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Abstract

We systematically investigate finite maximum
classes, which play an important role in machine
learning as concept classes meeting Sauer’s
Lemma with equality. Simple arrangements of hy-
perplanes in Hyperbolic space are shown to rep-
resent maximum classes, generalizing the corre-
sponding Euclidean result. We show that sweep-
ing a generic hyperplane across such arrangements
forms an unlabeled compression scheme of size
VC dimension and corresponds to a special case of
peeling the one-inclusion graph, resolving a con-
jecture of Kuzmin & Warmuth. A bijection be-
tween maximum classes and certain arrangements
of Piecewise-Linear (PL) hyperplanes in either a
ball or Euclidean space is established. Finally, we
show that d-maximum classes corresponding to PL
hyperplane arrangements in Rd have cubical com-
plexes homeomorphic to a d-ball, or equivalently
complexes that are manifolds with boundary.

1 Introduction
Maximum concept classes have the largest cardinality possi-
ble for their given VC dimension. Such classes are of partic-
ular interest as their special recursive structure underlies all
general sample compression schemes known to-date [Flo89,
War03, KW07]. It is this structure that admits many elegant
geometric and algebraic topological representations upon
which this paper focuses.

Littlestone & Warmuth [LW86] introduced the study of
sample compression schemes, defined as a pair of mappings
for given concept class C: a compression function mapping
a C-labeled n-sample to a subsequence of labeled exam-
ples and a reconstruction function mapping the subsequence
to a concept consistent with the entire n-sample. A com-
pression scheme of bounded size—the maximum cardinal-
ity of the subsequence image—was shown to imply learn-
ability [LW86]. The converse—that classes of VC dimen-
sion d admit compression schemes of size d—has become
one of the oldest unsolved problems actively pursued within
learning theory. Recently Kuzmin and Warmuth achieved
compression of maximum classes without the use of labels
[KW07]. They also conjectured that their elegant Min-

Peeling Algorithm constitutes such an unlabeled d-
compression scheme for d-maximum classes.

As in our previous work [RBR08], maximum classes can
be fruitfully viewed as cubical complexes. These are also
topological spaces, with each cube equipped with a natu-
ral topology of open sets from its standard embedding into
Euclidean space. We proved that d-maximum classes corre-
spond to d-contractible complexes—topological spaces with
an identity map homotopic to a constant map—extending the
result that 1-maximum classes have trees for one-inclusion
graphs. Peeling can be viewed as a special form of con-
tractibility for maximum classes. However, there are many
non-maximum contractible cubical complexes that cannot
be peeled, which demonstrates that peelability reflects more
detailed structure of maximum classes than given by con-
tractibility alone.

In this paper we approach peeling from the direction of
simple hyperplane arrangement representations of maximum
classes. Kuzmin & Warmuth predicted that d-maximum
classes corresponding to simple linear hyperplane arrange-
ments could be unlabeled d-compressed by sweeping a gen-
eric hyperplane across the arrangement, and that concepts are
min-peeled as their corresponding cell is swept away [KW07,
Conjecture 1]. We positively resolve the first part of the
conjecture and show that sweeping such arrangements cor-
responds to a new form of corner-peeling, which we prove is
distinct from min-peeling. While min-peeling removes min-
imum degree concepts from a one-inclusion graph, corner-
peeling peels vertices that are contained in unique cubes of
maximum dimension.

We explore simple hyperplane arrangements in Hyper-
bolic geometry, which we show correspond to a set of maxi-
mum classes, properly containing those represented by sim-
ple linear Euclidean arrangements. These classes can again
be corner-peeled by sweeping. Citing the proof of existence
of maximum unlabeled compression schemes presented in
[BDL98], Kuzmin & Warmuth ask whether unlabeled com-
pression schemes for infinite classes such as positive half
spaces can be constructed explicitly [KW07]. We present
constructions for illustrative but simpler classes, suggesting
that there are many interesting infinite maximum classes ad-
mitting explicit compression schemes, and under appropri-
ate conditions, sweeping infinite Euclidean and Hyperbolic
arrangements corresponds to compression by corner-peeling.

Next we prove that all maximum classes in {0, 1}n are
represented as simple arrangements of Piecewise-Linear (PL)



hyperplanes in the n-ball. This extends previous work on
viewing simple PL hyperplane arrangements as maximum
classes [GW94]., The close relationship between such ar-
rangements and their Hyperbolic versions suggests that they
could be equivalent. Although PL sweeping does not imme-
diately admit corner-peeling or compression, the PL repre-
sentation result is used to prove the peeling conjecture
[KW07, Conjecture 1] for VC dimension two.

We investigate algebraic topological properties of max-
imum classes. Most notably we characterize d-maximum
classes, corresponding to simple linear Euclidean arrange-
ments, as cubical complexes homeomorphic to the d-ball.
The result that such classes’ boundaries are homeomorphic
to the (d − 1)-sphere begins the study of the boundaries of
maximum classes, which are closely related to peeling.

Compressing maximal classes—classes which cannot be
grown without an increase to their VC dimension—is suffi-
cient for compressing all classes, as embedded classes triv-
ially inherit compression schemes of their super-classes. This
reasoning motivates the attempt to embed d-maximal classes
into O(d)-maximum classes [KW07, Open Problem 3]. We
present non-embeddability results following from our earlier
counter-examples to Kuzmin & Warmuth’s minimum degree
conjecture [RBR08] and our new results on corner-peeling.

2 Background
2.1 Algebraic Topology
Definition 1 A homeomorphism is a one-to-one and onto
map f between topological spaces such that both f and f−1

are continuous. Spaces X and Y are said to be homeomor-
phic if there exists a homeomorphism f : X → Y .

Definition 2 A homotopy is a continuous map F : X ×
[0, 1] → Y . The initial map is F restricted to X × {0}
and the final map is F restricted to X×{1}. We say that the
initial and final maps are homotopic. A homotopy equiva-
lence between spacesX and Y is a pair of maps f : X → Y
and g : Y → X such that f ◦ g and g ◦ f are homotopic to
the identity maps on X and Y respectively. We say that X
and Y have the same homotopy type if there is a homotopy
equivalence between them.

Definition 3 A cubical complex is a union of solid cubes of
the form [a1, b1]× . . .× [am, bm], for bounded m ∈ N, such
that the intersection of any two cubes in the complex is either
a cubical face of both cubes or the empty-set.

Definition 4 A contractible cubical complex X is one which
has the same homotopy type as a one point space {p}. X is
contractible if and only if the constant map from X to p is a
homotopy equivalence.

2.2 Concept Classes and their Learnability
A concept class C on domain X , is a subset of the power
set of set X or equivalently C ⊆ {0, 1}X . We primarily
consider finite domains and so will write C ⊆ {0, 1}n in the
sequel, where it is understood that n = |X| and the n dimen-
sions or colors are identified with an ordering {xi}ni=1 = X .

The one-inclusion graph G(C) of C ⊆ {0, 1}n is the
graph with vertex-set C and edge-set containing {u, v} ⊆ C

iff u and v differ on exactly one component [HLW94]; G(C)
forms the basis of a prediction strategy with essentially-
optimal worst-case expected risk. G(C) can be viewed as a
simplicial complex in Rn by filling in each face with a prod-
uct of continuous intervals [RBR08]. Each edge in G(C) is
labeled by the component on which the two vertices differ.

Probably Approximately Correct learnability of a con-
cept class C ⊆ {0, 1}X is characterized by the finiteness of
the Vapnik-Chervonenkis (VC) dimension of C [BEHW89].
One key to all such results is Sauer’s Lemma.

