lbyvmargin

(¢° in our notation) are problematic, as this feature space is even fore = 0.5

generated randomly from data.

In contrast, we show that if’ is a class of: functions
that are pairwise uncorrelated with respect to distribufiy
thenno kernel is (e, v)-good in hinge-loss for allf € C
and~y = 8/y/n. This extends work of
(Ben-David et al., 2003; Forster & Simon, 2006) who give

Infact, in order to enjoy the SVM guarantees while using hargness results with comparable margin bounds, but at a
L, regularization to obtain sparsity, some authors suggestmych |ower error rate. Thus, this shows theran intrinsic
regularizing both thel,, norm |||, of the coefficient vec- 555 incurred by using kernels together with margin bounds,
tor a (as in (4.6)), and the norfyj|| of the corresponding  gjnce this results in a sample complexity bound of at least
predictor3 = 3. a;¢(z';) in the Hilbert space implied by Q(|C]), rather than the idead(log |C').
K, whereK (z,z') = (¢(z), #(2')), as when using a SVM We thus demonstrate a gap between the kind of prior
with K as a kernel (Osuna & Girosi, 1999; Gunn & Kandola, knowledge can be represented with kernels as opposed to
2002). general similarity functions and demonstrate that sirititar
Here, we provide a natural condition on the similarity functions are strictly more expressive (up to the degradati
function K (Definition 7), that justifies the learning rule (4.6).  in parameters discussed earlier).
Furthermore, we show (in Section 6) than any similarity func
tion that is good as a kernel, and can ensure SVM learning, Definition 13 We say that a distributiorD over X is a-



unconcentrated the probability mass on any givene X
is at mosto.

Theorem 14 For any class finite class of functiord$ and
for any 1/|C|-unconcentrated distributiorD over the in-
stance spac&, there exists a similarity functioR that is a
(0,1, ﬁ)-good similarity function for allf € C.

Proof: LetC = {fi,..., fn}. Now, let us partitionX into

n regionsR; of at leastl /(2n) probability mass each, which
we can do sincé) is 1/n-unconcentrated. Finally, define
K(x,a’) for 2’ in R; to be f;(x)f;(2’). We claim that for
this similarity function, R; is a set of “reasonable points”
establishing margin = 1 for targetf;. Specifically,

E[K (z,2") fi(x) fi(z")|2" € Ri]

E[fi(x)fi(x/)fi(x)fi(x/)]
= 1.

SincePr(R;) > % this implies that under distributioP,
Kisal(o0,1, %)—good similarity function for allf; € C.
[ |

Note 1. We can extend this argument to any cl&ssof
small VC dimension. In particular, for any distributidn,
the classC' has ane-coverC, of size (1/¢)°(4/<), whered

is the VC-dimension o’ (Benedek & Itai, 1988). By The-
orem 14, we can have@, 1, 1/|C.|)-good similarity func-
tion for the covelC,, which in turn implies arfe, 1, 1/|C.|)-
good similarity function for the original set (even in hinge
loss sincey = 1). Plugging in our bound ofC.|, we get an
(e,1,€9(/9))-good similarity function forC. Thus, the la-
beled sample complexity we get for learning with similarity
functions is onlyO((d/e) log(1/¢)), and again there is no
intrinsic loss in sample complexity bounds due to learning
with similarity functions.

Note 2: The need for the underlying distribution to be un-
concentrated stems from our use of this distribution fohbot

is f(z;)[D(x;)]'/?). Because the functiong € C are pair-
wise uncorrelated, we havg;, f;) = 0 for all ¢ # j, and
because th¢; are boolean functions we havé;, ;) = 1
for all . Thus they form at least part of an orthonormal ba-
sis, and for any hypothesis(i.e. any mappingX — {+1})

we have
fieC
So, this implies
> 1h £ < Vi
fieC

or equivalently
Ejecl(h, fi)l <1/vn.

In other words, for any hypothedis if we pick the target
at random fronC, the expected magnitude of the correlation
betweer and the target is at mosy \/n.

We now consider the implications of having a good ker-
nel. Suppose for contradiction that there exists a kefel
that is (0.5, ~)-good in hinge loss for every; € C. What
we will show is this implies that for any; € C, the ex-
pected value of(h, f;)| for arandomlinear separatoh in
the ¢-space is greater thay/8. If we can prove this, then
we are done because this implies there naxéstan h that
hasEy,cc|(h, f)| > ~/8, which contradicts equation (5.1)
fory = 8/+/n.

So, we just have to prove the statement about random lin-
ear separators. Let* denote the vector in thg¢-space that
has hinge-loss at mo8t5 at marginy for target functiony;.
For any example:, definey,, to be the margin op(z) with
respect tav*, and definey, = sin"!(y,) to be the angular
margin of ¢(x) with respect tow*.2> Now, consider choos-
ing a random vectoh in the ¢-space, where we associate
h(z) = sign(h - ¢(x)). Since we only care about the abso-
lute value|(h, f;)|, and sinc€—h, f;) = —(h, f;), it suffices
to show thatE, [(h, f;) | h - w* > 0] > ~/8. We do this as

(5.1)

labeled and unlabeled data. We could further extend our follows.

definition of “good similarity function” to allow for the un-
labeled pointst’ to come from some other distributiab’
given apriori such as the uniform distribution over the in-
stance spac&’. Now, the expectation over and the prob-
ability mass ofR would both be with respect t®’, and the
generic learning algorithm would draw point$ from D’
rather thanD. In this case, we would only need’ to be
unconcentrated, rather thdn

We now prove our lower bound for margin-based learn-
ing with kernels.

Theorem 15 Let C' be a class of: pairwise uncorrelated
functions over distributiorD. Then, there is no kernel that
forall f € C'is (¢, v)-good in hinge-loss even fer= 0.5

andy = 8/y/n.

Proof: Let C' = {f1,...,fn}. We begin with the basic
fourier setup (Linial et al., 1989; Mansour, 1994). Given
two functionsf andg, define(f,g) = E.[f(x)g(z)] to be
their correlation with respect to distributian. (This is their
inner-product if we viewf as a vector whosgh coordinate

First, for any example;, we claim that:

Pr((h(x) # fi(e)lh-w” > 0] =1/2 —az/m. (5.2)
This is because we look at tledimensional plane defined
by ¢(2) andw*, and consider the half-circle §f.|| = 1 such
thath-w* > 0, then (5.2) is the portion of the half-circle that
labels¢(x) incorrectly. Thus, we have:

Eplerr(h)|h-w* > 0] = E.[1/2 — a, /7],
and so, usingh, f;) = 1 — 2 err(h), we have:
Ep[(h, fi) | h-w* > 0] = 2E,[ag]/7.

Finally, we just need to relate angular margin and hinge
loss: if L, is the hinge-loss of(z), then a crude bound on
IS

a; >y(1— (7T/2)Lw)-
350, a, is a bit larger in magnitude thap,. This works in our

favor when the margin is positive, and we just need to be obref
when the margin in negative.



Since we assumed thBt, [L
Ezlog] = v(1 —7/4).

=] < 0.5, we have:

Putting this together we get expected magnitude of correla-

tion of a random halfspace is at le@st(1 — = /4) /7 > ~y/8
as desired, proving the theorem.

An example of a clas€’ satisfying the above conditions
is the class of parity functions ovéd, 1}'#™, which are pair-
wise uncorrelated with respect to the uniform distribution
Note that the uniform distribution i$/|C|-unconcentrated,
and thus therés a good similarity function. (In particular,
one could uses (x;,z;) = fj(z:)f;(z;), wheref; is the
parity function associated with indicator vector.)

We can extend Theorem 15 to classes of large Statistical;

Query dimension as well. In particular, the SQ-dimension
of a classC with respect to distributiorD is the sized of

the largest set of function§fi, f,. .., fa} C C such that
|(fi, f5)| < 1/d® foralli # j (Blum et al., 1994). In this

kernel. We now show the converse: if a kernel function is
good in the kernel sense, it is also good in the similarity
sense, though with some degradation of the margin. This
degradation is much smaller than the one incurred prewousl|
by Balcan and Blum (2006) and Srebro (2007). Specifically,
we can show that ifX is a (0,~)-good kernel, therk is
(€,72,¢)-good similarity funct|on for any (formally, it is
(6,72/c, ec)-good for some: < 1).