Definition 5 The VC-dimension of C ⊆ {0, 1}X is defined

as VC(C) = sup
{
n | ∃Y ∈

(
X
n

)
,ΠY (C) = {0, 1}n

}
where

ΠY (C) = {(c(x1), . . . , c(xn)) | c ∈ C} ⊆ {0, 1}n is the
projection of C on sequence Y = (x1, . . . , xn).

Lemma 6 ([VC71, Sau72, She72]) |C| ≤
∑VC(C)
i=1

(
n
i

)
for

all C ⊆ {0, 1}n.

Motivated by maximizing concept class cardinality under
a fixed VC-dimension, which is related to constructing gen-
eral sample compression schemes (see Section 2.3), Welzl
defined the following special classes in [Wel87].

Definition 7 Concept class C ⊆ {0, 1}X is called maximal
if VC(C ∪ {c}) > VC(C) for all c ∈ {0, 1}X\C. Fur-
thermore if ΠY (C) satisfies Sauer’s Lemma with equality for
each Y ∈

(
X
n

)
, for every n ∈ N, thenC is termed maximum.

If C ⊆ {0, 1}n then C is maximum (and hence maximal) if
C meets Sauer’s Lemma with equality.

The reduction of C ⊆ {0, 1}n with respect to i ∈ [n] =
{1, . . . , n} is class Ci = Π[n]\{i}

({
c ∈ C | i ∈ IG(C)(c)

})
where IG(C)(c) ⊆ [n] denotes the labels of the edges incident
to vertex c; the tail is taili (C) =

{
c ∈ C | i /∈ IG(C)(c)

}
.

Welzl showed that if C is d-maximum, then Π[n]\{i}(C) and
Ci are maximum of VC-dimensions d and d−1 respectively.

The results presented below relate to other geometric and
topological representations of maximum classes existing in
the literature. Under the guise of ‘forbidden labels’, Floyd
showed in [Flo89] that maximum C ⊆ {0, 1}n of VC-dim d
is the union of a maximally overlapping d-complete collec-
tion of cubes [RBR08]—defined as a collection of d-cubes
which project onto all ( nd ) possible sets of d coordinate di-
rections. (See also [Ney06] for a different proof of this.)
It has long been known that VC-1 maximum classes have
one-inclusion graphs that are trees [Dud85]; in [RBR08] we
extended this result by showing that when viewed as com-
plexes, d-maximum classes are contractible d-cubical com-
plexes. Finally the cells of a simple linear arrangement of
n hyperplanes in Rd form a VC-d maximum class in the n-
cube [Ede87], but not all finite maximum classes correspond
to such Euclidean arrangements [Flo89].

2.3 Sample Compression Schemes
Littlestone and Warmuth showed that the existence of a com-
pression scheme of finite size is sufficient for learnability
of C, and conjectured the converse, that VC(C) = d <
∞ implies a compression scheme of size d [LW86]. Later



Warmuth weakened the conjectured size to O(d) [War03].
To-date it is only known that maximum classes can be d-
compressed [Flo89]. Unlabeled compression was first ex-
plored in [BDL98]; Kuzmin and Warmuth define such com-
pression as follows, explicitly constructing schemes of size
d for maximum classes [KW07].

Definition 8 LetC be a d-maximum class on a finite domain
X . A representation mapping r of C satisfies:

1. r is a bijection between C and subsets of X of size at
most d; and

2. [non-clashing] : c| (r(c) ∪ r(c′)) 6= c′| (r(c) ∪ r(c′))
for all c, c′ ∈ C, c 6= c′.

As with all published labeled schemes, known unlabeled
compression schemes for maximum classes exploit their spe-
cial recursive projection-reduction structure and so it is doubt-
ful whether such schemes will generalize. Kuzmin and War-
muth conjectured that their Min-Peeling Algorithm consti-
tutes an unlabeled d-compression scheme for maximum
classes; it iteratively removes minimum degree vertices from
G(C), representing the corresponding concepts by the re-
maining incident dimensions in the graph [KW07, Conjec-
ture 2]. The authors also conjecture that sweeping a hy-
perplane in general position across a simple linear arrange-
ment forms a compression scheme that corresponds to min-
peeling the associated maximum class [KW07, Conjecture 1].
Possibly the most promising approach to compressing gen-
eral classes is via their maximum-embeddings: a classC em-
bedded in class C ′ trivially inherits any compression scheme
for C ′, and so an important open problem is to embed max-
imal classes into maximum classes with at most a linear in-
crease in VC-dimension [KW07, Open Problem 3].

3 Preliminaries
3.1 Constructing All Maximum Classes
The aim in this section is to describe an algorithm for con-
structing all maximum classes of VC dimension d in the n-
cube. This process can be viewed as the inverse of mapping a
maximum class to its d-maximum projection on [n]\{i} and
the corresponding (d− 1)-maximum reduction.

Definition 9 Let C,C ′ ⊆ {0, 1}n be maximum classes of
VC-dimensions d, d−1 respectively, so that C ′ ⊂ C, and let
C1, C2 ⊂ C be d-cubes, i.e. d-faces of the n-cube {0, 1}n.

1. C1, C2 are connected if there exists a path in the one-
inclusion graph G(C) with end-points in C1 and C2; and

2. C1, C2 are said to be C ′-connected if there exists such a
connecting path that further does not intersect C ′.

The C ′-connected components of C are the equivalence
classes of the d-cubes of C under the C ′-connectedness re-
lation.

The recursive algorithm for constructing all maximum
classes of VC-dimension d in the n-cube, detailed as Algo-
rithm 1, considers each possible d-maximum class C in the
(n−1)-cube and each possible (d−1)-maximum subclassC ′

Algorithm 1 MAXIMUMCLASSES(n, d)
Given: n ∈ N, d ∈ [n]
Returns: the set of d-maximum classes in {0, 1}n

1. if d = 0 then return {{v} | v ∈ {0, 1}n} ;
2. if d = n then return {0, 1}n ;
3. M← ∅ ;

for each C ∈ MAXIMUMCLASSES(n− 1, d),
C ′ ∈ MAXIMUMCLASSES(n− 1, d− 1)
s.t. C ′ ⊂ C do

4. {C1, . . . , Ck} ← C ′-connected components of C ;
5. M←M∪⋃

p∈{0,1}k

{
(C ′ × {0, 1}) ∪

⋃
q∈[k] Cq × {pq}

}
;

done
6. returnM ;

ofC as the projection and reduction of a d-maximum class in
the n-cube, respectively. The algorithm lifts C and C ′ to all
possible maximum classes in the n-cube. Then C ′ × {0, 1}
is contained in each lifted class; so all that remains is to find
the tails from the complement of the reduction in the projec-
tion. It turns out that each C ′-connected component Ci of C
can be lifted to either Ci × {0} or Ci × {1} arbitrarily and
independently of how the other C ′-connected components
are lifted. The set of lifts equates to the set of d-maximum
classes in the n-cube that project-reduce to (C,C ′).

Lemma 10 MAXIMUMCLASSES(n, d) (cf. Algorithm 1) re-
turns the set of maximum classes of VC-dimension d in the
n-cube for all n ∈ N, d ∈ [n].

Proof: We proceed by induction on n and d. The base
cases correspond to n ∈ N, d ∈ {0, n} for which all max-
imum classes, enumerated as singletons in the n-cube and
the n-cube respectively, are correctly produced by the al-
gorithm. For the inductive step we assume that for n ∈
N, d ∈ [n − 1] all maximum classes of VC-dimension d
and d − 1 in the (n − 1)-cube are already known by recur-
sive calls to the algorithm. Given this, we will show that
MAXIMUMCLASSES(n, d) returns only d-maximum classes
in the n-cube, and that all such classes are produced by the
algorithm.

Let classesC ∈ MAXIMUMCLASSES(n−1, d) andC ′ ∈
MAXIMUMCLASSES(n − 1, d − 1) be such that C ′ ⊂ C.
Then C is the union of a d-complete collection and C ′ is
the union of a (d − 1)-complete collection of cubes that
are faces of the cubes of C. Consider a concept class C?
formed from C and C ′ by Algorithm 1. The algorithm par-
titions C into C ′-connected components C1, . . . , Ck each of
which is a union of d-cubes. While C ′ is lifted to C ′ ×
{0, 1}, some subset of the components {Ci}i∈S0 are lifted to
{Ci × {0}}i∈S0

while the remaining components are lifted
to {Ci × {1}}i/∈S0

. By definition C? is a d-complete collec-
tion of cubes with cardinality equal to ( n

≤d ) since |C?| =
|C ′| + |C|, as in [KW07]. So by [RBR08, Theorem 34] C?
is d-maximum.

If we now consider any d-maximum class C? ⊆ {0, 1}n,
its projection on [n]\{i} is a d-maximum classC ⊆ {0, 1}n−1

andC∗i is the (d−1)-maximum projectionC ′ ⊂ C of all the



d-cubes in C? which contain color i. It is thus clear that C?
must be obtained by lifting parts of the C ′-connected com-
ponents of C to the 1 level and the remainder to the 0 level,
and C ′ to C ′ × {0, 1}. We will now show that if the ver-
tices of each component are not lifted to the same levels,
then while the number of vertices in the lift match that of a
d-maximum class in the n-cube, the number of edges are too
few for such a maximum class. Define a lifting operator on
C as `(v) = {v} × `v , where `v ⊆ {0, 1} and

|`v| =
{

2 , if v ∈ C ′
1, if v ∈ C\C ′ .

Consider now an edge {u, v} in G(C). By the definition of a
C ′-connected component there exists some Cj such that ei-
ther u, v ∈ Cj\C ′, u, v ∈ C ′ or WLOG u ∈ Cj\C ′, v ∈ C ′.
In the first case `(u) ∪ `(v) is an edge in the lifted graph iff
`u = `v . In the second case `(u) ∪ `(v) contains four edges
and in the last it contains a single edge. Furthermore, it is
clear that this accounts for all edges in the lifted graph by
considering the projection of an edge in the lifted product.
Thus any lift other than those produced by Algorithm 1 in-
duces strictly too few edges for a d-maximum class in the
n-cube (cf. [KW07, Corollary 7.5]).

3.2 Corner-Peeling
Kuzmin and Warmuth conjectured in [KW07, Conjecture 2]
that their simple Min-Peeling procedure is a valid unlabeled
compression scheme for maximum classes. Beginning with
a concept class C0 = C ⊆ {0, 1}n, Min-Peeling operates by
iteratively removing a vertex vt of minimum-degree in G(Ct)
to produce the peeled class Ct+1 = Ct\{vt}. The concept
class corresponding to vt is then represented by the dimen-
sions of the edges incident to vt in G(Ct), IG(Ct)(vt) ⊆ [n].
Providing that no-clashing holds for the algorithm, the size
of the min-peeling scheme is the largest degree encountered
during peeling. Kuzmin and Warmuth predicted that this size
is always at most d for d-maximum classes. We explore these
questions for a related special case of peeling, where we pre-
scribe which vertex to peel at step t as follows.

Definition 11 Let C ⊆ {0, 1}n be a class with d = VC(C).
We say thatC can be corner-peeled if there exists an ordering
v1, . . . , v|C| of the vertices of C such that, for each t ∈ [|C|]
where C0 = C,

1. vt ∈ Ct−1 and Ct = Ct−1\{vt};
2. There exists a unique cubeC ′t−1 of maximum dimension

over all cubes in Ct−1 containing vt;
3. The neighbors Γ(vt) of vt in G(Ct−1) satisfy Γ(vt) ⊆
C ′t−1; and

4. C|C| = ∅.
The vt are termed the corner vertices of Ct−1 respectively.

Note that we do not constrain the cubes C ′t to be of non-
increasing dimension. It turns out that an important property
of maximum classes is invariant to this kind of peeling.

Definition 12 We call a class C ⊆ {0, 1}n shortest-path
closed if for any u, v ∈ C, G(C) contains a path connect-
ing u, v of length ‖u− v‖1.

Lemma 13 If C ⊆ {0, 1}n is shortest-path closed and v ∈
C is a corner vertex ofC, thenC\{v} is shortest-path closed.

Proof: Consider a shortest-path closed C ⊆ {0, 1}n. Let c
be a corner vertex of C, and denote the cube of maximum
dimension in C, containing c, by C ′. Consider {u, v} ⊆
C\{c}. By assumption there exists a u-v-path p of length
‖u− v‖1 contained in C. If c is not in p then p is contained
in the peeled product C\{c}. If c is in p then p must cross
C ′ such that there is another path of the same length which
avoids c, and thus C\{c} is shortest-path closed.

3.2.1 Corner-Peeling implies Compression
Theorem 14 If a maximum class C can be corner-peeled
then C can be d-unlabeled compressed.

Proof: The invariance of the shortest-path closed property
under corner-peeling is key. The corner-peeling unlabeled
compression scheme represents each vt ∈ C by r(vt) =
IG(Ct−1)(vt), the colors of the cube C ′t−1 which is deleted
from Ct−1 when vt is corner-peeled. We claim that any
two vertices vs, vt ∈ C have non-clashing representatives.
WLOG, suppose that s < t. The class Cs−1 must contain
a shortest vs-vt-path p. Let i be the color of the single edge
contained in p that is incident to vs. Color i appears once
in p, and is contained in r(vs). This implies that vs,i 6= vt,i
and that i ∈ r(vs) ∪ r(vt), and so vs| (r(vs) ∪ r(vt)) 6=
vt| (r(vs) ∪ r(vt)). By construction, r(·) is a bijection be-
tween C and all subsets of [n] of cardinality ≤ VC(C).

If the oriented one-inclusion graph, with each edge di-
rected away from the incident vertex represented by the edge’s
color, has no cycles, then that representation’s compression
scheme is termed acyclic [Flo89, BDL98, KW07].

Proposition 15 All corner-peeling unlabeled compression
schemes are acyclic.

Proof: We follow the proof that the Min-Peeling Algorithm
is acyclic [KW07]. Let v1, . . . , v|C| be a corner vertex order-
ing of C. As a corner vertex vt is peeled, its unoriented in-
cident edges are oriented away from vt. Thus all edges inci-
dent to v1 are oriented away from v1 and so the vertex cannot
take part in any cycle. For t > 1 assume Vt = {vs | s < t}
is disjoint from all cycles. Then vt cannot be contained in
a cycle, as all incoming edges into vt are incident to some
vertex in Vt. Thus the oriented G(C) is indeed acyclic.

3.3 Boundaries of Maximum Classes
We now turn to the geometric boundaries of maximum classes,
which are closely related to corner-peeling.

Definition 16 The boundary ∂C of a d-maximum class C is
defined as all the (d − 1)-subcubes which are the faces of a
single d-cube in C.

Maximum classes, when viewed as cubical complexes,
are analogous to soap films (an example of a minimal energy
surface encountered in nature), which are obtained when a
wire frame is dipped into a soap solution. Under this analogy
the boundary corresponds to the wire frame and the number



of d-cubes can be considered the area of the soap film. An
important property of the boundary of a maximum class is
that all lifted reductions meet the boundary multiple times.

Theorem 17 Every d-maximum class has boundary contain-
ing at least two (d− 1)-cubes of every combination of d− 1
colors, for all d > 1.