To prove this relationship, we introduce an intermediate
notion of a good similarity function.

Definition 17 (Intermediate, Margin Violations) A similar-
ity functionK is astrongly (¢, ~y, M )-good similarity func-
tion for alearning problen® if thereexistsa bounded weight-
ing functionw over X, w(z') € [0,M] for all 2/ € X,
E[w] < 1 such that at least & — ¢ probability mass of ex-
amplesr satisfy:

E,pll(2)l(zw(x)K(z,2")] > ~.  (6.1)

case, we just need to adjust the Fourier analysis part of the
argument to handle the fact that the functions may not be Definition 18 (Intermediate, Hinge Loss) A similarity func-

completely uncorrelated.

Theorem 16 LetC be a class of functions of SQ-dimension
d with respect to distributioD. Then, there is no kernel that
forall f € C'is (¢, 7)-good in hinge-loss even fer= 0.5

andy = 16//d.

Proof: Let fi, ..., fq bed functions inC such that(f;, f;)|

< 1/d3 for all i # j. We can define an orthogonal set
of functions f{, f3,..., f, as follows: letf| = fi, f; =
f2— f1{f2, f1), and in general lef! be the portion off; or-
thogonal to the space spannedfy. . ., fi_i. (Thatis,f/ =

fi —proj(fi,span(fi,..., fi—1)), where “proj” is orthogo-
nal projection.) Since th¢! are orthogonal and have length
at most 1, for any boolean functidgrwe have), (h, 2 <

1 and therefor&; |(h, f/)| < 1/V/d. Finally, since(f;, f;) <
1/d3 foralli # j, one can show this implies thgt — f/| <
1/d for all i. So,E;|(h, fi)| < 1/Vd+ 1/d < 2/V/d. The
rest of the argument in the proof of Theorem 15 now applies
with v = 16//d. [

Forexample, the class of sizedecision trees ovel0, 1}"
hasnf(°e™) pairwise uncorrelated functions over the uni-
form distribution (in particular, any parity dbg n variables
can be written as an-node decision tree). So, this means
we cannot have a kernel with mardippoly(n) for all size-

n decision trees ovef0, 1}". However, wecanhave a simi-
larity function with marginl, though ther parameter (which
controls running time) will be exponentially small.

6 Relation between kernels and similarity
functions

As is shown in the Appendix (Theorem 25), if a similarity
function K is indeed a kernel, and it i&, v, 7)-good as a
similarity function (possibly in hinge-loss), than it issal
(e,7v)-good as a kernel (respectively, in hinge loss). That
is, although the notion of a good similarity function is more
widely applicable, for those similarity functions that ges-
itive semidefinite, a good similarity function is also a good

tion K is astrongly (e,~y, M)-good similarity function in
hinge lossfor a learning problemP if there exists a weight-
ing functionw(z’) € [0, M] for all 2’ € X, E[w] < 1 such

that
E.|[1 - (@)g(@)/1]+ ]| <

whereg(z) = Eprp[l(2")w(z’) K (z, 2")] is the similarity-
based prediction made using-).

(6.2)

These intermediate definitions are closely related to our
main similarity function definitions: in particular, iK is
a strongly(e, v, M )-good similarity function for a learning
problemP, then it is also arfe, /¢, ¢c/M)-good similarity
function for somey < ¢ < 1.

Theorem 19 If K is a strongly(e, v, M )-good similarity func-
tion for a learning problemP, then there exists < ¢ < 1
such thatK is a (¢, /¢, ¢/M)-good similarity function for
P. If K is a strongly(e, v, M)-good similarity function in
hinge loss forP, then there exists < ¢ < 1 such thatK is

a (e,7v/c, c¢/M)-good similarity function forP.