Proof: We use the lifting construction of Section 3.1. Let
C? ⊆ {0, 1}n be a 2-maximum class and consider color i ∈
[n]. Then the reduction C?i is an unrooted tree with at least
two leaves, each of which lifts to an i-colored edge in C?.
Since the leaves are of degree 1 in C?i, the corresponding
lifted edges belong to exactly one 2-cube in C? and so lie in
∂C?. Consider now a d-maximum class C? ⊆ {0, 1}n for
d > 2, and make the inductive assumption that the projection
C = Π[n−1](C?) has two of each type of (d − 1)-cube, and
that the reduction C ′ = C?n has two of each type of (d−2)-
cube, in their boundaries. Pick d−1 colors I ⊆ [n]. If n ∈ I
then consider two (d− 2)-cubes colored by I\{xn} in ∂C ′.
By the same argument as in the base case, these lift to two
I-colored cubes in ∂C?. If n /∈ I then ∂C contains two I-
colored (d−1)-cubes. For each cube, if the cube is contained
in C ′ then it has two lifts one of which is contained in ∂C?,
otherwise its unique lift is contained in ∂C?. Therefore ∂C?
contains at least two I-colored cubes.

Having a large boundary is an important property of max-
imum classes that does not follow from contractibility.

Example 18 Take a 2-simplex with vertices A,B,C. Glue
the edges AB to AC to form a cone. Next glue the end loop
BC to the edgeAB . The result is a complexD with a single
vertex, edge and 2-simplex, which is classically known as the
dunce hat. It is not hard to verify that D is contractible, but
has no (geometric) boundary.

Although Theorem 17 will not be explicitly used in the
sequel, we return to boundaries of maximum complexes later.

4 Euclidean Arrangements
Definition 19 A linear arrangement is a collection of n ≥
d oriented hyperplanes in Rd. Each region or cell in the
complement of the arrangement is naturally associated with
a concept in {0, 1}n; the side of the ith hyperplane on which
a cell falls determines the concept’s ith component. A simple
arrangement is one in which any subset of d planes has a
unique point in common and all subsets of d+ 1 planes have
an empty mutual intersection. Moreover any subset of k < d
planes meet in a plane of dimension n−k. Such a collection
of n planes is also said to be in general position.

Many of the familiar operations on concept classes in the
n-cube have elegant analogues on arrangements.

• Projection on [n]\{i} corresponds to removing the ith
plane;

• The reduction Ci is the new arrangement given by the
intersection of the arrangement with the ith plane; and

• The corresponding lifted reduction is the collection of
cells in the arrangement that adjoin the ith plane.

A k-cube in the one-inclusion graph corresponds to a collec-
tion of 2k cells, all having a common (n−k+1)-face, which
is contained in the intersection of k planes, and an edge cor-
responds to a pair of cells which have a common face on a
single plane. The following result is due to [Ede87].

Lemma 20 The concept class C ⊆ {0, 1}n induced by a
simple linear arrangement of n planes in Rd is d-maximum.

Proof: Note that C has VC-dimension at most d, since gen-
eral position is invariant to projection i.e. no d + 1 planes
are shattered. Since C is the union of a d-complete collec-
tion of cubes (every cell contains d-intersection points in its
boundary) it follows that C is d-maximum by [RBR08].

Corollary 21 LetA be a simple linear arrangement of n hy-
perplanes in Rd with corresponding d-maximumC ⊆ {0, 1}n.
The intersection ofA with a generic hyperplane corresponds
to a (d − 1)-maximum class C ′ ⊆ C. In particular if all
d-intersection points of A lie to one side of the generic hy-
perplane, then C ′ lies on the boundary of C; and ∂C is the
disjoint union of two (d− 1)-maximum sub-classes.

Proof: The intersection of A with a generic hyperplane is
again a simple arrangement of n hyperplanes but now in
Rd−1. Hence by Lemma 20 C ′ is a (d − 1)-maximum class
in the n-cube. C ′ ⊆ C since the adjacency relationships on
the cells of the intersection are inherited from those of A.

Suppose that all d-intersections inA lie in one half-space
of the generic hyperplane. C ′ is the union of a (d − 1)-
complete collection. We claim that each of these (d − 1)-
cubes is a face of exactly one d-cube in C and is thus in
∂C. A (d − 1)-cube in C ′ corresponds to a line in A where
d − 1 planes mutually intersect. The (d − 1)-cube is a face
of a d-cube in C iff this line is further intersected by a dth

plane. This occurs for exactly one plane, which is closest
to the generic hyperplane. For once the d-intersection point
is reached, when following along the line away from the
generic plane, a new cell is entered. This verifies the sec-
ond part of the result.

Consider two parallel generic hyperplanes h1, h2 such
that all d-intersection points of A lie in between them. We
claim that each (d − 1)-cube in ∂C is in exactly one of the
concept classes induced by the intersection of A with h1 and
A with h2. Consider an arbitrary (d − 1)-cube in ∂C. As
before this cube corresponds to a region of a line formed by
a mutual intersection of d − 1 planes. Moreover this region
is a ray, with one end-point at a d-intersection. Because the
ray begins at a point between the generic hyperplanes h1, h2,
it follows that the ray must cross exactly one of these.

Corollary 22 LetA be a simple linear arrangement of n hy-
perplanes in Rd and let C ⊆ {0, 1}n be the corresponding
d-maximum class. Then C considered as a cubical complex
is homeomorphic to the d-ball Bd; and ∂C considered as a
(d − 1)-cubical complex is homeomorphic to the (d − 1)-
sphere Sd−1.



x1 x2 x3 x4

v0 0 0 0 0
v1 1 0 0 0
v2 0 1 0 0
v3 0 0 1 0
v4 1 0 1 0
v5 1 1 0 0
v6 0 1 1 0
v7 1 0 0 1
v8 1 1 0 1
v9 0 1 0 1
v10 0 1 1 1

Figure 1: A 2-maximum class in
{0, 1}4 having a simple linear line ar-
rangement in R2.

Figure 2: The 2-maximum class in the
4-cube, enumerated in Figure 1.

Figure 3: A simple linear line arrange-
ment corresponding to the class in Fig-
ure 1, swept by the dashed line. Each
cell has a unique vertex.

Proof: We construct a Voronoi cell decomposition corre-
sponding to the set of d-intersection points inside a very large
ball in Euclidean space. By induction on d, we claim that this
is a cubical complex and the vertices and edges correspond
to the class C. By induction, on each hyperplane, the in-
duced arrangement has a Voronoi cell decomposition which
is a (d− 1)-cubical complex with edges and vertices match-
ing the one-inclusion graph for the tail ofC corresponding to
the label associated with the hyperplane. It is not hard to see
that the Voronoi cell defined by a d-intersection point p on
this hyperplane is a d-cube. In fact, its (d − 1)-faces corre-
spond to the Voronoi cells for p, on each of the d hyperplanes
passing through p. We also see that this d-cube has a single
vertex in the interior of each of the 2d cells of the arrange-
ment adjacent to p. In this way, it follows that the vertices of
this Voronoi cell decomposition are in bijective correspon-
dence to the cells of the hyperplane arrangement. Finally the
edges of the Voronoi cells pass through the faces in the hy-
perplanes. So these correspond bijectively to the edges of C,
as there is one edge for each face of the hyperplanes. Us-
ing a very large ball, containing all the d-intersection points,
the boundary faces become spherical cells. In fact, these
form a spherical Voronoi cell decomposition, so it is easy
to replace these by linear ones by taking the convex hull of
their vertices. So a piecewise linear cubical complex C is
constructed, which has one-skeleton (graph consisting of all
vertices and edges) isomorphic to the one-inclusion graph for
C.

Finally we want to prove that C is homeomorphic to Bd.
This is quite easy by construction. For we see that C is ob-
tained by dividing upBd into Voronoi cells and replacing the
spherical boundary cells by linear ones, using convex hulls
of the boundary vertices. This process is clearly given by a
homeomorphism by projection. In fact, the homeomorphism
preserves the PL-structure so is a PL homeomorphism.

The following example demonstrates that not all maxi-
mum classes of VC-dimension d are homeomorphic to the
d-ball. The key to such examples is branching.

Example 23 A simple linear arrangement in R corresponds

to points on the line—cells are simply intervals between these
points and so corresponding 1-maximum classes are sticks.
Any tree that is not a stick can therefore not be represented
as a simple linear arrangement in R and is also not homeo-
morphic to the 1-ball which is simply the interval [−1, 1].

As in Kuzmin & Warmuth [KW07], consider a generic
hyperplane h sweeping across a simple linear arrangement
A. h begins with all d-intersection points of A lying in its
positive half-spaceH+. The concept corresponding to cell c
is peeled fromC when |H+∩c| = 1, i.e. h crosses the last d-
intersection point adjoining c. At any step in the process, the
result of peeling j vertices from C to reach Cj , is captured
by the arrangementH+ ∩A for the appropriate h.

Example 24 Figure 1 enumerates the 11 vertices of a 2-
maximum class in the 4-cube. Figures 3 and 2 display a
hyperplane arrangement in Euclidean space and its Voronoi
cell decomposition, corresponding to this maximum class.
In this case, sweeping the vertical dashed line across the
arrangement corresponds to a partial corner-peeling of the
concept class with peeling sequence v7, v8, v5, v9, v2, v0.
What remains is the 1-maximum stick {v1, v3, v4, v6, v10}.

Next we resolve the first half of [KW07, Conjecture 1].

Theorem 25 Any d-maximum classC ⊆ {0, 1}n correspond-
ing to a simple linear arrangement A can be corner-peeled
by sweeping A, and this process is a valid unlabeled com-
pression scheme for C of size d.

Proof: We must show that as the jth d-intersection point pj
is crossed, there is a corner vertex of Cj−1 peeled away. It
then follows that sweeping a generic hyperplane h across A
corresponds to corner-peeling C to a (d− 1)-maximum sub-
class C ′ ⊆ ∂C by Corollary 21. Moreover C ′ corresponds
to a simple linear arrangement of n hyperplanes in Rd−1.

We proceed by induction on d, noting that for d = 1
corner-peeling is trivial. Consider h as it approaches the jth

d-intersection point pj . The d planes defining this point in-
tersect h in a simple arrangement of hyperplanes on h. There



is a compact cell ∆ for the arrangement on h, which is a d-
simplex1 and shrinks to a point as h passes through pj . We
claim that the cell c for the arrangement A, whose intersec-
tion with h is ∆, is a corner vertex vj of Cj−1. Consider the
lines formed by intersections of d − 1 of the d hyperplanes,
passing through pj . Each is a segment starting at pj and
ending at h without passing through any other d-intersection
points. So all faces of hyperplanes adjacent to c meet h in
faces of ∆. Thus, there are no edges in Cj−1 starting at
the vertex corresponding to pj , except for those in the cube
C ′j−1. So c corresponds to a corner vertex vj of the d-cube
C ′j−1 in Cj−1. Finally, just after the simplex is a point, c is
no longer inH+ and so vj is corner-peeled from Cj−1.

Theorem 14 completes the proof that this corner-peeling
of C constitutes unlabeled compression.

Corollary 26 The sequence of cubes C ′0, . . . , C
′
|C|, removed

when corner-peeling by sweeping simple linear arrangements,
is of non-increasing dimension. In fact, there are

(
n
d

)
cubes

of dimension d, then
(
n
d−1

)
cubes of dimension d− 1, etc.

While corner-peeling and min-peeling share some prop-
erties in common, they are distinct procedures.

Example 27 Consider sweeping a simple linear arrange-
ment corresponding to a 2-maximum class. After all but
one 2-intersection point has been swept, the corresponding
corner-peeled class Ct is the union of a single 2-cube with a
1-maximum stick. Min-peeling applied to Ct would first peel
a leaf, while corner-peeling must begin with the 2-cube.

The next result follows from our counter-examples to
Kuzmin & Warmuth’s minimum degree conjecture [RBR08].

Corollary 28 There is no constant c so that all maximal
classes of VC dimension d can be embedded into maximum
classes corresponding to simple hyperplane arrangements of
dimension d+ c.

5 Hyperbolic Arrangements
We briefly discuss the Klein model of hyperbolic geome-
try [Rat94, pg. 7]. Consider the open unit ball Hk in Rk.
Geodesics (lines of shortest length in the geometry) are given
by intersections of straight lines in Rk with the unit ball.
Similarly planes of any dimension between 2 and k − 1 are
given by intersections of such planes in Rk with the unit
ball. Note that such planes are completely determined by
their spheres of intersection with the unit sphere Sk−1, which
is called the ideal boundary of hyperbolic space Hk. Note
that in the appropriate metric, the ideal boundary consists of
points which are infinitely far from all points in the interior
of the unit ball.

We can now see immediately that a simple hyperplane
arrangement in Hk can be described by taking a simple hy-
perplane arrangement in Rk and intersecting it with the unit
ball. However we require an important additional property
to mimic the Euclidean case. Namely we add the constraint

1A topological simplex—the convex hull of affinely indepen-
dent d + 1 points in Rd.

that every subcollection of d of the hyperplanes in Hk has
mutual intersection points inside Hk, and that no (d + 1)-
intersection point lies in Hk. We need this requirement to
obtain that the resulting class is maximum.

Definition 29 A simple hyperbolic d-arrangement is a col-
lection of n hyperplanes in Hk with the property that ev-
ery sub-collection of d hyperplanes mutually intersect in a
(k − d)-dimensional hyperbolic plane, and that every sub-
collection of d + 1 hyperplanes mutually intersect as the
empty set.

Corollary 30 The concept class C corresponding to a sim-
ple d-arrangement of hyperbolic hyperplanes in Hk is d-
maximum in the k-cube.

Proof: The result follows by the same argument as before.
Projection cannot shatter any (d+ 1)-cube and the class is a
complete union of d-cubes, so is d-maximum.

The key to why hyperbolic arrangements represent many
new maximum classes is that they allow flexibility of choos-
ing d and k independently. This is significant because the
unit ball can be chosen to miss much of the intersections of
the hyperplanes in Euclidean space. Note that the new max-
imum classes are embedded in maximum classes induced by
arrangements of linear hyperplanes in Euclidean space.

A simple example is any 1-maximum class. It is easy
to see that this can be realized in the hyperbolic plane by
choosing an appropriate family of lines and the unit ball in
the appropriate position. In fact, we can choose sets of pairs
of points on the unit circle, which will be the intersections
with our lines. So long as these pairs of points have the prop-
erty that the smaller arcs of the circle between them are dis-
joint, the lines will not cross inside the disk and the desired
1-maximum class will be represented.

Corner-peeling maximum classes represented by hyper-
bolic hyperplane arrangements proceeds by sweeping, just
as in the Euclidean case. Note first that intersections of the
hyperplanes of the arrangement with the moving hyperplane
appear precisely when there is a first intersection at the ideal
boundary. Thus it is necessary to slightly perturb the col-
lection of hyperplanes to ensure that only one new intersec-
tion with the moving hyperplane occurs at any time. Note
also that new intersections of the sweeping hyperplane with
the various lower dimensional planes of intersection between
the hyperplanes appear similarly at the ideal boundary. The
important claim to check is that the intersection at the ideal
boundary between the moving hyperplane and a lower di-
mensional plane, consisting entirely of d intersection points,
corresponds to a corner-peeling move. We include two ex-
amples to illustrate the validity of this plane.