Note that since our guarantees fer, 7)-good similar-
ity functions depend on only through~?r, a decrease in
7 and a proportional increase in(as whenc < 1 in The-
orem 19) only improves the guarantees. However, allowing
flexibility in this tradeoff will make the kernel-to-simitiay
function translation much easier.
Proof: (of Theorem 19) First, dividew by M to scale its
range t0[0, 1], so E[w] = ¢/M for somec < 1 and the
margin is nowy /M. Define random indicataR(x’) to equal
1 with probabilityw(z") and 0 with probabilityl — w(z’),
so we have

7 =Pry[R(z") = 1] = E[w] = ¢/M,
and we can rewrite (6.1) as
E.~prll(x)l(z")R(z)K (z,2")] > ~/M. (6.3)

Finally, divide both sides of (6.3) by = ¢/M, producing
the conditionalE, [¢(x)¢(z") K (x,2’) | R(z")] on the LHS



and a margin ofy/c on the RHS. The case of hinge-loss is We now use the fact that* can be written as3* =
identical. | > iy with 0 < o < Cp;. Let us consider the weights

We will now establish that a similarity functiol that is _ o
good as a kernel, is also good as a similarity function in this wi = w(w;) = of /(Api) <1 (6.10)
intermediate sense, and hence, by Theorem 19, also inour  So,w; < § € andE[w] = Zm . Furthermore, since we
original sense. We begin by conS|der|ng goodness in hinge-have no dua||ty gap we also have
loss, and will return to margin violations at the end of the
Section. 1 , 1 )

. N Zaf—iﬂﬂ*” =§Hﬁ*|| +CY pill = uiB, ¢0)l+,
Theorem 20 If K is (e, y)-good kernel in hinge loss for 3 3
learning problem (with deterministic labels), then it isala

strongly(eo + €1, H;W’ m)-good similarity in hinge
loss for the learning problem, for ary > 0.

1
Sozi Oé;F < 32 + Cegp.
So, we have for every, y:

Proof: We initially only consider finite discrete distribu-  yE,, /[w(2')y' K (z,2')] = yZpiw(aji)yiK(x7xi)
tions, where: ;
Pr(xzi,yi) = ps 6.4 %
. Py )=» - 64 = y Y piajyiK(z,2:)/(Ap:)
fori=1...n,with) " p; = 1andz; # x; fori # j. ;

Let K be any kernel function that i&, v)-kernel good
in hinge loss. Let be the implied feature mapping and de- Y aiyilbi, d(x))/A
note ¢; = ¢(x;). Consider the following weighted-SVM i
guadratic optimization problem with regularization pasm = (B, ¢(x))/A
terC":

. Multiplying by A and using (6.9):
minimize% I1BI7 +CY pill —vi(3,¢1)]4  (6.5) Eayl[1— AyEory [w(@)y' K (z,2")] |+ ] (6.11)

=1 1
= EI 1 - *7 S ot 9
The dual of this problem, with dual variables, is: wll y(B% o)) 1+ ] 202 teo

maximizeZai _ % ZyiyjaiajK(fci,xj) This holds for anyA andC' such that( + C’eo) 4 <1,
' ij (6.6) and describes the average hinge-loss relative to maygin
subjectto 0 < o; < Cp; We also have the constraiﬁtg M. ChoosingVl = ﬁ
1+4€0/2€
There is no duality gap, and furthermore the primal optimum A = 029 we setC' = 1/(2619%) and get an average
(* can be expressed in terms of the dual optimuim 3* = hinge-loss of¢ + €1,
Zi aryld)l' — 1oy / ! / 2 <
SinceK is (e, v)-kernel-good in hinge-loss, there exists Eoy [[1 = yBoryfw(@)y K(z, )]/ (2e17%) ]+ ] < 6(%+12)

a predictor||3y|| = 1 with average-hinge loss, relative to
margin~y. The primal optimun* of (6.5), being the opti-
mum solution, then satisfies:

as desired.
This establishes that K is (ep,y)-good kernel in hinge
.. 2 1
loss then itis also a stronglyo +e1, H:OW, m)—good

+C similarity i_n hing_e loss, for any; > 0, at least for finite
HB I Zpl — vl ey < discrete distributions.
To extend the result also to non-discrete distributions, we

(= o /1 , can consider the variational “infinite SVM” problem and ap-
2 Hyﬁo + Csz[l yz< ﬁo’¢z>] ply the same arguments, as in (Srebro, 2007). [ |

1 1 1 We can now use the hinge-loss correspondence to get a
“op T CE|[1 - ;ﬁoﬂb(w) l+| = 22 T Ceo similar result for the margin-violation definitions:

6.7) Theorem 21 If K is (eg, v)-good kernel for a learning prob-
Since both terms on the left hand side are non-negative, eacHem (Wlth determlnlstlc labels), then itis also a stronfly+
of them is bounded by the right hand side, and in particular: €1,7?/2, =5 -good similarity function for the learming

1 problem, for any; > 0.

CY pill —y(B", 0i)]4 < 7= + Ce (6.8)

Xi: T2y ! Proof: If K is (0,+)-good as a kernel, it is als®, v) good
as a kernel in hinge loss, and we can apply Theorem 20 to
obtain thatK is also(ey/2,71,71)-good, wherey; = ~?2
andm; = 1/¢;. We can then bound the number of margin

. 1 violations aty2 = ~;/2 by half the hinge loss at margin

B[l —5(6%, (2))]+] < 202 T € (6.9) to obtain the desired result.

Dividing by C we get a bound on the average hinge-loss of
the predictor3*, relative to a margin of one:




If K is only (¢,v)-good as a kernel, we follow a similar ~ separation result between what is learnable withvs. Lo
procedure to that described in (Srebro, 2007), and considerregularization. In a lower bound of independent interest, w
a distribution conditioned only on those places where there show thatifC' is a class of: pairwise uncorrelated functions,

is no error. Returning to the original distribution, we must

scale the weights up by an amount proportional to the prob-

ability of the event we conditioned on (i.e. the probabitify
no margin violation). This yields the desired bound. W

7 Learning with Multiple Similarity
Functions

Suppose that rather than having a single similarity fumgtio
we were instead given functionsK1, ..., K,,, and our hope

is that some convex combination of them will satisfy Defini-
tion 6. Is this sufficient to be able to learn well? (Note that
a convex combination of similarity functions is guaranteed
to have rangé—1, 1] and so be a legal similarity function.)
The following generalization of Theorem 8 shows that this is

thennokernel is(¢, v)-good in hinge-loss for alf € C even
fore = 0.5 andy = 8//n.

It would be interesting to explore whether the lower bound
could be extended to coverargin violationswith a constant
error ratee > 0 rather than only hinge-loss. In addition,
it would be particularly interesting to develop even braade
natural notions of good similarity functions, that allow fo
functions that are not positive-semidefinite and yet previd
even better kernel-to-similarity translations (e.g., squar-
ing the margin parameter).
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indeed the case. (The analog of Theorem 11 can be derived

similarly.)

Theorem 22 Suppose, ..., K, are similarity functions

such that some (unknown) convex combination of them is

(€,7,7)-good. Foranys > 0, let S = {z/,25,...,2}}
be a sample of siz¢ = 16% drawn fromP. Consider
the mapping® : X — R"? defined as follows#®,(z)
(K (z,2h), ..., Ky(z,2)),..., Ki(z,2)), ..., Kn(x, 2)).
With probability at leastl — § over the random sample

S, the induced distributiop® (P) in R™? has a separator of
error at moste + 6 at L1, L, margin at leasty/2.