Example 31 In the case of a 1-maximum class coming from
disjoint lines in H2, a cell can disappear when the sweeping
hyperplane meets a line at an ideal point. This cell is indeed
a vertex of the tree, i.e. a corner-vertex.

Example 32 Assume that we have a family of planes in the
unit ball which meet in pairs in single lines, but there are no
triple points of intersection, corresponding to a 2-maximum
class. A corner-peeling move occurs when a region bounded



(a) (b)

Figure 4: 2-maximum classes in {0, 1}4 that can be repre-
sented as hyperbolic arrangements but not as Euclidean ar-
rangements.

(a) (b)

Figure 5: Hyperbolic hyperplane arrangements correspond-
ing to the classes in Figure 4. In both cases the four hyper-
bolic planes meet in 6 straight line segments (not shown). The
planes’ colors correspond to the edges’ colors in Figure 4.

by two half disks and an interval disappears, in the positive
half space bounded by the sweeping hyperplane. Such a re-
gion can be visualized by taking a slice out of an orange.
Note that the final point of contact between the hyperplane
and the region is at the end of a line of intersection between
two planes on the ideal boundary.

We next observe that sweeping by generic hyperbolic hy-
perplanes induces corner-peeling of the corresponding max-
imum class, extending Theorem 25. As the generic hyper-
plane sweeps across hyperbolic space, not only do swept
cells correspond to corners of d-cubes but also to corners
of lower dimensional cubes as well. Moreover, the order
of the dimensions of the cubes which are corner-peeled can
be arbitrary—lower dimensional cubes may be corner-peeled
before all the higher dimensional cubes are corner-peeled.
This is in contrast to Euclidean sweepouts (cf. Corollary 26).
Similar to Euclidean sweepouts, hyperbolic sweepouts cor-
respond to corner-peeling and not min-peeling.

Theorem 33 Any d-maximum classC ⊆ {0, 1}n correspond-
ing to a simple hyperbolic d-arrangement A can be corner-
peeled by sweeping A with a generic hyperbolic hyperplane.

Proof: We follow the same strategy of the proof of Theo-
rem 25. For sweeping in hyperbolic space Hk, the generic
hyperplane h is initialized as tangent to Hk. As h is swept
across Hk, new intersections appear withA just after hmeets
the non-empty intersection of a subset of hyperplanes of A
with the ideal boundary. Each d-cube C ′ in C still corre-
sponds to the cells adjacent to the intersection IC′ of d hy-
perplanes. But now IC′ is a (k − d)-dimensional hyperbolic
hyperplane. A cell c adjacent to IC′ is corner-peeled pre-
cisely when h last intersects c at a point of IC′ at the ideal
boundary. As for simple linear arrangements, the general
position of A∪ {h} ensures that corner-peeling events never
occur simultaneously. For the case k = d+1, as for the sim-
ple linear arrangements just prior to the corner-peeling of c,
H+ ∩ c is homeomorphic to a k-simplex with a missing face
on the ideal boundary. And so as in the simple linear case,
this d-intersection point corresponds to a corner d-cube. In
the case k > d + 1, H+ ∩ c becomes a simplex as before

multiplied by Rk−d−1. If k = d, then the main difference is
just before corner-peeling of c,H+∩c is homeomorphic to a
k-simplex which may be either closed or with a missing face
on the ideal boundary. The rest of the argument remains the
same, except for one important observation.

Although swept corners in hyperbolic arrangements can
be of cubes of differing dimensions, these dimensions never
exceed d and so the proof that sweeping simple linear ar-
rangements induces d-compression schemes is still valid.

Example 34 Constructed with lifting, Figure 4 completes
the enumeration, up to symmetry, of the 2-maximum classes
in {0, 1}4 begun with Example 24. These cases cannot be
represented as simple Euclidean linear arrangements, since
their boundaries do not satisfy the condition of Corollary 22
but can be represented as hyperbolic arrangements as in
Figure 5. Figures 6 and 7 display the sweeping of a gen-
eral hyperplane across the former arrangement and the cor-
responding corner-peeling. Notice that the corner-peeled
cubes’ dimensions decrease and then increase.

Corollary 35 There is no constant c so that all maximal
classes of VC dimension d can be embedded into maximum
classes corresponding to simple hyperbolic hyperplane ar-
rangements of VC dimension d+ c.

This result follows from our counter-examples to Kuzmin
& Warmuth’s minimum degree conjecture [RBR08].

Corollary 30 gives a proper superset of simple linear hy-
perplane arrangement-induced maximum classes as hyper-
bolic arrangements. We will prove in the next section that
all maximum classes can be represented as PL hyperplane
arrangements in a ball. These are the topological analogue
of hyperbolic hyperplane arrangements. If the boundary of
the ball is removed, then we obtain an arrangement of PL
hyperplanes in Euclidean space.

6 Infinite Euclidean and Hyperbolic
Arrangements

We consider a simple example of an infinite maximum class
which admits corner-peeling and a compression scheme anal-
ogous to those of previous sections.



Figure 6: The simple hyperbolic arrangement of Figure 5.(a)
with a generic sweeping hyperplane shown in several posi-
tions before and after it sweeps past four cells.

Figure 7: The 2-maximum class in {0, 1}4 of Figure 4.(a),
with the first four corner-vertices peeled by the hyperbolic
arrangement sweeping of Figure 6. Notice that three 2-cubes
are peeled, then a 1-cube (all shown) followed by 2-cubes.

Example 36 Let L be the set of lines in the plane of the
form L2m = {(x, y) | x = 2m} and L2n+1 = {(x, y) |
y = 2n} for m,n ∈ N. Let v00, v0n, vm0, and vmn be the
cells bounded by the lines {L2, L3}, {L2, L2n+1, L2n+3},
{L2m, L2m+2, L3}, and {L2m, L2m+2, L2n+1, L2n+3}, re-
spectively. Then the cubical complex C, with vertices vmn,
can be corner-peeled and hence compressed, using a sweep-
out by the lines {(x, y) | x+(1+ ε)y = t} for t ≥ 0 and any
small fixed irrational ε > 0. C is a 2-maximum class and the
unlabeled compression scheme is also of size 2.

To verify the properties of this example, notice that sweep-
ing as specified corresponds to corner-peeling the vertex v00,
then the vertices v10, v01, then the remaining vertices vmn in
order of increasing m + n. The lines x + (1 + ε)y = t
are generic as they pass through only one intersection point
of L at a time. Additionally, representing v00 by ∅, v0n by
{L2n+1}, vm0 by {L2m} and vmn by {L2m, L2n+1} consti-
tutes a valid unlabeled compression scheme. Note that the
compression scheme is associated with sweeping across the
arrangement in the direction of decreasing t. This is neces-
sary to pick up the boundary vertices of C last in the sweep-

out process, so that they have either singleton representatives
or the empty set. In this way, as in [KW07], we obtain a
compression scheme so that every labeled sample of size 2
is associated with a unique concept in C, which is consistent
with the sample. On the other hand to obtain corner-peeling,
we need the sweepout to proceed with t increasing so that
we can begin at the boundary vertices of C.

In concluding this brief discussion, we note that many in-
finite collections of simple hyperbolic hyperplanes and Eu-
clidean hyperplanes can also be corner-peeled and compress-
ed, even if intersection points and cells accumulate. However
a key requirement in the Euclidean case is that the concept
class C has a non-empty boundary, when considered as a cu-
bical complex. An easy approach is to assume that all the
d-intersections of the arrangement lie in a half-space. More-
over, since the boundary must also admit corner-peeling, we
require more conditions, similar to having all the intersection
points lying in an octant.

Example 37 In R3, choose the family of planes P of the
form P3n+i = {x ∈ R3 | xi+1 = 1 − 1/n} for n ≥ 1 and
i ∈ {0, 1, 2}. A corner-peeling scheme is induced by sweep-
ing a generic plane {x ∈ R3 | x1 + αx2 + βx3 = t} across
the arrangement, where t is a parameter and 1, α, β are al-
gebraically independent and α, β are both close to 1. This
example has similar properties to Example 36: the compres-
sion scheme is again given by decreasing t whereas corner-
peeling corresponds to increasing t. Note that cells shrink to
points, as x→ 1 and the volume of cells converge to zero as
n→∞, or equivalently any xi → 1.

Example 38 In the hyperbolic plane H2, choose the family
of lines L given by L2n = {(x, y) | x = 1 − 1/n} and
L2n+1 = {(x, y) | x + ny = 1}, for n ≥ 1. This arrange-
ment has corner-peeling and compression schemes given by
sweeping across L using the generic line {y = t}.

7 Piecewise-Linear Arrangements
A PL hyperplane is the image of a proper piecewise-linear
homeomorphism from the (k − 1)-ball Bk−1 into Bk, i.e.
the inverse image of Sk is Sk−1 [RS82]. A simple PL d-
arrangement is an arrangement of n PL hyperplanes such
that every subcollection of j hyperplanes meet transversely
in a (k − j)-dimensional PL plane for 2 ≤ j ≤ d and every
subcollection of d+ 1 hyperplanes are disjoint.

7.1 Maximum Classes are Represented by Simple PL
Hyperplane Arrangements

Our aim is to prove the following theorem by a series of
steps.

Theorem 39 Every d-maximum class C ⊆ {0, 1}n can be
represented by a simple arrangement of PL hyperplanes in
an n-ball. Moreover the corresponding simple arrangement
of PL hyperspheres in the (n− 1)-sphere also represents C,
so long as n > d+ 1.

7.1.1 Embedding a d-Maximum Cubical Complex in
the n-cube into an n-ball.

We begin with a d-maximum cubical complex C ⊆ {0, 1}n
embedded into [0, 1]n. This gives a natural embedding of C



Figure 8: A 1-maximum class (thick
solid lines) with its fattening (thin solid
lines with points), bisecting sets (dashed
lines) and induced complementary cells.

Figure 9: The top of Figure 4.(b) (i.e.
the 2-cubes seen from above) gives part
of the boundary of a regular neighbor-
hood in R3.

Figure 10: The bottom of Figure 4.(b)
(i.e. the 2-cubes seen from below) gives
the rest of the boundary of a regular
neighborhood.

into Rn. Take a small regular neighborhood N of C so that
the boundary ∂N of N will be a closed manifold of dimen-
sion n − 1. Note that N is contractible because it collapses
onto C and so ∂N is a homology (n− 1)-sphere (by a stan-
dard, well-known argument from topology [Maz61]). Our
aim is to prove that ∂N is an (n − 1)-sphere and N is an
n-ball. There are two ways of proving this: show that ∂N is
simply connected and invoke the well-known solution to the
generalised Poincaré conjecture [Sma61], or use the cubical
structure of the n-cube andC to directly prove the result. We
adopt the latter approach, although the former works fine.
The advantage of the latter is that it produces the required
hyperplane arrangement, not just the structures of ∂N and
N .

7.1.2 Bisecting Sets
For each color i, there is a hyperplane Pi in Rn consisting
of all vectors with ith coordinate equal to 1/2. We can easily
arrange the choice of regular neighborhood N of C so that
Ni = Pi∩N is a regular neighborhood of C ∩Pi in Pi. (We
call Ni a bisecting set as it intersects C along the ‘center’
of the reduction in the ith coordinate direction, see Figure 8.)
But then since C ∩Pi is a cubical complex corresponding to
the reduction Ci, by induction on n, we can assert thatNi is
an (n − 1)-ball. Similarly the intersections Ni ∩ Nj can be
arranged to be regular neighborhoods of (d − 2)-maximum
classes and are also balls of dimension n − 2, etc. In this
way, we see that if we can show thatN is an n-ball, then the
induction step will be satisfied and we will have produced a
PL hyperplane arrangement in a ball.

7.1.3 Shifting
To complete the induction step, we use the technique of shift-
ing, [Alo83], [Fra83], [Hau95]. In our situation, this can
be viewed as the converse of lifting. Namely if a color i is
chosen, then the cubical complex C has a lifted reduction C ′
consisting of all d-cubes containing the ith color. By shifting,
we can move down any of the lifted components, obtained by
splitting C open along C ′, from the level xi = 1 to the level
xi = 0, to form a new cubical complex C?. We claim that
the regular neighborhood of C is a ball if and only if the
same is true for C?. But this is quite straightforward, since
the operation of shifting can be thought of as sliding com-
ponents of C, split open along C ′, continuously from level
xi = 1 to xi = 0. So there is an isotopy of the attaching
maps of the components onto the lifted reduction, using the
product structure of the latter. It is easy then to check that

this does not affect the homeomorphism type of the regular
neighborhood and so the claim of shift invariance is proved.

But repeated shifting finishes with the downwards closed
maximum class consisting of all vertices in the n-cube with
at most d coordinates being one and the remaining coordi-
nates all being zero. It is easy to see that the corresponding
cubical complex C̃ is star-like, i.e. contains all the straight
line segments from the origin to any point in C̃. If we choose
a regular neighborhood Ñ to also be star-like, then it is obvi-
ous that Ñ is an n-ball. Hence our induction is complete and
we have shown that any d-maximum class in {0, 1}n can be
represented by a family of PL hyperplanes in the n-ball.

7.1.4 Ideal Boundary
To complete the proof of Theorem 39, let ∂N = Sn−1 de-
note the boundary of the n-ball N constructed above (cf.
Figures 9 and 10). Each PL hyperplane intersects this sphere
in a PL hypersphere of dimension n− 2. It remains to show
this arrangement of hyperspheres gives the same cubical com-
plex as C, unless n = d+ 1.

Suppose that n > d + 1. Then it is easy to see that each
cell c in the complement of the PL hyperplane arrangement
inN has part of its boundary on the ideal boundary ∂N . Let
∂c = ∂c+ ∪ ∂c−, where ∂c+ is the intersection of c with the
ideal boundary and ∂c− is the closure of ∂c \ ∂c+.

It is now straightforward to verify that the face structure
of ∂c+ is equivalent to the face structure of ∂c−. Note that
any family of at most d PL hyperplanes meet in a ball prop-
erly embedded in N . Since n > d + 1, the smallest dimen-
sion of such a ball is two, and hence its boundary is con-
nected. Then ∂c− has faces which are balls obtained in this
way of dimension varying between n − d and n − 1. Each
of these faces has boundary a sphere which is a face of ∂c+.
So this establishes a bijection between the faces of ∂c+ and
those of ∂c−. It is easy to check that the cubical complexes
corresponding to the PL hyperplanes and to the PL hyper-
spheres are the same.

Note that if n = d + 1, then any d-maximum class C ⊆
{0, 1}d+1 is obtained by taking all the d-faces of the (d+1)-
cube which contain a particular vertex. So C is a d-ball and
the ideal boundary of N is a d-sphere. The cubical complex
associated with the ideal boundary is the double 2C of C,
i.e. two copies of C glued together along their boundaries.
The proof of Theorem 39 is now complete.

Example 40 Consider the bounded below 2-maximum class
C̃ ⊆ {0, 1}5. We claim that C̃ cannot be realized as an ar-



rangement of PL hyperplanes in the 3-ball B3. Note that
our method gives C̃ as an arrangement in B5 and this exam-
ple shows that B4 is the best one might hope for in terms of
dimension of the hyperplane arrangement.