Proof: Let K = a1 K1 + ... + o, K, be an(e, v, 7)-good
convex-combination of thé(iL By Theorem 8, had we in-
stead performed the mapping® : X — R? defined as

% () = (K (z,2'1), ..., K(x,2'q)),

then with probabilityl — ¢, the induced distributiod;S(P)
in R% would have a separator of error at mest ¢ at mar-

gin at leasty/2. Let 3 be the vector corresponding to such
a separator in that space. Now, let us conykinto a vec-
tor in R™? by replacing each coordinaﬁ; with then values
(a13;,...,anf3;). Call the resulting vectos. Notice that

by design, for any: we have<5, ¢S(x)> = <B,g55(a:)>.
FurthermoreHBH1 = HBHl Thus, the vectos under distri-

bution ¢°(P) has the same properties as the vectamder
#°(P). This implies the desired resullt. |

Note that we get significantly better bounds here than

in (Balcan & Blum, 2006), since the margin does not drop
by a factor ofﬁ.

8 Conclusions

We provide a new notion of a “good similarity function” that
we prove is strictly more powerful than the traditional rooti
of a large-margin kernel. Our new notion relies upbn
regularized learning, and our separation result is relsied
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A Kernels and Similarity Functions

Theorem 23 If K is an (e, y)-good similarity function un-
der Definitions 4 and 5, thei is also an(e,~,)-good
similarity function under Definitions 6 and 7, respectively

Proof: If we setPr(R(x) | z) = w(x), we get that in order
for any pointz to fulfill equation (2.1), we must have

Pr(R(z)) = E[w(z)] > E[tl'w(z")K (z,2")] > .

Furthermore, for any:, ¢ for which (2.1) is satisfied, we have

E[(V/'K (z,2")|R(z")] = E[tV'K (z,2")w(x")]/ Pr(R(x))
> E[WK (z, 2" )w(@')] >~ (Al)
|

Theorem 24 If K is an(e, v, 7)-good similarity function un-
der Definitions 6 and 7, theR  is an (e, y7)-good similarity
function under Definitions 4 and 5 (respectively).

Proof: Settingw(xz) = Pr(R(z) | =) we have for anyc, ¢
satisfying (3.1) that

E[V/'K (z,2"Yw(z")] = E[0V'K (z,2")R(z")] =
E[V/'K (x,2")|R(z")] Pr(R(z)) > vy7. (A.2)

A similar calculation establishes the correspondencelfer t
hinge loss. |

We show in the following that a kernel good as a similar-
ity function is also good as a kernel.

Theorem 25 If K is a valid kernel function, and ig, -, 7)-
good similarity for some learning problem, then it is also
(e,7)-kernel-good for the learning problem. & is (e, ~y, 7)-
good similarity in hinge loss, then it is ald@, v)-kernel-
good in hinge loss.

Proof: Consider a similarity functiork that is a valid ker-
nel, i.e. K(z,2’) = (¢(x), ¢(«’)) for some mapping> of

x to a Hilbert spacé{. For any input distribution and any
probabilistic set of reasonable poinftsof the input we will
construct a linear predictg#,, € H, with ||3,| < 1, such
that similarity-based predictions usiigjare the same as the
linear predictions made withg.



Define the following linear predictgir € H:

Br = Ex[l(z")p(2")|R(2")]. (A3)

The predictors,, has norm at most:
18&] = 1|Ex[£(2")d(z") | R(z)][| < max [[£(z")b(z")|
< max ||¢(2')|| = max /K (z/,2') <1 (A.4)

where the second inequality follows fro{(z’)| < 1.
The predictions made hyy are:

(Br, d(z)) = (Ew[t(z")p(2")| R ( N éx)) =

Eor[0(2")(p(2"), ¢(x)) | R(2")] = Eu [€(2")) K (2, 2") | R(x")]
(A.5)

That is, using3y is the same as using similarity-based pre-
diction with R. In particular, the margin violation rate, as
well as the hinge loss, with respect to any margjns the
same for predictions made using eith@ror Gr. This is
enough to establish Theorem 25: Af is (e, v)-good (per-
haps for to the hinge-loss), there exists some valithat
yields margin violation error rate (resp. hinge loss) at teos
with respect to margiry, and so5g yields the same margin
violation (resp. hinge loss) with respect to the same mar-
gin, establishing¥ is (¢, v)-kernel-good (resp. for the hinge
loss). [ |