For suppose that C̃ could be realized by any PL hyper-
plane arrangement in B3. Then clearly we can also embed
C̃ into B3. The vertex v0 = {0}5 has link given by the
complete graph K on 5 vertices in C̃. (By link, we mean the
intersection of the boundary of a small ball inB3 centered at
v0 with C̃.) But as is well known,K is not planar, i.e. cannot
be embedded into the plane or 2-sphere. This contradiction
shows that no such arrangement is possible.

7.2 Maximum Classes with Manifold Cubical
Complexes

We prove a partial converse to Corollary 22: if a d-maximum
class has a ball as cubical complex, then it can always be
realized by a simple PL hyperplane arrangement in Rd.

Theorem 41 Suppose that C ⊆ {0, 1}n is a d-maximum
class. Then the following properties of C, considered as a
cubical complex, are equivalent:

(i) There is a simple arrangement A of n PL hyperplanes
in Rd which represents C.

(ii) C is homeomorphic to the d-ball.
(iii) C is a d-manifold with boundary.

Proof: To prove (i) implies (ii), we can use exactly the same
argument as Corollary 22. Next (ii) trivially implies (iii). So
it remains to show that (iii) implies (i). The proof proceeds
by double induction on n, d. The initial cases where either
d = 1 or n = 1 are very easy.

Assume that C is a manifold. Let p denote the ith co-
ordinate projection. Then p(C) is obtained by collapsing
C ′i × [0, 1] onto Ci, where C ′ is the reduction. As before,
let Pi be the linear hyperplane in Rn, where the ith coordi-
nate takes value 1/2. Viewing C as a manifold embedded
in the n-cube, since Pi intersects C transversely, we see that
Ci × {1/2} is a proper submanifold of C. But it is easy to
check that collapsing Ci × [0, 1] to Ci in C produces a new
manifold which is again homeomorphic to C. (The product
region Ci × [0, 1] in C can be expanded to a larger product
region and so collapsing shrinks the larger region to one of
the same homeomorphism type). So we conclude that the
projection p(C) is also a manifold. By induction on n, it fol-
lows that there is a PL hyperplane arrangementA, consisting
of n− 1 PL hyperplanes in Bd, which represents p(C).

Next, observe that the reduction Ci can be viewed as a
properly embedded submanifold M in Bd, where M is a
union of some of the (d− 1)-dimensional faces of the Voro-
noi cell decomposition corresponding toA, described in Cor-
ollary 22. By induction on d, we conclude that Ci is also
represented by n PL hyperplanes in Bd−1. But then since
condition (i) implies (ii), it follows that M is PL homeomor-
phic toBd−1, since the underlying cubical complex for Ci is
a (d−1)-ball. So it follows thatA∪{M} is a PL hyperplane
arrangement inBd representing C. This completes the proof
that condition (iii) implies (i).

8 Corner-Peeling 2-Maximum Classes
Theorem 42 Every 2-maximum class can be corner-peeled.

Proof: By Theorem 39, we can represent any 2-maximum
class C ⊆ {0, 1}n by a simple family of hyperspheres {Si}
in Sn−1. Every pair of hyperspheres Si, Sj intersects in an
(n − 3)-sphere Sij and there are no intersection points be-
tween any three of these hyperspheres. Consider the family
of spheres Sij , for i fixed. These are disjoint hyperspheres
in Si so we can choose an innermost one Sik which bounds
an (n− 2)-ball B1 in Si not containing any other of these
spheres. Moreover there are two balls B2, B3 bounded by
Sik on Sk. We call the two (n − 1)-balls Q2, Q3 bounded
by B1 ∪ B2, B1 ∪ B3 respectively in Sn−1, which intersect
only along B1, quadrants .

Assume B2 is innermost on Sk. Then the quadrant Q2

has both faces B1, B2 innermost. It is easy to see that such
a quadrant corresponds to a corner vertex in C which can
be peeled. Moreover, after peeling, we still have a family
of PL hyperspheres which give an arrangement correspond-
ing to the new peeled class. The only difference is that cell
Q2 disappears, by interchanging B1, B2 on the correspond-
ing spheres Si, Sk and then slightly pulling the faces apart.
(If n = 3, we can visualize a pair of disks on two intersect-
ing spheres with a common boundary circle. Then peeling
can be viewed as moving these two disks until they coincide
and then pulling first past the second). So it is clear that if
we can repeatedly show that a quadrant can be found with
two innermost faces, until all the intersections between the
hyperspheres have been removed, then we will have corner-
peeled C to a 1-maximum class, i.e. a tree. So peeling will
be established.

Suppose neither of the two quadrants Q2, Q3 has both
faces innermost. ConsiderQ2 say and let {Sα} be the family
of spheres intersecting the interior of the face B2. Amongst
these spheres, there is clearly at least one Sβ so that the in-
tersection Skβ is innermost on Sk. But then Skβ bounds an
innermost ball B4 in Sk whose interior is disjoint from all
the spheres {Sα}. Similarly, we see that Skβ bounds a ball
B5 which is the intersection of the sphere Sβ with the quad-
rant Q2. We get a new quadrant bounded by B4 ∪B5 which
is strictly smaller than Q2 and has at least one innermost
face. But clearly this process must terminate—we cannot
keep finding smaller and smaller quadrants and so a smallest
one must have both faces innermost.

9 Conclusions and Open Problems
We saw in Corollary 22 that d-maximum classes represented
by simple linear hyperplane arrangements in Rd have under-
lying cubical complexes that are homeomorphic to a d-ball.
Hence the VC dimension and the dimension of the cubical
complex are the same. Moreover in Theorem 41, we proved
that d-maximum classes represented by PL hyperplane ar-
rangements in Rd are those whose underlying cubical com-
plexes are manifolds or equivalently d-balls.

Question 43 Does every simple PL hyperplane arrangement
in Bd, where every subcollection of d planes transversely
meet in a point, represent the same concept class as some
simple linear hyperplane arrangement?



Question 44 What is the connection between the VC dimen-
sion of a maximum class induced by a simple hyperbolic hy-
perplane arrangement and the smallest dimension of hyper-
bolic space containing such an arrangement? In particular,
can the hyperbolic space dimension be chosen to only de-
pend on the VC dimension and not the dimension of the bi-
nary cube containing the class?

We gave an example of a 2-maximum class in the 5-
cube that cannot be realized as a hyperbolic hyperplane ar-
rangement in H3. Note that the Whitney embedding theo-
rem [RS82] proves that any cubical complex of dimension
d embeds in R2d. Can such an embedding be used to con-
struct a hyperbolic arrangement inH2d or a PL arrangement
in R2d?

The structure of the boundary of a maximum class is
strongly related to corner-peeling. For Euclidean hyperplane
arrangements, the boundary of the corresponding maximum
class is homeomorphic to a sphere by Corollaries 21 and 22.

Question 45 Is there a characterization of the cubical com-
plexes that can occur as the boundary of a maximum class?
Characterize maximum classes with isomorphic boundaries.

Question 46 Does a corner-peeling scheme exist with cor-
ner vertex sequence having minimum degree?

Theorem 39 suggests the following.

Question 47 Can any d-maximum class in {0, 1}n be repre-
sented by a simple arrangement of hyperplanes in Hn?

Question 48 Which compression schemes arise from sweep-
ing across simple hyperbolic hyperplane arrangements?

Kuzmin & Warmuth note that there are unlabeled com-
pression schemes that are cyclic [KW07]. In Proposition 15
we show that corner-peeling compression schemes (like min-
peeling) are acyclic. So compression schemes arising from
sweeping across simple arrangements of hyperplanes in Eu-
clidean or Hyperbolic space are also acyclic. Does acyclicity
characterize such compression schemes?
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